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OXIDATION RESISTANCE OF SILICON CERAMICS

X
Hasegawa Yasutoshi and Kazushi Hirota

l. PREFACE /580

The development of scientific technology demands increas-
ingly high standards for basic materials. Fire-resistant
materials composed mainly of metallic oxides have been used
widely in various higﬁ-temperature industries, Recent
research has focussed on nitride, carbide, silicide and boride
as a fire-resistant material. Much research has been done
especlially on nitride, carbide and acid nitride as high-
temperature-resistant structural materials. From the energy
conservation perspective, these materials are expected to be
improved. These materials possess superior characteristics that
other oxidized substances do not have. However, they tend to
oxidize easily in a high~temperature environment. Unless a
solution to this problem characteristic of the materials can
be found, the economical use of these materials as a pyrogehic
heat-resistant structural material in an oxidizing environment
cannot be realized. Among the substances that are being dis-
cussed, Si3N4, SiC and sialon are the first to be used as a
superior fire-resistant material or partial heat-resistant
structural material because of their relatively cheap prices and
comparatively high purity. Their defects caused by oxidation
during their usage, however, are the major obstacles hindering
their further improvement. In this article, Si3N4, SiC and
sialon are all considered as silicon ceramics and their oxida-
tion process at a high temperature is discussed.

Numbers in margin indicate foreign pagination.
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2. OXIDATION MECHANISM

(a) The oxidation of Si3N4 proceeds in a reaction as
indicated below.

SN, 4T 0, —> BSI0, 2N
SiN+0, ~— $1,0N, +8I074N; 0

S
()]
o]
I_i

- {b) Similarly, oxidation of SiC takes place as follows:
SiC+3/20, - §i0,+CO1 "
{c) sialon's oxidation goes through the following reaction.

ASHLALON)+BO, 7T
— C(3AL,0,:25i0,) +DSi0,+ EN:t

As shown in the above formulas, all of the materials
increase in weight as the reaction proceeds. Generally, weight
increase is the basis for an oxidation resistance assessment
which will be discussed in detail in the following chapter.

To give an example, sintered SiBN4'S (Y203 and Al,0 are added
as sintering auxiliary agents) oxidation process is shown in
Figure 1. An analysis on the surface oxidation product by X-ray
diffraction indicates that the strength of crystalline barite
increases drasticslly at an early stage of oxidation, but as
oxidation progresses, the strength decreases. After many hours
of oxidation, the strength of crystalline barite drops to a
point when it is no longer measurable. In inverse proportion
to decreasing strength of crystalline barite, the glassy phase
increases its strength. Y,05 that was added as sintering agent.
together with Al,0, reacts to 5i0, which is produced by oxida-

3 2
tion and forms Y20 *2810, with gradually increasing strength.

3 2 _
Similarly, after a long period of oxidation, A1203 can be found
in the form 2Y203-A1203. These oxidation product actions are
éasy to understand when you look at them as surface accumula-

tions of impurities in a sinter by pyrogenic oxidation.
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2) Oxidation reaction
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2Si0;-'r-2 Y"’-{*SO"’-—-\':O,"JSiO, o .
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3) Bubble size (um) (AME sample, 1300°C oxidation):
~ 10-30 200-500

