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A COMPACT FINITE ELEMENT METHOD FOR ELASTIC BODIES

Milton E. Rose

Institute for Computer Applications in Science and Engineering

Abstract

A nonconforming finite element method is described for treating linear

equilibrium problems, and a convergence proof showing second order accuracy is

given. The close relationship to a related compact finite difference scheme

due to Phillips and Rose [2] is examined. A condensation technique is shown

to preserve the compactness property and suggests an approach to a certain

type of homogenization.
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author was in residence at ICASE, NASA Langley Research Center, Hampton, VA
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Introduction

In a recent paper Phillips and Rose [2] described a compact system of

finite difference equations to treat the equilibrium of elastic bodies. For

any brick cell of volume 0(h 3) within the body these equations express, to

second order accuracy, the relationship between the traction forces and the

displacements on the faces of the cell which results when the cell is in

isolated equilibrium. Global equilibrium then occurs when the net traction

force across a face common to any two cells vanishes; this condition serves to

eliminate the traction forces as variables and results in algebraic conditions

for equilibrium which are expressed in terms of the displacement values on the

sides of neighboring cells. These algebraic equations seem particularly

suited to solution by iterative techniques which can exploit the parallelism

of computer architectures.

In this method, since each cell is in isolated equilibrium, the potential

energy in the cell is equal to half the work done by the traction forces and

displacements on the surface of the cell. The total potential energy within

the body can then be calculated, and the principle of minimum potential energy

simply results in the condition that the net traction forces vanish across

common cell faces.

This paper examines this idea when general volume Cells are employed. An

approximate equilibrium condition for each cell is obtained by means of the

construction of a transmission matrix which, when applied to displacement

values on the faces of the cell, yields approximate traction forces on cell

faces thus producing equilibrium in the cell. We call these equations compact

finite element equations. Equilibrium throughout the body is then obtained by

determining displacement values on the faces of cells such that the net

traction force vanishes on every face incident to two cells.
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The transmission matrix arises as an approximation to a boundary integral

operator on a cell. As we shall see, it is also closely related to the

ordinary stiffness matrix in finite element methods.

We are content here to describe a method of construction which yields

0(h 2) convergence. This is done in Part I, which shows the equivalence to a

special nonconforming finite element method. The method can easily be

converted to a stress, rather than a displacement, formulation.

Part II discusses results which have a bearing upon the practical

implementation of the general construction. Using nonconforming linear

elements the compact equations for a tetrahedron are easily obtained. We show

that the compactness property is preserved under a condensation technique; as

a result, general cells can be handled without constructing an enlarged

approximation basis in such cells which the general theory would require.

In the context of the results of [2] the practical implication of these

results in three dimensions is: in order to approximate the displacements of

a body occupying a volume _, we need only cover _ by regular brick cells

and introduce tetrahedral cells near the boundary of _. The compact

difference equations for brick cells and the compact finite element equations

for tetrahedral cells then establish the equilibrium conditions for individual

cells in _. Global equilibrium in _ is then obtained by imposing the

algebraic balance of traction conditions throughout _. The general problem

of developing effective iterative methods for this type of construction will

be examined elsewhere.

The paper concludes by suggesting an approach to the homogenization

problem using the condensation technique mentioned above.
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Part I

Equilibrium of Linear Elastic Bodies

Notations:

In the following x = (Xl,X2,X3) is a point in _ and fi is a bounded

volume with boundary r. {_}M indicates a partition of _ into M

subvolumes, or cells; y = Y(_) is the boundary of _ on which _ is a unit

outward normal. _ = y(_,_') indicates the surface incident to both

and _" and is called an interior face; faces of Y(_) which lle in Y are

A

denoted by YF"

A_ denotes the volume of _ and AT the surface area of y. We assume

positive constants c0,c I which are independent of M such that if

h = 0(I/M)

0 < co h3 _ A_ _ cI h3.

Finally, if v is a continuous function on fi then vy denotes the

values of v on a cell boundary y.

