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TWO-DIMENSIONAL UNSTEADY ARALYSIS OF FLUID FORCES ON
A WHIRLING CENTRIFUGAL IMPELLER IN A VOLUTEX
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Osaka University
560 Toyonaka, Osaka, Japan

A. J. Acosta and C. E. Brennen
California Institute of Technology
Pasadena, California 91125

Destabilizing fluid forces on a whirling centrifugal impeller rotating in a
‘volute have been observed (Ref.l). A quasisteady analysis neglecting shed vorticity
(Ref.2) or an unsteady analysis without a volute <(Ref.3) does not predict the
existence of such destabilizing fluid forces on a whirling impeller,

The present report is intended to take into account the effects of a volute and
the shed vorticity. We treat cases when an impeller with an infinite number of
vanes rotates with a constant velocity 9 and its center whirls with a constant
eccentric radius ¢ and a constant whirling velocity w.

Major assumptions are as follows:

(1) The number of the vanes is so large that the impeller can be treated as
an actuator impeller in which the flow is perfectly guided.

{(2) Flow is inviscid, incompressible and two~dimensional.

(3) The eccentricity e is so small that unsteady components can be linear-—
ized.

(4) Vorticity is transported on a prescribed mean flow, i.e., the operating
point is mnear design flow rate.

(5) The volute can be represented by a curved plate (see Fig.1).
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SYMBOLS

2= Z-ht')/ : stationary frame with its origin O fixed to the center of the whir-
ling motion

g’:z'n)]/ : translating frame with its origin 0' fixed to the center of the
= 2-ge«t impeller and its axes parallel to those of Z.

o, r : inner and outer radius of the impeller
Ber> : vane angle measured from circumferential direction
£ : eccentricity
w : angular velocity of whirling motion
£ : angular velocity of the impeller
Iz : prerotation, Q: flow rate
V = U+ U : absolute velocity
(U, Us)
Y=U+iy’ ¢ velocity relative to x'y' frame
(v, Vg
w : velocity relative to the impeller
(W'r; w’)
t : time, t=0 when 00’ is in the direction of x
n : circumferential mode number
Subscripts
!, 2 : quantities at the inner and outer radius respectively
Superscripts

: steady component ~ ; unsteady compomnent

BASIC EQUATIONS

Euler’s equation in the rotating and translating frame fixed to the rotor is,

ay W W By o, 3

agk"V(z 7 7 ) Wi(0xY)=§F 1)
where alatzeis the time derivative in the rotating frame and ,I‘Ifimaei“’t, and
8 X x'=irQe are the translational velocity due to whirling and the rotational

velo’Zity of the impeller. In an actuator impeller with an infinite number of vanes,
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the effects of the vorticity distribution on the vanes and the forces exerted by the
vanes are represented by the vorticity V Xy and the external force £
respectively in the above equation, For inviscid flow through actuwator impellers,
£ and w X (VX y) are normal to the vane surface and the component of Equation (1)
parallel to the vane surface is

(2>

Vs . 2, wi_ Ve By _
atx T (- rp) =0

where

Us = W — FRoosp - wE cog (9+B-wtb)
Wr,8) = Wrch, 8-Fr) 1 [ ( Vesy pinger>)
Ve? = 1R + 84+ 2rwg Ren(8-wt)

Hot¥ =3/t +.23/36

Integrating Equation (2) alomg the vane surface we get the following total pressure
increase,

Bz_B_f- 2 = [ ] -MOERE) Vs - S0 (@0 [ ain(o1p-wtds

+ Sw[ (YR + Vg cos (6-wT) + Uyisum (e-wt)J,z (3>

where
2
. £}
M j, rm'/npcr)dr

Downstream of the impeller, where /t;=0. Equation (1) can be expressed as

4 P w? _'_/.‘:.Z
Wx(Pxg)=5h T VA, HepTy o3 >

By multiplying Crdr+Erady = I3 (Cyeos® -gzg},np)d&. on both sides of the above equa-

tion we get the following vorticity distribution at the outer radius of the

impeller;
L(r,6)= -?:"i.};z'aa'g;‘ (o2 055 ) v
< o (3 + we f vanarwt)- lilsinte-wt)
+2%1c050,-wt> + 37 0in tp,~wt) - K, Qi (B -wt) }
+ (B DB+ £u0(@-1) [ eos(B15-wt)ds
- B GETRE) Uh 3 sw(@-w)ain(8-wt) ()
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FLEMENTARY FLOW COMPONENTS

