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Introduction

Although intensive research efforts into improved
numerical methods and programing techniques for nonlinear
structural analyses have led to many advances in the solu-
tion of large-scale structural analyses, such problems con-
tinue to require large amounts of computer resources. The
large numbers of degrees of freedom required in complex
structural models often result from modeling structural
topology rather than complexity of structural behavior.
Recognition of this fact has led to considerable research in-
to methods to reduce the degrees of freedom in structural
problems and, hence, reduce the required computer
resources. These methods have become known as reduction
methods and are thoroughly reviewed in reference 1. Reduc-
tion methods transform the unknown nodal degrees of
freedom of finite-element structural models (full system) to
a smaller set of unknown parameters or generalized coor-
dinates of the reduced system of equations. The link between
the full and reduced systems of equations is a transforma-
tion matrix. The columns of the transformation matrix are
referred to as reduced basis vectors. Reduction techniques
used in static and dynamic problems combine the classical
Rayleigh-Ritz modal superposition methods with contem-
porary finite-element methods to retain modeling versatility
as the number of degrees of freedom is reduced. References
1 to 3 cite several dynamic-response problems for which
decreases of over an order of magnitude in the number of
degrees of freedom were achieved with the reduction method.

Modal superposition techniques have recently been ap-
plied to nonlinear thermal problems. A reduction method
which combines the finite-element method with the Galerkin
technique is described in reference 4, and a hybrid numerical
technique which combines perturbation methods and the
classical Bubnov-Galerkin technique is described in reference
5 for steady-state thermal problems. Application of classical
modal superposition techniques to transient thermal problems
is described in references 6 through 8. However, for
nonlinear transient thermal analysis, the classical techniques
can require frequent updating of the thermal mode shapes
and eigenvalues (decay constants, ref. 6). Reference 9
presents a way of circumventing the updating problem. The
idea is based on the reduction technique for dynamic-response
problems (refs. 1 to 3) and uses eigenvectors from linear ther-
mal eigenvalue problems for the basis vectors. For the one-
dimensional thermal-response problem considered in
reference 9, a set of reduced basis vectors selected from
eigenvectors corresponding to initial temperature conditions
in the structure was found to give excellent agreement while
achieving a reduction by a factor of 2 in the number of
degrees of freedom. The technique was extended to two-
dimensional thermal-response problems in reference 10,
where reductions in problem size by a factor of 4 were
achieved with errors in nodal temperatures of about 6 per-
cent relative to results from the full-system (unreduced)
problem.

This paper describes the reduction method for transient
thermal analysis and discusses some recent refinements which
have led to improved accuracy with slightly larger reduc-
tions in problem size than those achieved in reference 10.
Numerical results are presented for two realistic aerospace
structures. The first problem represents reentry heating on
a segment of the Shuttle wing (see refs. 11 and 12) and is
dominated by the conduction characteristics of the Shuttle
wing structure and thermal protection system. The second
problem represents orbital heating on a large space antenna
reflector (described in ref. 13) with essentially negligible con-
duction effects but with sufficient thermal mass to require
a transient solution for accurate prediction of temperatures
within the structure. Results from these problems are
presented to assess the effectiveness (in terms of the reduc-
tion in the number of degrees of freedom only) of the cur-
rent implementation of the reduction method for thermal
analysis of complex aerospace structures.

Symbols and Abbreviations

[C1,[C) capacitance matrices of full and reduced systems
of equations. respectively

Cp specific heat

DOF degrees of freedom

FRSI flexible reusable surface insulation

HRSI high-temperature reusable surface insulation

h effective structural thickness

[K1.[K] conductance matrices of full and reduced systems
of equations, respectively

LRSI low-temperature reusable surface insulation

MRS microwave radiometer spacecraft

m number of nodal temperatures

n number of generalized coordinates or basis
vectors

Q heating rate

{0},{0} applied heating vectors of full and reduced
systems of equations, respectively

Qo temporal distributions (see fig. 4)

RTV room temperature vulcanized



SIP strain isolator pad

T temperature
{1} vector of nodal temperatures
{f} eigenvector from thermal eigenvalue problem

