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Introduction 
Although intensive research efforts into improved 

numerical methods and programing techniques for nonlinear 
structural analyses have led to many advances in the solu- 
tion of large-scale structural analyses, such problems con- 
tinue to require large amounts of computer resources. The 
large numbers of degrees of freedom required in complex 
structural models often result from modeling structural 
topology rather than complexity of structural behavior. 
Recognition of this fact has led to considerable research in- 
to methods to reduce the degrees of freedom in structural 
problems and, hence, reduce the required computer 
resources. These methods have become known as reduction 
methods and are thoroughly reviewed in reference 1, Reduc- 
tion methods transform the unknown nodal degrees of 
freedom of finite-element structural models (full system) to 
a smaller set of unknown parameters or generalized coor- 
dinates of the reduced system of equations. The link between 
the full and reduced systems of equations is a transforma- 
tion matrix. The columns of the transformation matrix are 
referred to as reduced basis vectors. Reduction techniques 
used in static and dynamic problems combine the classical 
Rayleigh-Ritz modal superposition methods with contem- 
porary finite-element methods to retain modeling versatility 
as the number of degrees of freedom is reduced. References 
1 to 3 cite several dynamic-response problems for which 
decreases of over an order of magnitude in the number of 
degrees of freedom were achieved with the reduction method. 

Modal superposition techniques have recently been ap- 
plied to nonlinear thermal problems. A reduction method 
which combines the finite-element method with the Galerkin 
technique is described in reference 4, and a hybrid numerical 
technique which combines perturbation methods and the 
classical Bubnov-Galerkin technique is described in reference 
5 for steady-state thermal problems. Application of classical 
modal superposition techniques to transient thermal problems 
is described in references 6 through 8. However, for 
nonlinear transient thermal analysis, the classical techniques 
can require frequent updating of the thermal mode shapes 
and eigenvalues (decay constants, ref. 6). Reference 9 
presents a way of circumventing the updating problem. The 
idea is based on the reduction technique for dynamic-response 
problems (refs. 1 to 3) and uses eigenvectors from linear ther- 
mal eigenvalue problems for the basis vectors. For the one- 
dimensional thermal-response problem considered in 
reference 9, a set of reduced basis vectors selected from 
eigenvectors corresponding to initial temperature conditions 
in the structure was found to give excellent agreement while 
achieving a reduction by a factor of 2 in the number of 
degrees of freedom. The technique was extended to two- 
dimensional thermal-response problems in reference 10, 
where reductions in problem size by a factor of 4 were 
achieved with errors in nodal temperatures of about 6 per- 
cent relative to results from the full-system (unreduced) 
problem. 

This paper describes the reduction method for transient 
thermal analysis and discusses some recent refinements which 
have led to improved accuracy with slightly larger reduc- 
tions in problem size than those achieved in reference 10. 
Numerical results are presented for two realistic aerospace 
structures. The first problem represents reentry heating on 
a segment of the Shuttle wing (see refs. 11 and 12) and is 
dominated by the conduction characteristics of the Shuttle 
wing structure and thermal protection system. The second 
problem represents orbital heating on a large space antenna 
reflector (described in ref. 13) with essentially negligible con- 
duction effects but with sufficient thermal mass to require 
a transient solution for accurate prediction of temperatures 
within the structure. Results from these problems are 
presented to assess the effectiveness (in terms of the reduc- 
tion in the number of degrees of freedom only) of the cur- 
rent implementation of the reduction method for thermal 
analysis of complex aerospace structures. 

Symbols and Abbreviations 

[c19[q 

CP 

DOF 

FRSI 

HRSI 

h 

[KI, [Kl 

LRSI 

MRS 

m 

n 

Q 

{ Q )  {e> 

Qo 

RTV 

capacitance matrices of full and reduced systems 
of equations. respectively 

specific heat 

degrees of freedom 

flexible reusable surface insulation 

high-temperature reusable surface insulation 

effective structural thickness 

conductance matrices of full and reduced systems 
of equations, respectively 

low-temperature reusable surface insulation 

microwave radiometer spacecraft 

number of nodal temperatures 

number of generalized coordinates or basis 
vectors 

heating rate 

applied heating vectors of full and reduced 
systems of equations, respectively 

temporal distributions (see fig. 4) 

room temperature vulcanized 



strain isolator pad 

temperature 

vector of nodal temperatures 

eigenvector from thermal eigenvalue problem 
(see eq. (3)) 

time 

wing station 

Cartesian coordinates 

transformation niatrix of reduced basis vectors 

emissivity 

thermal eigenvalue 

vector of generalized coordinates for reduced 
system of equations 

Subscripts: 

avg average 

ma x niaxiniuni 

Reduction Method for Transient 
Thermal Problems 

Theory 

The system of matrix equations from a finite-element 
analysis of heat transfer in a structure may be written as 
follows: 