I.I. General Results

In the following B is a material body occupying a volume _;

u = displacement, • = stress tensor, and € = strain tensor. Linear theory

leads to

_(u) = grad(_+ u2), (l.la)

TCu) = TC_Cu)); (l.lb)
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in which (b) represents the constitutive relationship of the material. Both

and T are symmetric, and the reciprocal principle of Betti-Rayleigh

(Timoshenko and Goodler [4]) is expressed by

W(_,_;_) _1/2 f c(_)rC_)d_ = WCw,_;fl). (1.2)

Let

Lu _ div T(_) - q2 , (1.3)

where q is a nonzero constant; the case q = 0 will be treated later. Then

the boundary value problem

L_ = 0 in _,

= u F on r (1.4)

describes the equilibrium of the body subject to a spring load. The potential

energy is given by

U(_;_) E W(_;_) + 1/2q2 f u2 am. (I.5)
n

The principle U([;_) = min then leads to the solution u of (1.4) and forms

the basis for many finiteelementmethods.

The solutionof (1.4) is determinedsolely by the boundarydata and may be

representedby a solutionoperator E as

_(x) = E(x)uF (1.6)
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in which E(x) reduces to the identity operator for xcF. The traction force

on r resulting from a displacement _ is given as

p = T(u).n]F. (1.7)

For the equilibrium solution (1.6) we may write

P _-p(ur) = _(Eur).nlr -T rUr; (1.s)

we call the boundary operator Tr a transmission operator.
A

For arbitrary displacements u,u, standard integral theorems are

t

u_ pdy = 2U(u;_) + f u Lu d_0
r - _- -

and, using (1.2),

(_ _,_ur^tp)d-_= f (; _u_- _ut _u)d_._
r fl

At equilibrium, L_ = 0; thus

u_(Er)d7 = 2u(_;fl) (1.9)
F

and

u_ p(__r)dY= _ _ _(ur)d7. (I.I0)
r

r
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Equation (1.9) simply states that at equilibrium the work due to the traction

forces and displacements on r equals twice the potential energy in _;

equation (I.I0) expresses the reciprocal principle (1.2) comparing two

equilibrium states.

A representation formula for the transmission operator T r can be

obtained by setting

_r(!,!")= _(_-xZ), _,x_"€ r (i.ll)

in (I.I0) where 6 is the Dirac function. Defining

^

Tr(x,x_')= p(ur(x,x_')) (1.12)

(I.I0) leads to

p(x;ur ) = _ t . . .___ Ur(X )Tr(x,x )dy(x ) _ Tr(x).(_r). (1.13)
r .....

It follows that Tr is a symmetric operator. Also, since

2U(_;a) _ q2 f u2 dm > 0 (i.i4)

(1.9) results in

ut P(Ur)dY _ _ _ Tr(Er)dY> q2 f u2 dm > 0 (l.is)
r - ---- r - _ - -

so that Tr is positive definite when q2 > 0. We may summarize these

results in
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Theorem I: Let B be in equilibrium due to prescribed surface

displacements Jr" Then the resulting traction forces on r are determined

from Jr by means of a symmetric positive definite transmission operator Tr

by p(_F ) = T[(_[), and the work done by these traction forces is equal to

twice the potential energy, i.e.,

ur p_(ur)dY - urTr(ur)dV= 2u(u;n) (1.16)

where _u= EuF.

1.2. The Equilibrium Problem wlth Constraints

Introduce a partition of fl onto M volume cells {_}M" Let V denote

the class of continuous functions v on fl which satisfy the boundary

conditions v = ur on r. The values of _ on the boundary surfaces y(_)

of cells _ are Vy(_) or, simply,_y.

For a given v__V consider the problemof minimizing the potentialenergy

of the system by displacements _ subjectto the constraints _y(_) = _y(_),

for _, i.e.,

min U(_;fl) h U(Eur;fl)" (1.17)
W

The solution is given by _ = E_y(_), mcfl, and in each cell

min 2U(w;m)_ = 2U(E[y(m);m) = _ --Yvt _P(V)dy._ (1.18)

_(_)

Denote the total work due to traction forces against the constraints by

Q(_;_). Then, using (I.13),
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Q(v;_) = ! v,_ p(vy)dy = I v_ Ty(vy)dy > 2U(u;_) > O. (1.19)

Any two displacement constraints _,_'EV can be considered equivalent if

_Y(_) =_y(m)' _fl' since they lead to identically equal equilibrium

displacements in each cell, i.e., _ - w__"= E(_y - _) _ 0. The consequences

may be stated as

Theorem 2: The total work Q(_;_) due to traction forces

p(_y) = Ty(V ) and the constraints v is minimized by the class of

constraints v_V which satisfy _y(m) = _y(_) where u__ is the equilibrium

displacement of problem (1.4).