(see eq. (3))

t time

WS wing station

x,v,2, Cartesian coordinates

IT] transformation matrix of reduced basis vectors
€ emissivity

A thermal eigenvalue

{W} vector of generalized coordinates for reduced

system of equations

Subscripts:
avg average
max maximum

Reduction Method for Transient
Thermal Problems

Theory

The system of matrix equations from a finite-element
analysis of heat transfer in a structure may be written as
follows:

(K] {T} + [C] {T} = {0}

m.m m m.n m m ( 1 )

where [K] is a conductance matrix for the structure, {7} is
the vector of m unknown nodal temperatures, [C] is the
capacitance matrix, {T} is the time rate of change in the nodal
temperatures, and {Q} is the applied heat load. The elements
of [K] and [C] may be functions of temperature, and the heat
load is time dependent. Nodal temperatures from the full
system of equations (eq. (1)) may be approximated as func-
tions of the generalized coordinates of a reduced system of
cquations, as follows:

T =
(ry =T {w @)

where [T'] is a transformation matrix, and {{} is a vector
of the n unknown generalized coordinates. It is assumed that

2

the local temperature field can be represented by a few
assumed temperature distributions or reduced basis vectors,
so that n will be much smaller than m. For the procedure
described herein, the columns of [T} (reduced basis vectors)
typically are obtained from the solution of two thermal eigen-
value problems associated with equation (1).

However, for some problems, it is necessary to include
additional reduced basis vectors from alternate sources, as
described in subsequent sections of this report, to obtain ac-
curate results. To form the eigenvalue problems, {Q} is taken
as zero in cquation (1), and {T} is assumed to be given by

(T} = {Tye M 3)

Substitution of the expression for {T} from equation (3) into
equation (1) results in the following cigenvalue problem:

lKl{fi} - )\,-[C]{i&,-} =0 i=1,23....m &

where A; is the ith eigenvalue and represents a thermal decay
coefficient, and {7} is the eigenvector corresponding to the
ith eigenvalue. The eigenvectors are referred to as thermal
mode shapes, analogous to vibration mode shapes from a
free-vibration eigenvalue problem. In the first eigenvalue
problem, the elements of [K] and [C] are evaluated for ther-
mal properties corresponding to initial temperatures for the
transient problem. In the second cigenvalue problem, the
matrices are evaluated for thermal properties corresponding
to temperatures obtained from the solution of a nonlinear
steady-state problem with time-averaged thermal properties
and heat loads from the transient problem. Only a subset of
the eigenvectors is used, and selection of the eigenvectors
to be retained is a crucial step in the reduction method, which
is described in subsequent sections of this report.

The reduced system of equations is obtained by substitu-
tion of equation (2) into equation (1) and premultiplying both
sides of the resulting equation by the transpose of [T']. A
reduced system of cquations in terms of the unknown
generalized coefficients results, as follows:

(K1{w} + 1TI{wW} = {0} (5)

(Kl =117 (K] IT)

n.n n.m nieL LN

il

[C] = 1I1" (€] [T (6)

n.n n.m m.mmoommn

{?} =1’ {0}

n.n m

The barred quantities represent the reduced conductance and
capacitance matrices and reduced heat load vector.



Implementation and Solution Technique

The SPAR finite-element thermal analyzer described in
reference 14 was used to obtain solutions to the full system
of equations (eq. (1)) for the transient heat transfer problems
considered in this investigation. In the SPAR thermal
analyzer, time- and temperature-dependent thermal proper-
ties in the conductance and capacitance matrices are treated
by dividing the transient heat pulse into intervals (typically
of 10- to 50-sec duration for problems considered herein)
and reforming those matrices by assuming the time-dependent
thermal properties have a constant value equal to the average
value over the time interval. The temperature-dependent pro-
perties are evaluated for temperatures at the beginning of
each time interval. For this investigation, equation (1) was
numerically integrated over each time interval (for time-step
sizes which ranged from 0.5 to 10 sec) by using the implicit
Crank-Nicolson algorithm available in the SPAR thermal
analyzer. This process is repeated continuously over the en-
tire heat pulse to obtain the transient temperature response
for any given problem. With the SPAR thermal analyzer,
it is also possible to output the conductance and capacitance
matrices and the thermal load vector at the beginning of each
time interval. This capability was used to implement the
reduction method.