( 1 )  11(1 {TI + Icl {f} = { Q }  
I l l ,  111 Ill  I l l ,  I11  I l l  I l l  

where [ K ]  is a conductance matrix for the structure, { T }  is 
the vector of  m unknown nodal temperatures, [q is the 
capacitance matrix, { f} is the time rate of change in the nodal 
temperatures, and {Q} is the applied heat load. The elements 
of and [C] may be functions of temperature, and the heat 
load is time dependent. Nodal temperatures from the full 
system of equations (eq. ( I ) )  may be approximated as func- 
tions of the generalized coordinates of a reduced system of 
equations. as follows: 

where [ I'I is a translormation matrix. and (111) is a vector 
o f  the I I  unknown generalized coordinates. It is assumed that 

the local temperature field can be represented by a few 
assumed temperature distributions or reduced basis vectors, 
so that n will be much smaller than m. For the procedure 
described herein, the columns of [ r] (reduced basis vectors) 
typically are obtained from the solution of two thermal eigen- 
value problems associated with equation (1). 

However, for some problems, it is necessary to include 
additional reduced basis vectors from alternate sources, as 
described in subsequent sections of this report, to obtain ac- 
curate results. To form the eigenvalue problems, { Q} is taken 
as zero in equation ( I ) ,  and { T }  is assumed to be given by 

{ T }  = {T;}e-h, (31 

Suhsritufiori oj'thc exprcxsiori jbr  { T }  from equation (3) into 
equation ( I )  results in the following eigenvalue problem: 

(4) [K]{f;} - A;[C]{f;} = 0 i = I ,  2, 3,  . . . ,  

where A; is the ith eigenvalue and represents a thermal decay 
coefficient. and {f';} is the eigenvector corresponding to the 
ith eigenvalue. The eigenvectors are referred to as thermal 
mode shapes, analogous to vibration mode shapes from a 
free-vibration eigenvalue problem. In the first eigenvalue 
problem, the elements of [ K ]  and [ C] are evaluated for ther- 
mal properties corresponding to initial temperatures for the 
transient problem. In the second eigenvalue problem, the 
matrices are evaluated for thermal properties corresponding 
to temperatures obtained from the solution o f  a nonlinear 
steady-state problem with time-averaged thermal properties 
and heat loads from the transient problem. Only a subset of 
the eigenvectors is used, and selection of the eigenvectors 
to be retained is a crucial step in the reduction method, which 
is described in subsequent sections of this report. 

The reduced system of equations is obtained by substitu- 
tion of equation ( 2 )  in to  equation ( 1 )  and premultiplying both 
sides of the resulting equation by the transpose of [r]. A 
reduced system of equations in terms of the unknown 
generalized coefficients results. as follows: 

where 

The barred quantities represent the reduced conductance and 
capacitance matrices and reduced heat load vector. 
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Implementation and Solution Technique 

The SPAR finite-element thermal analyzer described in 
reference 14 was used to obtain solutions to the full system 
of equations (eq. (1)) for the transient heat transfer problems 
considered in this investigation. In the SPAR thermal 
analyzer, time- and temperature-dependent thermal proper- 
ties in the conductance and capacitance matrices are treated 
by dividing the transient heat pulse into intervals (typically 
of 10- to 50-sec duration for problems considered herein) 
and reforming those matrices by assuming the time-dependent 
thermal properties have a constant value equal to the average 
value over the time interval. The temperature-dependent pro- 
perties are evaluated for temperatures at the beginning of 
each time interval. For this investigation, equation (1) was 
numerically integrated over each time interval (for time-step 
sizes which ranged from 0.5 to 10 sec) by using the implicit 
Crank-Nicolson algorithm available in the SPAR thermal 
analyzer. This process is repeated continuously over the en- 
tire heat pulse to obtain the transient temperature response 
for any given problem. With the SPAR thermal analyzer, 
it is also possible to output the conductance and capacitance 
matrices and the thermal load vector at the beginning of each 
time interval. This capability was used to implement the 
reduction method. 

The SPAR program was used to generate conductance 
and capacitance matrices for the previously described eigen- 
value problems. A standard eigenvalue extraction routine 
available on the computer operating system at the Langley 
Research Center was then used to solve the thermal eigen- 
value problems (eq. (4)) to obtain thermal mode shapes for 
use as reduced basis vectors. These vectors were then used 
as the transformation matrix [r] in a pilot computer pro- 
gram which formed and solved the reduced system of equa- 
tions for the unknown generalized coordinates { Q} . Nodal 
temperatures were then calculated by equation ( 2 ) .  Solution 
techniques in the pilot program were patterned after those 
used in the SPAR program. Since the thermal properties 
change from one time interval to the next, SPAR was used 
to form and output the conductance and capacitance matrices 
and heat load vector at the beginning of each time interval 
for use by the pilot computer program. It should be noted 
that in the analysis of any problem, only two eigenvalue 
analyses were made to obtain reduced basis vectors to 
establish the transformation matrix [ r], which was then used 
over the entire heat pulse to obtain the reduced system of 
equations. This process obviously requires a large amount 
of computer input and output activity, which is usually inef- 
ficient; however, the intent of this investigation was to deter- 
mine if substantial reductions in the number of degrees of 
freedom could be achieved for transient thermal problems 
by using the reduction method, and the use of a “brute force” 
approach was considered sufficient for such a determination. 
Results from the reduced system of equations were evaluated 
by comparison with results from the full system of equations 
from a SPAR analysis of each problem, as described in the 

~ 

1 
, 
, 

~ 

~ 

1 

I 

I 

, 

next section. Time intervals and time steps used in the Crank- 
Nicolson integration algorithm within each time interval were 
the same for both the hull and reduced systems of equations. 

