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ABSTRACT

An experimental study of airblast atomization was
conducted using an especially designed atomizer in
which the liquid first impinges on a splash plate, then
Is directed radially outward and is atomized by the air
passing through two concentric, vaned swirlers that
swirl the air in opposite directions. The effect of
flow conditions, air mass velocity (mass flow rate per
unit area, pAUA and liquid to air ratio on the mean
drop size was s udied. Seven different ethanol solu-

tions were used to simulate changes in fuel physical
properties. The range of atomizing air Vol ocities was
from 30 to 80 m/s. The mean drop diameter was meas-
ured at ambient temperature (295 K) and atmospheric
pressure.

NOMENCLATURE

Dp	 prefilmer diameter, m

PE	 peak of the weight distribution

Re	 Reynolds number, a0U/p

SMO Sauter mean diameter, m

U	 velocity, mis

W	 mass flow rate, kills

W'	 width of the weight distribution

We	 Weber number, OpU2/0

P	 density, kg/m3

r	 gamma function

a	 surface tension, k9ls2

V	 dynamic viscosity, kg/ms

q	 efficiency factor

1

Subscripts:

A	 air

L	 liquid

INTRODUCTION

The fuel spray characteristics have a great influ-
ence on the performance of gas turbine combustors. A
change In the flow conditions or in the physical prop-
erties of the fuel produces a change in the spray char-
acteristics of the fuel injector. The latter will have
a greater influence in the future when the supply of
high-quality fuels cannot be satisfied and fuels with
different physical properties must be used. During the
past few decades many reseachers have studied the ef-
fect of liquid properties and flow conditions on atomi-
zatian and found empirical equations for the type of
fuel injector investigated.

The work of Radcliffe (1) showed that for a swirl
atomizer the degree of atomizationdepends on the vis-
cosity, surface tension, mass flow rate and pressure
drop of the fuel. He found the exponents 0.6, 0.2,
0.25, and -0.4 for the surface tension, viscosity,
mass flow rate, and pressure drop, respectively.
Uasuja (2) worked on fuels halting surface ben^ion rang-
ing in Viscosity from 1.0x10- to 93.0x10- m Is find-
ing a different power for the viscosity, 0.16, lie ob-
served the same power for the surface tension, 0.6, but
the variation was only 20 percent and was accompanied
by a large variation in viscosity.

Simmons and Harding (3) studied the atomizing per-
formance of six simplex pressure-atomizers using water
and kerosene, liquids with almost the same viscosity, a
30 percent difference in density and a water surface
tension three times Higher. They concluded that any
difference in Sauter Mean Diameter (SMD) was due to the
difference in surface tension rather than density. It
was found that the power for the surface tension. is
0.16 for a constant liquid pressure and 0.19 if the
mass flow rate was held constant.

Merrington and Richardson (4) found that the SMO
for a plain-orifice atomizer was proportional to the
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viscosity of the fuel raised to the 0.2 power and in-
versely proportional to the fuel velocity. For liquid
,lets injected cross stream from simple orifices into
axial-flow airstreams, Ingebo (5) found that the mean
drop diameter was proportional To the product of the
Weber and Reynolds ngmbers (WeRe) raised to the 0,25
power for WeRe < 10 and proportional to the 0.4
power for WeRe > 106.

Fraser, Dombrowski and Routley (6) studied the
rotary atomizer. Their studies showe3 that the SMD
Is a combination of a constant plus a term including
the effects of surface tension, kinematic viscosity,
mass flow rates and relative velocity between the air
and the fuel. The powers 0,5 and 0.21 were found for
surface tension and kinematic viscosity, respectively.
Using a large range of disc types, Friedman, Gluckert
and Marshall (7) correlated their results for SMD in
terms of the operating and liquid variables in dimen-
sionless groups. These groups present the viscosity
raised to the 0.2 power and the surface tension and
density raised to the 0.1 power.

After studying the experimental data on prefilming
types of airblast atomizers Lefebvre (8) concluded that
for liquids of low viscosity the main Taetors governing
SMD are 1'quid surface tension, air density and air
velocity, whereas for liquids of high viscosity, the
SMD is more dependent on the liquid properties,
especially viscosity. This fact had been observed by
Nukiyama and Tanasawa (9), Kim and Marshall (30),
Lorenzetto and Lefebvre (11), Rizkala and Lef7eyre
(12), E1-Shanawany and Lefebvre (13), and ,lasuja (2).
TTiey expressed the SMD as the sum of two terms, The
first dominated by air density and velocity, and the
second by liquid viscosity.

