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ANALYTIC REDUNDANCY MANAGEMENT 
MECHANIZATION AND FLIGHT DATA ANALYSIS 

FOR THE F-8 DIGITAL FLY-BY-WIRE AIRCRAFT 
FLIGHT CONTROL SENSORS 

James C. Deckert 

SUMMARY 

The details are presented of an onboard digital computer algo­

rithm designed to reliably detect and isolate the first failure in a 

duplex set of flight control sensors aboard the NASA F-8 Digital 

Fly-by-Wire aircraft. The algorithm's successful flight test program 

is summarized, and specific examples are presented of algorithm behav­

ior in response to software-induced signal faults, both with and 

without aircraft parameter modeling errors. 
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SECTION 1 

INTRODUCTION 

In recent years the desire to improve aircraft performance and 

to employ advanced aerodynamic designs has moved operational aircraft 

control technology into the realm of active control systems. These 

systems not only reduce pilot workload but, in many cases, are essen­

tial for the flight control of the aircraft. Likewise, the evolution 

of the control-configured vehicle, an aircraft whose aerodynamic 

design alone is unable to provide satisfactory handling qualities, re­

quires a control system that is automatic and highly reliable. How­

ever, individual controller components do not have the reliability, of 

the order of that of the airframe itself, required for such flight­

critical applications. This dictates that a fault-tolerant control 

system be implemented, utilizing component replication and incorporat­

ing some technique for redundancy management. 

Although control sensor redunda~cy management is relatively 

simple for triplex and higher instrument redundancy, other considera­

tions such as weight, volume, power, and life-cycle costs suggest that 

the required level of sensor redundancy should be supplied by keeping 

direct redundancy, i.e., sensor replication, to a minimum and utiliz­

ing in its place the analytic redundancy inherent in the various 

physical relationships among the variables measured by unlike sen­

sors. In June 1975 the Charles Stark Draper Laboratory (CSDL) began a 

study sponsored by the NASA Langley Research Center (LaRC) to inves­

tigate the feasibility of control sensor complement reduction through 
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the use of analytic redundancy. Specifically, the study was aimed at 

the problem of isolating the first failure in a duplex subset of the 

control sensors aboard the NASA F-8 Digital Fly-by-Wire (OFBW) air­

craft. Such a technique, if feasible, would allow operational capa­

bility following the first sensor failure, in contrast to standard 

voting techniques for failure isolation that require at least triplex 

sensors measuring a scalar quantity to provide the same single­

failure-operational capability. (1) 

During,the 2-year study period, a preliminary fault-detection 

and isolation (FOI) algorithm'was designed and coded in FORTRAN. The 

algorithm was successfully tested on the F-8 OFBW aircraft iron-bird 

simulation facility at LaRC, and it also performed well (following 

minor modification) on sensor output telemetry data from an early 

flight test, supplied by the NASA Dryden Flight Research Center 
(OFRC). (2,3,4) 

At that time, a variety of other approaches to the problem of 

sensor fault isolation via analytic redundancy had been proposed, 

including failure-sensitive filters(5,6,7) designed to enhance failure 

detectability, multiple-hypothesis techniques(8,9) involving a bank of 

filters for a wide class of failure modes, jump process formula-
, (10,11) 

t10ns to detect abrupt changes in the system, and innovations-

based detection systems. (12,13,14,15,16) However, it was felt that 

none of these techniques gave sufficient consideration to robustness 

in the presences of inevitable modeling errors and allowable sensor 

errors, and the multiple-hypothesis techniques and several of the 

innovations-based techniques appeared to possess innate complexity 

exceeding current-generation-aircraft flight-computer constraints. 

Therefore, based upon the relative simplicity of the preliminary CSDL 

FOI algorithm and its successful initial testing, a decision was made 

by DFRC to sponsor a program to develop an airworthy FOI algorithm, to 

program the developed algorithm on the F-8 OFBW aircraft computers, 

and to flight test the algorithm sufficiently to prove the concept of 

reliable sensor fault isolation through analytic redundancy. 
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References 17 and 18 document the mathematical development and 

software specifications, respectively, for the Phase I analytic redun­

dancy management (ARM) algorithm. As will be discussed in the follow 

ing, the ARM algorithm differs from the earlier approach(4) in the 

use of a single, comprehensive test statistic for each suspect sensor 

in place of the three test statistics required previously for a sus­

pect sensor pair. Although implemented in different ways, both stra­

tegies recognize the inherent requirement for the explicit accommoda­

tion of the effects of normal sensor errors and modeling errors on 

analytic redundancy relationships. 

The Phase I ARM algorithm was tested on seven flights between 

September 1979 and February 1980. In order to accommodate the ana­

lytic redundancy residual behavior observed on these flights, and also 

to incorporate more complete knowledge concerning the behavior of the 

onboard barometric altimeters, the Phase I ARM algorithm was modified 

to the Phase II version. In addition to parameter value changes, the 

only major coding changes in the new version involved the addition of 

first-order filters to several altimeter-related quantities and the 

addition of filter "traps" to accommodate hysteresis in the 

altimeters. 

The Phase II algorithm was initially tested on three flights 

between October 1980 and March 1981. Following analysis of the data 

from these flights, it became apparent that· the onboard attitude 

gyros, which were not representative of currently available control­

grade attitude references, did not have performance capabilities con­

sistent with ARM algorithm requirements. A particularly troublesome 

problem was the inherent difficulty in avoiding inaccurate directional 

gyro output at high roll angles, reflecting built-in gimbal-lock 

avoidance, due to the "free-azimuth" configuration of these instru­

ments. Therefore, the duplex vertical gyros and duplex directional 

gyros were replaced with duplex all-attitude platforms, whose perform­

ance proved more than adequate. 

5 



Phase II algorithm testing was completed with three flights dur­

ing June and July, 1981. The analysis of the data from these flights, 

as well as all previous flights, was facilitated by the use of the 

ground-edit program, a FORTRAN emulation of the actual flight code. 

This program was designed to read the sensor data stored on the down­

link tape recorder during actual or simulated flights and duplicate 

the calculations performed by the ARM flight code. The ground-edit 

program proved useful not only in verifying the flight code implemen­

tation but also in validating the effects of proposed parameter value 

and coding changes on algorithm performance. 

The Pnase II ARM algorithm performance in isolating simulated 

sensor failures injected via software during the last three flight 

tests was excellent with one exception. The algorithm had difficulty 

isolating a positive normal accelerometer bias with the aircraft in 

either a positive- or negative-roil-angle high-g turn. Following 

extensive analysis, the problem was deduced to be a -0.05 bias in each 

of the two Mach meters, which use common pressure orifices. Running 

the ground-edit program on the downlink data with the postulated Mach 

meter biases removed resulted in excellent isolation performance in 

the previously troublesome situations. 

The remainder of this report consists of four sections. Section 

2 outlines the basic structure of the ARM algorithm. Section 3 pre­

sents the details of the analytic redundancy relationships and error 

accommodation terms used in the Phase II algorithm. Section 4 pre­

sents representative results of the Phase II algorithm performance 

during the flight tests. Section 5 gives the conclusions and recom­

mendations for future work. 
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SECTION 2 

FAULT-DETECTION AND ISOLATION METHODOLOGY 

2.1 Introduction 

The analytic redundancy management algorithm is dual mode, with 

fault detection accomplished by the comparison of like-sensor outputs 

and fault isolation accomplished using modified sequential probability 

ratio tests (MSPRT) operating on analytic redundancy residuals. By 

exploiting the available duplex measurements for fault detection, the 

algorithm has high computational speed in the normal situation in 

which there are no faults. Another advantage of this dual-mode struc­

ture is that it allows the MSPRT fault-isolation tests to be made 

quite robust, since fidelity in the analytic redundancy relationships 

must be maintained for only the short time between detection and iso­

lation. 