Thermal Problems and Results 
To gain insight and experience with the reduction method 

for thermal analysis, the method has been applied to a series 
of increasingly complex problems. The initial problem con- 
sisted of calculating temperature histories in a portion of the 
Shuttle wing segment shown in figure 1 by using the reduc- 
tion technique. The SPAR finite-element thermal model, 
shown in figure 2(a), represents a 58-in. segment of the lower 
surface of bay 3 and consists of a 0.119-in-thick aluminum 
sheet (to represent the structure) covered by a 1.36-in-thick 
layer of high-temperature reusable surface insulation (HRSI). 
The HRSI, strain isolator pad (SIP), and room temperature 
vulcanizing (RTV) adhesive were modeled with two- 
dimensional finite elements. One-dimensional elements with 
a quasi-linearized radiation representation (ref. 14) were used 
on the HRSI surface to model radiation losses, and one- 
dimensional conduction elements were used to model the 
aluminum structure. The grid shown has 84 node points and, 
hence, 84 degrees of freedom, since temperature is the only 
nodal degree of freedom. The lateral edges and backface were 
assumed to be adiabatic, and the surface was subjected to 
heat pulses similar to that shown in figure 2(b), which is 
reasonably representative of Shuttle reentry. Radiation from 
the surface and variation of the thermal properties of the 
HRSI cause the heat transfer equation to be nonlinear. Ther- 
mal properties (specific heat and conductivity) of the HRSI 
are functions of temperature and vary as indicated in figure 
3. Further, because the HRSI is porous, the conductivity 
associated with air in the voids varies with pressure as well. 
Since the version of the SPAR thermal analyzer used in this 
study accommodates only temperature- and time-dependent 
properties, the pressure dependency was converted to a time 
dependency by utilizing the known pressure history for a 
typical Shuttle reentry trajectory. 

To determine limitations on the reduction method, the 
spatial and temporal heating distributions for three problems 
shown in figure 4 were considered in this study. The spatial 
distribution is shown above the sketch of each model, and 
the temporal distribution is shown below. The first problem 
(fig. 4(a)) involved uniform heating on the surface of the 
1.36-in-thick HRSI for a 2000-sec heat pulse. In the second 
problem (fig. 4(b)), the heating was symmetric over the sur- 
face. The thickness of the HRSI was reduced to 1 in. with 
an accompanying decrease in the heat pulse duration (to 
reduce computation times), so that temperatures reached 
values comparable to those for the uniform surface heating. 
In the third problem (fig. 4(c)), the heating was asymmetric 
over the HRSI surface. Since the surface heating in the first 
problem is uniform, it can be treated as a one-dimensional 
problem with essentially 14 degrees of freedom. The second 
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and third problems are treated as two-dimensional problems 
with essentially 42 and 84 degrees of freedom, respectively. 

Uniform Surface Heating 

Temperature distributions through the depth of the model 
with uniform surface heating computed with the full system 
of equations are shown in figure 5 for several discrete times 
during the heat pulse. The selected basis vectors must be able 
to accurately approximate these temperature distributions. 
Initially the entire structure is at a constant temperature of 
560 OR, As heating is applied, the HRSI surface expericnces 
a rapid temperature rise, which gradually diffuses through 
the HRSI and SIP to the aluminum skin. After peak heating 
occurs, the surface begins to cool while the interior of the 
HRSI and the aluminum skin continue to experience a 
temperature increase. The basis vectors must characterize 
this nonlinear response, give accurate solutions, and be easily 
and inexpensively generated. Nondimensional thermal mode 
shapes from a linear eigenvalue problem (in which matrices 
were evaluated at a uniform temperature of 560”R) are shown 
in figure 6. Although numbered sequentially, these modes 
do not correspond to the five lowest eigenvalues from the 
eigenvalue problem associated with the two-dimensional 
finite-element model shown in figure 2.  Because of the two- 
dimensional nature of the eigenvalue problem, most of the 
lower modes involved multiple waves in the lateral direc- 
tion (y-direction in fig. 2(a)). Although 84 eigenvalues were 
extracted. only those modes with a single constant wave in 
the lateral direction are shown. 

As indicated in reference 10, excellent correlation be- 
tween the results from the reduced and full systems of equa- 
tions was obtained with six basis vectors: modes 2 through 
5 from figure 6; the reciprocal of the mode 1 vector. also 
shown in figure 6 (to enhance representation of the diffu- 
sion character of the transient temperature distribution), and 
a constant (unit) vector to accommodate uniform temperature 
changes. Results from the reduction method are compared 
with the full-system solution over the entire duration of the 
heat pulse in figure 7 .  Temperatures are shown for the sur- 
face, midpoint of the HRSI, and the aluminum structure. The 
reduction-niethod temperatures are within 2 OR of the full- 
system results for this 14-degree-of-freedom problem and 
indicate that for the uniform surface heating, six basis vec- 
tors give an excellent approximation to the full-system 
solution. 

