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ANALYSIS AND TESTING FOR ROTORDYNAMIC COEFFICIENTS OF TURBULENT ANNULAR
SEALS WITH DIFFERENT, DIRECTIONALLY HOMOGENEOUS SURFACE-ROUGHNESS

TREATMENT FOR ROTOR AND STATOR ELEMENTS*

D. W. Childs and Chang—-Ho Kim
Texas ASM University
College Station, Texas 77843

A combined analytical-computational method is developed to calculate the
transient pressure field and dynamic coefficients for high-pressure annular seal
configurations which may be used in interstage and neck-ring seals of multistage
centrifugal pumps. The solution procedure applies to constant-clearance or
convergent—tapered geometries which may have different (but directionally-homogeneous)
surface-roughness treatments on the stator or rotor seal elements. It applies in
particular to so-called "damper-seals" which employ smooth rotors and deliberately-
roughened stator elements to enhance rotor stability.

Hirs' turbulent lubrication equations are modified slightly to account for
different surface~roughness conditions on the rotor and stator. A perturbation
analysis is employed in the eccentricity ratio to develop zeroth and first order
perturbation equations. The zeroth-order equations define.both the leakage and
the development of circumferential flow due to shear forces at the rotor and
stator surfaces. The first-order equations define perturbations in the pressure
and axial and circumferential velocity fields due to small relative motion
between the seal rotor and stator. The solution applies for small motion about
a centered position and does not employ linearization with respect to either the
taper angle or the degree of swirl, i.e., the difference between the circumferential
velocity at the given axial position and the asymptotic circumferential-velocity
solution. ‘

Test results for four different surface-roughness confirm the predicted net
damping increase for "damper seals’. A round-hole-pattern stator yielded the
highest net damping and lowest leakage of all seals tested. The seals are sub-
stantially stiffer than predicted, but the theory does an adequate job of predicting
net damping. ’

NOMENCLATURE
a; Dimensionless coefficients defined in Appendix A
c, € Dimensionless damping coefficients defined by Eq. (34)
f(z) Dimensionless clearance function defined by Eq. (9)

*
The results reported herein were partially supported by NASA Contract NAS8-33716
from the George C. Marshall Space Flight Center; Contract Monitor Frank Garcia.
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Dimensionless clearance function

First-order perturbation clearance function defined by
Egs. (11) and (18)

Dimensionless seal stiffness coefficients defined by Eq. (34)
(34)

Dimensionless mass coefficients defined by Eq,

Dimensionless empirical turbulence coefficients for
stator and rotor

Fluid pressure (F/L%)
Dimensionless fluid-pressure introduced in Eq. (7)

Dimensionless fluid-pressure perturbations introduced in
Eq. (11)

Taper—angle parameter defined in Eq. (10)
Independent variable time (T)

Dimensionless axial and circumferential velocity components
introduced in Eq. (7)

- Zevroth and first-order perturbations in ug

Zeroth and first—order perturbations in u,
Dimensionless axial coordinate

Test orbit amplitude (L)

Dimensionless coefficients defined in Appendix A
Nominal seal radial clearance, (L).

Seal discharge coefficients defined by Eq, (16)

Entrance and exit clearances, respectively, (L)

Clearance function, illustrated in figure 2, and defined
in Eq. (17), (L)

Centered-clearance function defined by Eq, (9), (L)
Seal length (L)
Seal supply pressure (F/L?)

Nominal pressure-drop across seal (F/Lz)
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R Seal radius (L)
R, = 2pVH/14  Axial Reynolds number

R 0o = 20VC/u Centered-position, axial Reynolds number

a

T=a L/V Transit time for a fluid element to traverse the seal

UZ, Ug Axial and tangential bulk-flow fluid velocity components (L/T)

V(z) Centered-position axial fluid velocity (L/T)

X, Y Radial seal displacements (L)

Z, RO Spatial coordinates illustrated in Figure 2

a Seal taper angle illustrated in Figure 3

£ = e/E Seal eccentricity ratio introduced in Eq, (11)

£ = Q/ZE Relative roughness

g Inlet pressure-loss coefficient

ks’ Xr Dimensionless stator and rotor friction-factors defined in Eq, (15)

T=t/T Dimensionless time

w Shaft angular velocity (T ')

Q Shaft precessional velocity (Tul), introduced in Eq. (22)-
INTRODUCTION

Figure 1 illustrates the two seal types which have the potential for developing
significant rotor forces. The neck or wear-ring seals are provided to reduce the
leakage flow back along the front surface of the impeller face, while the interstage
seal reduces the leakage from an impeller inlet back along the shaft to the back-
side of the preceding impeller. Pump seals may be geometrically similar to plain
journal bearings, but typically have clearance to radius ratios on the order of
0.005 as compared to 0.001 for bearings. Because of the clearances, and normally-
experienced pressure differentials, fully-developed turbulent flow normally exists
in pump seals.