Each MSPRT resembles a simplified generalized likelihood ratio 

test (SGLRT), (19) in which the failure time is known and the failure 

mode is assumed to be a bias of predefined magnitude whose sign is 

consistent with the difference between the duplex measurements at the 

time of failure detection. The SGLRT is a simplification of the 

full-blown GLRT that, in order to isolate a bias jump in a sensor, 

requires the calculation of the maximum likelihood estimates of both 

the failure size and failure time. The SGLRT simplifies these calcu­

lations by assuming a fixed failure size, and usually the estimate of 

failure time is restricted to lie within a window in the past. The 

duplex measurements available on the F-8 allow straightforward deter-
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mination of the failure time as discussed below, resulting in further 

simplification. The major difference between the MSPRT and the SGLRT 

is the inclusion in the former of what amounts to a decision threshold 

offset to accommodate the effects of irreducible modeling errors and 

normal sensor error characteristics in the analytic redundancy rela­

tionships. The bias failure hypothesis is used in the absence of 

detailed failure mode information because bias failures are considered 

most likely, and also because the resulting tests are quite effective, 

though not optimal, in isolating other failure types, such as ramps 

and scale factors. 

The determination of whether one or both of the duplex sensor 

outputs of a particular type will be used to determine an aircraft 

variable is based upon a hierarchy of signal status levels. In de­

creasing order of reliability, the four status levels used in the ARM 

algorithm are: unfailed, provisionally failed, conditionally failed, 

and unconditionally failed. The average of two signals having equal 

status is used, while the signal with the better status is used when 

there is a difference in status. 

Conditional and unconditional failure status declarations are 

made by analytic redundancy MSPRTs as discussed in the following. 

Provisional failure declarations are made using sensor output self test 

logic, which is included in the algorithm to minimize the effect of a 

hard-failed sensor on critical calculations. An unfailed signal is 

declared provisionally failed when it differs from its value on the 

previous sample (and from the present value of its companion signal if 

the companion's status is unfailed) by a predefined threshold magni­

tude. If this self test violation disappears on either of the next two 

samples, the provisional failure status declaration is removed and the 

signal reverts to unfailed status. 
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2.2 Fault Detection Using Direct Redundancy 

For fault detection and isolation purposes, it is convenient to 

define a faulty sensor as one having an output error magnitude larger 

than a stipulated bias failure magnitude (BFM), and in practice we 

would like to isolate an instrument having an output error magnitude 

of the order of BFM. Thus, the BFM for each signal type is chosen to 

be larger than the available instrument error specifications or the 

observed output errors in good instruments, and large enough to be 

isolated by the available analytic redundancy at cruise flight condi­

tions. A signal fault is detected when the moving window average of 

the output of instrument one minus the output of instrument two is 

larger than three-quarter BFM in magnitude. This three-quarter BFM 

threshold results in equal probabilities of detecting a BFM/2 bias (a 

false alarm) and not detecting a BFM bias (a missed alarm). 

Assuming that the noise in the instrument outputs is gaussian 

and uncorrelated from sample to sample, the number of samples in the 

moving window, N, may be chosen as follows. The standard deviation of 

the noise in the average of N samples of the difference in outputs of 

the two instruments is h/N a, where a is the standard deviation of 

the noise on a single instrument. Figure 2-1 depicts the probability 

density function for the average of. N samples in the presence of a 

BFM/2 bias. The shaded area, PF, represents the probability that 

the threshold is exceeded (a false alarm). For a value of PF of 

10-4 , gaussian distribution tables indicate that the distance from 

the threshold to the mean, BFM/4 in this case, should be equal to 3.65 

times the standard deviation of the noise. Thus 

(2-1 ) 

Because the threshold is chosen midway between BFM and BFM/2, an 

identical result follows from consideration of missed-alarm probabil-

9 



>­
I-
en 
z 
w 
o 
>­
I-
..J 

c:o 
<t 
c:o 
o 
a: 
0.. 

o 

BIAS LEVEL THRESHOLD 
I 

BFM/2 

MOVING WINDOW AVERAGE 

I 
I 
I 
I 
I 
I 
I 

3BFM/4 

Figure 2-1. Probability density for average with BFM/2 bias 

ity with a failure of BFM present. For this study, sensor output 

recordings were examined to determine the values of a for the various 

sensor types, and integer window lengths were then chosen that most 

closely satisfied Eq. (2-1). The resulting values of these parameters 

are shown in Table 3-1. 

Following the detection of the failure of one instrument of a 

pair, fault isolation tests are initiated using analytic redundancy. 

In addition to the failure indication, the sign of the moving window 

average of the output of instrument one minus the output of instrument 

two is also passed to the fault isolation tests. If this sign is 

positive, either instrument one has a positive error or instrument two 

has a negative error, and the opposite situation occurs if the sign of 

the average difference is negative. This failure sign information is 

utilized by the isolation tests to decrease the amount of processing 

that must be performed. 
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2.3 Fault Isolation Using Analytic Redundancy 

The SPRT utilizes sequential observations of a process to decide 

which of two hypothesis concerning the probability distribution of the 
, (20) 

process 1S true. The SPRT is independent of the a priori proba-

bilities of the two hypotheses, and minimizes the average number of 

observations necessary to reach a decision while meeting prespecified 

, 1 'f' i bbil' , (21) fth d' 1 m1SC aSS1 1cat on pro a 1t1es. Because 0 ese eS1rab e 

char-acteristics and the simple form of the test when gaussian errors 

are assumed, the SPRT is an ideal candidate for use with analytic 

redundancy for fault isolation. In particular, assuming that the 

process being observed is the difference between the output of one 

suspect sensor and a synthesized output using analytic redundancy, 

appealing choices for the two hypotheses are that the process has a 

mean equivalent to a BFM-sized bias (i.e., the instrument has failed) 

or that the process has zero mean (i.e., the instrument is unfailed). 

Specifically, assume that the noises on the residual process Y
k 

for instrument j (j = , or 2) at time tk are independent for all k; 

that either the failure hypothesis, H" or the no-failure hypoth­

esis, H2, is true; and that H, and H2 are the following: 

H,: Y~ is gaussian with variance 0
2 

and mean ~ 

H2: Y~ is gaussian with variance 0
2 

and mean 0 

It follows that the log likelihood ratio (LLR) of the joint probabil­

ity density function for n successive observations conditioned on H" 

divided by the joint probability density function for n successive 

observations conditioned on H2' is given by 

llj 
n 

n 

2 
k=' 

Y~ ) ( 2-2) 

1 1 



(Note that a is a general variable and the values in Eg. (2-1), Eg. 

(2-2), and subsequent equations are not necessarily equal.) 

Defining Pm as the probability of choosing H2 when H1 is true, 

and Pf as the probability of choosing H1 when H2 is true, then the 

SPRT optimal decision rule is given by 

pj < 15 accept H1 n -
15 < pj < n take another sample 

n 

n < 
j 

Pn accept H2 (2-3 ) 

where 

= 

( 2-4) 

Note that if the LLR is between the two thresholds, a choice of 

hypothesis that meets the specified acceptable misclassification 

probabilities Pm and Pf cannot be made, and another sample must be 

taken. 

Unfortunately, such factors as allowable biases on unfailed sen­

sors, errors in the sensor input/output models, and parameter uncer­

tainties in analytic redundancy relationships all contribute to low­

frequency errors in analytic redundancy residual processes for un­

failed sensors. Direct application of the above SPRT to such a 

process may result in the acceptance of the failure hypothesis in 

spite of the fact that the sensor is operating within acceptable 

tolerances. 
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The MSPRT is a fault-isolation test that systematically accom­

modates those irreducible factors contributing to low-frequency ana­

lytic redundancy residual errors that cannot be explicitly removed by 

modeling. The ARM algorithm utilizes the MSPRT to make conditional 

and unconditional failure status declarations following fault detec­

tion. Underlying the technique is the assumption that either H, or 

H2 for suspect sensor j is true. Although a straightforward 

approach would be to design a decision rule such as Eq. (2-3) for each 

sensor and then declare a failure when either hypothesis for either 

sensor was accepted, a more conservative approach has been chosen that 

avoids the tenuous situation of inferring that one sensor has failed 

merely because its companion sensor appears to be unfai1ed. 

Consistent with the preceding discussion, following fault 

detection at time t,' the MSPRT test statistic, the modified log like­

lihood ratio (MLLR), is defined at time t for suspect sensor j as 
n 

= n [~ (~ L--
k=' 0

2 2 

and the following decision rule is used 

c5 < u
j 
n 

0 < u
j 
n 

< 0 

declare instrument j unconditionally failed, 
terminate the test 

declare instrument j conditionally failed, 
take another sample 

take another sample 

(2-5) 

(2-6) 

In Eq. (2-6), the mean ~ is computed assuming a BFM-sized bias in 

sensor j consistent with the direct redundancy moving window average 
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at the detection time. The negative threshold 0 in Eq. (2-6) is the 

original SPRT threshold calculated using prespecified misclassifica­

tion probabilities via Eq. (2-4). 