Symmetric Surface Heating 

Since the set of eigenvectors from the eigenvalue prob- 
lem based on the uniform initial temperature of 560 OR proved 
effective for the uniiorm heating problem, a similar set was 
tried for the same problem geometry but with a nonuniform 
symmctric distribution of the applied heating. However, since 
these vectors were constant in the lateral direction, they 
resulted in an erroneous temperature distribution, which only 

represented the average lateral temperature distribution from 
the full-system solution. To obtain results closer to the full- 
system solution, a set of basis vectors was generated from 
a second eigenvalue problem with thermal properties 
evaluated at temperatures obtained from a “pseudo” steady- 
state problem. In this pseudo steady-state problem, tirne- 
dependent thermal properties and heat input were averaged 
over the heat pulse, and temperatures in the aluminum were 
held at a value expected during the midportion of the heat 
pulse (685 OR). Only modes with a single wave in the lateral 
direction from this second eigenvalue problem were selected 
for use as basis vectors. In this instance, the single wave had 
a shape similar to the symmetric heating distribution. Sets 
of basis vectors which combined a constant (unit) vector with 
equal numbers of vectors from the first and second eigen- 
value problems were used. 

The average absolute error in nodal temperatures at 
t = 300 sec into the heat pulse as a function o f  the number 
of vectors used in the reduction method is shown in  figure 
8. Results presented in reference I O  indicated good agree- 
ment with full-system results over the entire heat pulse with 
23 vectors. Since publication of reference 10, additional vec- 
tors have been used to approximate the temperature field for 
this problem. Eigenvectors based on initial temperature con- 
ditions were combined with eigenvectors based on 
temperatures from a steady-state problem with one-half the 
average heat input. Additionally, the reduction method has 
been refined to become an adaptive process by including the 
nondiniensionalized temperature distribution from the 
previous time interval as a basis vector in the current time 
interval. (See the section on the reduction method for a 
description of the solution process.) The upper curve in figure 
8 represents errors for the nonadaptive method, and the lower 
curve is for the adaptive method. For the symmetric heating 
problem, the adaptive method results in a converged solu- 
tion with an average absolute error in nodal temperatures 
of 3.5 OR with only 13 basis vectors. Figure 9 shows a com- 
parison between temperatures from the adaptive solution with 
13 vectors and the full-system solution. Temperatures are 
shown for the surface, the midpoint of the HRSI, and the 
aluminuni structure throughout the duration of  the transient 
heat pulse. The agreement between the two solutions is very 
good and indicates that the reduction method, with about one- 
third the original number of degrees of freedom. can predict 
temperatures with reasonable accuracy for nonuniform sym- 
metric heating. 

Asymmetric Surface Heating 

Since the combined set of basis vectors using thermal 
mode shapes from the initial and pseudo steady-state 
temperature eigenvalue problcms gave rcasonable approx- 
imations for the problem with symmetric surface heating, 
similar combined sets of basis vectors were tried for the prob- 
lem with asymmetric surface heating. Although several dif- 
ferent combinations of these vectors were tried, errors in the 
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nodal temperatures were as large as 200 OR. The vectors from 
the pseudo steady-state problem with a single wave in the 
lateral direction (y-direction, fig. 2(a)) contained large varia- 
tions between maximum and minimum values in the lateral 
direction (up to a factor of 9 compared with the variation 
in surface heating of about a factor of 2). This variation 
seemed to preclude obtaining a good approximation to the 
full-system solution. However, use of a set of vectors which 
combined modes from the pseudo steady-state problem and 
edge-to-edge reflections (mirror images about the vertical 
centerline) of those modes resulted in a better approximation. 

Results presented in reference 10 indicate that reasonable 
agreement between results from the reduced and full systems 
was obtained with nine basis vectors from the average heating 
eigenvalue problem and their edge-to-edge reflections. Since 
publication of reference 10, additional sets of basis vectors 
based on temperature distributions corresponding to steady- 
state heating levels less than the average trajectory heating 
have been used to approximate temperatures for the asym- 
metric heating problem. The steady-state heating level was 
repeatedly reduced by a factor of 2 until a set of basis vec- 
tors was obtained which significantly improved the accuracy 
of the reduction method. Figure 10 shows the average 
absolute error in nodal temperatures for sets of basis vec- 
tors based on average heating and for one-sixteenth the 
average heating. The adaptive process was employed for both 
sets of basis vectors. Use of the vectors based on lower 
heating reduced the number of vectors required for a con- 
verged solution to 16 and reduced the average nodal 
temperature error from 9"R to about 5.5 "R. A comparison 
of the temperatures from the reduction method and the 
temperatures from the Full-system solution is shown in figure 
11. Temperatures are shown for points on the surface, the 
midpoint of the HRSI, and the aluminum structure. Agree- 
ment between the reduction-method and the full-system solu- 
tions is reasonably good throughout the temperature history, 
with the maximum error less than about 4 percent. Thus, 
for this 84-degree-of-freedom problem, the reduction method 
gives good results with about one-fifth the original degrees 
of freedom. 