As related to rotordynamics, analysis of seals has the objective of defining
the reaction force acting on a rotor as a consequence of shaft motion. TFor small

motion about a centered position, the relation between the reaction-~force components
and shaft motion may be expressed by

FX' K k X C c M m-‘ ¥
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The off-diagonal coefficients in Eq. (1) are referred to as "cross-coupled" and
arise due to fluid rotation within the seal. Seals, unlike plain journal bearings,
develop significant direct stiffness values K in the centered, zero-eccentricity
position due to the distribution between (a) inlet losses, and (b) the axial
pressure gradient due to wall-friction losses. Lomakin [1] initially pointed out
the phenomenon. Both analysis [2] and experiments [3] have shown the Eq. (1) holds
for fairly large eccentricies on the order of 0.5; i.e., the dynamic coefficients
tend to be relatively insensitive to changes in the static-eccentricity ratio,

Prior analytical and experimental developments have generally examined
"smooth" seals where both stator and rotor elements of the seal are assumed to
have the same nominally smooth surfaces. A review of the analytical and experimental
developments for this type of seal is provided in references [4] and [5] and will
not be repeated here. The subject of this investigation is the so-called "damper-
seal” configuration recently proposed by von Pragenau [6], which employs a smooth
rotor and a deliberately surface-roughened stator element. For the same surface
roughness on the rotor and stator, the asymptotic, circumferential, bulk-flow
velocity is Rw/2 in the centered position because (a) the radial velocity distribu-
tion is assumed to be symmetrical about the midplane, and (b) the circumferential
velocity is zero at the stator wall and Rw at the rotor wall. Von Pragensau's
analysis demonstrates that the damper seal yields a lower asymptectic circumferential
velocity which implies a reduction in the destabilizing cross-coupled stiffness
coefficient k and a consequential improvement in rotordynamic stability.

Von Pragenau employs an approximate "short-seal" analysis to develop analytical
expressions for the rotordynamic coefficients of constant clearance seals, The
development of these analytical expressions is lengthy and difficult. The combined
analytical-computational approach used in this development yields an exact
numerical solution to the governing equations for both constant-clearance and
convergent-tapered seals with significantly less labor. Following a slight
modification to Hirs' [7] governing equation to account for different surface-
roughness conditions on the rotor and stator, the analysis procedure is basxcaily
that of reference [4] and [5].

GOVERNING EQUATTIONS

Figure 2 illustrates a differential element of fluid having dimensions RdO,
dz, and H (Z, 0, t). The upper and lower surfaces of the element correspond to
the rotor and stator seal elements and have velocities of Rw and zero, respectively.
The bulk velocity components of the fluid are U, and U_; i.e., these are the averages
across the fluid film height H of the circumferential and axial fluid velocities.
The essence of Hirs' formulation is the definition of the wall shear stress T, as
the following empirical function of the bulk flow velocity VW relative to the wall

‘ V; ZpVWH . VWZ mo
Te = 9 —5 1o m =p 5 no Ra 2)

The bulk flow velocities relative to the rotor and stator are, respectively

il

Y, = WgRD) g5+ T, g

(3)

UgSo + U 5,

UL<2
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Hence, the shear stress at the rotor and stator are

V2 20V _H\"F
T =p L nr L3
T 2 H
(4)
v2 20V H\'®
T =p—ns S
s 2 u

Hirs' formulation assumes that the surface roughness is the same on the stator and
rotor; hence, the same empirical constants mo, no apply to both surfaces. The
formulation of Eq. (4) accounts for different surface roughnesses in the seal
elements via the empirical constants (mr, nr), (ms, ns) for the rotor and stator
surfaces.