The SPAR program was used to generate conductance
and capacitance matrices for the previously described eigen-
value problems. A standard eigenvalue extraction routine
available on the computer operating system at the Langley
Research Center was then used to solve the thermal eigen-
value problems (eq. (4)) to obtain thermal mode shapes for
use as reduced basis vectors. These vectors were then used
as the transformation matrix [T'] in a pilot computer pro-
gram which formed and solved the reduced system of equa-
tions for the unknown generalized coordinates {{/}. Nodal
temperatures were then calculated by equation (2). Solution
techniques in the pilot program were patterned after those
used in the SPAR program. Since the thermal properties
change from one time interval to the next, SPAR was used
to form and output the conductance and capacitance matrices
and heat load vector at the beginning of each time interval
for use by the pilot computer program. It should be noted
that in the analysis of any problem, only two eigenvalue
analyses were made to obtain reduced basis vectors to
establish the transformation matrix [I'], which was then used
over the entire heat pulse to obtain the reduced system of
equations. This process obviously requires a large amount
of computer input and output activity, which is usually inef-
ficient; however, the intent of this investigation was to deter-
mine if substantial reductions in the number of degrees of
freedom could be achieved for transient thermal problems
by using the reduction method, and the use of a *‘brute force”
approach was considered sufficient for such a determination.
Results from the reduced system of equations were evaluated
by comparison with results from the full system of equations
from a SPAR analysis of each problem, as described in the

next section. Time intervals and time steps used in the Crank-
Nicolson integration algorithm within each time interval were
the same for both the full and reduced systems of equations.

Thermal Problems and Results

To gain insight and experience with the reduction method
for thermal analysis, the method has been applied to a series
of increasingly complex problems. The initial problem con-
sisted of calculating temperature histories in a portion of the
Shuttle wing segment shown in figure 1 by using the reduc-
tion technique. The SPAR finite-element thermal model,
shown in figure 2(a), represents a 58-in. segment of the lower
surface of bay 3 and consists of a 0.119-in-thick aluminum
sheet (to represent the structure) covered by a 1.36-in-thick
layer of high-temperature reusable surface insulation (HRSI).
The HRSI, strain isolator pad (SIP), and room temperature
vulcanizing (RTV) adhesive were modeled with two-
dimensional finite elements. One-dimensional elements with
a quasi-linearized radiation representation (ref. 14) were used
on the HRSI surface to model radiation losses, and one-
dimensional conduction elements were used to model the
aluminum structure. The grid shown has 84 node points and,
hence, 84 degrees of freedom, since temperature is the only
nodal degree of freedom. The lateral edges and backface were
assumed to be adiabatic, and the surface was subjected to
heat pulses similar to that shown in figure 2(b), which is
reasonably representative of Shuttle reentry. Radiation from
the surface and variation of the thermal properties of the
HRSI cause the heat transfer equation to be nonlinear. Ther-
mal properties (specific heat and conductivity) of the HRSI
are functions of temperature and vary as indicated in figure
3. Further, because the HRSI is porous, the conductivity
associated with air in the voids varies with pressure as well.
Since the version of the SPAR thermal analyzer used in this
study accommodates only temperature- and time-dependent
properties, the pressure dependency was converted to a time
dependency by utilizing the known pressure history for a
typical Shuttle reentry trajectory.

To determine limitations on the reduction method, the
spatial and temporal heating distributions for three problems
shown in figure 4 were considered in this study. The spatial
distribution is shown above the sketch of each model, and
the temporal distribution is shown below. The first problem
(fig. 4(a)) involved uniform heating on the surface of the
1.36-in-thick HRSI for a 2000-sec heat pulse. In the second
problem (fig. 4(b)), the heating was symmetric over the sur-
face. The thickness of the HRSI was reduced to 1 in. with
an accompanying decrease in the heat pulse duration (to
reduce computation times), so that temperatures reached
values comparable to those for the uniform surface heating.
In the third problem (fig. 4(c)), the heating was asymmetric
over the HRSI surface. Since the surface heating in the first
problem is uniform, it can be treated as a one-dimensional
problem with essentially 14 degrees of freedom. The second



and third problems are treated as two-dimensional problems
with essentially 42 and 84 degrees of freedom, respectively.