Single Bay of Shuttle Wing 

To investigate the effectiveness of the reduction method 
for thermal analysis of a more realistic structure, the tech- 
nique was used to analyze the thermal response of bay 3 of 
the Shuttle wing segment shown in figure 1. Details of 
previous analyses of this structure are given in references 
11 and 12. A thermal model of the structure and thermal pro- 
tection system for bay 3 and a finite-element representation 
of the thermal model are shown in figure 12. In figure 12(a), 
the stringer-stiffened and corrugated aluminum structures are 
represented by various effective thicknesses denoted h. 
Similar to the simpler problems the HRSI, FRSI (flexible 
reusable surface insulation), SIP, and RTV were modeled 
by two-dimensional elements. A quasi-linearized radiation 

representation was used on the HRSI and FRSI surfaces to 
model radiation losses (ref. 14), and one-dimensional con- 
duction elements were used to model the aluminum struc- 
ture. The grid shown in figure 12(b) has 122 nodal points 
and, hence, 122 degrees of freedom. The lateral edges and 
aluminum structure were assumed to be adiabatic, and the 
two outer surfaces were heated by the heat pulses shown in 
figure 13. The nature of the heat pulses for both surfaces 
is significantly more complex than those in the previous prob- 
lems, in that the spatial distribution changes dramatically on 
the lower surface as air in the boundary layer over the wing 
undergoes transition from laminar to turbulent flow begin- 
ning at about 650 sec into the heat pulse. Both the distribution 
of material and the imposed heating result in an asymmetric 
thermal response for this problem. 

Based on the results from the previous problem with 
asymmetric heating, basis vectors were generated by solv- 
ing an eigenvalue problem with temperatures from a pseudo 
steady-state problem for one-tenth the average applied heating 
from the heat pulses shown in figure 13. Again, only ther- 
mal mode shapes with a single half wave in the lateral direc- 
tion and their edge-to-edge reflections (mirror images about 
the vertical centerline) were selected as basis vectors. 
Although several combinations of these vectors were tried, 
errors in the nodal temperatures were unacceptable. When 
additional mode shapes from an eigenvalue problem based 
on initial temperatures were included as basis vectors, 
reasonably accurate results were achieved. A set of basis vec- 
tors which included an adaptive mode, six modes based on 
initial conditions, a unit mode, and a variable number of 
modes from the set based on one-tenth the average heating 
was used as a suitable set of basis vectors for this problem. 
Three representative vectors from this set are given in table 
I. The first typifies vectors which had nearly equal dominance 
in the two surfaces of the wing. The second and third vec- 
tors typify those that were dominant in the lower and upper 
surfaces, respectively. Most of the vectors in the set were 
associated with dominance in the lower surface. Since the 
two surfaces were connected by the relatively thin aluminum 
webs (fig. 12(a)) and internal radiation was neglected, the 
thermal coupling between the two surfaces was very small. 

A reduction-method solution was attempted with various 
numbers of basis vectors, and the convergence at 300 sec 
is shown in figure 14. Use of 36 vectors gave a solution hav- 
ing a maximum temperature error of 65 "R. A comparison 
between the reduction-method and full-system results for 
t = 300 sec is shown in figure 15. The agreement between 
the two solutions is very good; however, when the solution 
was extended Further into the heat pulse, the errors in the 
model temperatures from the reduction-method results in- 
creased to about 200"R in the aluminum webs which con- 
nect the two wing surfaces. These large errors are believed 
to stem from the weak coupling between the two wing sur- 
faces, which results in very few eigenvectors that are domi- 
nant in the aluminum web region of the structure. After 
several futile attempts to determine additional basis vectors 
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which would improve the results, solution of this problem 
was abandoned. It was hypothesized that for such weakly 
coupled problems, it may be beneficial to separate the prob- 
lem into parts, each with its own set of basis vectors. This 
hypothesis is tested on a problem consisting of only the lower 
wing surface of bay 3, as described in the next section. 