The components of wall shear surface stress in the Z and RO directions are

T = T, (Ue—Rw) /Vr; T ., = Tr UZ/Vr

b rZ
1,
V = [(U,-Rw)? + U, 2172
r 0 Z (5)
Tse = Ts UG/VS’ TsZ = Ts UZ/VS

Vs = (UG

Summing forces in the Z and RO directions for the free-body diagram of figure 2 (b)
yields the following momentum equations*: .

L
2 2y%
+U, )

3 _ ns ms ms+1
-H -BZ=—2~QUZ [1+(U/U)]
nr 2 mr 2 E'E-Ll“
+=50p U,” R {1 + [(Ue—Rw)/UZ] } 2 (62)
oU U, aU 1]
Z S Z Z
+oH [Bt +_R_§§"+Uz‘az]
+l
_HE2 _ ms S
R 36 2 p U Uy R, [1+(U6/U)]
nr mr 2 E—r—t}-
+ 22 0 u,WgRe) R {1 Hl@gR /0,10 T2 )
. aue . UGBU6 . BUe
P ot R3O U252
The bulk-flow continuity equation is
om 1 200 B o)
ot R 98 9Z

#The continuity Eq. (6.c) has been used to simplify these momentum equations.
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These equations may be nondimensionalized by introducing the following variables:

= UZ/V; u, = Ue/Rw, P = p/oV?

Uz, )
h=H/C, T=t/T, z = Z/L ¢))
T = L/V, b =V/Rw

where C and V are the average clearance and axial velocity, respectively. The
resultant equations are

_ e ms+1
g u 2
nBons (L) pms)y, (8 u 2
0z 2 — a bu 4
C | zZ .
nr L mr i “e'l i mr+% 2
+ 25 (= Ra 1+ = u (8
C L uz . z
Buz 8uz auz
+h -éfr—+ue(wT)-re-+ uz_é—z—
) ms+1
~ u T2
L dp _ ns L ms 8
~b (E> b3 =72 (E> Ra [1+ <buz> ] Uyt
) mr+1

du du du
) 0 0
+ h [—"'—‘ + ue(wT) —5'6"" + u “‘—]

9T z 09z
3(hu,) d(hu )
dh 6 z'
3t + (wT) 56 + 3z =0

PERTURBATION EQUATIONS

Seal Geometry

Figure 3 illustrates the geometry for a tapered seal. At the centered position,
the clearance function is defined by

Ho(z)=<E+9‘-121)—az=[1+q(1—22)15=f6 9)

where o is the taper angle, and
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c.~C
C=(Cy+ iz, g -2 c0+'c‘l
2C 071
The parameter q is a measure of the degree of taper in a seal and varies from zero,
for a constant-clearance configuration, te approximately 0.4 for a maximum-stiffness

seal design [8].

(10)

Perturbation Analysis

The governing Eqs. (6) define the bulk-flow velocity components (ug, uz) and
the pressure, p, as a function of the spatial variables (RO, z) and time, t, An
expansion of these equations in the perturbation variables

u =u . + € U qs h = h0 +eh

Z z0 1
(11)
ug = ugy * € ugys PPyt E Py
where € = e/C is the eccentricity ratio yields the following equations:
Zeroth-Order Equations:
(a) Axial-Momentum Equation
dﬁb '
—— T — 3
= [(aOSOS *ay_ 0 + g ] J2f (122)
(b) Circumferential-Momentum Equation
dug,
rraialie [aOr Or(ueO -1 + 80 Os ug ] J2f (12b)
(c) Continuity Equation
u, g = 1/f (12¢)
First-Order Equations
(a) Axial-Momentum Equation
Bﬁi
5z = P11z T Yerfaz T Yaihs
(13a)

du Ju ou
zl z1 1 zl
‘{ et WD v St F Y, }

(b) Circumferential-Momentum Equation
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Bﬁi

L — —
b (i) 56 = PyA1g ~ Ugrhyg T U,p83g
(13b)
ou du ou
01 61 1 01
’{ 5t + WD) ugy 55—+ F 5, }
(¢) Continuity Equation

du du : 2gh dh oh

z1 01 2 .  _ 1 1 oy 0y

5z T WD S5 mF Y1 T 7% [TT‘J’ WI) wgy 55 * 37 ](13“)

Most of the parameters of these equations are defined in Appendix A. The quanities
o_, Or are defined by

S .
or (B)r o (B 0, 1
C C

where the wall friction factors are defined by

ms 1+ms 1+mx
1 2 _ mr 1 2
7\3 = nSRaO (l + Ez-) , Ar = nrRao (l + VAR ) (15)

These expressions correspond to Yamada's [9] test correlation for flow between
rotating annulli.