The last term in the summation in Eq. (2-5) differentiates the 

MLLR from the LLR of the standard SPRT, and represents the contribu­

tion of a postulated worst-case residual error magnitude at time t
k

, 

Ek , to LLR calculation. Eqs. (2-5) and (2-6) indicate that the MSPRT 

is in essence a one-sided SPRT with a threshold offset arising from 

the worst-case error term. It follows that so long as the threshold 

offset is conservative, the misclassification probabilities for the 

MSPRT will be no larger than those specified to determine the original 

SPRT threshold. (17) Th h i f th t 't d f e c a ce a e wars -case error magn~ u e or 

each analytic redundancy test requires considerable engineering 

judgement. An optimistic choice lowers the reliability of the test 

while an overly pessimistic choice may result in prohibitively long 

isolation times, although the inclusion of conditional failure 

declaration using a relaxed test criterion tends to lower the mean 

isolation times seen by the control system without corresponding 

increases in the ultimate misisolation probabilities. Specific 

choices for the worst-case error terms are discussed in Section 3. 

In addition to the decision rule of Eq. (2-6), the ARM algorithm 

avoids open-ended isolation tests by utilizing an elapsed time limit 

(ETL) for each sensor type. If ET.L is reached before an unconditional 

failure has been declared, the detected fault indication is removed, 

isolation computations cease, and the direct redundancy detection 

process is reinitiated. Because failure observability and worst-case 

error magnitude are often maneuver dependent, pilot response to 

notification that ETL for a sensor type has been reached could result 

in an enhanced fault isolation environment during the subsequent 

isolation period. Alternatively, reaching ETL could initiate hardware 

selfcheck routines. 
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2.4 False Alarm Protection 

In order to provide increased false alarm protection, a direct 

redundancy SPRT is initiated for the suspect sensor type following 

fault detection. The process examined by the DRSPRT is the output of 

instrument one minus the output of instrument two, the same process 

whose moving window average triggered the fault detection. The DRSPRT 

test statistic, the DRLLR, is given at time t as 
n 

DRLLR 
n 

n 

= L m [~ - (O~ - O~)] 
k=1 0

2 
( 2-7) 

1 2 
where Ok and Ok denote the outputs at time ~ of suspect instruments 

one and two, respectively. The mean m in Eq. (2-7) has a magnitude 

equal to BFM, and its sign is the sign of the moving window average at 

the time of fault detection. Whenever the DRLLR crosses the specified 

positive threshold, indicating that a difference between the two 

instrument outputs of BFM magnitude with the stipulated sign does not 

exist, the analytic redundancy fault isolation tests are terminated 

and the direct redundancy fault detection test is reinitiated. 

In addition to providing protection against false alarms, the 

DRSPRT also performs a "rapid reset" function when the failure's ob­

servability decreases following fault detection, as an alternative to 

waiting until ETL is reached. As will be illustrated in flight test 

results shown in Section 4, this reset capability is particularly use­

ful as an aid to isolating scale-factor failures when the instrument's 

input changes sign following fault detection, and it allows the simple 

bias-failure-hypothesis-based isolation tests to perform quite effect­

ively in these situations. 
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2.5 Summary 

To summarize the ARM FDI process, each signal type utilizes a 

threshold test on the moving window average of the difference in the 

duplex signals to detect a fault. Following fault detection, one MLLR 

is computed via Eq. (2-5) for each suspect sensor for each form of 

analytic redundancy used, and the MSPRT threshold logic of Eq. (2-6) 

is applied to the lowest MLLR. This process is repeated until an un­

conditional failure is declared or ETL is reached. Additionally, a 

direct redundancy LLR is computed as shown in Eq. (2-7) following 

fault detec~ion to provide false alarm protection. Finally, signal 

self test is continuously performed for all signals having unfailed 

status. 
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SECTION 3 

FAULT ISOLATION TEST DETAILS 

3.1 Introduction 

The ARM algorithm monitors ten duplex instruments aboard the F-8 

DFBW aircraft: longitudinal accelerometer, lateral accelerometer, 

normal accelerometer, roll rate gyro, pitch rate gyro, yaw rate gyro, 

attitude platform, barometric altimeter, Mach meter, and alpha vane. 

(Although the accelerometer and rate gyro complement is triplex, only 

a duplex subset is utilized by the ARM algorithm.) Additionally, a 

simplex beta vane is used in some calculations, but not monitored for 

failure. Each attitude platform gives outputs of Euler roll angle, ~, 

pitch angle, a, and azimuth angle, ~, and these outputs are considered 

to be three independent signal types although, in practice, the 

failure of one channel would probably dictate the failure of the unit. 

Table 3-1 indicates relevant Phase II ARM parameters for the 12 

signal types being monitored. As is discussed later in this section, 

the mechanization of the MSPRTs for the Mach meters, altimeters, and 

attitude platforms is such that there is no ETL or DRLLR associated 

with these signal types. The ARM algorithm sample period is 0.06 

second. 

From the large number of analytic redundancy relationships 

available, practical considerations and aircraft-specific signal-to­

noise values reduce the number used in the ARM algorithm to four gen­

eral types: rotational kinematics, altitude kinematics, translational 

17 



00 
Table 3-1. Phase II ARM signal parameters. 

Signal Type Symbol BFM Self test DRLLR ETL Window 
'lbreshold Variance (Samples) Length 

Mach M 0.05 0.1 --- --- 3 

Altitude h 76.2 m 304.8 m --- --- 5 

Angle of attack 0.035 rad 0.1 rad 
2 

250 a 0.00005 rad 9 

Longitudinal Ax 0.2 g 0.5 0.002 g 
2 

1000 10 g 
acceleration 

Lateral Ay 0.2 g 0.5 g 0.002 
2 

500 10 g 
acceleration 

Normal Az 0.2 g 1.0 9 0.002 
2 

500 10 g 
acceleration 

Roll rate 0.087 rad/s 0.00005 
2 2 

133 3 P 1.0 rad/s rad /s 

Pitch rate 0.035 rad/s 0.25 rad/s 0.00001 
2 2 

133 q rad /s 2 

0.035 rad/s 0.25 rad/s 0.00001 
2 2 

133 2 Yaw rate r rad /s 

Roll angle cjI 0.087 rad 0.6 rad --- --- 6 

Pitch angle 6 0.087 rad 0.2 rad --- --- 6 

Yaw angle 1jI 0.087 rad 0.2 rad --- --- 6 



kinematics, and translational dynamics. In the following four sec­

tions, the analytic redundancy residual equations and worst-case error 

terms are discussed for each sensor type, grouped by the type of ana­

lytic redundancy employed. The lateral and normal accelerometers em­

ploy two types of analytic redundancy each while the remaining signal 

types employ one each. 

Before proceeding to the details of the analytic redundancy cal­

culations, the compensation performed on particular sensor outputs 

will be discussed. The compensated instruments include the accelero­

meters, the alpha and beta vanes, and the Mach meters. 

The accelerometers are compensated in order to transform their 

readings to the acceleration at the aircraft center of mass. Using a 

tilde (_) to denote uncompensated sensor output, the compensated read-

. f th . th 1 . d· 1 1 tId I I t 1ng o. e] ong1tu 1na, a era, an norma acce erome er ~re 

computed as follows 

(3-1) 

• • Ayj Ayj 2 = - 1 (r + pq) +1yP + 1 p ( 3-2) 
x z 

• . 
Az

j izj 2 
'"' + 1 (q - prj - 1.? + 1 p (3-3) 

x z 

where 1. , 1. , and t denote the displacement in body axes of the sen-
x y z 

sar package from the center of mass. Eq. (3-1) through (3-3) repre-

th · f th . (22) .. f sent e dOm1nant terms rom e exact express10ns, cons1st1ng 0 

those terms involving the longest distance, t , the roll rate, or the 
x 

roll acceleration. The angular acceleration terms in these compensa-

tion equations are computed by simple back-differencing in the ARM 

algorithm. 
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The alpha and beta vane readings are compensated for their dis­

tance from the center of mass and for bias, with the compensated read­

ings of the single beta vane and the jth alpha vane computed as 

B = B - dE.- Bb V 
(3-4) 

a
j 

= ~j +d's'-
~ V 

(3-5) 

where d is the longitudinal distance from the center of mass to the 

vanes and V is the total air-relative velocity computed using the Mach 

number and the velocity of sound computed as a function of alti­

tUde.(18) The compensated readings of the jth Mach meter and the rud­

der position transducer are computed as 

= (3-6) 

R = R - lb . (3-7) 

The values of the various compensation parameters mentioned 

above are given in Table 3-2. Supersonic flight is defined as the 

region where the first-order-filtered,. uncompensated, voted.Mach 

signal exceeds 1.0. The time constant of this filter is 0.5 second. 