Uniform Surface Heating

Temperature distributions through the depth of the model
with uniform surface heating computed with the full system
of equations are shown in figure 5 for several discrete times
during the heat pulse. The selected basis vectors must be able
to accurately approximate these temperature distributions.
Initially the entire structure is at a constant temperature of
560°R. As heating is applied, the HRSI surface experiences
a rapid temperature rise, which gradually diffuses through
the HRSI and SIP to the aluminum skin. After peak heating
occurs, the surface begins to cool while the interior of the
HRSI and the aluminum skin continue to experience a
temperature increasc. The basis vectors must characterize
this nonlinear response, give accurate solutions, and be easily
and inexpensively generated. Nondimensional thermal mode
shapes from a linear eigenvalue problem (in which matrices
were evaluated at a uniform temperature of 560 °R) are shown
in figure 6. Although numbered sequentially, these modes
do not correspond to the five lowest eigenvalues from the
eigenvalue problem associated with the two-dimensional
finitc-element model shown in figure 2. Because of the two-
dimensional nature of the eigenvalue problem, most of the
lower modes involved multiple waves in the lateral direc-
tion (y-direction in fig. 2(a)). Although 84 eigenvalues were
extracted, only those modes with a single constant wave in
the lateral direction are shown.

As indicated in reference 10, excellent correlation be-
tween the results from the reduced and full systems of equa-
tions was obtained with six basis vectors: modes 2 through
5 from figure 6; the reciprocal of the mode 1 vector, also
shown in figure 6 (to enhance representation of the diffu-
sion character of the transient temperature distribution), and
a constant (unit) vector to accommodate uniform temperature
changes. Results from the reduction method are compared
with the full-system solution over the entire duration of the
heat pulse in figure 7. Temperatures are shown for the sur-
face, midpoint of the HRSI, and the aluminum structure. The
reduction-method temperatures are within 2 °R of the full-
system results for this 14-degree-of-freedom problem and
indicate that for the uniform surface heating, six basis vec-
tors give an excellent approximation to the full-system
solution.

Symmetric Surface Heating

Since the set of eigenvectors from the eigenvalue prob-
lem based on the uniform initial temperature of 560 °R proved
effective for the uniform heating problem, a similar set was
tricd for the same problem geometry but with a nonuniform
symmetric distribution of the applied heating. However, since
these vectors were constant in the lateral direction, they
resulted in an erroncous temperature distribution, which only
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represented the average lateral temperature distribution from
the full-system solution. To obtain results closer to the full-
system solution, a set of basis vectors was generated from
a second eigenvalue problem with thermal properties
evaluated at temperatures obtained from a *‘pseudo’” steady-
state problem. In this pseudo steady-state problem, time-
dependent thermal properties and heat input were averaged
over the heat pulse, and temperatures in the aluminum were
held at a value expected during the midportion of the heat
pulse (685 °R). Only modes with a single wave in the lateral
direction from this second eigenvalue problem were selected
for use as basis vectors. In this instance, the single wave had
a shape similar to the symmetric heating distribution. Sets
of basis vectors which combined a constant (unit) vector with
equal numbers of vectors from the first and second eigen-
value problems were used.

The average absolute error in nodal temperatures at
¢t = 300 sec into the heat pulse as a function of the number
of vectors used in the reduction method is shown in figure
8. Results presented in reference 10 indicated good agree-
ment with full-system results over the entire heat pulse with
23 vectors. Since publication of reference 10, additional vec-
tors have been used to approximate the temperature field for
this problem. Eigenvectors based on initial temperature con-
ditions werc combined with eigenvectors based on
temperatures from a steady-state problem with one-half the
average heat input. Additionally, the reduction method has
been refined to become an adaptive process by including the
nondimensionalized temperature distribution from the
previous time interval as a basis vector in the current time
interval. (See the section on the reduction method for a
description of the solution process.) The upper curve in figure
8 represents errors for the nonadaptive method, and the lower
curve is for the adaptive method. For the symmetric heating
problem, the adaptive method results in a converged solu-
tion with an average absolute error in nodal temperatures
of 3.5°R with only 13 basis vectors. Figure 9 shows a com-
parison between temperatures from the adaptive solution with
13 vectors and the full-system solution. Temperatures are
shown for the surface, the midpoint of the HRSI, and the
aluminum structure throughout the duration of the transient
heat pulse. The agreement between the two solutions is very
good and indicates that the reduction method, with about one-
third the original number of degrees of freedom. can predict
temperatures with reasonable accuracy for nonuniform sym-
metric heating.