SOLUTION PROCEDURES

Zeroth~Order Equations

The zeroth-order equations define the steady-state leakage and the circumferential
velocity development u (z) due to wall shear. The governing equations, Egs. (12),
are coupled and nonlinear through the dependency of the coefficients a r* 20s Yp
and V. The equations must be solved iteratively to determine the average 1egkage
velocity v correspanding to a specified pressure drop AP and the circumferential
velocity distribution ug (z). The resultant solution defines the leakage coefficient

at

Cd of the leakage AP relatiomship
_c B
AP = Cy 5 (16)

The pressure drop at the entrance is defined by
_ v (1)
o 2 (+?

where £ is an entrance-loss coefficient which is generally on the order of 0.1 to
0.5.

AP
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First-Order Equations

The governing first-order equations define p,(z, 0, T), u (z, 8, 1), and u
(z, 6, T) resulting from the seal clearance funct%ons h. (8, T? The clearance
H is defined in terms of the components of the seal-journal displacement vector
(X, ¥) by

H= H0 ~ X cos® = Y sinh an

Hence, by comparison to Eq. (11),

- €h; = -x cosB - y sind k (18)

where

x = X/C, y = Y/C

Note that h, is not a function of z, and its time dependency arises from the dis-
placement variables x (t), y (t).

To satisfy circumferential continuity conditions, the following solution format
is assumed:

u g (z, 8, 1) = uic (z, T) cosb + Ui (z, T) sin6

T, 8) = u (z, T) cosf + u (z, T) sin® (19)
O1s

ugy (2 01C
ﬁi (z, B, 1) ='§1C (z, T) cosd + ﬁis (z, T) sinf

Substituting from Eq. (19) into Eq. (13) eliminates § as an independent variable,
and yields six real equations. By introducing the complex variables

G =u + ju
z1 z1C JUz1g
4, = +
Ugr = Ugic T I¥gis
Py = Py + 1Py
A
h X y
_i = o § =
€ e T Jd €
into these equations, the following complex equations are obtained
b A
P
e 1 A A
T %z P (E’) T Ao Vo1 t By, U
A
20 o
zl A 1 zl
*opr T3 WD ugg Yyt
b (L) 4 By + A, & 2y
i R) P1 = %19 \E 26 o1 * A3
A A
ou Ju
01 A 01
=37~ 3 (D) g, Uy 3z



A f A

2 . 2q 2q .

D -y om &, -39, -5k ( 1>‘ 1 P Y00 ( l)
9z ‘

with the A, coefficients defined in Appendix A. The time dependency in these
equations 1Is eliminated by assuming a harmonic seal motion of the form
R
A s ).
L U (22)
13

where r. is a real constant. The associated harmonic solution can then be stated

0
8, (& D=5, & INTT
A — O TT
uel (Z, T) = uel (Z) eJ (23)
QTT

/I;l (Z, T) = _P_l (Z) ej

Substitution from Egqs. (22) and (23) into Eq. (21) yields

uzl Y21 gl

s T (= ()

) T T \E/ |82 24
Py Pl 33

where
-2q/f =3 (wT) 0
[A] = fA39 f(A26+jFT) ~-3fb(L/R) (253a)
240 .
(A32+2q/f +3I'T) AZZ+J(wT)/f 0
g (2q/£°+jTT/£)
=) (25b)
8y A0
4L, . 2
83 -(Alz+2q/f +iT'T/£2)
and
I'= 0 - wug,(2) (26)

The following three boundary conditions are specified for the solution of
Eq. (24):

(a) The exit pressure perturbation is zero; i.e.,
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P (L) =0 (27)
(b) The entrance circumferential velocity perturbation is zero; i.e.,

ug,(0) =0 (28)

(c) The pressure loss at the seal entrance is defined By
py - (0, 8, ) =5 u?0, 0, ) QA+8
which yields the following boundary condition:

P, (0) = = (1L + &) u_(0)/ (1+q) (29)

Solution of the differential Eqs. (24) in terms of the boundary conditions is
relatively straightforward, yielding a solution for the velocity and pressure
fields of the form