The flow tangency condition at the impeller outlet is,

Vei = LR - Ukzestg, (6)

The first term on the right hand side of the above equation is cancelled by the flow
component

Ui~ iU = g | @ - 2RIn(BR - g8 et f) ] 1)

and other disturbance components should satisfy the following egumation

Ve = — Ups cotfa %)

For the region outside the impeller we consider two types of elementary velocity
disturbances satisfying Equation (8):

First, consider the following velocity field:

w-iv' =4 g v €M G - s} 2>
This velocity field has a vortex T at z'=z'0 and satisfies Equation (8) with no
circulation/net flow around/from the impeller. Consider a vortex distribution
I'(s) =I's(s) + srg(s)sin ot + erg(s)cos wt on the volute surface zo(s)=z'°+eeimt.

Assuming e <X r,, we get the following steady and unsteady velocity components

52482 2
= e” Iz
-&U’/Zl 2If /S'(S)[Z’ 80(;) - FZ (2,.?015)— nz) st (/0)
‘wt v 2 -;,‘-ut
’\'/__ - I 232 2 e
w-iv e Rl ('~ o553 2(5))" e sy -2y ]as
LE(Pers I R gba
'f‘zn O(IZG)S’MMC*B?S)CPSWC)[zz_zp(s)" zl(z/z(g)_nf)]dg (IIJ
iot

where z' is fixed to x'y’-plame. At z=zs=z'+ee
we get the following expressions:

,» which is fixed to the volute,

lng?th
Wil lgs = 27’] Rl Z, - 2.(3) Z (R 205) — 13%) Jas €12
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e[St 2 o=26f82 Wt 7 oy @AWt, LWl
~ b3 ‘e e« 20504+ Zs €
=i Dla, = 2 | T o 2 € 4o

s (BsZus)= I7) ' 2 25 Zo(S) + 13*
&2 t et [
tar 0(/;(9)505'0) +m‘g)‘ inwt) 2;—206') Zs(ZSZ(;) 15 ] as (13D
In the same way the velocity compoment (7) has the following steady and unsteady
ie

components at the volute surface z.=r.e s‘-'z'-i-tzeim:.

- — { ! -

U - L UBl, si7 ] @ - 2R (B2 oy s @48:) | c)
~ ~ { - L (wt-8g)

Ui -4 zf;[t:- 2—-—-7”,3{ Q- 2 i (L2 -55¢ wBﬁz)} v e” (e

Next consider the velocity field due to shed vorticity. If we assume that the
vorticity is transported on a streamline

Ui =2 U= (@-2T)/(2Fr)

we have the following elementary vorticity field
Ln = Bemeos { Tw (& ~Fr=n®) 1‘09(9’@1’;(?‘/&))}

T Lo Sim{tw(t-B Zareh)+ m (6~ J—Zchr/A))} 73
and the corresponding velocity f1e1d

VUrer = 2 VUsp = (Lom Zom + Bsm Zom ) cos (182w )+ (Lo Pom=LenZom ) Sn(métewt )  (17)

where
Zem = Rem = £ Orn Zim= Rim ~ i @zm

Rem + 4 Rrm = ‘4‘- [Fery + Gnr)] , Genr § Orn = - Ftry ¥ Gur

i

-
Fer) J—f o {§ (TwZ s - mE b (nIB} (1) r)"ar;

Gw = —f &:p (fw@cn‘-r;%—mgb;mm»}(r/ro)""’au:,

Equation (17) includes the effects of the vorticity in «r, <{r<R. Since G(r) is
convergent only for n2>3 as R-)», we should artificially ‘prescribe some
appropriate finite value for R. Equation (17) does not satisfy Equation (8) and we
should add a potential component

(o7 it

?fron P ?/bm =-e Igz(;c'n“' Eem) [C@IZ @z)smﬁz+(PR RI)“«%@:},«J?—W— (18
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suéh thet
Urnh =i Vsm = C Urb ~ L U5) + ( Urh =4 V) af

satisfies the boundary condition of Equation (8). We may now note that there are
steady and unsteady components as follows:

(i)  Steady component; in Equations (16)-(19) we put =0 and represent the
relateq_ quantities with superscript "and suffix n (n=1,2...) for each
mode, g}m etc.

(ii) TUnsteady component; correspondingly to the iign on © and the mode n, we
represent the related quantities such that 7z, ete.