Lower Surface of Bay 3 of Shuttle Wing 

The finite-element model (fig. 12(b)) was modified to re- 
tain only the lower aluminum skin and its associated ther- 
mal protection system on the lower surface of bay 3 of the 
Shuttle wing. The lateral edges and aluminum skin were 
assumed to be adiabatic, and the outer surface was assumed 
to be heated by the heat pulse for the lower wing surface 
(fig. 13(a)). Because of the material distribution and spatial 
variation of the heat pulse, the thermal response is asym- 
metric. A set of basis vectors consisting of an adaptive mode, 
a unit vector, and 12 modes and their edge-to-edge reflec- 
tions (including the reciprocal of the mode 1 vector) from 
an eigenvalue problem based on temperatures from a pseudo 
steady-state problem with one-tenth the average applied 
heating was used. Maximum errors of up to 9 percent 
occurred at about 600 sec into the heat pulse. These errors 
were considered excessive, and a second solution was ob- 
tained with a similar set of  basis vectors from an eigenvalue 
problem bascd on initial temperature conditions. The max- 
imum errors decreased t o  about 7 percent. The maximum 
errors occurred along the lateral edges of the tnodel, which 
are significantly affected by the prcsencc o f  heat sinks 
associated with the additional structural material where the 
wing webs meet the surface structure. Comparison of the 
basis vectors for this problem with those from the problem 
with a constant skin thickness and an asymmetric heat pulse 
revealed a greater lateral variation in the basis vectors 
associated with the heat sinks. Accordingly, to reduce the 
lateral variation in the basis vectors, a set of basis vectors 
based on initial temperatures was generated, but with the 
aluminum thicknesses at the model edges reduced from 0.304 
to 0.152 in.  and from 0.289 to 0.145 in. The basis vector 
set consisted of an adaptive mode. a unit mode, and up to 
12 modes and their edge-to-edge reflections (including the 
reciprocal of the mode 1 vector) from the eigenvalue solu- 
tion for initial temperature and reduced aluminum heat sink 

A solution using 24 basis vectors from this set was 
found to have maximum errors of less than 5 percent, ex- 
cept from about 650 sec to  1100 sec into the heat pulse, when 
the maximum errors remained at the 7- to 8-percent level. 

From figure 13, i t  is clear that the spatial distribution of 
the applied heating changes radically during the time inter- 
val from 650 to 1100 scc into the heat pulse. Figure 16 fur- 
ther illustrates these changes for various times between 650 
and I100 scc. Thus, to accommodate the changes in applied 
heating, i t  was neccssary t o  add an analytically generated 
basis vector which incorporates the changing nature of the 
applied heating. An additional adaptive basis vector with the 

character of the applied heating at the model surface and a 
rapid decay rate in the model interior was generated as a func- 
tion of position, as follows: 

(7) 

where Y(yk) are the heating distributions in figure 16, xj is 
the nodal position in the HRSI measured from the heated sur- 
face, j k  is the corresponding nodal position along the heated 
surface, and P is the thickness of the thermal protection 
system. When this analytically determined basis vector was 
combined with the set from the eigenvalue problem based 
on initial temperatures and reduced aluminum heat sink 
thicknesses. the reduction method gave acceptable 
temperature errors over the entire heat pulse. 

The maximuni error in the nodal temperatures is shown 
in figure 17 as a function of the number of basis vectors. 
Convergence was obtained with the 23 basis vectors listed 
in figure 17 at 200 sec into the heat pulse. The maximum 
error with these 23 basis vectors is shown in figure 18 for 
the entire heat pulse and indicates that inclusion of the vec- 
tor of equation (7) reduced the maximum error to 4 percent 

Temperatures from the reduction method using 23 
basis vectors are compared with temperatures from the full 
system of equations in figure 19. Temperatures are shown 
for the HRSI surface. an interior point ofthe HRSI, and the 
aluminum structure for three lateral locations: the left side, 
the point of maximum temperature in the aluminum struc- 
ture, and the right side. The reduction-method results agree 
reasonably well with those from the full system at each loca- 
tion over the entire heat pulse. Thus, for this reasonably com- 
plex 84-degree-of-freedotn problem, the reduction method 
gives satisfactory results with about one-third the original 
degrees of freedom. 

Large Space Antenna 

The reduction method was applied to the thermal analysis 
of the reflector o f  a graphite/cpoxy tetrahedral truss antenna 
associated with the microwave radiometer spacecraft (MRS) 
shown in figure 20. The MRS is designed to measure soil 
moisture from low Earth orbit and is described in reference 
1 3. A 109-degree-of-freedom finite-element model of the 
reflector is shown in figure 2 I ,  The structure consists of two 
sets of surface elements joined by a set of diagonal elements 
and is modeled with one-dimensional tubular conduction and 
radiation elements. The temperature-dependent thermal 
emissivity E and specific heat c,, for the graphitel 
epoxy composite are shown in figure 22. In this problem. 
heat transfer by conduction is essentially negligible relntivc 
to the radiation heat transfer (ref. 13); however, the ther- 
mal mass and specific heat are sufficient t o  require a tran- 
sient analysis rather than steady-state solutions for accurate 
predictions of temperatures in the structure. The maximum 
and minimum heating rates for the surface elements and the 
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diagonal elements for a single orbit of the MRS are shown 
in figure 23. 