U1 £1ct3f1
Yg1( = (‘E’) £octifag (30)
Dy ! +if

£yotifsg

Dynamic Coefficient Definitions

Having obtained the pressure-field solution of Eq. (30), solution for the
dynamic coefficients will now be undertaken. The reaction-force components acting
on the rotor due to shaft motion are defined by

- 1 27 - = A 27~
F (t) = -€RL of of plcosededz = ~gRLPV’ of of plcosededz
27
_ 1 27 . - — L1 ~ s
FY(t) = -gRL of 0f p181n9d9dz = —ERLOV of of p131n9d6dz

From the last of Eq. (19), these integrals further reduce to
- - 72 1y 4z - - 72 ol
FX(t) = —eRLWPV of plCdz, FY(t) eRLTEV of plsdz (31)
The motion defined by Eq. (22) is orbital at the precessional frequency § and
radius Ro' This statement may be confirmed by comparing Eq. (18) with Eq. (22)
to obtain

X = E}o cosQt, Y = Eio sinQt (32)

Definition of the reaction forces is simplified by performing the integration
at a time when the rotating displacement vector is pointing along the X axis, i.e.,
when 0t = 0. Eq. (23) shows that ﬁ and p, coincide for this time and location.
Hence, Eq. (31) yields the following component force definitions parallel and
normal to the displacement vector

Fr(QT) ; —ro(WRLbVQ) ofl fBC(z)dz
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- _ 52 1
Fe(ﬁT) = ro(ﬂRLpJ ) of st(z)dz

The useful nondimensional version of these equations is

S T A A
WRAPRO Cd T 0 3¢ ™
(33)
F Q1) L 1
N — [ £, (2)dz
’ITRAPR Cd T o 3s |
where R_ = Cr_ is the amplitude of seal motion, The components are expressed as

o)
function of Qﬁ. because, for a given seal geometry (L, R, C) and set of operating
conditions (AP, w), the excitation frequency OT is the only independent variable,

Stated-differently, Eq. (33) provides a frequency-response solution for the reaction
force components.

To calculate seal coefficients, a comparable statement of reaction-force
components is developed from the following nondimensional statement of Eq, (1)

Fy K k X C ¢ X
1 _ 2
AP = + T + T (34)
Fy £ ¥l lx < Tl vy a ¥l

Substitution from Eq. (32) yields

=
B
ke

1

F_(QT)
A A
T TRAPR - K+ c(@T) - M Q1) = C ( — ) of fSC(Z)dZ
o d C
, (35)
Fe(QT) -~ - _2 L 1
-’TFRE-]?{; =k -COT) - m (OT) = é; (—%—-> ‘Of f3s(z)dz

Hence, the dynamic seal coefficients (K, k, C, ¢, M, m) may be obtained by
comparing the solution obtained by Eq. (33) with Eq. (35). More specifically,
they are obtained by a least—square curve-fit of the solutions stated on the
right-hand side of Eq. (35).

TANGENTIAL VELOCITY DEVELOPMENT
The frames of figure 4 illustrate the circumferential velocity development
ueo(z) which is predicted by Eq. (12b) for the same and different rotor and stator
surface roughnesses. Roughness is characterized by the empirical coefficients
(mr, nr), (ms, ns). For the figures illustrated, the roughness of a smooth surface
is defined by Yamada's [9] coefficients

mo = ~Q.25, no = 0.079

while the parameters
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mo = -.0024, no = 0.0262,

corresponding to a theoretical relative roughness é = e/2C 0.1 are used for the
rough surface. Observe that the solution converges towards one half irrespective
of whether both surfaces are smooth or rough. However, in figure 4 (b) the
asymptotic solution is less or greater than one half depending on whether one
uses a smooth-rotor/rough-stator or a rough-rotor/smooth-stator combination. The
results of figure 4 substantially support von Pragenau's [6] central conclusion
concerning the desirability of a rough-stator/smooth~rotor combination.

EXPERIMENTAL RESULTS

Introduction

The test results reported here were developed as part of an extended, NASA-
funded, high-Reynolds-number test program of pump seal configurations in support
of the SSME (Space Shuttle Main Engine) development program. High-Reynolds numbers,
which are comparable to those achieved in the cryogenic turbopumps of the SSME, are
achieved by using CBrF, as a test fluid. This is a DuPont-manufactured refrigerent
and fire extinguisher %1uid (Halon) which combines a high density and low absolute
viscosity to achieve very low kinematic viscosity, actually less than liquid
hydrogen [10]. Details of the flow loop are provided in [11].