Anexperimental investigation was conducted to
study the effect of mass velocity (mass flow rate/unit
area, aAUA), liquid to air ratio, and liquid properties
on the spray characteristics of two fuel injector
modules designed for high temperature and high pressure
combustors. The experiment was conducted in an open
duct facility, The SMD of the spray was measured at
ambient temperature (295 K) and atmospheric pressure.
The liquids used were different aqueous solutions of
ethanol.

The measured SMD was plotted against the air
mass velocity, liquid to air ratio, and prefilmer diam-
eter for both fuel module injectors. The data were
correlated using a basic equation derived by Lefebvre

M.

APPARATJS AND PROCEDURE

Test Fac^ilit^
A schematic of the test facility is shown in

Fig. 1, and a photo in Fig. 2. The fuel injector
module was mounted on a 0.635-cm-thick plate and ins-
talled on the end of a 15.25-cm-diameter pipe. Air was
supplied by the Lewis Research Centers air system with
a range of test flow rate from 0.069 to 0.0684 kg/sec
and a maximum pressure of 1.171x10 Pa at the fuel
module location. A pitot tube was located about
22.5 cm upstream of the injector and connected to a
manometer board which was used to set the pressure
differential across the module.

A pressurized tank, a 15.25-cm-diameter schedule
40 stainless steel pipe 1.22 m long, was used to supply
the ethanol solutions to the fuel injector modules. A
pressure regulator was used to keep the pressure of the
nitrogen in the tank constant at 5.1540 Pa. The
liquid mass flow rate was measu red using a rotameter
previously calibrated for each solution at the appro-
priate working temperature.

The exhaust and liquid collection systems con-
sisted of a 0.16-cm-thick stainless. steel duct about
38.7 cm in diameter and 3,0 m long, an air operated
flow amplifier was used to increase the velocity of
the exhaust, a water spray was installed in the duct
to dilute the ethanol solutions and avoid any flam-
mable mixture, and a 200 L tank was used to collect
the solutions,

Fuel Injector Modules

e ue injector module designs used in these
tests are shown in Fig. 3. Each fuel injector module
consisted of two concentric vaned air-swirlers that
swirl the air in opposite directions to create a zone
of high shearing action. All vanes were at an angle
of 45 to the axial direction. The liquid was supplied
to each module by a tube located in the central cavity
of eachmodule. The liquid flows from the fuel tube
through an 0.004-cm-diameter discharge opening and
impinges on a splash plate mounted on the downstream
face of each module. This splash plate breaks up the
fuel jet and directs it radially outward, where the
fuel is further atomized by the air passing through
the inner swirler. Additional fuel atomization occurs
in the shearing region between flows exiting the
counter - rotating air swirlers.

I)rop Size Measurements
cop s zes were measured using a Malvern S.T.

1800 Particle and Droplet Size Distribution Analyzer.
The Malvern instrument is a nonintrusive optical system
based on the Fraunhofer diffraction of a parallel mono-
chromatic light beam scattered by moving droplets. The
transmitter portion of the Malvern instrument houses
the 2-mW helium-neon laser and beam expander, which
emits an approximately 9-mm-diameter beam. The re-
ceiver consists of a focusing lens (Fourier transform
lens), a multielement photoelectric detector, beam
alinement knobs, lamps, and an indiator. A computer
with an 8 K memory receives, stores, and processes data
inputs from the detector. A teletyppe with a hard copy
printer is used for data output, The output is dis-
cussed in the appendix. Two data points were taken at
each condition and stored in the computer memory.
Measurements were made at the center line of the spray
at a distance of 7,62 cm downstream of the fuel injec-
tor module.

RESULTS AND DISCUSSION

Mass Velocity

The effect of mass velocity (mass flow rate per
unit area, aAUA) on SMD for the fuel injector
modules investigated is clearly shown in Figs. 4 and 5.
These figures show in general that the SMD decreases
with an increase in the mass velocity. The same effect
was observed for both modules. Changes in mass veloc-
ity were obtained by changing the total air flow rate
through the injector modules while keeping the avail-
able flow area (including both swirlers) constant.
The range of mass velocities was from 37 t$ IF kg/ms
and the calculated flow area wa§ 6^42C.x10' m for
injector module 1 and 4.519x10' m for injector
module 2. The area was calculated at the upstream side
of the injector modules.