Table 3-2. Compensation parameters. 

.t R. R. d Bb Rb Mb ~ (rad) x y z 

(m) (m) (m) (m) (rad) (rad) Super- Other- Super- Other-
sonic wise sonic wise 

6.42 0.31 0.17 11.0 -0.0087 0.0209 -0.01 -0.05 0.014 0 
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In addition to these compensations, each rate gyro is compen­

sated for bias by subtracting a bias estimate that is updated using 

analytic redundancy residuals. This process is discussed in the next 

section. 

3.2 Rotational Kinematics 

Rotational kinematics (RK) is used for fault isolation in the 

rate gyros and attitude platforms. The roll, pitch, and yaw rate 

gyros provide measurements of the aircraft body rates p, q, and r 

about the aircraft x, y, and z axes, respectively; and these body 

rates are related to the rates of change of the Euler angles measured 

by the attitude platforms. Thus, following a rate gyro fault detec­

tion at time t 1 , the RK residual for instrument j of the suspect type 

is calculated at general time ~ using the appropriate equation from 

the following 

k 

= L {PijT - [~~ - ~i-1 - (1/1. - 1/1. 1) sin ~~]} 
i=1 ... ~ ~- ... 

( 3-8) 

k 

L 
i=1 

(3-9) 

k 
= L {r~T - [-(9. - 9 ) sin ~~ 

i=1 ~ ~ i-1 ... 

( 3-1 0) 
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In Eq. (3-8) - (3-10) and all subsequent equations, T is the ARM 

sample period of 0.06 second and an overbar indicates that the quan­

tity represents the average of its present and previous sample values. 

This averaging is used to reduce computational errors during high 

angular rate maneuvers, and the forms of Eq. (3-8) - (3-10) avoid 

differentation of the noisy attitude measurements. Variables with no 

"j n superscript represent voted values obtained using the status level 

logic discussed in Section 2.1. 

At every sample time ~, following fault detection, the residual 

for each suspect rate gyro is used to update its MLLR usingEq. (2-5), 

where the mean has magnitude equal to the rate gyro BFM times (~ -

t ), the variance reflects attitude gyro noise variance, and the 
o 

worst-case error is computed as the sum of the magni·tudes of terms 

reflecting initial attitude gyro noise, roll attitude bias times pitch 

rate, rate gyro misalignment, and rate gyro scale factor error. Table 

3-3 indicates the values of these parameters in the Phase II ARM code. 

Table 3-3. Rate gyro rotational kinematics test parameters. 

Rate Variance Initial Scale Roll Cross-axis 
Gyro 2 Attitude Factor Attitude Misalignment 
Type 

(rad ) 
Noise Error Bias (rad) 
(rad) (rad) 

Roll 0.0004 0.01 0.05 --- 0.02 
pitch 0.0004 0.005 0.05 0.057 0.02 

Yaw 0.0004 0.005 0.05 0.057 0.02 

As was done for all signal types, the contributions to be used 

in the rate gyro RK MLLR worst-case error terms were initially chosen 

by examining the variational equations for the analytic redundancy 

. d 1 (17) d l' . . . d 11 th reSl ua s an app ylng englneerlng JU gement. Natura y, e 
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final forms of the error terms and their coefficient magnitudes were 

strongly influenced by the flight test data. 

Because of the sensitivity of the translational kinematics rela­

tionship, used for longitudinal and normal accelerometer fault isola­

tion, to angular rate estimation errors, the rotational kinematics 

residuals given by Eq. (3-8) through (3-10) are used to estimate 

biases in the individual rate gyros. At the beginning of each cycle, 

these estimates are subtracted from the sensor outputs before they are 

used in any calculations. The general form of the bias update equa­

tion at time tk is 

bias
k

_
1 

+ 0.001 y/T (3-11) 

£eflecting an estimator time constant of approximately 2 minutes. 

These rate gyro bias update equations are bypassed whenever the roll 

or pitch attitude angle exceeds 0.2 rad in magnitude. During flight 

tests, the bias estimators have accurately compensated for biases of 

the order of 0.008 rad/s observed in the pitch rate gyros. 

Treating the roll, pitch, and yaw attitude signals from a single 

platform as independent signal types, the RK residual for signal j of 

an attitude type (~, e, w) having a detected fault is calculated at 

time tk as follows 

'Yk(,j) 
k 

{~i j 
L - ~i-1 - [P.T + (W. -W· 1) sin e. ]} 

i=1 
1. 1. 1.- 1. 

(3-12) 

Y k (e
j 

) 
k 

{e? j 
"" L e

i
_

1 - T [Cii cos ~. - r. sin ~i]} 
i=1 1. 1. 1. 

( 3-13) 
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= 
k 

L 
i=1 

{111~ - 111~ 1 - [( ~ . - ~. 1 - P. T) 
~ 1- 1 ~- ~ 

• sin 9i + T(q. sin ~. + ri cos ~.) cos e.]} 
1 ~ ~ 1 

(3-14) 

In order to calculate the attitude gyro MLLRs, it is necessary to have 

stored the instantaneous RK residuals, corresponding to the terms en­

closed in braces in Eq. (3-12) through (3-14), in a moving window of 

the same length as the detector window for each signal type. At the 

time of fault detection, the instantaneous residual window for each 

suspect signal is procesed using the appropriate equation from Eq. 

(3-12) through (3-14) to form the MLLR residual for each window time, 

where t1 corresponds to the time associated with the oldest window 

element. The MLLRs are computed at each intermediate window time 

using Eq. (2-5). The MLLR mean has BFM magnitude, the variance is of 

the order of the attitude gyro noise variance, and the worst-case 

error is the sum of the magnitudes of terms reflecting initial atti­

tude gyro error, rate gyro bias, rate gyro misalignment, and roll rate 

gyro scale factor error. The values of the attitude platform RK test 

parameters for the Phase II algorithm are given in Table 3-4. 

After processing the entire window of instantaneous residuals 

and calculating the MLLRs corresponding to the present time, the 

threshold logic of Eq. (2-6) is applied to the lower MLLR. If no un­

conditional failure declaration is made, the detected failure indica­

tion is removed and the detection process proceeds smoothly on the 

next sample. 

The framework used for the attitude signals of processing a 

stored window of instantaneous residuals before applying the MSPRT 

threshold logic is also utilized for the Mach meters and altimeters, 

and these five signal types do not require direct redundancy LLR cal-
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Table 3-4. Attitude signal rotational kinematics test parameters. 

Roll 
Inertial Roll Pitch Yaw Misalignment Misalignment Misalignment Rate 
Attitude Rate Rate Rate Toward Toward Toward Scale 

Variance Noise Bias Bias Bias Roll Axis Pitch Axis Yaw Axis Factor 

Signal Type 
2 

(rad ) (rad) (rad/s) (rad/s) (rad/s) (rad) (rad) (rad) 
Error 

Roll 0.000025 0.01 0.031 --- --- --- 0.02 --- 0.02 

Pitch 0.000025 0.005 --- 0.02 0.02 0.02 --- 0.02 ---
Yaw 0.000025 0.005 0.031 0.02 0.02 0.02 0.02 --- ---



culations since the isolation process does not extend beyond the time 

of detection. Additionally, the MLLR for any signal of these five 

types is reset to zero whenever it becomes positive. This is done to 

accommodate the uncertainty in failure time within the window, and 

requires a slightly higher magnitude threshold for the MSPRTs for 

these sensor types. (11) For the 10-4 misclassification probabilities 

used in this study, the threshold 0 in Eq. (2-6) is -11.4 for these 

five signal types and -9.2 for the others. 

In order to make the fault detection tests consistent with the 

fault identification tests, which are sensitive only to bias changes 

in the attitude, Mach, and altimeter signals, the elements whose 

moving window averages are used for fault detection for these five 

signal types are calculated as the deviations in output difference 

from the difference most recently discarded from the window. 