Figure 5 illustrates the test apparatus. The test fluid enters the center
and discharges axially across the two test seals., Seal inserts are pressed into
cylindrical seats in the housing. The rotor segments of the seal are mounted
eccentrically in the rotor with an eccentricity A. Hence, rotor rotation generates
a synchronously-precessing pressure field. Axially-spaced, strain-gauge, pressure
transducers are provided to measure the transient pressure field. Capacitance-
type proximity probes are provided to simultaneously measure the rotor motion X(t),
Y(t) relatives to the housing. The transient pressure measurements are integrated
to define F_/A and FG/A’ the force coefficients parallel and normal to the seal
eccentricity vector. 1In any test, five to ten cycles of data, containing on the
order of 2,000 data p01nts, are analyzed, yielding a calculated average and standard
deviation for F /A and F The test results reported here were carried out to
provide answers Tfor the ?ollow1ng questions:

(a) How do predictions from the current theory compare to test results?
(b) TFor damper seal configurations, (rough-stator/smooth-rotor) how do
various roughness treatments compare in terms of leakage, stiffness,

and damping?

Stator Configurations

Tests were carried out on the following stator configurations:
(a) smooth finish,
(b) knurled-indentation roughness,

(¢) diamond-grid post pattern,
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(d) round-hole pattern.

All seals use the same radial clearance, Cr = ,527 mm., Seals b through d are
illustrated in figures 6. The knurled-indentation roughness pattern is the same

as that used in current test versions of the HPOTP (High Pressure Oxygen Turbopump),
and the seal insert was supplied by Rocketdyne division of Rockwell International,
the manufacturer of the SSME. The diamond-grid post pattern was manufactured by a
milling operation which produced grooves which left the square post pattern. The
round-hole pattern-was also produced by a right-hand milling operation.

Empirical Turbulence Coefficients

With reference to the adequacy of current analysis, the stator and rotor
roughness is characterized in terms of empirical coefficients. These coefficients
must be calculated from the static test data before a theoretical prediction can
be made for F_/A and FG/A’ and calculation of these coefficients is the subject of
this subsection. .

In the apparatus of figure 5, a smooth-seal insert is used in the left-hand
side, while the damper-seal stators were inserted in the right hand side of the
housing. To the extent possible, the same "very-smooth" finish was provided for
both the smooth-seal insert and the rotor. Leakage rates and pressure gradients
were measured for both the smooth and damper seals for all dynamic tests.

The steady-state axial pressure gradient equation has the form

% _pii)
9z 2
Hence, with a measured pressure gradient and a known density p and axial velocity

V, the parameter O can be calculated. ¢ is related to the friction-factor co~

efficient A by
o=n (2)
C

The smooth-rotor/smooth-stator data were used to calculate Or and A_ values which
were assumed to apply for both the rotor and smooth stator. From the A_ versus
w and R odata, the empirical coefficients mr, nr of the following frictionﬁfactor
formula are calculated

nmr+l
= mr = 2 2
Xr = nr Rao [1 + Rw/V)“] (36)
on a least-square basis, yielding
nr = 0.0674, mr = - (.,217

For the smooth-rotor/rough-stator combinations, a combined oc is measured,
which is related to the corresponding rotor 0. and (rough) stator o by
g 40 '

I 85,6 =20 -0 37

Gc = 2 s c r

This formula was used to calculate 0 for the rough stators by using measured values
for Uc and calculating a value for o from Eq. (36) with the parameters of Eq. (37).
The empirical coefficients obtained For the stator imserts are provided in table 1,
together with an estimate of the relative-roughness parameter corresponding to
pipe-friction data. The results are generally consistent with expectationms,
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except for the positive value for ms obtained for the hole-pattern stator; however,
over the Reynolds-number range tested, the combined friction-factor A actually
increased (slightly) with increasing Raofor this stator insert.

Dynamic Test Data

For a given seal configuration, a test matrix is obtained by varying the axial
Reynolds number and running speed., The Rao range varies between the maximum flow
capacity of the supply pump and the minimum AP sufficient to genmerate reasonable
transient pressure signal amplitudes. For a given Ra value, the running speed is
varied sequentially over the running-speed capacity 8% the drive motors. Figures
7 through 10 illustrate theoretical and experimental results for the four stators
tested. An inspection of these results demonstrates 'reasonable" agreement between
theory and experiment for F,/A but much larger Fr/A magnitudes at lower speeds than
predicted. Further, the magnitude of Fr/A decreases more rapidly with increasing
running speed than predicted.