L1 uid To Air Ratio
ests were conducted  to study the effect of liquid

to air ratio on SMD. These tests covered a range of
liquid to air ratios from 0.0147 to 0.0462 for module 1
and from 0..0202 to 0.0636 for module 2. Figures 6 and
7 show no effect of the liquid flow rate on SMO when
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the air velocity rate is kept constant at different
concentrations of ethanol.

Liquid Properties
Many tests were made to determine the atomizing

P dules aoperating withe liquids of different physical
properties. A number of aqueous solutions of ethanol
were prepared representing the following range of
liquid properties:

surface tension -0.0290 to 0,0555 kg/s2
dynamic viscosity = 0.001226 too 0.002684 kg/ms
density - 890.7 to 988.0 kg/m

Samples of the solutions were, analyzed using standard
laboratory techniques to measure surface tension, vis-
cosity and density. Table I presents the results of
those measurements.

The effect of ethanol concentration on SMD for
the fuel modules studied is shown in Fig. 8. Both
figures show a decrease in the SMO with an increase
In the ethanol concentration, i.e., decrease in sur-
face tension.

Figure 8 shows a comparison between data from
Ref. 12 for an airblast atomizer and data from this
investigation. Both fuel injector modules produced
smaller droplets than the airblast atomizer for the
same air velocity, 60 mis. The only difference is the
liquid flow rate, but Figs. 6 and 7 showed the SMD is
not affected by changes in the liquid to air ratio.
This figure shows the benefits created by the high
shearing action between the flows exiting the counter
rotating air swirlers compared with the airblast atom-
izer of Ref. 1.2. Note that the liquid surface tension
was used as a parameter because the liquid used in
Ref. 12, aqueous solutions of Butan4-ol, have almost
the same physical properties,

Lin4ar Scale
wo	 entica'ly designed fuel injector modules

were used in this investigation. The only difference
was the size and the number of swirler vanes (Fig. 3).
Module 2 is approximately 20 percent smaller in diam-
eter than module 1, having a prefilmer diameter, Op,
of 1.2 and 1.5 cm, respectively. The influence of
atomizer scale on SMD is illustrated in Fig. 9. This
figure shows module 2 producing smaller droplets than
module 1 under the same operating conditions.

Data 

Ana"'The experimental data gathered in this Investiga-
tion were correlatedusing the basic equation derived
by Lefebvre (8) with the experimental constants of
Ref. 13

SMD = `0.073( U2.)O. 6(

oA)0. 100 4

0.5
/
/
u 20	 //	 W \

+ 0.0151	 I1 + L
	

(1)
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As stated in Ref. 13, the experimental constants 0.073
and 0.015 may have to be modified by an efficiency
factor, 9, whose values will depend on the atomizer
design and will take into account the presence of ex-
traneous devices, such as air swirlers, and the differ-
ent methods of drop size measurement. Figures 10 and
11 compare the SMD measured in the present investiga-
tion with values predicted by Eq. (1). Good agreement
is shown in Fig. 11 for a value of q of 0.59.

Figure 10 shows good agreement in the high velocity
region for the same value of q, but does not describe
the experimental data very well in the intermediate to
low velocity region i.e., less than 60 m/s, correspond-
ing to drop sizes greater than 60 V.

SUMMARY AND CONCLUSIONS

An experiment was conducted at atmospheric pres-
sure to determine the effect of liquid physical prop-
erties and flow conditions on the Sauter MeanDiameter,
SMD, using two geometrically-similar research airblast
atomizers designed for high pressure and temperature
combustors.

After studying the effects of the different vari-
ables involved in this investigation it is found that:

1. The SMD of the spray decreases with increases
In ethanol concentration due to changes in the physical
properties as shown in Table 1.

2. Increasing the air velocity decreases the SMD
which varied inversely with air velocity, of all the
variables, air velocity has the most dominant effect on
the atomization process of the fuel injector modules
investigated.

3. An increase in atomizer scale increases the
mean drop diameter.

4. The air to liquid ratio has no measurable ef-
fect onthe SMD of sprays produced by any of the two
fuel injector modules.