AThe net traction force acting at a point on a face y common to

neighboring cells _,_" will be denoted by

f^(_,v) - pI_,vy) + _(_,vy-) = Ty(_)vy + Ty-(_)vy- . (1.20)Y

Also we will let Pr = PF(Vy(m) ) indicate the traction force on the face of a

cell m which lies on r. Then summation by parts yields

Q(v,O) = I _ vy p(v_)dy = _ u r PF dy + _ i v__ f dy. (1.21)-

Obviously, the conditions

f^(_,_) = 0, ycfl (1.22)
Y

are the Euler conditions for Q(_;fl) = min. The result is
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Theorem 3: A necessary and sufficient condition that _y(_) = _y(_) ,

_, is that the net work done by traction forces vanishes on every interior

face on which constraints are imposed; at equilibrium, _r = P(_r) on r in

(1.21).

Introduce the norm

A

IIv_h = (h I f _vtvdy)I/2"_ (1.23)

If _w = Evy,

t 2

v Ty(V )dy = 2U(w;m) > q _ wtwdm
y(m) --Y .....

2 t
= aq h _ vy vy dy

1 + 0(h2). Thus a lower bound for the lowest eigenvalue %y of
where

the transmission operator T is
Y

= =hq2. (1.24)Y

An estimate for the difference between the constrained and unconstrained

problems can now be obtained: let !y = _y -my so that cr = 0. Then

(1.21) yields

Q(!,_) = Y _ _ Ty(€_y)dy = _ f g__ f__ dy (1.25)

in which !^ = !^(!y,!y') so that
Y Y
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2hE:H2 _ h -1aq < I_1 h Uf(_) IIh,

i.e.,

2 h-I
aq HcIh < Hf(€)nh.

1.3. An Approximation Method

In this section we describe a method for approximating a smooth solution

of (1.4) with 0(h 2) accuracy.

Consider a typical cell _ whose boundary y(_) consists of k faces

Y1,Y2,-..,yk. Recall the representation (1.13) of the transmission operator

Ty as the integral operator

Ty(£;v_¥)= _ Ty(X,_)v(_)dY(!)Y

in which Ty(_,!) is the traction force due to a displacement

_(I_ - 11) on y. Let i indicate the centroid of a face y whose area is

Ay. Define

[_y]t a _(_I)A_I,_ ( )A 2,--.,v( k] , (1.27a)

k

i=l

The kxk matrix [T_] is symmetric and positive definite and

Th( )[vy] (128)
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approximates the traction force on a side _.

Qh(v;_) = [v_(m)]t[Th(_)][v(,0] (1.29)

approximates the work done by traction forces and displacements on y(_). The
A

net traction force on a face y common to adjacent cells m and m" is then

approximated by

[vl) +TV-( )[vy-I h( vy) (1.30)
Y

Let us agree to approximate the boundary condition _F = _r for vEV by

a'Cr'-_(ir)= I _-rd_'r' -tr Er (1.31)
Yr

in which _r indicates the centerpoint of a face Yr of a cell which lles on

r.

We propose to show that the solution uh of the following algebraic

problem ph provides an 0(h 2) approximation to the solution _ of (1.4) at

points _ of _Efl.

Problem ph: Solve

f__(_;[_])= 0, _€_ (1.32)
Y

for Ivy] subject to the boundary conditions (1.31).
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First, using (1.29), define

Qh(x;R) = _ Qh(x;m). (1.33)

Then summation by parts leads to

Qh(_;R) = Z [_y]t[T_][_y] = Z t(ir) h(ir)Ay r
A

+ _ X^(i)f_(_,[_])A; (1.34)
^

y_ T Y

in which ph(___F) represents an approximate traction force arising from a cell

which has a face lying on r.

The value I/2Qh(x;_ ) given by (1.33) is an approximation to the potential

energy of the constrained system. The problem of minimizing Qh(_;_) among

the class of algebraic constraints satisfying (1.31) leads, using (1.34), to

(1.32) as Euler conditions.

Next, introduce the norm

[[v]_ - (h Z vt(__)v__(__)A;(__))1/2. (1.35)

_cR

From earlierresults

Qh(v;n) > aq2 [[v]_ (1.36)

where a = (i + O(h2)).