3.3 Translational Kinematics 

Translational kinematics (TK) refers to the redundancy between 

changes in aircraft air-relative velocity measured by the air data 

sensors and changes in aircraft velocity obtained by integrating the 

acceleration computed using the inertial sensor outputs. The ARM 

algorithm utilizes TK to isolate faults in the longitudinal accelero­

meters, normal accelerometers, and Mach meters. 

The TK residual for longitudinal accelerometer j at time tk, 

following a detected fault at time t1' is given by 

k 

L 
i=1 

T[AX~ 
~ 

(3-15) 
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where g is the acceleration of gravity, Vs is the speed of sound, 

periodically recomputed as a function of altitude, and a, a, and Mare 

the angle of attack, sideslip angle, and Mach number, respectively. 

(In Eq. (3-15) and all subsequent equations involving air-relative 

velocity, cos a is approximated as unity and therefore does not appear 

explicitly. Similarly, with a and a measured in radians, the ARM 

algorithm approximates sin a, sin a, and cos a as a, a, and 

(1 - a 2/2), respectively.) In the MLLR calculations, the ~an at 

time ~ has magnitude equal to the longitudinal accelerometer BFM 

times (t
k 

- to) the variance reflects air data sensor noise, and the 

worst-case error is the sum of the magnitudes of terms reflecting 

initial air data noise, a wind-shear doublet, misalignment of the 

suspect accelerometer, and transonic Mach meter behavior. 

The TK residual for normal accelerometer j at time t
k

, follow­

ing fault detection at time t
1

, is given by 

k 

= L T[AZi - cos 8i cos ~i g 
i=1 

Vs M sin a ] (3-16) 
o 0 0 

The MLLR mean has magnitude equal to the normal accelerometer BFM 

times (t
k 

- to)' the variance reflects air data sensor noise, and the 

worst-case error is the sum of the magnitudes of terms reflecting 

initial air data noise, a wind-shear doublet, suspect accelerometer 

scale-factor error, and pitch rate gyro scale-factor error. 

The wind-shear doublet magnitude and MLLR variance for the lon­

gitudinal and normal accelerometers each assume one of two values de-
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pending upon the binary output of a wind turbulence filter operating 

on lateral channel TK residuals, analogous to Eq. (3-15) and (3-16). 

These residuals are high-pass filtered, squared, low-pass filtered, 

and then passed through a two-level turbulence flag logic with hyster­

esis. Figure 3-1 indicates a block diagram of the calculation of the 

wind turbulence estimate, VAREST, and the turbulence flag logic. 

Table 3-5 shows the values of the associated parameters, with the 

values of K1 and K2 reflecting equal 5 second time constants for the 

high-pass and low-pass filters.(4) 

Ay + CO. 6 iin4i 9 + v. M(p sin Q - r COl Q) 

VI M lin (3 
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Figure 3-1. Block diagram of turbulence estimator 

Table 3-5. Turbulence estimator parameters 

VARLCM VARHI 

K1 K2 (m2/s 2) (m2/s 2) 

0.9881 0.0119 0.464 0.743 

TURBULENCE 
FLAG 



Table 3-6 lists the values of the longitudinal and normal accel­

erometer TK test parameters used in the Phase II ARM algorithm. A 

scale-factor error term for pitch rate is employed instead of a rate 

bias term in the normal accelerometer test for three reasons. First, 

it reflects the excellent performance of the rate gyro bias estima­

tors. Second, it reflects the existence of an observed scale-factor 

error in the number two pitch rate gyro of approximately -0.05. 

Third, the form of this term also allows accommodation of uncompen­

sated Mach bias. The transonic region is defined as values of the 

filtered, uncompensated, voted Mach signal between 0.92 and 1.04. 

The TK residual for Mach meter j is calculated at time ik as 

k 

I 
i=1 

(3-17) 

As for the attitude gyros discussed earlier, the instantaneous resid­

uals for each Mach meter, the terms in braces in Eq. (3-17), are 

stored in a moving window. At the time a Mach meter fault is detect­

ed, each sensor's instantaneous residual window is processed using 

Eq. (3-17) to compute its TK residual at the intermediate window 

times, and simultaneously Eq. (2-5) is used to compute each Mach 

meter's MLLR, with the threshold logic of Eq. (2-6) applied to the 

lower MLLR following complete window processing. The MLLR mean has 

magnitude equal to the Mach meter BFM times Vs cos a at the time of 

detection, the variance reflects the effect of Mach meter noise, and 

the worst-case error is the sum of terms arising from initial Mach 

meter error and acceleration uncertainty. Table 3-7 indicates the 

values of these parameters used in the Phase II code. 
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IN 
o 

Type 

Ax 

Az 

Variance 

Low 
Turb. 

9.29 

9.29 

Table 3-6. Accelerometer translational kinematics test parameters. 

(m2/s 2) 
Pitch Doublet 

Transonic Supersonic Rate 
Initial Scale Alignment Error Error Scale Magnitude (g) 

High Noise Factor Error Rate Jump Factor Duration 
Turb. (m/s) Error (rad) (g) (m/s) Error (s) Low High 

Turb. Turb. 

33.4 1.52 --- 0.03 0.031 -30.5 --- 12 0.155 0.31 

33.4 1.52 0.02 --- --- --- 0.035 12 0.155 0.31 



Table 3-7. Mach meter translational kinematics test parameters. 

Variance Acceleration Initial Noise (m/s) 

(m2 Is 2) 
2 Error (m/s ) Transonic Otherwise 

27.9 4.0 30.5 1.52 

3.4 Translational Dynamics 

Translational dynamics (TO) refers to the redundancy between the 

acceleration of the aircraft measured by the accelerometers and the 

acceleration predicted by stored aerodynamic coefficient fUnctions 

using air data sensor measurements. TO residuals are used by the ARM 

algorithm to isolate failures in the lateral aceelerometers and alpha 

vanes. 

The TO residual for lateral accelerometer j at time ~ is given 

by 

(3-18) 

where CYB and CYDR are stored lateral coefficient fUnctions of Mach 

. and alpha, Q is computed dynamic pressure, S is the surface area of 

the wing, and m is the estimated aircraft mass. The absence of fuel 

tank level measurement inputs to the onboard computers precludes auto­

matic mass estimate update. As a compromise between accuracy and 

operational complexity, the current technique requires pilot selection 

of which of three mass estimates is used on the basis of cockpit (or 

telemetry) indications of fuel remaining. 

On every sample following fault detection, the residuals given 

by Eq. (3-18) are used in Eq. (2-5) to compute the lateral accelero­

meter TO MLLRs. The TO MLLR mean has lateral accelerometer BFM magni-
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tude, the variance reflects air data noise, and the worst-case error 

is the sum of the magnitudes of terms reflecting the effects of beta 

vane bias, lateral accelerometer misalignment, neglected lateral co­

efficients, and scale-factor error in the computed aerodynamic side­

force. The values of these parameters used in the Phase II ARM code 

are shown in Table 3-8. 

Table 3-8. Lateral accelerometer translational dynamics 
test parameters. 

Variance Neglected 

(m2/s4) Beta Scale Coefficients 
Bias Misalignment Factor 

Low High (rad) (rad) Error p/V 
Turbulence Turbulence (m) Aileron 

0.93 3.72 0.002 0.02 0.2 1.63 0.052 

The TO residual for alpha vane j at time tk is given by 

= cos (3-19) 

where the lift, L, and drag, D, are computed using each alpha vane 

output individually in stored fUnctions of Mach, elevator position, 

and angle of attack. The alpha vane TO MLLR mean has magnitude equal 

to the alpha vane BFM times the magnitude of the computed TO residual 

gradient, the variance assumes one of two values depending upon indi­

cated turbulence level, and the worst-case error is the sum of the 

magnitudes of terms reflecting the effects of normal accelerometer 

scale factor error and aerodynamic coefficient error. Table 3-9 indi­

cates the values of these parameters used in the Phase II code. The 

"good fit" region for the aerodynamic coefficient error contribution 

for alpha vane j is currently defined by the following two inequali­

ties 
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-0.175 < 0 < 0.0872 
e 

-0.07 < < (0.42 - 0.232 M) (3-20) 

where 0 is the measured elevator position in radians. The total 
e 

contribution of aerodynamic coefficient error is currently calculated 

as 0.6 times the sum of the two individual vane contributions. 