In an initial solution attempt, a set of basis vectors for 
this problem was generated by solving an eigenvalue prob- 
lem based on temperatures from steady-state heating at 
t = 0. A solution obtained with 20 of these basis vectors 
had maximum errors of 22 "R (nearly as large as the max- 
imum temperature differences expected in the structure). Ad- 
ditional vectors improved the results, but the process was 
converging slowly, and it was apparent that a large number 
of basis vectors would be required for convergence. A second 
set of basis vectors was generated with five steady-state 
temperature distributions at the time slices indicated in figure 
24 and a unit vector. Plots of absolute errors in nodal 
temperature for the two solutions are shown in figure 25 for 
a single orbit. Maximum errors for the second set of basis 
vectors were less than 3.5"R. A comparison between the 
reduction method using the second set of basis vectors and 
the full-system solution for maximum and minimum 
temperatures in the antenna for a single orbit is shown in 
figure 26. Differences between the two solutions were only 
about 0.5 OR, so the two solutions are plotted as single curves. 
Thus, for this 109-degree-of-freedom radiation-dominated 
problem, accurate results were obtained by the reduction 
method for a problem size reduction of a factor of 18. 

Concluding Remarks 
A reduction method which combines classical Rayleigh- 

Ritz modal superposition techniques with contemporary 
finite-element methods to retain modeling versatility as the 
problem size (number of degrees of freedom) is reduced has 
been applied to transient nonlinear thermal analysis. The 
method has been used to obtain approximate solutions for 
temperature histories of models of a portion of the Shuttle 
orbiter wing subject to reentry heating and to a large space 
antenna reflector subject to heating associated with a low 
Earth orbit. Results were found to be highly dependent on 
the choice of basis vectors. Sets of eigenvectors obtained 
from two thermal eigenvalue problems associated with the 
transient problems were used as the initial choice of basis 
vectors in the approximate solutions. The first eigenvalue 
problem was based on thermal properties evaluated at the 
initial temperature conditions. The second was based on ther- 
mal properties evaluated for a temperature distribution cor- 

responding to a nonlinear steady-state problem with time- 
averaged thermal properties and heating from the transient 
problem. Additionally, to achieve improved accuracy with 
fewer basis vectors, it was necessary to add an adaptive vec- 
tor based on the temperature distribution from the previous 
time interval, a constant (unit) vector, the reciprocal of the 
first eigenvector, and reflections (mirror images) of the vec- 
tors from the eigensolutions. Good agreement was obtained 
between the reduction-method and full-system solutions for 
the conduction-dominated Shuttle wing problems with size 
reductions up to a factor of 5 for simplistic representations 
of the Shuttle wing structure (Le., constant material distribu- 
tion and spatially uniform heating). However, when more 
realistic representations of the structural and thermal pro- 
tection system material distributions and spatially varying 
heating were considered, it was necessary to enrich the set 
of basis vectors. By adding an analytically generated vector 
based on the changing heat distribution, maximum tem- 
perature errors were reduced to 4 percent for problem size 
reductions of a factor of 3. 

For the radiation-dominated orbiting large space antenna, 
the reduction method was found to give unacceptable 
temperature errors when thermal eigenvectors were used as 
basis vectors. However, when temperature distributions cor- 
responding to steady-state temperature distributions at several 
time slices in the orbital heating profile were used as basis 
vectors, maximum temperature errors of less than 3.5"R 
were achieved for the entire orbit while achieving a problem 
size reduction of a factor of 18. 

The results of this paper indicate that the reduction 
method has excellent potential for significant size reduction 
for radiation-dominated problems. For conduction-dominated 
problems, the large reductions in problem size accrued only 
for those with the simplest geometry and heating distribu- 
tions. For more complex conduction-dominated problems, 
especially those with complex spatial and temporal variations 
in the applied heating, additional work was necessary to 
generate alternate basis vectors which permit significant prob- 
lem size reductions. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
September 13, 1984 
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TABLE I .  THERMAL MODE SHAPES FOR SHUTTLE WING SINGLE-BAY PROBLEM 

[Table corresponds to finite-element model shown in fig. 12(b)] 

(a) Equally dominant in upper and lower wing surfaces 

-0.032 -0.032 

-0.437 
-0.335 
-0.260 
-0.212 
-0.212 
-0.196 
-0.054 
-0.035 
-0.030 
-0.030 
-0.030 
-0.032 
-0.032 
-0.036 
-0.040 
-0.046 
-0.053 
-0.063 
-0.077 
-0.100 
-0.140 
-0.236 
-0.705 

-0.063 
-0.040 
-0.032 
-0.032 

-0.568 
-0.373 
-0.278 
-0.223 
-0.223 

-0.032 
-0.035 
-0.035 
-0.039 
-0.043 
-0.050 
-0.058 
-0.069 
-0.085 
-0.110 
-0.156 

-0.766 
-0.261 

-0.030 
-0.030 
-0.032 
-0.032 
-0.036 
-0.041 
-0.046 
- 0.054 
-0.065 
-0.080 
-0.103 
-0.146 
-0.246 
-0.738 

-0.032 -0.032 
-0.035 -0.035 
-0.035 -0.035 
-0.040 -0.039 
-0.045 -0.045 
-0.051 -0.051 
-0.059 -0.059 
-0.071 -0.071 
-0.087 -0.087 
-0.113 -0.113 
-0.160 -0.160 