With _ indicatingthe solutionof (1.4),define
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€ - u - v. (1.37)

Then _ satisfies the boundary conditions _(__r) = 0. Also, from (1.32),

_h(_;[!]) =_h(_;[_]). Hence (1.34) and (1.36) lead to the estimate

2 _ h-I f_h[u_] . (I 38)=q 11illh< [I l]h
Y

Using (1.27) and (1.13), define

(ph_ - p)(Uy) _ Th[_y]y = Ty(_y). (1.39)

Then, since f___) = 0
Y

fh[_l = [f_ - f.)(_) = (ph _ p)(_y + uy.) (1.40)
Y Y Y

A

where y is the face common to y and y'.

For illustration,considera boundaryvalue problemfor V2 2u - q u = 0.

In this case both the solution u and the kernel of the transmission operator

can be represented as a superposltion of exponential solutions of the form

exp q(i-x_). Then

_ 2
l(ph P)(Uy)l= q O(h3).

A similar superposition principle applies to the problem (1.4) when, as we may

assume, the material properties do not vary in a cell. Using (1.40) we then

obtain the estimate
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[_h(_)J$ = q2 0(h3) (1.41)

and (1.38) yields

[JCl]h= 0(h2) • (1.42)

Thus

Convergence of ph: The solution uh of problem ph converges to the

solution _ of (1.4) with an accuracy 0(h 2) when _ is sufficiently

smooth. By continuity this remains true when q = 0.

We may summarize matters as follows: for each cell which is in

equilibrium assume that an approximate algebraic relationship can be

established between the traction forces [phi and displacements
on the

faces of the cell by means of a transmission matrix [Th[, viz.,
L _J

We call (1.43) a compact finite volume scheme. Next, establish global

equilibrium in _ by imposing the balance of traction conditions

f_h(_) = 0; this corresponds, at the algebraic level, to the elimination of

stresses and strains in (1.4) so as to obtain a second order system of

equilibrium of partial differential equations for the displacements. When the

boundary conditions (1.31) are imposed, the resulting algebraic equations have

a unique solution u# and [_ - uh]_ = 0(h 2) when _ is smooth.
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1.4. An Abstract Formulation

2
Consider again the equilibrium equations L_ = div T(u___ - q u = 0. We

may, in principle,determinea family of solutions 8i(_,_), i=l,2,...,k in

any cell which has k faces such that

8i(_--j'_--i) = 6ij"

Then
k

w_(x)= [ 8i(x,__i)v(__i) (1.44)
i=l

^ ^ ^ A
provides a solution such that w(_i ) = X(_i) for _i _ 7i" In any cell we

may write

= E(x)eh[v|_. o_ (1.45)_(x_)

where E(x) is the solution operator for the boundary value problem (1.4)

and ph is a projection operator. The traction forces which result are

ph(x)[vJ = _(Eph[v__JJ.nlx- rh(__)[vJ. (1.46)

Thus

hhl = [Thl[vl (1.47)

w_ [_1_-_ _ _ _e re_u,_oo_pa__ua_o_on_e _e_.
This abstract formulation indicates how higher order approximations can,

at least in principle, be obtained. We shall not pursue this matter here,

howeve r.
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The construction (1.44) was proposed in [3] as a general method for

obtaining the solution of elliptic partial differential equations. The

present paper clarifies the physical ideas involved and presents the estimates

required to establish a general convergence proof.

1.5. Further Considerations

The previous discussion was focused upon the Dirlchlet problem for (1.4)

in which displacement values Jr were prescribed on r. The numerical

treatmentof this type of boundaryconditionis describedby (1.31). Problems

in which the tractionforce is prescribedon a part of the boundary r0 say

= P0(!),! € r0,can be treatedby using (1.28) and imposingthe traction

conditionin the form

T o(b[  l°a°(i), (1.48)

where i indicates the centroid of the face of a cell boundary y0 which

lies on FO.

Finally, instead of formulating the algebraic equilibrium equations in

terms of the displacements by means of the balance of traction conditions

_h(_) = 0, the tractions may be considered as the primary variables and the

problem solved in terms of them as follows: First note that the tractions

[_] as given by (1.43) are necessarily compatible with the displacements

[_y]. From (1.24), when q _ O, the minimum eigenvalue of the transmission

[TyhI was shown to approximate =hq 2 > 0. We may thus set
matrix

and write
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Consider

Rh(p)- _ [PT(_)] t h
(1.51)

Let us agree to use (1.50) to express a boundary condition of the form (1.31)

in terms of [2q]" Consider the variational problem

Rh(p_y) (1.52)
max

where _y satisfies the balance of traction conditions fh^ = 0 across any
Y

interior face T and also satisfies boundary conditions on r in the form

just indicated. A summation by parts procedure similar to that indicated by

(1.34) now leads to Euler equations which express conditions that the jump in

h across any interior face T must vanish. Using
displacement values of vT

(1.50), these conditions are expressible in terms of the traction variables on

the faces of neighboring cells. The result (c.f. [4]) is simply a restatement

of Castigliano's principle in discrete form.