Asymmetric Surface Heating

Since the combined set of basis vectors using thermal
mode shapes from the initial and pscudo steady-state
temperature cigenvalue problems gave rcasonable approx-
imations for the problem with symmetric surface heating,
similar combined sets of basis vectors were tried for the prob-
lem with asymmetric surface heating. Although several dif-
ferent combinations of these vectors were tried, errors in the



nodal temperatures were as large as 200 °R. The vectors from
the pseudo steady-state problem with a single wave in the
lateral direction (y-direction, fig. 2(a)) contained large varia-
tions between maximum and minimum values in the lateral
direction (up to a factor of 9 compared with the variation
in surface heating of about a factor of 2). This variation
seemed to preclude obtaining a good approximation to the
full-system solution. However, use of a set of vectors which
combined modes from the pseudo steady-state problem and
edge-to-edge reflections (mirror images about the vertical
centerline) of those modes resulted in a better approximation.

Results presented in reference 10 indicate that reasonable
agreement between results from the reduced and full systems
was obtained with nine basis vectors from the average heating
eigenvalue problem and their edge-to-edge reflections. Since
publication of reference 10, additional sets of basis vectors
based on temperature distributions corresponding to steady-
state heating levels less than the average trajectory heating
have been used to approximate temperatures for the asym-
metric heating problem. The steady-state heating level was
repeatedly reduced by a factor of 2 until a set of basis vec-
tors was obtained which significantly improved the accuracy
of the reduction method. Figure 10 shows the average
absolute error in nodal temperatures for sets of basis vec-
tors based on average heating and for one-sixteenth the
average heating. The adaptive process was employed for both
sets of basis vectors. Use of the vectors based on lower
heating reduced the number of vectors required for a con-
verged solution to 16 and reduced the average nodal
temperature error from 9°R to about 5.5°R. A comparison
of the temperatures from the reduction method and the
temperatures from the full-system solution is shown in figure
11. Temperatures are shown for points on the surface, the
midpoint of the HRSI, and the aluminum structure. Agree-
ment between the reduction-method and the full-system solu-
tions is reasonably good throughout the temperature history,
with the maximum error less than about 4 percent. Thus,
for this 84-degree-of-freedom problem, the reduction method
gives good results with about one-fifth the original degrees
of freedom.

Single Bay of Shuttle Wing

To investigate the effectiveness of the reduction method
for thermal analysis of a more realistic structure, the tech-
nique was used to analyze the thermal response of bay 3 of
the Shuttle wing segment shown in figure 1. Details of
previous analyses of this structure are given in references
11 and 12. A thermal model of the structure and thermal pro-
tection system for bay 3 and a finite-element representation
of the thermal model are shown in figure 12. In figure 12(a),
the stringer-stiffened and corrugated aluminum structures are
represented by various effective thicknesses denoted A.
Similar to the simpler problems the HRSI, FRSI (flexible
reusable surface insulation), SIP, and RTV were modeled
by two-dimensional elements. A quasi-linearized radiation

representation was used on the HRSI and FRSI surfaces to
model radiation losses (ref. 14), and one-dimensional con-
duction elements were used to model the aluminum struc-
ture. The grid shown in figure 12(b) has 122 nodal points
and, hence, 122 degrees of freedom. The lateral edges and
aluminum structure were assumed to be adiabatic, and the
two outer surfaces were heated by the heat pulses shown in
figure 13. The nature of the heat pulses for both surfaces
is significantly more complex than those in the previous prob-
lems, in that the spatial distribution changes dramatically on
the lower surface as air in the boundary layer over the wing
undergoes transition from laminar to turbulent flow begin-
ning at about 650 sec into the heat pulse. Both the distribution
of material and the imposed heating result in an asymmetric
thermal response for this problem.