Table 3-9. Alpha vane translational dynamics test parameters. 

Variance Aerodynamic Coefficient 

(m 2 Is 4) Contribution 2 
(m/s ) 

Accelerometer 
Scale Factor Otherwise 

Low High Error Good 
Turbulence Turbulence Fit M < 0.8 M > 0.8 -

18.6 37.2 0.1 M
2

+0.305M 0.3048 + 19.5 

(5. 52M-l. 66) 
2 

Table 3-10 lists the lift, drag, and sideforce aerodynamic coef­

ficient functional representations. The lift coefficient is formed by 

linear interpolation between the values calculated at the two Mach 

break" points bracketing the Mach estimate~ there are ten Mach 

breakpoints between 0.18 and 1.9. The complete drag coefficient is 

formed as the sum of CD and CDDE. 

3.5 Altitude Kinematics 

Altitude kinematics (AK) refers to the redundancy between the 

changes in altitude measured by the altimeters and changes in altitude 

computed from the vertical acceleration measured by the accelerome­

ters. This vertical acceleration at time t. is computed as 
1. 
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Table 3-10. Functional representation of aerodynamic coefficients. 

Aerodynamic 
Coefficient 

CL 

CD 

CODE 

CYB 

CYDR 

34 

Polynomial 

For Mach 8 M., j = 1,10 
J 

CL~ 

CD~ 

CD = 
m 

CODE 

CYB = 
m 

CYDR = 

+ M(a 
4 

2 3 
+ a a + a a + a a ) 

5 6 7 

Range 

a < 0.1745 

0.1745 < a < 0.2094 

0.2094 < a 

0.18 < M < 0.9 

0.9<M<1.2 

1.2<M<1.9 

0.1 A < M < 0.9 

O.9<M<1.2 

1.2<M<1.9 



Av. Ax. sin ai - (Ay1.' sin~. + Az. cos ~.) cos a. - g 1. 1. 1. 1. 1. 1. 

(3-21 ) 

Examination of Eq. (3-21) indicates that, depending upon the orienta­

tion of the aircraft, an AK test could be used to isolate a failure in 

an altimeter, any type of accelerometer, and the pitch and roll output 

channels of the attitude platform1 the ARM algorithm contains AK tests 

for isolation of failures in the lateral and normal accelerometers and 

the altimeters. 

During initial ARM algorithm design, it was anticipated that the 

AK test would be the most powerful test for isolating normal accelero­

meter failures at shallow bank angles. At that time, the major source 

of error in the altimeters, except during transonic flight, was 

thought to be the 3.4 m output quantization. (4) However, during the 

flight testing of the Phase I ARM code, significant unexpected errors 

were found in the AK residuals during simulated accelerometer fail­

ures. Discussion with DFRC personnel revealed that earlier attempts 

to model the observed behavior of these altimeters had resulted in a 

model containing a first-order lag with a time constant of 0.5 second 

and hysteresis of uncertain magnitude between 10 m and 30 m. 

Because of the uncertainty associated with the altimeter hyster­

esis, it was decided that no attempt would be made to model this 

effect in the Phase II algorithm. Instead, "traps" were added to the 

AK filters integrating Eq. (3-21) that bypass the incorporation of 

altitude measurement residuals smaller than a stipulated magnitude, 

and the worst-case error terms corresponding to initial altimeter 

error were increased significantly to accommodate the observed hyster­

esis effects. In addition, the vertical acceleration given by Eq. 

(3-21), computed using inertial instrument data, is passed through a 

first-order lag, with a O.S-second time constant, before being 

dOUble integrated and compared with the altimeter outputs. 
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The relatively large initial error term required to accommodate 

barometric altimeter hysteresis error in the AK tests renders the 

effectiveness of the Phase II AK tests inferior to that of the TK and 

TO tests in isolating failed accelerometers. Additionally, the altim­

eter fault-isolation performance achieved with the AK test, which is 

sensitive only to change in altimeter bias and not absolute bias 

level, could be obtained just as reliably via signal self test. For 

these reasons, the details of the AK test implementation are not 

discussed here. The interested reader is referred to References 4 and 

24 for additional information on the formation of AK test residuals. 

3.6 Computational Requirements 

The Phase II ARM algorithm occupies approximately 8000 16-bit 

words of computer memory. Bench tests have indicated that its timing 

requirements are approximately 5.6 ms per 60 ms with no detected 

faults and approximately 12 ms per 60 ms with 12 detected faults. The 

longest timing requirement for a single detected failure is approxi­

mately 7.0 ms per 60 ms. The bulk of the timing requirement with no 

detected faults represents the overhead associated with sensor read 

and scaling; moving window fault detection processing; aircraft state 

determination; sensor output self test; analytic redundancy residual 

calculations for the Mach meters, altimeters, rate gyros, and attitude 

platforms; and the turbulence estimator. If the AK tests for normal 

and lateral accelerometers were removed, as suggested by the flight 

test results, together with all research-specific operations, the 

timing and memory figures could be lowered by approximately ten 

percent. 
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SECTION 4 

FLIGHT TEST RESULTS 

The ARM algorithm has been implemented in the F-8 DFBW aircraft 

computers in a parallel mode in which it is able to obtain all re­

quired sensor and effector position readings, but its sensor signal 

status information does not affect the choice of signals used in con­

trol law calculations; these choices continue to be made by the base­

line FOI programs. The ARM software includes extensive error simula­

tion and signal fault insertion capability, controlled by the pilot 

through the computer input panel (CIP), to allow inflight evaluation 

of ARM algorithm performance. 'Simulated signal faults that can be in­

serted (on the number one instruments only) include bias, drift, 

scale-factor error, hardover, transient pulse, and loss of signal. 

Errors that can be simulated include scale-factor errors in the normal 

and lateral aerodynamic coefficients CL and CYE, error in the assumed 

center of mass location, and misalignment of the number two rate gyro 

and accelerometer triads. In addition, the choice of which of three 

stored aircraft mass values is used in the ARM TO calculations is up­

dated, on the basis of fuel remaining, by the pilot via CIP entry. 

In addition to the excellent performance of the Phase II algo­

rithm in identifying inserted sensor failures during flight testing, 

as will be discussed, the Phase I ARM algorithm performed well when 

confronted with two actual inflight failure situations. In one in­

stance, an opening developed in the potentiometer for alpha vane two. 

The ARM algorithm declared alpha vane two unconditionally failed 24 
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seconds before the baseline code, which by itself cannot isolate the 

failed sensor of a duplex set, detected the alpha vane fault. Figure 

4-1 shows the behavior of the Phase I ARM algorithm during this in­

flight failure, with the aircraft at an altitude of 12 km and Mach 

1.05. The first frame shows the voted, compensated normal accelero­

meter output of approximately -0.9 g. The second frame shows the two 

alpha vane readings, the third frame shows the TO residuals for each 

vane and the TO worst-case error magnitude, and the fourth frame shows 

the TD MLLR for each vane. Note that following the declaration of 

alpha vane two as conditionally failed at the time of detection, the 

fault isolation process is delayed by the output spike on alpha vane 

two on sample 14. This spike drives alpha vane two out of the 

aerodynamic coefficient error "good fit n region, analogous to Eq. 

(3-20), that was used in the Phase I algorithm. This, in turn, in­

creases the magnitude of the TO worst-case error magnitude on that 

sample, and each TO MLLR is incremented by a large positive amount. 

With the removal of the alpha vane 2 output spike, the isolation pro­

cess proceeds steadily, ending with the declaration of alpha vane two 

as unconditionally failed on sample 28. It should be noted that this 

and similar experiences with the alpha vane TO tests during the flight 

test program indicated that the "good fit" region in the Phase I algo­

rithm was conservatively narrow. This resulted in the larger region, 

defined by Eq. (3-20), being used in the Phase II algorithm. 