Part II

Praetleal Developments

We now turn our attention to placing the previously described theoretical

development into a practical framework. Our preliminary discussion will

concern the Laplace equation in two-dimensions; this will enable us to

illustrate several key features in a more familiar context. A later section
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describes the construction details required to treat the equilibrium problem

for the elastic body described in Part I.

Suppose _ is a domain in _. _ can be conveniently covered by

rectangular cells as shown in Figure I.

rf
/ \
! \

\ o /
\ /

J
_ -._,._ ._.._F_ -mr

Figure I. A covering of a domain fl by rectangular cells.

Interior cells can be treated by compact schemes for rectangles; cells at the

boundary can be reduced to the treatment of compact schemes for triangles.

Compact schemes for rectangles have been developed using the finite

difference calculus in a manner described by Phillips and Rose [I], [2]. We

shall indicate below how these can be obtained by a simple condensation

process applied to more elementary results for triangular cells which we first

discuss.
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II.I. A Model Problem

In this section we treat the Laplace equation V2 u = 0 as a model

problem.

a) Triangular Cells

Consider a triangular cell _ whose area is A_. Choose a local

coordinate system having the centroid of the vertices _i' i=1,2,3, as

origin 0. The centerpoints of the sides are _i,__2,_3,as shown in Figure 2.

X2

_\\\\ °0////'_
Xj" v xI

Figure 2. A triangular cell.

Let £(_,!i), i=1,2,3, denote area coordinates for the triangle

(!i,!2,!3), i.e.,

3 3

x= [ £(x,__i)__i, [ £(x,!i) = I. (2.1)
i=l i=l

The vertices [_] and [x] are thus related by
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 <110)[!] = _[x], _ = o 1 1 ,

1 0 1

[x__]= R-I[__], _-I = 1 -1 . (2.2)

I I

Also, n(__i)- hi, i=1,2,3, indicates the outward normal vectors on the

sides. Finally,Ayi -IXi+l- xil is the length of a side containing --_i
and

_({_i)_ AYi'£(!i)/k_. (2.3)

Noting our choice of origin, £(_,_) then has the form

The function
3

w(x) = _ £(x,{_i)v({_i) (2.5)i=l

is a solution of V2 w = 0 for which w(_i) = v(!i). The "traction" defined

by

Ph(__i,v) = n_t(__i)'Vw({_i) (2.6)

is thus given by
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3

ph(_i,v) = )_ nJ(__i)n__(_j)(Am)-l'v(_j)AYji=l

so that

is a compact scheme on m with the transmission matrix

[TS] _ [ntC$_i)_($_j))Ae-I. (2.8)

A

Next consider two adjacent triangular cells m,m" having the side y in

common (Figure 3).

W'

Figure 3. Two neighboring triangular cells m,m'.

The balance of traction condition at _i is

f_Cil,V) _ p_(_l,V) + p_-(_l,V) = 0 (2.9)Y
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which reduces, using (2.8) to

+ V(_l) = - A--_ ni --
i=2

3
1
A_" )'(nl)t ni v(_i)AYi " (2.10)i=2

Suppose _,_" are acute triangles; then

t

_I _i < 0, i=2,3. (2.11)

Define

t

_lj_ - _i _j A_j/A_i,

p _ a_'/(Am+ Am'),

P" m Am/(A_ + A_'). (2.12)

Then Vlj > 0 and (2.10) leads to

3

V(!l)= i=2[ [pvli v(_-i) + P"vlJ"_ v(_[))._ (2.13)

However,

ndy = 0 (2.14)
_(_) -

so that

v12 + rib =- n_[n 2 A_2 +n 3 AYB)/Ay I = I. (2.15)

Thus

3

) [PVli + p" v_i)_ = p + p" = I. (2.16)
i=2
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Hence V([l) as given by (2.13) is an average with positive weights of the

neighboring values of v in the triangles.

Figure 4 illustrates two situations.

(a) (b)

Figure 4. Cases of two neighboring right triangular cells.