Based on the results from the previous problem with
asymmetric heating, basis vectors were generated by solv-
ing an eigenvalue problem with temperatures from a pseudo
steady-state problem for one-tenth the average applied heating
from the heat pulses shown in figure 13. Again, only ther-
mal mode shapes with a single half wave in the lateral direc-
tion and their edge-to-edge reflections (mirror images about
the vertical centerline) were selected as basis vectors.
Although several combinations of these vectors were tried,
errors in the nodal temperatures were unacceptable. When
additional mode shapes from an eigenvalue probiem based
on initial temperatures were included as basis vectors,
reasonably accurate results were achieved. A set of basis vec-
tors which included an adaptive mode, six modes based on
initial conditions, a unit mode, and a variable number of
modes from the set based on one-tenth the average heating
was used as a suitable set of basis vectors for this problem.
Three representative vectors from this set are given in table
L. The first typifies vectors which had nearly equal dominance
in the two surfaces of the wing. The second and third vec-
tors typify those that were dominant in the lower and upper
surfaces, respectively. Most of the vectors in the set were
associated with dominance in the lower surface. Since the
two surfaces were connected by the relatively thin aluminum
webs (fig. 12(a)) and internal radiation was neglected, the
thermal coupling between the two surfaces was very small.

A reduction-method solution was attempted with various
numbers of basis vectors, and the convergence at 300 sec
is shown in figure 14. Use of 36 vectors gave a solution hav-
ing a maximum temperature error of 65°R. A comparison
between the reduction-method and full-system results for
¢t = 300 sec is shown in figure 15. The agreement between
the two solutions is very good; however, when the solution
was extended further into the heat pulse, the errors in the
model temperatures from the reduction-method results in-
creased to about 200°R in the aluminum webs which con-
nect the two wing surfaces. These large errors are believed
to stem from the weak coupling between the two wing sur-
faces, which results in very few eigenvectors that are domi-
nant in the aluminum web region of the structure. After
several futile attempts to determine additional basis vectors
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which would improve the results, solution of this problem
was abandoned. It was hypothesized that for such weakly
coupled problems, it may be beneficial to separate the prob-
lem into parts, each with its own set of basis vectors. This
hypothesis is tested on a problem consisting of only the lower
wing surface of bay 3, as described in the next section.

Lower Surface of Bay 3 of Shuttle Wing

The finite-element model (fig. 12(b)) was modified to re-
tain only the lower aluminum skin and its associated ther-
mal protection system on the lower surface of bay 3 of the
Shuttle wing. The lateral edges and aluminum skin were
assumed to be adiabatic, and the outer surface was assumed
to be heated by the heat pulse for the lower wing surface
(fig. 13(a)). Because of the material distribution and spatial
variation of the heat pulse, the thermal response is asym-
metric. A set of basis vectors consisting of an adaptive mode,
a unit vector, and 12 modes and their edge-to-edge reflec-
tions (including the reciprocal of the mode | vector) from
an eigenvalue problem based on temperatures from a pseudo
steady-state problem with one-tenth the average applied
heating was used. Maximum errors of up to 9 percent
occurred at about 600 sec into the heat pulse. These errors
were considered excessive, and a second solution was ob-
tained with a similar set of basis vectors from an eigenvalue
problem based on initial temperature conditions. The max-
imum errors decreased to about 7 percent. The maximum
errors occurred along the lateral edges of the model, which
are significantly affected by the presence of heat sinks
associated with the additional structural material where the
wing webs meet the surface structurc. Comparison of the
basis vectors for this problem with those from the problem
with a constant skin thickness and an asymmetric heat pulse
revealed a greater lateral variation in the basis vectors
associated with the heat sinks. Accordingly, to reduce the
lateral variation in the basis vectors, a set of basis vectors
based on initial temperatures was generated, but with the
aluminum thicknesses at the model edges reduced from 0.304
to 0.152 in. and from 0.289 to 0.145 in. The basis vector
set consisted of an adaptive mode, a unit mode, and up to
12 modes and their edge-to-edge reflections (including the
reciprocal of the mode 1 vector) from the eigenvalue solu-
tion for initial temperature and reduced aluminum heat sink
thickness. A solution using 24 basis vectors from this set was
found to have maximum errors of less than 5 percent, ex-
cept from about 650 sec to 1100 sec into the heat pulse, when
the maximum errors remained at the 7- to 8-percent level.