The second inflight malfunction occurred when the baseline sys­

tem detected the memory parity failure of one of the triplex computers 

and declared it failed. Because the failed computer was dedicated to 

reading the number one sensor outputs and because of the mechanization 

of the buffer refreshing operation, the computer loss manifested it­

self to the ARM algorithm as all number one signals jumping to their 

negative maximum values. ARM sensor output self test immediately de­

clared all number one signals provisionally failed, and the analytic 

redundancy tests declared all number one signals unconditionally 

failed within 1.3 seconds of the computer failure. 
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Table 4-1 indicates the performance of the Phase II ARM algo­

rithm in isolating inserted bias, drift, and hardover failures, with 

the aircraft near trim at Mach 0.6 at 6100 m altitude. These isola­

tion times are in excellent agreement with theoretical values calcu­

lated for the MLLR residuals and worst-case error terms in a 1 g non­

maneuvering environment. In all cases, sensor output self test imme­

diately declared a hardover sensor provisionally failed. It is 

important to note that between the times of failure insertion and 

fault isolation, the average of the two sensor outputs would be used 

in control calculations, thus halving the effective error. The fault 

isolation times shown in Table 4-1 are also representative of the in­

jected failure isolation times observed with the aircraft undergoing 

moderate maneuvers. 

Because of the variety of worst-case error terms in the differ­

ent analytic redundancy tests, a summary of inserted fault isolation 

performance during extreme maneuvers similar to Table 4-1 is not pos­

sible. However, Figures 4-2 through 4-7 indicate representative 

results, both with and without simulated errors in the knowledge of 

important aircraft parameters. 

Each of these figures contains four different frames, and three 

of these frames present analogous information in the different fig­

ures. One frame shows the two suspect signals, including the simu­

lated failure. One frame contains the residual for each suspect 

signal and the worst-case error term for the particular type of ana­

lytic redundancy used: RK for the rate' gyros and attitude platforms; 

TO for the alpha vanes and lateral accelerometers; and TK for the 

longitudinal accelerometers, normal accelerometers, and Mach meters. 

Finally, one frame contains the MLLR for each suspect signal. 

Figure 4-2 indicates isolation of a simulated 0.5 scale factor 

in pitch rate gyro one. During the early negative pitch rate man­

euver, the failure is detected but it cannot be isolated before the 
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Table 4-1. Inserted fault average isolation times 
at trim (seconds). 

1.5 
BFM BFM/s 

Signal Type Bias Drift Hardover 

Mach 0.06 NT 0 

Altimeter 0.12 NT 0 

Angle of attack 0.54 2.1 0.12 

Long. accel. 7.26 3.6 0.78 

Lat. accel. 0.3 1.38 0 

Norma 1 acce 1. 6.51 3.84 0.36 

Roll rate 0.48 1.44 0.06 

Pitch rate 0.9 1.8 0.24 

Yaw rate 0.9 1.8 0.24 

Roll attitude 0.18 NT 0 

Pitch attitude 0.12 NT 0 

Yaw attitude 0.18 NT 0 

NT = no test 

magnitude of the pitch rate decreases to the extent that the differ­

ence betwen the two pitch rate signals becomes insignificant. This 

forces the DRLLR to exceed the +9.2 threshold, removing the detected 

failure flag and reinitializing the detection process. (With the de­

tected failure flag removed, all of the variables associated with 

fault isolation remain unchanged.) During the subsequent positive 

pitch rate maneuver, the fault is again detected, and instrument one 

is declared conditionally failed in six samples and unconditionally 

failed 12 samples later. 
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Figure 4-3 shows the successful isolation of a simulated 0.053 

rad/s bias in pitch rate gyro one during a positive roll rate maneu­

ver, with a simulated misalignment of the number two pitch rate gyro 

0.02 rad about the aircraft yaw axis. The effect of the roll maneuver 

acting through the misalignment can be seen as a negative ramp in the 

RK residual for pitch rate gyro two in the third frame of the figure. 

However, it is important to note that the magnitude of this residual 

is always less than the postulated worst-case error magnitude, also 

shown in the third frame. Therefore, although the sign of the resid­

ual in pitch rate gyro two is consistent with the sign of the detected 

failure (positive for instrument one or negative for instrument two), 

the RK MLLR for pitch rate gyro two remains positive throughout the 

failure simulation. The plot of the MLLR for pitch rate gyro one in­

dicates that it is declared conditionally failed 14 samples after 

failure injection and declared unconditionally failed 8 samples later. 

Figure 4-4 shows the successful isolation of a simulated 0.3 g 

bias in lateral accelerometer one, with the TO calculations utilizing 

a value for the lateral aerodynamic coefficient CYe 0.9 times the com­

puted value. During this test, the aircraft has a sideslip angle of 

0.05 rad and a dynamic pressure of 22.5 kPa (470 Ib/ft2 ). The use of 

a low CYB results in TO residuals for the two lateral accelerometers 

that are lower than they would normally be, and this is clearly evi­

dent in the figure as a negative bias in the residual for instrument 

two. Although the sign of this bias is consistent with the sign of 

the detected failure, it is smaller in magnitude than the worst-case 

error term, and the MLLR for instrument two remains positive. As in­

dicated by its MLLR, lateral accelerometer one is declared condition­

ally failed three samples after failure injection and is declared un­

conditionally failed five samples later. 

Figure 4-5 shows the successful isolation of a simulated 0.053 

rad bias in alpha vane one, with the TO calculations utilizing a value 

for the lift coefficient 0.9 times the computed value. The aircraft 
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is executing a 3.4 g turn at Mach 0.83 at an altitude of 5.4 km. The 

effect of the erroneous lift coefficient is reflected in residuals for 

the two alpha vanes that are more positive than they would normally 

be, and this can be seen as a positive bias in the residual for un­

failed alpha vane two. Although this residual has a sign consistent 

with the sign of the detected failure, it is smaller than the postu­

lated worst-case error magnitude. Thus, the MLLR for alpha vane two 

remains positive, while alpha vane one is declared conditionally 

failed five samples after failure insertion and is declared uncondi­

tionally failed fives samples later. 

Although this example shows correct alpha vane fault isolation 

by the ARM algorithm in spite of a ten percent error in calculated 

lift coefficient, this is not always the case throughout the air­

craft's flight envelope. However, although some situations have been 

observed during 1.5 BFM bias insertions in which the ARM algorithm is 

unable to decide which alpha vane has failed, no instances of misiso­

lation of the unfailed vane have been encountered with ten percent 

lift coefficient error. The observed instances of fault isolation in­

decision occur at high angles of attack, where the polynomial lift 

coefficient functions are known to be less accurate than at the lower 

angles of attack. This knowledge is reflected in the "good fit" 

region defined by Eq. (3-20). Improved alpha vane fault isolation 

performance could be obtained by using more complex lift coefficient 

models than those shown in Table 3-9, with corresponding decreases in 

the contribution of coefficient error to the worst-case error term. 

Additional improvement in TO fault isolation test accuracy could 

be obtained through a more refined mass estimate update procedure. 

The current technique of using one of three stored mass estimates on 

the basis of pilot selection can, even when executed properly, result 

in TO residual error for a lateral accelerometer or alpha vane as 

large as five percent of the true lateral acceleration or normal 

acceleration, respectively. 
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The high-frequency oscillation in the compensated normal accel­

eration shown in the first frame of Figure 4-5, with a magnitude of 

approximately 0.3 g, is a manifestation of actual airframe flexure 

arising from what is termed "high alpha buffet." Unfortunately, the 

currently programmed ARM method of computing angular acceleration by 

simple back-differencing of the voted angular rates, when used in 

compensation Eq. (3-3), results in a term that is in phase with the 

accelerometer oscillations. In fact, the magnitude of the oscilla­

tions in the compensation term and the raw accelerometer output are 

approximately equal. Because of the high frequency of the oscillation 

in compensated normal acceleration, its overly large magnitude has not 

created any problems in the TO isolation tests, which are much more 

sensitive to low-frequency errors. If desired, the oscillation in the 

compensation term could be effectively eliminated by computing the 

angular acceleration from the back-difference over two ARM sample 

periods, without the need for more elaborate filtering of the rates. 

Figure 4-6 shows the successful isolation of a -0.3 g bias in 

longitudinal accelerometer one, with the simulated misalignment of 

longitudinal accelerometer two 0.02 rad about the aircraft pitch 

axis. The failure is inserted just before the aircraft begins a 2.5 g 

windup turn. The effect of the simulated misalignment and the windup 

turn can be seen as an incr~asing positive TK residual for instrument 

two. Because this residual is significantly smaller than the postu­

lated worst-case error, the MLLR for instrument two remains positive. 

Longitudinal accelerometer one is declared unconditionally failed 129 

samples after failure injection. 