DISCUSSION OF EXPERIMENTAL RESULTS

Comparison to Theory

If a circular orbit of the form
X = A coswt Y = A sinwt
is assumed, Eq. (1) yields the following definition of force coefficients

Fr/A = -K - cw + Mw?

Fe/A k - Cw
where the cross-coupled mass coefficient m has been dropped as being negligible in
comparison to the influence of k and C. At first glance, these equations suggest
that sufficient independent equations could be obtained, in the present apparatus,
to independently calculate all the rotordynamic coefficients by holding the flowrate
constant and running at three different speeds. However, the .fact that the co-
efficients depend on w precludes this approach. While K, C, and M are weak functions
of w through their dependence on g, the "cross-coupled" coefficients k and ¢ are
linear functions of w. In fact, if the fluid is prerotated prior to entering the
seal such that the inlet tangential velocity is Ue (o) = Rw/2, then theory predicts
e}
that k = Cw/2, ¢ = Mw, and

Fr/A = -K, Fe/A = —Cw/2

The present test apparatus provides no intentional prerotation, and the expected
result is of the form

k = ble/Z, bl<1
c = bZMw, b2<l
Fe/Asl -Cefw = —C(l—bl/Z)w
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F /A= -K ¢+ M 0° = -K+M(1-b,)w?
The term C denotes the '"net damping coefficient" resulting from the drag force
CwA and thé forward whirl excitation force kA. A direct comparison between theory
and experiment is obtained by curvefitting the theoretical and experimental results
for the F /A and F,/A to obtain predictions for K. ¢ > and M_.. Note that the
procedure of curve?ittlng the data with respect to w eii inates the running-speed
dependency. Further, K . is the zero-running speed intercept of the F /A versus W
curve, and Cef is the sfope of the F /A versus W curve.

A comparison of measured and experimentally-derived values for K ., Ce , and
Mef are given in table 2 for the stators tested, and support the following general
conclusions:

(a) Direct stiffness values are substantially underpredicted by theory. This
result is consistent with earlier water test results {5, 121. TImproved
correlation generally results at larger C/R ratios.

(b) Net damping coefficients are overestimated by theory, but the agreement
is reasonable and generally improves with increasing R_.,

(c) The added-mass coefficient is substantially underpredicted by theory.
However, this result is at variance with earlier water-test results
[12]1 which show an overestimation of the added-mass coefficient.

Relative Performance of Stators

Dynamie Coefficients

Figures 11 and 12 illustrate K _ and C_ . for the stators tested versus AP, and
can be used for direct comparison o% the stlifness and effective damping of the
roughness designs. The results support the following conclusions,

(a) The knurled-indentation and the diamond-grid stators are, respectively,
the most and least stiff. The hole-pattern and smooth stators have
comparable stiffness.

(b) The hole-pattern and diamond-grid stators provide, respectively, the most
and least net damping. The smooth and knurled-indentation stators have
comparable net damping coefficients.

The disappointing pérformance of the diémond—grid stator is related to its larger
average clearance. The relieving operation which yields the posts yields an average

clearance of 0.889 mm as compared to the 0.527 mm minimum clearances of the remaining
configurations.

Leakage Performance

To evéluatevleakage performance, C
coefficient Cd definition

L is defined using the conventional discharge

AP = Cq

ov?
2
which yields
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. — el -1 2 2AP 2 T2AP
= 2 RCV = 2. 27TR Z= = (C_ - 27R =
q (R)Cd P ‘/ p

C - . 2AP
c = (_i) Cy *= Q/(Z'ﬁR2 ‘/V—P_ >

The coefficient C. is a nondimensional relative measure of the leakage to be
expected through seals having the same radius. Figure 13 illustrates C_ versus

AP for the seal stators and demonstrates that the round-hole pattern an% smooth
stators have, respectively, the best and worst performance. The knurled-indentation
pattern has a slightly better leakage performance than the diamond-grid pattern.