From figure 13, it is clear that the spatial distribution of
the applied heating changes radically during the time inter-
val from 650 to 1100 scc into the heat pulse. Figure 16 fur-
ther illustrates these changes for various times between 650
and 1100 sec. Thus, to accommodate the changes in applied
heating, it was necessary to add an analytically generated
basis vector which incorporates the changing nature of the
applied heating. An additional adaptive basis vector with the
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character of the applied heating at the model surface and a
rapid decay rate in the model interior was generated as a func-
tion of position, as follows:

L@y = e 2050 Yy 7

where ¥(y;) are the heating distributions in figure 16, x; is
the nodal position in the HRSI measured from the heated sur-
face, yy is the corresponding nodal position along the heated
surface, and f is the thickness of the thermal protection
system. When this analytically determined basis vector was
combined with the set from the eigenvalue problem based
on initial temperatures and reduced aluminum heat sink
thicknesses, the reduction method gave acceptable
temperature errors over the entire heat pulse.

The maximum error in the nodal temperatures is shown
in figure 17 as a function of the number of basis vectors.
Convergence was obtained with the 23 basis vectors listed
in figure 17 at 200 sec into the heat pulse. The maximum
error with these 23 basis vectors is shown in figure 18 for
the entire heat pulse and indicates that inclusion of the vec-
tor of equation (7) reduced the maximum error to 4 percent
or less. Temperatures from the reduction method using 23
basis vectors are compared with temperatures from the full
system of equations in figure 19. Temperatures are shown
for the HRSI surface, an interior point of the HRSI, and the
aluminum structure for three lateral locations: the left side,
the point of maximum temperature in the aluminum struc-
ture, and the right side. The reduction-method results agree
rcasonably well with those from the full system at each loca-
tion over the entire heat pulse. Thus, for this reasonably com-
plex 84-degree-of-freedom problem, the reduction method
gives satisfactory results with about one-third the original
degrees of freedom.

Large Space Antenna

The reduction method was applied to the thermal analysis
of the reflector of a graphite/cpoxy tetrahedral truss antenna
associated with the microwave radiometer spacecraft (MRS)
shown in figure 20. The MRS is designed to measure soil
moisture from low Earth orbit and is described in reference
13. A 109-degree-of-freedom finite-element model of the
reflector is shown in figure 21. The structure consists of two
sets of surface elements joined by a set of diagonal elements
and is modeled with one-dimensional tubular conduction and
radiation elements. The temperature-dependent thermal
emissivity € and specific heat ¢, for the graphite/
epoxy composite are shown in figure 22. In this problem,
heat transfer by conduction is essentially negligible relative
to the radiation heat transfer (ref. 13); however, the ther-
mal mass and specific heat are sufficient to require a tran-
sient analysis rather than steady-state solutions for accurate
predictions of temperatures in the structure. The maximum
and minimum heating rates for the surface elements and the



diagonal elements for a single orbit of the MRS are shown
in figure 23.

In an initial solution attempt, a set of basis vectors for
this problem was generated by solving an eigenvalue prob-
lem based on temperatures from steady-state heating at
t = 0. A solution obtained with 20 of these basis vectors
had maximum errors of 22 °R (nearly as large as the max-
imum temperature differences expected in the structure). Ad-
ditional vectors improved the results, but the process was
converging slowly, and it was apparent that a large number
of basis vectors would be required for convergence. A second
set of basis vectors was generated with five steady-state
temperature distributions at the time slices indicated in figure
24 and a unit vector. Plots of absolute errors in nodal
temperature for the two solutions are shown in figure 25 for
a single orbit. Maximum errors for the second set of basis
vectors were less than 3.5°R. A comparison between the
reduction method using the second set of basis vectors and
the full-system solution for maximum and minimum
temperatures in the antenna for a single orbit is shown in
figure 26. Differences between the two solutions were only
about 0.5 °R, so the two solutions are plotted as single curves.
Thus, for this 109-degree-of-freedom radiation-dominated
problem, accurate results were obtained by the reduction
method for a problem size reduction of a factor of 18.

