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Abstract

This work considers a Blasius boundary value problem with inhomogeneous

lower boundary conditions f(O) = 0 and f'(0) = - % with % strictly

positive. The Crocco variable formulation of this problem has a key term

which changes sign in the interval of interest. It is shown that solutions of

the boundary value problem do not exist for values of _ larger than a

positive critical value %*. The existence of solutions is proved for

0 < % < %* by considering an equivalent initial value problem. However, for

0 < % < % , solutions of the boundary value problem are found to be

nonunique. Physically, this non-uniqueness is related to multiple values of

the skin friction.
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Introduction

The simplest example of Prandtl's boundary layer theory is the flow along

a thin, seml-infinite flat plate (y = 0, x > 0) immersed in an

incompressible liquid of low viscosity flowing with a given constant velocity

in the x direction (Schllchting, 1955). The boundary layer flow in this

situation is governed by the Blasius equation

f''" + ff'" = 0 (I)

subject to the boundary conditions

f(0) = 0, f'(0) = 0, and f'(_) = 1 (2)

U_
where the dimensionless streamfunction f(_) is _(x,y)/(29x) -12 with

being the dimensional streamfunction_ v the kinematic viscosity_ and _ the

dimensionless similarity variable y/(2_x) I/2. The classical solution of

Blasius of (I) and (2) was based on a coordinate perturbation method. It

involved a power series expansion in n about the origin and an asymptotic

expansion for large n. For the coordinate perturbation method to be

consistent, the regions in which the inner and outer expansions are valid must

overlap so the expansions can be matched. A rigorous analysis of the Blasius

problem (as well as the more general Falkner-Skan problem) was not available

until Weyl (1941) used function theoretic techniques to study the existence

and uniqueness of solutions of the Blaslus equation. Weyl showed that the

radius of convergence of the series solution of the Blasius equation lay

between 2.08 and 3.11. This approach has been further extended by Hussaini
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(1971) to treat the case of the Blaslus equation with three-polnt boundary

conditions, a type of situation which arises in connection with the mixing

problem behind an infinite step.

A simple proof of Weyl's results for the Falkner-Skan equation has been

provided by Coppel (1960) using the theory of differential equations. Coppel

approached the Falkner-Skan equation

f''' + ff'" + 8(I - f-2) = 0 (3)

by embedding the boundary conditions at y = 0 in (2) in the class of

problems with boundary conditions f(0) = a and f'(O) = b where a and b

are arbitrary non-negatlve constants. He obtained bounds on f''(O) of the

form

4 2 4 1
8 < [f''(0)] < _ 8 + _ . (4)

The special cases of the Blaslus equation (8 = 0) and the Homann equation

(8 = 1/2) were considered separately.

For the Blaslus problem, the value of f''(O) is .469600.... It should

be noted that once this value has been determined, the Blasius two-polnt

boundary value problem can be solved in a straightforward manner as an initial

value problem. For the Blaslus problem, f''(0) can easily be obtained using

homotopy methods (Rosenhead, 1963). The success of the homotopy technique

depends crtlcally, however, on the identically zero values of f(0) and

f'(O).

Callegari and Friedman (1968) have noted that while Weyl's iterative

technique for solution of the Blasius problem is convergent, in practice it
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cannot be carried beyond two iterations. As an alternative, they considered

the problem in Crocco variables. In this approach, the tangential velocity

u = f'(q) becomes the new independent variable while the new dependent

variable is the shear stress g(u) = f''(n). The Blasius problem now belongs

to a class of nonlinear boundary value problems of the form

g(u)g''(u) + 2uk(u) = O, 0 < u < 1 (5)

g'(O) = 0 (6a)

g(1) = 0 (6b)

where k(u) is a non-negative continuous function for u in the closed

interval [0,i]. For the Blaslus problem, k(u) = I. Using techniques of

analytic function theory, Callegari and Friedman prove the existence,

uniqueness, and analytlcity of solutions of the Blasius problem. Their proofs

are critically dependent, however, on the fact that the function uk(u) in

their singular differential equation does not change sign on the interval 0 <

u < I. Thus, if k(u) is non-negatlve and the solution exists at a point uO,

then g'(u0) < 0 so g(u) is a decreasing function.

The analytlclty of solutions of equation (5) with k(u) = I and the two

point boundary conditions

g(u I) = O, g'(u 2) = 0 (7)

has also been discussed by Callegarl and Nachman (1978). This problem has

applications to the flow behind weak expansion and shock waves and the

boundary layer flow on a conveyor belt.
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The present work considers a two-polnt boundary value problem consisting

of the Blasius equation (1) and the nonhomogeneous boundary conditions

f(0) = O, (8)

f'(0) = - _,

together with the outer boundary condition

f'(_) = 1 (9)

where _ > 0. The Crocco variable representationof this boundary value

problemis

gg'" + (x - I) = O, 0 < x < 1 + _ (I0)

g'(O) = 0 and g(1 + I) = 0 (II)

where x = {f'(n)+ _} and g(x) = f"(n). Unlike the usual Blaslusproblem

with homogeneousconditionsat n = 0 which leads to (5), the second term in

equation (I0) changessign in the intervalof interest. Hence, g(x) will not

be monotoneon the interval. A criticalconditionpresentin previouswork on

the Blaslusproblemis thusviolatedhere.