Figure 1. Oxidation reaction and oxidation chart of
pressurized sinter S8isN, (sintering agent, ¥,03);
5, 81,0,: 3 wt %)
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In a similar manner, Figure 2 shows the oxidation process
of pressurized Si,N, sinter. (Sinter agent, Mg0: 5 wt % added).
A scanning electron microscope shows an aggregate of crystals
in the post oxidation surface, which looks like a porous oxida-
tion £ilm. However, further analysis of the section by a
scanning electron microscope and an optical microscope feveal
that the closer the oxidation layer gets to the surface, the
more porous it gets. The part of the layer close to the basis
is very fine. This is because impurities in the base accumulate
on the surface during the oxidation process, forming a layer
of fine‘glassy'phase near the base and a porous layer as it
goes to the top due to the on-going crystalization process [3].
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Figure 3 shows oxidation of slalon which sinters relatively s
easily without an agent (can bhe considered as a single phase).
An oxidation experiment with sialon sinter offered an interest-
ing result: from Z=1l to %=4, the oxidation weight increase
becomes smaller as the number goes up, whereas the thickness of
the film increases as the numbexr goes up [2]. The one with the
smallest oxidation weight increase, in this case sialon 7=4,
is believed to possess the best oxidation resistance. But in
the case of sialon, 2-4 type composition does not necessarily
have better oxidation resistance. From the point of oxidation i
Film thickness, the Z=1 type composition is considered to have i
better oxidation resistance. This experimental finding demands /583

a basic re~analysis of conventional oxidation resistance, namely |
the assessment based on oxidation weight increase. Based upon ‘
a study of the oxldation mechanism of SiC, SiC sinter forms |
crystalline barite on the surface while a part of sinter agents i
(normally B, C and Al) accumulate on the surface as well, in the |
same way as Si3N4 sinter which is indicated in Figure 1. B %
oxidizes easily and evaporates as B203 at or above 1300°C. As %
an example, the oxidation weight increase process with B: 0.5
wt % and Al: 1 wt % added is shown in Figure 4. Considering |
the above discussion, silicon |

8 ok e ceramic oxidation may seem
oA -

.o . R Cos s ' . ’ .
'%wg{ : Lo e " simple, but in actuality, it is
hiter : .
iﬁ:hﬁi- 0 _ _ quite a complicated process. |
I oo - |
A | B i
ol g =0l = |
Bhel T TR 1
“ﬁlgg . . e . s |
--4.‘”,' =0, 2 TSNS, SN DRIV SN 1‘
N 2.4 6 8 0 f2.14 16} -‘

. " ‘oxidation time (h)
Figure 4. Pressurized sinter
SiC (B oxidation mechanism [5].
(B: 0.5 wt %, AL: 1.0 wt %)

3. ASSESSMENT STANDARD OF OXIDATION PROCESS

In the previous chapter, it was pointed out that the con-
ventional oxidation resistance assessment by means of the
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oxidation weight increase entails problems. As assessment
criteria of oxidation resistance, aside from weight increase,

one may consider the thicknesses of the oxidation £ilm, oxida-
tion product and the nature of oxidation film surface and bubbles.
When the primary component of oxidation products is crystalline
bapite alone, oxidation film exfoliates when it cools down to
room temperature, because the crystalline barite a:b transition
takes place around 27°C. When the coefficient of thermal expan-
sion of an oxidation product differs suhstentially from that of
the base, shear strain occurs on the surface of contact between
the oxidation film and the base, which causes exfoliation. The
nature of the oxidation £ilm surface is closely related to the
oxidation products. When the impurities of the base accumulate
on the surface, glass formation with a low melting point among
the impurities, causes very uneven oxidation of the £ilm surface
due to N,, CO gas generated by the oxidation reaction. We have
experienced a case where Rmax reached 100 ym. As discussed, it
involves great risk to assess the overall oxidation characterisuic
from one particular characteristic and it is inevitable to use a
comprehensive assessment method. To do so, we made Figure 5 by
applying the characteristic factor often used for quality control
for oxidation assessment. The factors in this figure are
insufficient; therefore, this serves as a reference of the basic
assessment method. Generally, the same oxidation experiments do
not result in accurately overlapping findings, which makes it
extremely difficult to obtain data usable as a data bank. This
is because too many factors are involved. For the assessment of
oxidation characteristics, we have to specify the characteriza-
tion of sinter, and to do so we need to characterize the original

material.