5. The SMD performance of the airblast atom-
izers, when spraying in stagnant air at atmospheric
pressure, is predicted with a reasonable degree of
accuracy by the correlation:

5110 =(0.1237^anUn10.6'oA^0.1DP

0.5

+ 0.0254p )I
	 (I+ WL)	

(2)
PA

for the following range of test conditions
Surface tension - 0.0290 to 0.0555 kg/52
Dynamic viscosity = 0.001226 to 0.05684 kg/ms
Liquid density = 890.7 to 988.0 kg/m
Air velocity = 30 to 80 mis
Liquid to air ratio - 0.0147 to 0.0776
Air density was not varied appreciably.
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APPENDIX - OUTPUT FROM TH" MALVERN S.T. 1600
PARTICLE AND DROPLET SIZE DISTRIBUTION ANALYZER.

The Malvern instrument 1s a nonintrustve optical
system based on the la.er diffraction principle. This
instrument uses the Rosin-Ranmler weight distribution
model. The Rosin-Ramnler distribution is defined as
follows

i

P(x) 
WPE_Vr- 

exp {-(xIPE)W'^

where P(x) 1s the weight or volume fraction of par-
ticles to the range x to x + dx where x is in
microns. The parameters PE and W' characterize the
peak of the weight distribution and its width. PE is
in microns and W' is a dimensionless number usually
in the range from one for very wide weight distribu-
tions to 10 for very narrow weight distributions, The
values of the two parameters, PE and W', which give
the minimum error, E, define the size distribution.
Using the values of PE. W' and the gamma function the
Sauter Mean Diameter (SMD) can be calculated. The fol-
lowing formula is used

SMO =	
PE

r 1 -kr

where SMD is in microns and r is the tabulated
gamma function.

Figure 13 shows an example of the output. The
first line of output is the peak PE, width W', and
error E of the distribution. The first column gives
the droplet size ranges in microns. The next three
columns are the spray distributions as percent weight
fraction, cumulative percent by weight, and normalized
percent by number density. The last two columns are
the calculated and actually measured energy
distributions.



TABLE I. — LIQUIO PROPERTIES

Level Solution, u, o, p,
tested percent kg/ms kg/s 2 kg/m3

ethanol

1 5 0.001226 0.0555 988.0
2 7.5 .001264 .0530 985.3
3 10 .001438 .0485 980.8
4 20 .001973 .0395 969.4
5 30 .002488 .0340 952.4
6 40 .002684 .0325 936.0
7 1	 60 1	 .002424 1 .0290 1 890.7
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Figure 4. - Relationship between SM) and mass
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Figure 5. - Relationship between SMD and mass
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> PE - +102.0 W - +2.4 E - 00313752

D - +562.86 > +261.71 P - +0.01%6 R - +99.9976 N - +0.007o C - 0698 A - 0756

D - +261,71 > +160.29 P - +5.187o R - +94.8176 N - +0.0516 C - 1005 A - 1157

D - +160.29 > +112.86 P - +22.76% R - +72.05%6 N - +0.541a C - 1380 A - 1424

D - +112.86 > +84.29 P - +25.1776 R - +46.88%- N - +1.60% C - 1707 A - 1646

D - +84.29 > +64.57 P - +18.50% R - +28.387a N - +2.73% C - 1970 A - 1780

D - +64.57 > +50.29 P - +11.6476 R - +16.7476 N - +3.7476 C - 2044 A - 2002

D - +50.29 > +38.86 P - +7.34%- R -	 +9.39% N - +5.05616 C - 1980 A - 2047
D - +38.86 > +30.29 P - +4.11% R -	 +5.28%- N - +6.0676 C - 1783 A - 2002

D - +30.29 > +23.71 P - +2.31% R -	 +2.97% N - +7.1476 C - 1542 A - 1869
D - +23.71 > +18.57 P - +1.3176 R -	 +1.667a N - +8.4276 C - 1303 A - 1557

D - +18.57 > +14.57 P - +0.7376 R -	 +0.9376 N - +9.77% C - 1067 A - 1112

D - +14.57 > +11.43 P - +0.417a R -	 +0.52%- N - +1,1.31A C - 0867 A - 0623
D - +11.43 > 4.9.14 P - +0.2276 R -	 +0.317o N - +12.08%6 C - 0691 A - 0356

D - +9.14 > +7.14 P - +0.1476 R -	 +0.1776 N - +15.39%6 C - 0541 A - 0222

D - +7.14 > +5.71 P - +0.07% R -	 +0.10%6 N - +16.06%6 C - 0419 A - 0178

Figure 12. - Example of output from Malvern particle and droplet size distribution analizer.
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