As shown in frame three of Figure 4-6, the postulated worst-case 

error is extremely conservative relative to the observed residual of 

the unfailed instrument, and this conservatism results in a relatively 

long isolation time of nearly 8 seconds. As discussed earlier, the 

fact that the acceleration of the air mass is an unmodeled error 

source in the TK residual equation motivates the inclusion of a 
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wind-shear doublet in the worst-case error term, with the magnitude 

chosen as one of two values based upon the output of a binary turbu­

lence estimator. Significantly faster isolation performance could be 

obtained by lowering the magnitude (perhaps to zero) of the doublet 

used during those times, such as for Figure 4-6, when the turbulence 

estimate is low. 

Figure 4-7 shows the successful isolation of a 0.3 g bias in 

normal accelerometer one during a 3 g turn. As discussed in Section 

3, the TK test for the normal accelerometers is very sensitive to 

errors in the knowledge of the pitch rate. Extensive analysis of 

flight data indicates that pitch rate gyro two has a scale factor of 

approximately 0.9S. The effect of this scale factor error on the es­

timated pitch rate during the windup turn having a pitch rate of 0.09 

rad/s results in the negative ramp for the TK residual for normal 

accelerometer two seen in Figure 4-7. Since the residuals for both 

sensors are identically affected by the pitch rate error, the slope of 

the positive ramp failure signature for normal accelerometer one is 

smaller than it would be in nonrotating flight, accounting for the 

larger number of samples (268) required for isolating the failure. As 

for the longitudinal accelerometers, the isolation time for the normal 

accelerometers could be lowered by decreasing the magnitude of the 

low-turbulence wind-shear doublet used in the worst-case error term. 
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SECTION 5 

CONCLUSIONS AND RECOMMENDATIONS 

The Phase I and II flight test programs have demonstrated the 

validity and capability of the ARM concept to achieve fail-operational 

performance with duplex sensors. Of particular importance has been 

the adaptability to unforeseen sensor behavior provided by the worst­

case error terms in the analytic redundancy MLLRs. The ARM algorithm 

design and flight test experience have shown that the identification 

and accommodation of basic, irreducible, low-frequency error sources 

in the analytic redundancy residuals are mandatory for the design of a 

reliable fault isolation system using analytic redundancy. The proper 

interpretation of a low-frequency component in an analytic redundancy 

residual, i.e., sensor failure or error term, has proven a signifi­

cantly more important design issue than the optimality of the decision 

rule that determines wh~ther the component is present. 

An alternate approach to the ARM technique for achieving fail­

operational capability with duplex sensors involves discarding both 

sensors of a particular type when a disparity in their outputs is 

detected, and subsequently using a synthesized value of that variable 

in the control laws. The relationship used to synthesize the missing 

variable would be analogous to the relationships used to generate the 

analytic redundancy residuals in the ARM algorithm. However, it 

should be noted that the ARM approach has two significant advantages 

over this alternative. First, fidelity of the residual relationships 

in the ARM approach is required only over the short time period 

between fault detection and isolation, compared to the remainder of 
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the mission time for the alternate approach. Second, the ARM approach 

incorporates a consistent, self-contained mechanism to accommodate 

errors in the analytic redundancy relationships. Such accommodation 

via the control laws in the alternate approach is much more difficult 

to achieve. 

Reasonability checks, in the form of sensor output self test, 

have proven to be powerful complements to the analytic redundancy 

tests in the ARM technique. This is particularly true for kinematic­

type analytic redundancy tests, some of which require significant 

times to isolate even a hard-failed sensor. The provision for condi­

tional failure declaration has resulted in significant decreases in 

the effective isolation times for BFM-sized failures of the rate 

gyros, lateral accelerometers, and alpha vanes. 

The use of a bias failure hypothesis in the MLLRs does not sig­

nificantly restrict the ability to isolate nonbias failures in duplex 

systems, as i.ndicated by the- roll rate gyro scale-factor isolation 

shown in Figure 4-2. However, it should be noted that if more than 

one simplex sensor is an input to an analytic redundancy residual 

calculation, more elaborate failure mode modeling is required for 

reliable fault isolation. 

Although the ARM software is more extensive than that associated 

with conventional redundancy management algorithms, it is similar in 

complexity to guidance and navigation calculations and posed no un­

usual implementation problems. Furthermore, its modularized structure 

lends itself to distributed computation systems. 

The process of developing the reliable Phase II ARM algorithm 

from the preliminary Phase I version involved either the compensation 

for or accommodation of several error sources in the analytic redun­

dancy relationships. This involved painstaking and tedious ground 

analysis of downlink data recorded during flight testing. Any 

technique requiring a similar level of effort for aircraft-specific 
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code initialization or to respond to day-to-day variations in the 

sensors or replacement of faulty units would clearly be impractical 

for fleet-wide application. Therefore, it is recommended that future 

effort be directed toward developing methods whereby FDI algorithms 

utilizing analytic redundancy can be made robust relative to varia­

tions in basic sensor characteristics. The ARM rate gyro bias 

estimators, utilizing rotational kinematics residuals, suggest one 

direction to pursue. Not only do these bias estimates allow certain 

MLLR worst-case error terms to be lowered, but the levels of the 

estimates themselves could be used for fault isolation or trend 

analysis. A recently developed related approach, in which Kalman 

filters are used to estimate the mathematically observable biases and 

scale-factor errors in direct redundant sensors, has given encouraging 

I . . I d' (23) h' 1 h' h' I resu ts ~n s~mu ator stu 1es. W ~ e t 1S approac requ~res rea -

time covariance matrix calculation to achieve optimal estimates, it 

appears to be a promising starting point for the development of 

(possibly suboptimal) estimators of the important sensor biases and 

scale factor errors appearing in analytic redundancy residuals. It 

must be noted, however, that the fact that each sensor error term may 

appear in more than one residual could pose a significant computa­

tional challenge to any sensor calibration error estimation technique. 

Although the integration of the ARM technique into a redundant 

digital flight control system remains an applications problem, the F-8 

DFBW aircraft flight test experience suggests that this is certainly 

within the state-of-the-art. This integrated system could either 

provide fail-operational capability following one more than the 

original design number of identical sensor failures or allow the 

removal of one sensor of each type, representing a significant savings 

in acquisition, spares, and maintenance costs over the life of the 

aircraft. 

Such an integrated system should be capable of monitoring the 

health of any single remaining sensor of a particular type. Although 

51 



detail design of the required algorithms has not been performed, a 

promising candidate approach exists that is a straightforward adapta­

tion of the ARM algorithm.(24) Basically this approach uses two 

MSPRTs for the single remaining sensor, one postulating a positive 

failure and the other a negative failure. A time interval is chosen, 

significantly shorter than the ETL for the sensor, after which the BFM 

failure signature dominates the noise in the analytic redundancy 

process. If after that interval has passed the LLR portion of the 

MLLR is positive, the MLLR is reset to zero and the process is 

repeated. Otherwise, the MLLR is updated until either: 1) the LLR 

becomes positive, at which time the MLLR is reset to zero, or 2) the 

MLLR crosses the failure threshold and the sensor is identified as 

failed. 

The implementation of such an integrated system on the F-8 DFBW 

aircraft is strongly recommended. Although the flight test program 

reported here, incorporating approximately nine hours of flight time, 

indicated proper functioning of the ARM algorithm, such a test period 

is insufficient to exhaustively exercise a major software package or 

to compile accurate performance statistics such as false alarm and 

missed alarm rates. While an integrated system for the entire set of 

control sensors would be desirable in order to demonstrate the full 

range of benefits and to accumulate the performance characteristics of 

the integrated approach, such a full-scope demonstration is not 

mandatory. In particular, meaningful results could be obtained from 

an integrated system for a subset of the sensors monitored by the ARM 

algorithm, e.g., the attitude and attitude rate sensors. 

Finally, it is well-known that significant savings in the 

replication of sensors measuring components of a vector quantity (such 

as angular velocity or linear acceleration) required to isolate a 

given number of successive sensor failures can be achieved by geomet­

rically skewing the sensors. Thus, instead of the three aligned 
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orthogonal triads of rate gyros and accelerometers employed in the 

baseline F-8 design to isolate a single failed instrument of either 
. ( 1 ) 

type, skewed arrays of five instruments of each type would suff~ce, 

a savings of eight instruments in all. It is important to note that 

for such a skewed array four instruments remain after the first 

identified failure, allowing only detection of a second failure, and 

that analytic redundancy relationships similar to those in the ARM 

algorithm could be used to isolate the second failure. 
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