In the next section, we show that if a solution to the boundary value

problem (I0) and (II) exists,then there is an upper bound _* such that

< _*. Section3 proves the existenceof a continuoussolutionof (I0) and

(II) when 0 < _ < _*. However,as shown in section4, a solutionfor fixed
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in this range is not unique. The existence of )` and the non-uniqueness of

solutions of the boundary value problem are previously unsuspected properties

of (I0) and (II) directly traceable to the fact that x - % is not purely

non-negatlve on the entire interval of interest.

2. Dependence on the Parameter )`

Suppose that a solution g(x) exists for the boundary value problem (I0)

and (II). Then, the identity

(gg-)- = gg-- + (g-)2

can be used to write equation (I0) in the form

(gg')" + (x - )`) = (g-)2. (12)

Let g(0) = a. Then, using the fact that g'(0) = 0, integrating equation

(12) from 0 to x and integrating the result a second time from 0 to

X = I + )` gives that

_ = fx fxX2(X 3),)/6 a2/2 + dx g'2(s)ds. (13)
o o

The rlght-hand side of equation (13) is intrinsically positive and thus

x2(x- 3)`)• 0.
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Setting X = 1 + _ now gives that

< l/2 • (14)

Thus, if a solution to the boundary value problem (I0) and (11) exists,

must be bounded above by a finite number _*, and an upper bound on _* is

given by (14). In fact, while (14) shows that a bound on _ is required, it

is a rather crude upper bound as it is obtained by simply noting that the

rlght-hand side of (13) is positive. A sharper upper bound can be obtained by

an analysis which obtains a sharper positive lower bound for the rlght-hand

side of (13). This analysis wlll be done in a subsequent paper. In section 4

of the present paper, numerical results are given which show that

_* = 0.3541078 ....

3. Existence of Solutions

Consider now the existence of solutions of the boundary value problem (I0)

and (II) for 0 < _ < _*. The required result will be shown by proving the

following theorem for an equivalent initial value problem.

Theorem: There exists at least one positive constant a such that the

initial value problem consisting of equation (I0) and the initial conditions

g(O) = a, g'(O) = 0 (15)

has a continuous solution which is positive for 0 < x < I + _ and

g(1 + x) = o.
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Proof: As a preliminary step, the initial value on g in (15) will be

normalized to unity and dependence on a transfered into the governing

differential equation. This is accomplished by the transformation

g(x) = _h(t) with x = a2/3 t (16)

which leads to the initial value problem

hh'' + t - L = 0 (17)

h(0) = I, h'(0) = 0 (18)

with

L (_,_) = _-2/3 _. (19)

Let _(t) be the vector (Yl(t), Y2(t)) t with Yl = h(t) and

Y2 = h'(t). Then, (17) and (18) can be written as the first order system

dy/dt = F(t,y) t (20)

y(O) = (I,0) t (21)

with F = (FI,F2)t and

Fl(t,y) = Y2(t) (23)

F2(t,y) = (L - t)/Yl(t). (24)
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Thus, F1 and F2 are continuous and bounded functions of t and y provided

Itl < _, lyll > 0, and ly21 < _. Further, with these restrictions on t and

y, partial derivatives of F with respect to the components of y are

continuous and bounded. Thus, F satisfies a Lipschitz condition on the set

in (t,y)-space with Itl and lYre1 bounded and IYl - II < 1 - _ with

0 < _ < I.

The Picard-Lindelof Theorem (Coddington and Levinson, 1955) now gives the

existence of a unique continuous solution of (20) and (21), and hence (17) and

(18) on the interval Itl • to with tO > 0. Further, for t in this

interval, if h(t) is non-zero, then

t

hP(t) = J (L - s)/h(s)ds. (25)
0

In particular, if h(t0- ) is non-zero, then h(t0) is non-zero and lh'(t0)l

is bounded. The solution of (17) and (18) can thus be continuously extended

past to. Two cases must now be considered.

I. A continuous solution exists for all bounded t: Consider the range

0 < t • L. Then, by (25), as h(0) is positive, both h(t) and hP(t) are

positive, monotone increasing functions. Further, h'(t) is bounded above by

L2/2 and has a local maximum at t = L. Beyond t = L, the factor L - s in

(25) changes sign and becomes negative, and h'(t) becomes a monotone

decreasing function which passes through zero at the point t* defined by

L t

(L - s)/h(s)ds = _ (s - L)/h(s)ds. (26)
0 L
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For L < t < t*, h'(t) is positive and remains bounded above by L2/2.

Consequently, h(t) is monotone increasing on this range and has a finite

positive maximum value h* at t*.

For t > t*, h'(t) is strictly negative and both h(t) and h'(t) are

monotone decreasing. Two possibilities now exist. Either h(t) remains

positive for all t > t*, or there is a finite T at which h(T) = 0.