In the situation in Figure 4a, (2.13) leads to

v(__l) =I/4_v(__2) + v(__3) + v(_ 2) + v(_)) (2.17)

which is a familiar 5-polnt approximation to V2 u = 0. In the situation in

Figure 4b, the coefficients of the terms v(__3), v(___) in (2.13) vanish so

that

v(__l) =I/2[v(__2) + v(___)). (2.18)
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Here we observea differencebetween the result in this paper and that of

the typical finite elementtreatmentof V2 u = 0 (Zienkiewlcz[5]). In the

latter a linear approximation to V2 u = 0 in _ is conventionally

described in terms of area functions L(_,x_i) for the triangle using the

vertex points {xi}, viz.,

3

w(x_)= [ L(_x,x_i)v(x_i)- (2.19)i=l

This constructionleads to conforming approximations,i.e., approximations

which are continuousacross the sides of neighboringtriangles. In contrast,

the approximation (2.5) is discontinuousacross cell sides except at the

center points (_i), i.e., (2.5) is nonconforming. For conforming

approximationsthe standard 5-point finite difference formula expresses the

relationshipbetween a vertex value and its four neighboringvertex values,

shown in Figure 5, viz.,

vI =I/4(v2 + v2- + v3 + v3-) (2.20)

2

3 3'

!

Figure S. The relationship of vertices involved in the 5-polnt

formula (2.20)using conformingapproximationsin cells.
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This example is often used to point to the close relationship between

finite element andfinlte difference formulations of this problem. However,

the theory given in Part I shows that the scheme represented by (2.17) and

(2.18) also converges with 0(h 2) accuracy and thus represents a valid, if

less conventional, finite difference approximation to V2 u = 0.

The next example will help illustrate an important property of

approximations based on the nonconforming approximation (2.5) which is not

shared by the conforming approximation (2.19).

b) Rectangular Cells

We propose to show that, for V2 u = 0, compact schemes for rectangular

cells can be developed by one of two equivalent means. One uses the general

approximation method described 0in Part _I. The other uses a condensation

process based upon the example just given for triangular cells. Both lead to

the same result. For reasons to be described, the condensation technique

fails when the conforming approximation (2.19) is employed.

i) An application of the previous theory:

2 y2)The functions (l,x,y,x are solutions of V2• - u = 0. From these we

may construct solutions 8(_,_i) such that

3

w(x) = _ 8(x;_i)v(_i ) (2.21)
i=l

is a solution of V2 u = 0 in m such that w(!i) = v(!i)-

Write V2 u = 0 in system form as

r + s = 0
x y

r = Ux, s = Uy (2.22)
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Figure 6 illustrates a square cell on whose sides the indices

(i • l,j • I) indicate points corresponding to the centerpoints of sides of

length 2h.

(i, j+l)
• /

/
/

/
/

/
0,) /

/
/

(i-1, j) ,i(i,j) (i+1,j)
/

/

// W'
/

/
/

1i,j-I)

Fi_re 6. A square cell having indieal labeled sides of length

2h based upon a triangular decomposition.

The "traction" values at the centerpolnts of the sides, labeled

counterclockwise, are

[p_]_ [si,j+1,- ri_1,j,- si,j_1,ri+l,jJt. (2.23)

f _")| f hi

The transmission matrix [T;J provides the relationship between [p;] and

[%1.
Introduce the standard finite difference notations
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_x ri,j --(ri+l,j - ri-l,j)/2h'

Bx ri,j = (ri+l,j + ri_ l,j)/2

with corresponding definitions for _y si,j,By si,j. In [I] the following

compact scheme was described:

6 +6 =0
x ri,j y si,j

Bx ri,j = _ , By = 6x ui,j si,j y ui,j'

h2 h2

Bx ri,j - -_ _x ri,j = By si, j - -_ 6y si,j. (2.24)

The fact that the approximation (2.21) leads to (2.24) may be verified by

noting that each of the functions [l,x,y,x 2 _ y2] in the approximation basis

satisfies these equations. We may write (2.24) as

ri±l,j = [6x ± h-l(Bx - By)]Ui,j

si,j± 1 = [By _ h-l(By - Bx)]u i,j-

The definition (2.23) for [p_] then allows (2.24) to be expressed in the

form [phi = [Th][uy].