Hence,

[N

CLOSURE

A theory is presented, based on a simple modification of Hirs' turbulent
lubrication equations, to account for different but directionally-homogeneous
surface roughness treatments for the rotor and stator of amnular seals. The
theoretical results agree with von Pragenau's predictions that a "damper seal
which uses a smooth rotor and a rough stator yields more net damping than a
conventional seal which has the same roughness for both the rotor and stator.

Experimental results for four stators confirm that properly-designed
roughened stators can yield higher net damping values and substantially less
leakage than seals with smooth surfaces. The best seal from both damping and
leakage viewpoints uses a round-hole-pattern stator. Initial results for this
stator suggest that, within limits, seals can be designed to yield specified
ratios of stiffness to damping. Additional testing for this type of seal is
scheduled for 1984-1985 to examine the influence of hole depth, hole shape, and
the ratio of hole-relieved area to total surface area.

APPENDIX A: PERTURBATION COEFFICIENTS

ms+1 ms+1
- 2 2 _ 1 2
BsaOs - [l + (“eo/b“zo) } ? Bs - (l + ZEY)
mr+l mr+l
_ _ 2 2 _ 1 2
Braor = {1 + [(ueo l)/buZO:I } s Br = (l + W)
ms-1

1+ (ugy/buy) 2] ’

i, 7
Ba = {1 + [ (ueo—l)/buzo]z}

=]
[
'—l
[42]
]
T

329



= - - 2£"
Alz [aOsos (1-ms) + aOrOr(‘l mr)] /
i 2
A2z = L.(ms+1)08alsueo + (mr+l)0ralr(neo—l) J]2b £
] 2 2
- 2
A3z LaOSGS(2+ms) + aOrOr(2+mr) } J2£° + 2q/f
' 2 ‘ 2 2
- [alscs(lms)ueo +alr0r(_l+mr) (ueo 1) ] /2b
- - : - - /2£3
Ale = [%Saosueo(l ms) + GraOr(ueo 1 Q mr)] /
2
B9 - (gs‘g‘lOs-FC’raOr)/2f
2 - 132 2
+ [cs(l+ms)alsueo +Gr(l+mr)alr(ueo 1 ] /2b
A36 = Lgsms ao§u60+0rmra0r(u80_l)] /2f
3 ; 3 252
-£ o’sals(l+ms)u60 +Gralr(l+mr)(ueo 1) } /2b
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TABLE I. - EMPIRICAL TURBULENCE COEFFICIENTS MS, NS,
AND ESTIMATES FOR RELATIVE ROUGHNESS

ms ns 2. &c
Smooth ~.240 .0989 .00069
Knurled-Indentation -.136 .0697 .022
Diamond-Grid -.0350 .118 460
Hole Pattern .0190 .0150 .058
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TABLE II. ~ A COMPARISON OF THEORETICAL AND MEASURED VALUES FOR
EFFECTIVE STIFFNESS, DAMPING AND ADDED-MASS COEFFICIENTS

KEF CEF MEF
SEAL Rao ex ex ex
KEF CEF MEF
th th th
120,100 2.182 0.6636 1.38
Smooth 170,600 2.216 0.6900 1.38
270,500 1.297 0,7567 4,45
385,200 1.142 0.9350 6.88
495,700 1.261 0.9964 9.35
500,900 1,478 0.9401 0,986
115,700 . 1.630 0.5613 4.24
Knurled- 160,200 1.598 0.8166 ‘3.82
Indentation 335,600 1.678 0.9836 18.6
350,500 1.664 1,027 11.2
368,200 1.706 1.041 4,23
115,100 1.745 . 0.4265 1.88
Diamond Grid 159,800 . 1.310 0.4795 2.61
335,600 1.065 0.9954 7.58
349,900 0.8026 0.9583 11.9
384,000 1.128 1.012 4.83
89}“10 1.573 0.4506 1.94
Hole Pattern 130,400 1,768 0.6997 2.25
159,700 1.876 0.7867 2.58
328,400 2.175 1.205 1.88
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Figure 2.
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D ROUGH STATOR/ROUGH ROTOR
O SMOOTH STATOR/SMOOTH ROTOR
Re~ 25149.5 Rc=~207254.
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Figure 4(a). Predicted circumferential velocity
development for the same rotor and stator roughnesses.
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Ra= 25149.5 Rc~207264,
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Figure 4(b). .Predicted circumferential velocity
development for different rotor and stator roughnesses.
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