On the volute z=zs=z'+eeimt, the steady and unsteady velocity fields are expressed

as follows:

W=LU (3 = mf: [ (¢ Lo Zomt ComZom) o085+ (G Zom™ 7 Fomain n8s ] s
— G B[ (@ Brm)sinpat (Ren Rem)eospa]pn /28] 20)
WL Plae /s =2E[(€—m§;m +Eom Zen J(~MsUnmBs < cosmBs)
¥ (Eom2em - Lom 2w ) (M oS 1Bs =2 SEnMEs) | -,é Sin(de-wt) e
~ [(ZemZom + EsmZrm Y eosmBs +(BsmZem fEm 20, Ysin ms ) eos (s-wt) €5

- (001 )EB Gy ) B2 Bm>ins v Ben=iBomdeo58.) g s |

>) «5, [ (B2 2+ B3 Zemd cos st )+ 3 -5, 25 D sintrmbs ruie ] €4

-4 (£ v B [ BeniBrndsinps B - B o5t ] o S "] 21
In the region upstream of the impeller (rir.), we comsider a source Q and

prerotation of strength I} at the center of the volute. Then the velocity can be
expressed in the series

o
’ QT&‘Z: / N {x S C n-l .
Ur ~2 ?f.9’=[2,; 2’y 5 gt ‘%’{Am*é(%mwt +Amcoswt)} Z _]e & 132>

ey - S_,S S 4C_,C c
where Athkn+iAIn’ An ARn+iA.In,An ARnfiAIn are complex constants,
Now we have given all of the elementary flow components necessary for the

construction of the entire flow field. Each of them contains several unkmowns that
are determined in the following sectioas,
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BOUNDARY CONDITIONS ON THE VOLUTE

The flow tangency condition on the volate surface is,

W oS (A-wt) + YUewd — Wamd = Uy =0 (23)
where a is the angle between volute and x—-axis. If we put
— e ™ ~\, )
W= W+ ULcoswl + U Sanwl
U'= U+ Uleoswb + U sanwT

we get the following conditionms,

Voo — Weemd = O 24)
Decosol ~ W ainat = — EW RN 2%
U5 cosor — U¢ Amo(_ - Sw amd, (26)

The steady velocity w’ ,v' is given as a sum of the velocity components in Equations
(12), (14) and (20). The unsteady components ’;"c’ 7’0 and ’;'s' ';f's are the cosine
and sine components of the velocity of Equations (13), (15) -and (21). Equations

(24)-(26) constitute integral equations for I;(s),r:(s) and Tﬁ(s).
CONTINUITY EQUATION

The continuity equation across the impeller is

VY in, 8:8v%) =1 W, e) 27

where & is the angle between corresponding leading and trailing edges of a vane.
At the ounter radius the total of the steady velocity components given by Equations
( 7), (10) and (19) can be expressed as a Fourier series; namely,

Ur' (1, 8D —253,5 + 2, ( Uy senm8 + Uy cos mB )

§

(28)

Vd(h,8) nQ-zm, cob 2 1-2. ( Unsinm8 + Uy cosm )
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In the same way, the unsteady components of Equations (11),
expressed as

and (19) can be
~ go ~ct ES 00 ~ss v ﬂ
Uien,8) = 2’2' ﬂ(Umcosmeflfmwma)caswt+(v‘mwm9rymsmm9)spnwt of

2 1 1
Ui r.0) = §2 [(Uircone+lnsinns)enert( &}’ifcxmafﬁji,‘w'n@ymwt]
r=i

At the inner radius r=r; we expand Equation (22) in 9=91—§’o rather than in @
then,

13
-/ G 93 = ’ =C
TH(K,0=01%) = gy 2 { Vrn S0 w8 + Ui cosme o)
£Y74 Iz & FES o) e
vacn,g,=9+g>,>=..2]m -;-%__’glfom.s‘mwp -rtTMmrn&}

- P , . . .
W(n,0=0t%)=8 q%’:ﬂ (Bcosmo + DS sinmB)edwl + (Foanmp S sinmOainut) } G
~ oo . :

VLN, 0:6:%)=¢ ML— ‘H (s cosmb + DS cimmp) coswt+( Tymeosmo+ o WW)MWED

From Equation (27) we get the following relatiosns

T = (BN Uik 32) 7S = (BRI U )
> >~ A ~

VE = (n/n) G 6  TFS=(n/in)y g G
ok ~ 5SS

Vm = (1 1) O (36 = (R/ G ) Un @37

Equations (32) and (33) givg thesrelagions to determine Zﬁn and Kin’ and Equa—
tions (34)-(37) determine AR s AR , A and A5 .
n n’ "In In