The first possibility leads to a contradiction. Suppose there is a

such that 0 < _ < h* < _ and h(t) > _ for all t > t . Then,

t t

h'(t) = - J (s - L)lh(s)ds < -(11_) J (s - L)ds. (27)

t t

This implies that as t tends to _, h(t) remains positive but h'(t) tends

to -_, which is a contradiction.

If the solution h(t) of the initial value problem can be continuously

extended for all bounded t, there must thus be a finite T at which

h(T) = 0. This, in turn, requires that if g(x) is the corresponding

solution of the original initial value problem (I0) and (15), then there is a

finite X given by

X = _2/3 T (28)

at which g(X) = 0. As by (15) g'(0) = 0, g(x) will be a non-negatlve

continuous solution of the boundary value problem (I0) and (11) if X = I + %.

Equation (28) now shows that one appropriate choice for the initial value

_(_) = I(l + %)/T) 3/2. (29)
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2. The solution h(t) cannot be continuously extended to all bounded

values of t: In this case, there is a finite value T such that a

continuous solution exists for 0 < t < T, but no continuous solution exists

for t > T.

To treat this case, we first note that T must be greater than t*. For

if h(t) can be continued past tO to some point tI less than t*, then

h(t) is monotone increasing, h(tl) is positive, and lh°(tl)l < L2/2.

Consequently, h(t) can be continued past tI and in particular can be

continued to t*. As h(t*) is positive and h°(t *) = 0, h(t) can now be

continuously extended beyond t*. For t > t*, because t* > L, the term

t - L in (17) is now strictly positive, so h_(t) will be strictly negative

and both h(t) and h_(t) will be monotone decreasing.

Two possibilities must now be considered. Either there is a T in the

range t* < T < T such that h(T) = 0, or h(t) > 0 for t* < t < T. In the

former case, we can proceed as before and define an appropriate = in terms

of % and T by (29). Therefore, it is only necessary to consider the

second alternative.

Suppose now that h(t) is positive for t < T. Then, it is clear that

the limit of h(t) as t tends to T exists and hence h(T) is well

defined. Further, if h(_) > 0, then lh_(_)l is bounded. Under these

circumstances, a continuous solution h(t) would exist in a neighborhood of

T, and in particular, for some t > T. This would contradict the definition

of T. Consequently, we must have h(T) = 0. An appropriate initial value

c in terms of % and T is now defined by (29) with T replaced by T.
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The theoremis now established.

The above proof shows that for 0 < % < % there is at least one

positive initial value _ which leads to a solution of the boundary value

problem. In the case when _ = 0, Callegariand Friedman showed that there

was in fact exactly one positive =; i.e., the solution of their boundary

value problem is unique. Their uniqueness proof is critically dependent,

however,on the fact that the term 2uk(u) in their equation,which plays the

role of the x - _ term in equation(10), is non-negativeover the full range

of x values. By contrast,x - _ in (i0) clearly violates this property.

Indeed, as will be seen in the next section, for 0 < _ < _ , there are two

positive values of _ which lead to solutions of the boundary value

problem. Hence, for this range of _, solutionsof the boundaryvalue problem

(I0) and (Ii) will exist but will not be unique.

4. Non-unlqueness of Solutions

To examine the dependence of solutions on _ and _, the initial value

problem

f''" + ff'" = 0

(30)

f(0) = 0, f'(0) : -_, f''(0) = e

was solved numerically. This problem in the original similarity variables

correspondsto the Crocco variable initial value problem (I0) and (Ii). In

this formulation, it is clear that the initial value e, physically, is

relatedto the skin friction.
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The initial value problem (30) was first solved for fixed _ to determine

the limiting value f'(_) as a function of a. Results of the calculations

are shown in Figure I. For values of a at which the curves cross the

horizontal llne f'(_) = I, a solution of the boundary value problem (I), (8),

and (9) is obtained.

Consider first the curve for _ = 0, which is the usual Blaslus problem

considered by Calllgarl and Friedman. In this case, f'(_) is a monotone

increasing function of s which crosses the llne f'(_) = 1 at

s0 = .46960 .... This value of s0 is well known from the homotopy

technique.

For _ > 0, the curves in Figure I have a local minimum value of f'(_)

which will be denoted by M(I). Calculations show that M(I) is an

increasing function of _. When _ = _*, M(_*) = I, and there will thus be

exactly one value of s, s say9 such that a solution of the initial value

problem (30) is also a solution of the boundary value problem (I), (8), and

(9). For I > I , M(%) > I and there will thus be no solutions of the

boundary value problem. When 0 < _ < _* M(I) < 1 and hence there will be

two values of = which give solutions of the boundary value problem, i.e.,

,

non-uniqueness. These values lle in the ranges 0 < aI < e and

a <_2 <s0"

To accurately determine _* and a and refine the points at which the

curves in Figure I cross the llne f'(_) = 1, the basic initial value solver

for fixed l was augmented by an iteration procedure on a which terminated

when If'(_) - 11 was less than 10-9 . Figure 2 shows the resulting o's as a

function of _. Critical values were found to be
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= 0.3541078... and e = 0.2180238 .... (31)

The non-unlqueness of solutions of the boundary value problem (i), (8), and

(9) for 0 < % < % is clearly evident in Figure 2.
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