The algebraic equations which result from the balance of traction force

conditions between cell sides have been studied in [I]. Standard iterative

methods appear to work quite successfully.
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ii) A condensation method:

The representation (2.8) for the transmission matrix for a triangular cell

[p_] on the sides of a triangular cell _ to
relates the "traction" values

the corresponding displacement values [vy] on the sides. As a result, with

h h h h

reference to Figure 6, pi,j+l,Pi_l,j,Pi+l,j,Pi,j_ 1 can be expressed in terms

of the values vi,j+l,Vi_l,j,vi,j_l,Vi+l, j as well as vi,j. Using (2.13),

we can also solve for vl,j in terms of Vi±l, j and vi,j± I. The result of

this condensation process, the details of which we shall not present here, is

again the compact scheme (2.24).

More generally, this process leads to a compact scheme for any cell based

upon a condensation procedure for triangular cells, i.e., for the

nonconforming approximation (2.5) condensation preserves compactness.

An explanation of this is: Recall that for a triangle, the components of

[vyJ in (2.7) are the values

[vy] _ [V(_l)AYl,V($_2)AY2,v(_3)AY3] . (2.25)

Because a linear nonconforming element is employed, each component is the

value of the integral

f vdy i- (2.26)

In contrast, when using the conforming approximation (2.19) a trapezoidal

approximation to (2.26) using vertex values is natural. In the latter case,

however, the imposition of the balance of "traction" face condition does not

reduce the number of displacement unknowns; this is in contrast to the

nonconforming approximation (2.5) and highlights a basic difference between

these two approaches.
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11.2. Compact Schemes for Elastic Bodies

In _ write E and z in vector form as

t

! = (€iI,€22,€33,2_23,2_13,2_12) ,

! = (TII'_22'_33'2T23'2TI3'2TI2)t" (2.27)

Let 3i m 3 and 3 _ (31,32,33). Define symmetric matrix operators
3x i

DI(_),D2(3_) by

DI(_) - 0 32 0 ; D2(__) = 33 0 31 , (2.28)

0 0 3 3 3 0
3 2 1

and let

DI(3--)1D(_) E D2(3)I (2.29)

t o

with _ = (Ul,U2,U3) Then (I.I) can be written

_(u) = D(3)u

T(u) = C_(u) (2.30)

where C is a symmetric 6x6 positive definite matrix. We shall restrict our

discussion to the equilibrium problem
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div T(u_) - Dt(8)T(u) = 0 in n,

(2.31)

u = on r,

(i.e., q = 0 in (2.4)).

Let n(_) = Inl(!),n2(_),n3(_) ) denote the outward unit normal at a point

which lles at the center of a face y(_) on the boundary y(_) of a

cell. If _ is a solution of (2.31) the traction force p(_) can be

calculated as

P(_) = Dt(n(_))'CD(_)_l_i " (2.32)

On a cell m having k faces whose centerpoints are _i,_2,...,_ £

suppose @(_;__i),i=l,2,...,k are a basis set of solutions of (2.31)

satisfying @(_i'!j ) = 6ij" Then

k

w(x) = [ @(x,__i)v(_i) (2.33)i=l

provides a solutionof (2.31)which interpolatesthe constraintvalues _(__i)

on y(m). Recallingthe notation

[vy] m [[(!I)AYI,Z(__2)AY2,...,Z(_£)Ay£] (2.34)

let

_(_;_i) = @(_;_i)/AYi. (2.35)

Then, from (2.32)

i=l " --------
so that if
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Tyh(_,_i) E Dt(_(A))CD(_)_(_,_i)I_=_

T_(!) m [T(_,_,),T(_,_2),...,Ty(_,__£) ] (2.37)

then

[Th]__ h(Ty(_ i,_j)) (2.38)

is the transmission matrix and

ph(_) h_ = Ty(__)[vy]. (2.39)

When k = 4, i.e., the case of a tetrahedron, the linear basis (l,Xl,X2,X 3)

allows a simple construction. When k # 4, the practical development of a

basis set of equilibrium solutions in (2.33) can present a formidable problem

when the constitutive matrix C in (2.30) is general. For k = 6 the

result given in [2] can be applied directly when the cell is a brick; we shall

describe this below. Otherwise the condensation technique indicated earlier

can be used. Hence we can confine ourselves to examining the development for

a tetrahedron.

The Tetrahedral Cells

Let (__i) indicate the centerpoints of the faces (yi) of a tetrahedral

cell _; a_ is the volume and (AT i) the areas of its faces. Similar to the

example given earlier, use the centroid of the cell as origin and introduce

volume coordinates £(_,_i ) for the tetrahedron (_i,_2,_3,_4) where
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I
£(x,__i)= _ + AYi[nt(_i).x)/Am. (2.40)

Then

4

w(x) = _ £(x,_i)v(__i) (2.41)
i=l

provides for the construction (2.33).