STRENGTH OF SHED VORTICITY

If we use the expressions (28-31) in Equation (5), the

steady vorticity
components can be expressed as

— oann m — — h =g
Len =@ 2m ( ",'n‘ Up + Ubm — - Ubn) (38)
r—d 285 Mn - G =
Csn =~ Rn("5 U - Upm + 7 Yem ) 1)

where we have used u4=§%%i because of the assumption on the tramnsport of the
vorticity. In the same way, if we express the vorticity by

~ 9_0 ' 0 - '
L) = %—n § m%.’ [ (E3casmb rff,’s*mme) sunwb+( €,ﬁ,‘cosm9+aﬁfwm )coswt_y (40)
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and use the expressions (28-31) in Eguation (5), we can express 2' in terms of the

Fourier coefficients in Equations (28)—-(31). Comparing Equation (40) and Equation
(16), we get the following relations,

o p ~ " ~ r ~ ~

Bom = R(LS+ £ @ Lo =TEEE- ) (a2
' 14 ~ -~ ~_ 3, ~

Dn = TH(Ee- 5) (B Gen=TEE+ BS) 4P

METHOD OF SOLUTION

¥e have used the following unknowns for the expression of the flow field

steadi component nnsteady component
c S
Y= [Fes) Taes> , Taes
= fromd - ~ /\r- ~
Len , Lsm Gen o B s Bem , Gsm
- Y s s e c
rst; Arm , Arm Agm, Afn , Aen, Ar,

These unknowns are determined by the following relations:

Steady Component Unsteady Component
B.C. on the volute: Eq.(24) Eqs. (25),(26)
Continuity: Eqs.(32),(33) Eqs.(34),(35),(36).,(37)
Vorticity: Egqs.(38),(39) Egs.(41),(42),(43),(44)

These equations include integrals related to the vortex distribution on the volute
surface, which should be evaluated by some appropriate method. Equations (24)-(26)
are integral equations for the vortex distributions on the volute surface and could
be reduced to simultaneous linear equations by a singularity method. In the solu—
tion of the vortex distributions the "Kutta condition” at the trailing edge should
be applied. Strictly speaking the circulation around the volute fluctuates and a
free vortex sheet is shed from the trailing edge of the volute. Since we are mainly
interested in the forces on the impeller, we will neglect the effect of the free
vortex sheet but apply the following conditions at the trailing edge.

Steady part:

Ftsey =0 @s)
Unsteady parts:
Se e — —
wj,, E(Q)ds = las(S'z) W (Se) (@)
Se -
= w [ Taesrds = Tise> Wise) @

Now we can express all the relations as a set of simultaneous linear equations which
can be solved numerically. The steady component may be solved independently of
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unsteady component, and the result used in the analysis of the unsteady components.

UNSTEADY FORCES ON THE IMPELLER

By considering the balance of the momentum of the fluid in the impeller, we can
express the forces on the impeller as follows;

Steady component
X-LY =-4 [i‘;tdg; - §c, [3}4’3—’]
+550 8, @-iiraz - $, @-iv)ar ] %)
and unsteady component
(%= 28 ) eoswl + (Ke- i T )sinal
=-4 [fq bedz ~§. Pram ] + POEW BT eE
1P [§ L NT-cT) a8 - $ (Tl T I -i a2’ ]
tefws [ §cz (-407) cos (B-wt) nde-fc, (@=L ) oS (0 -wt) hdb ]
/ r‘ -
~ ;od'%fj Ur (12, 0-Fr) m e L(0-F+8) rarde @

The total pressure is given by Equation (3) and the integrals can be evaluated
analytically by using the expressions{(28-31),

CONCLUDING REMARKS

The unsteady forces c¢can eventually be expressed in the form of stiffness
matrix,

(?) ()?c/s , Xele X= geoswt

N o
Y Yele , Yl J\ y=gsimewt

The tim£ average of the force component in the direction of whirling motion is given
by ¥ (Y -fs) and the sign of this quantity determines whether or not the fluid
forces have destabilizing effects on the whirling motion. The sam % & +Ys) gives
the time average of the force component in the radial direction and thus the
hydrodynamic stiffness., The ultimate goal of the present study is to examine these
factors for realistic impeller-volute combinations.

(§0)
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Figure 1. - Impeller and volute configuration.
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