-0.770 -0.773 
-0.267 -0.267 

0 
0 
0 
0 
0 
0 
0 

-0.003 
-0.076 
-0.049 
-0.046 

0.521 
0.522 
0.390 
0.019 

-0.318 
-0.416 
-0.260 
-0.006 

0.216 
0.294 
0.247 
0.111 

0 
0 
0.020 

-0.980 
0.031 

(b) Dominant in lower wing surface 

0 0 0 
0 0 0 
0.020 0.020 0.020 

-1.OOO -0.999 -0.956 
0.030 0.026 0.009 

0 0 0 
0 

-0.018 
-0.016 

0.482 
0.483 
0.424 
0.126 

-0.236 
-0.459 
-0.417 
-0.135 

0.226 
0.459 
0.431 
0.165 

-0.056 
-0.053 

0.575 
0.576 
0.507 
0.137 

-0.304 
-0.552 
-0.471 
-0.123 

0.280 
0.516 
0.470 
0.182 

-0.071 
-0.067 

0.752 
0.754 
0.615 
0.118 

-0.423 
-0.691 
-0.554 
-0.118 

0.359 
0.628 
0.564 
0.217 

-0.033 
-0.028 

0.853 
0.854 
0.657 
0.106 

-0.476 
-0.772 
-0.631 
-0.146 

0.408 

0.659 
0.247 

0.730 

-1.OOO 
-0.760 
-0.615 
-0.517 
-0.517 

-0.031 
-0.031 
-0.034 
-0.034 
-0.038 
-0.043 
-0.049 
-0.057 
-0.068 
-0.084 
-0.109 
-0.153 
-0.257 
-0.756 

0 
0 
0 
0 
0 
0 
0 

-0.009 
-0.139 
-0.081 
-0.076 

0.998 
1 .Ooo 
0.779 
0.109 

-0.591 
-0.915 
-0.705 
-0.124 

0.489 
0.819 
0.724 
0.275 

-0.466 
-0.330 
-0.257 
-0.211 
-0.21 1 
-0.195 

0 
0 
0.019 

-0.895 
0.010 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

(c) Dominant in upper wing surface 

0 
0 
0.020 

-0.956 
0.026 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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Figure I .  Geometry of Shuttle orbiter wing at WS 240. 
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(b) Heat pulse. 

Figure 2 .  Simplified model of Shuttle orbiter wing. 
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Figure 3. HRSI thermal properties. 

S PAT I AL D I STR I BUT1 ONS 

0.31 SPEC IF I C  
HEAT, 

0.29 

fl 

x TEMPORAL D ISTRIBUTIONS 
19 .- 

8b / \ 

0 1000 2000 0 500 1000 1500 0 500 1000 1500 
TIME, sec TIME, sec TIME, sec 

(a) Uniform 
heating. 

(b) Symmetric 
heating. 

(c) Asymmetric 
heating. 

Figure 4. Heating distributions for sample problems. 
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Figure 5 .  Temperature distributions for problem with 
uniform heating. 
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Figure 6. Thermal mode shapes for problem with uniform 
heating. 
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Figure 7. Comparison of reduced-basis and full-system 
temperatures for simplified wing with uniform heating. 
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Figure 8. Convergence of adaptive reduction method for 
simplified wing with symmetric heating. t = 300 sec. 
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Figure 9. Comparison of reduction-method and full-system 
temperatures for simplified wing with symmetric heating. 
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Figure 10. Convergence of reduction method using vectors 
from reduced heating for simplified wing with asym- 
metric heating. r = 300 sec. 
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SURFACE HEAT1 NG PROFILE 
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Figure 1 1. Comparison of reduction-method and full-system 
temperatures for simplified wing with asymmetric 
heating. 
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(b) Finite-element model (122 DOF). Numbers in parentheses denote heated surface elements. 

Figure 12. Concluded. 
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Figure 13. Heat pulse for bay 3 of Shuttle wing. Numbers 
refer to element numbers in figure 12(b). 
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Figure 14. Convergence using modes based on initial con- 
ditions and one-tenth average heating for bay 3 of Shut- 
tle wing. t = 300 sec. 
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(122 DOF). 
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Figure 16. Spatial changes in lower surface heating for single- 
bay problem. r = 650 to 1150 sec. 
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Figure 17. Convergence for lower surface of bay 3. 
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Figure 18. Maximum percent error for Shuttle wing segment, 
bay 3, lower surface problem. Twenty-three basis 
vectors. 
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Figure 19. Comparison of reduction-method and full-system 
temperatures for Shuttle wing segment, bay 3, lower 
surface. 
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Figure 19. Continued. 
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Figure 19. Concluded. 
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Figure 20. Microwave radionleter spacecraft (from ref. 13). 

Figure 2 1 .  Finite-clcmcnt model of  antenna reflector ( 109 
DOF). 
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Figure 22.  Thermal properties of graphite/epoxy antenna 
reflector. 
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Figure 2 3 .  Orbital heating for antenna reflector 
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Figure 24. Times for steady-state temperature distributions 
used as basis vectors. 
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Figure 25. Comparison of temperature errors for antenna 
reflector (eigenvectors versus steady-state (SS) 
temperature profiles). 
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