Define (compare to (2.8))

T$(x,_) _ (Am)-I Dt(n(x))CD(n($)). (2.42)

Using (2.36)-(2.39) we obtain

4

j=l

This provides a compact scheme on _.

ConsiHer two tetrahedra _,_" having the face _I in common. The

balanceof tractionconditionat _I is

This leads, using (2.43), to
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which may be solved for _(_i ) in the form

4

_(!I)AY 1 = I [Sy(_I,_j)_(__j)AY j + Sy-(_I,_j)_(_j)AYj]. (2.45)j=2

The equations should be compared to a similar result for V2 u = 0 _given

by (2.13). We believe, but have not been able to show, that the positive

definiteness of the constitutive matrix C as well as geometrical properties

arising from m and m" induce properties in the coefficient matrices

Sy,Sy. in (2.45) which can allow standard iterative methods to be applied

effectively.

Brick Cells

In order to develop a compact scheme for a brick cell, we could employ a

condensation technique using the result just given for a tetrahedron.

However, as indicated earlier, in this case a compact scheme has been derived

from a slightly different viewpoint in Phillips and Rose [2]. Here we will be

satisfied to present their scheme in a form closer to the notation presented

earlier in this paper.

Similar to the finite difference notations used in (2.24), let

_I 0i,j,k = (Si+I/2,j,k - 8i-I/2,j,k)/2hi

B1 0i,j,k = (0i+I/2 ,j,k + 0i-I/2 ,j,k)/2

using similar definitions for B2,_2,_3,_3. Let the faces of m be defined

by the planes xI = (i ±I/2)AXl, x2 = (j ±I/2)Ax2, x3 = (k ±I/2)Ax3, where
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= 2h ,v = 1,2,3. If _i = (l'0'0)t'_2__= (0'l'0)t' _3 = (0'0'l)t' then the&x

outward normal vectors on the faces are ±_v' v = 1,2,3. We let _Ph(±nv)_

denote the traction force on the face for which ±n is the outward normal.

Finally, again write ! = (61,_2,63)"

The compact scheme given in [2] can, with a suitable choice of certain

nonessential parameters, be written as

h(±_) = _ Dt(_)CD(_@)u_ + h_l(_v_u - __) v = 1,2,3 (2.46)

where
3 3

X_= ( _ hvl p_ u)/( _ h_I)
v=l v=l

using the notation indicated in (2.28)-(2.29).

The balance of flux condition across the face x = const, common to
V

neighboring cells m,m is, then, simply

0 fh h
= __ = ....P (_) + ph(-n ) = Dt(_)CD(_)_- Dt(n )_D(8)_

+ h-I ~
v (_(u_ + _) - (_ + _k)) (2.47)

In [2] a plane stress calculation involving an isotropic material was

performed satisfactorily using several standard iterative methods. We refer

the reader to that paper for details.
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11.3. Homogenization

In the treatment of bonded materials, it is often useful to replace the

laminate by an approximately equivalent homogeneous material. The methods

considered in this paper offer an algebraic approach to this problem which we

shall briefly describe.

With reference to Figure 7, consider two bonded thin materials L and

L" within which m and m" are typical small rectangular cells. We wish to

treat _ and m" as a single cell _ with its own characteristic

properties. Specifically, we wish to describe a compact scheme for _ on the

basis of the material properties reflected in the transmission matrices for

m and m'. In order to accomplish this we exploit the principle that

condensation preserves compactne§s.

L h w

L' h W'

6 6

= 8 b

1 3

5 5

Figure 7. Homogenization of a laminate.
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Assume transmission matrices T_ and T . are known. As described

earlier, we may use a condensation technique to express the tractions on those

sides of _ and _" which lie on the boundary of _ in terms of the

displacements which correspond to these sides. With reference to the figure,

set _I = _2 = _/2, _3 = _4 =_/2 and, in terms of __a,v_bv and _5

_6' calculate P-_ = (_i +_2 )/2 and _b = (_3 +24 )/2" We thus obtain a

compact scheme for _ which relates the tractions (p__a,P_b,_5,P6) to the

displacement values (_,_,_5,_6) and for which the transmission matrix T~

incorporates the material properties of both L and L'. By this means, we

suggest, L and L" can be treated as if it were a single material _.
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