4. OXIDATION EXAMPLE OF SILICON CERAMICS

As an example, I would like to discuss Davidge and other
experiments on reactive sinter SiaNa's_oxidation. Orxganiec
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Gi; binder was added to silicon powder
~:% : T which is available commercially.
gr' e Then it was pressurized at 500
Eh@i_/ — ”W{_gu o MNm™ 2. Then nitriding was done at
H! A “?c-}' . 1350°C for 20 hours first, followed

Iz 4 5 ] 10 Alz_. .
loxidation time h | by 20 more hours of nitriding at
1450°C, which created a test mater-

ial with a density of 2.53 g/cm3.

The materlial was then cut into spe-

FPigure 6. Reactive sinter
SigNy oxidation weight
increases in relation to
oxidation time (h) [6]

cific sizes, which was oxidized in
an open furnace at three different temperatures (1000, 1200 and
1400°C) for 150 hours. PFigure 6 shows the oxidation weight
increase observed in the experiment.

Providing the oxidation mechanism proceeds by a simple
diffusion mechanism, two clear steps of oxidation can be observed.
At 1000°C, the early stage of oxidation (stage I) takes 3 to 4
days. At 1200°C or 1400°C, however, stage I is completed in
about 15 minutes. Moreover, at higher tempevatures, the oxida-
tion weight increase (%) during stage I is greater, but the
oxidation rate is lower. In this experiment by Davidge and others,
low stages (early stage and mid-stage) of the oxidation mechanism
were observed. In a series of our experiments on silicon cera-~
mics oxidation, several stages were found as shown in Figure 7.

These stages change depending on oxidation conditipns
(especially oxidation atmosphere). Note that unit of oxidation
time in Figure 7 is days. It has been reported that oxidation
is completed primarily in stages I and II and the mechanisms
can be explained as simple diffusion mechanism. However, in
oxidation over a long period of time (unit = month), stages that
cannot be explained by simple diffusion start to appear (stages
III-IV in the figure). When there is partial steam pressure,
the material reaches stages III-IV within relatively a few days.

/58¢
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We now discuss how strength changes
by oxidation. As an ezample,
Figures 8 and 9 show data on f~sialon

31

coarseness

— >

1 [] X
A8 ) | [ — ~

coarsencss | (z=2) pressurized sinter.

Figure 10. @g-sialcn (x=2) As shown in the figures, strength

Eggi:ggézgd_sngg:t?giface decreases as the oxidation time

time innreases. At higher temperatures,
the data becomes more inconsistent.

It is nearly impossible to explain these phenomena in the limited

number of words . here, but for reference purposes, we touched upon

the relation between strength and coarseness of the surface in

Figure 17.

5, POSTSCRIPT

Oxidation resistance of anti-oxidizing materials depends
mainly'on the basic body crystals phase type, grain shape, grain
distribution, grainy phase type and its distribution, porosity
chara;teristics and distribution. Moreover, the resistance is
determined mostly by physlical and chemical properties of the
oxidation film on the surface. Thus, accurate research on oxida-
tion should be initiated with a study on the basic sintering pro-
cess and the compound phase distribution and properties. Based
upon the oxidation characteristics of the oxidation mechanism,
better resistance is observed in the following conditions.

1) oOxidation weight increase: Small weight increases.
Weight increases in the parabolic manner in relation to oxidation
time without drastic change of pace.

2) Oxidation film thickness: Like the weight increase,
the oxidation £ilm is thin, while the thicknegs increases in a
parabplic manner in relation to oxidation time without drastic
change of pace.

10



3) oxidation product: They are non-trangferable oxides.
They possess a coefficlent of thermal expansion zimilar to that
of the basic body. They are not complex oxides ruhsisting of
many different components. They form fine layexs.

4) Surface of oxidation £ilm: even and smooth surface with
no complicated protrusicns or deflections.

A sinter with oxidation £ilm which follows the above condi~
tions most clearly is desirable from the viewpoint of oxidation
resistance. However, an oxidation £ilm which meets all the above
conditions is not available yet. 1In the end, we would like to
express our appreciation to Drx. Hiroshige Suzuki, honorary pro-
fessor at Tokyo Kogyo University,’ for providing us supervision.
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