Concluding Remarks

A reduction method which combines classical Rayleigh-
Ritz modal superposition techniques with contemporary
finite-element methods to retain modeling versatility as the
problem size (number of degrees of freedom) is reduced has
been applied to transient nonlinear thermal analysis. The
method has been used to obtain approximate solutions for
temperature histories of models of a portion of the Shuttle
orbiter wing subject to reentry heating and to a large space
antenna reflector subject to heating associated with a low
Earth orbit. Results were found to be highly dependent on
the choice of basis vectors. Sets of eigenvectors obtained
from two thermal eigenvalue problems associated with the
transient problems were used as the initial choice of basis
vectors in the approximate solutions. The first eigenvalue
problem was based on thermal properties evaluated at the
initial temperature conditions. The second was based on ther-
mal properties evaluated for a temperature distribution cor-

responding to a nonlinear steady-state problem with time-
averaged thermal properties and heating from the transient
problem. Additionally, to achieve improved accuracy with
fewer basis vectors, it was necessary to add an adaptive vec-
tor based on the temperature distribution from the previous
time interval, a constant (unit) vector, the reciprocal of the
first eigenvector, and reflections (mirror images) of the vec-
tors from the eigensolutions. Good agreement was obtained
between the reduction-method and full-system solutions for
the conduction-dominated Shuttle wing problems with size
reductions up to a factor of 5 for simplistic representations
of the Shuttle wing structure (i.e., constant material distribu-
tion and spatially uniform heating). However, when more
realistic representations of the structural and thermal pro-
tection system material distributions and spatially varying
heating were considered, it was necessary to enrich the set
of basis vectors. By adding an analytically generated vector
based on the changing heat distribution, maximum tem-
perature errors were reduced to 4 percent for problem size
reductions of a factor of 3.

For the radiation-dominated orbiting large space antenna,
the reduction method was found to give unacceptable
temperature errors when thermal eigenvectors were used as
basis vectors. However, when temperature distributions cor-
responding to steady-state temperature distributions at several
time slices in the orbital heating profile were used as basis
vectors, maximum temperature errors of less than 3.5°R
were achieved for the entire orbit while achieving a problem
size reduction of a factor of 18.

The results of this paper indicate that the reduction
method has excellent potential for significant size reduction
for radiation-dominated problems. For conduction-dominated
problems, the large reductions in problem size accrued only
for those with the simplest geometry and heating distribu-
tions. For more complex conduction-dominated problems,
especially those with complex spatial and temporal variations
in the applied heating, additional work was necessary to
generate alternate basis vectors which permit significant prob-
lem size reductions.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 13, 1984
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TABLE I. THERMAL MODE SHAPES FOR SHUTTLE WING SINGLE-BAY PROBLEM

[Table corresponds to finite-element model shown in fig. 12(b)}

(a) Equally dominant in upper and lower wing surfaces

—0.437 1—0.568 } —1.000 |—0.983 |-0.561 | —0.466
—0.335 |-0.373 | ~0.760 |—0.744 |-0.370 | —0.330
~0.260 | -0.278 | —0.615 {—0.600 |—0.277 | —0.257
-0.212 {—0.223 | -0.517 [{-0.504 |—0.222 | -0.211
—0.212 |-0.223| -0.517 | —0.503 |-0.221 | -0.211

—0.196 —0.195
—0.054 —0.063
—-0.035 —0.040
—0.030 —0.032

—0.030 |-0.030 [ —0.031 {~0.032 |-0.032 |-0.032
"’ —0.030 |—0.030 | —0.031 |-0.032 |-0.032{—-0.032
‘ —0.032 }-0.032 | —0.034 | —0.035 |—0.035|—0.035
—0.032 1-0.032 | —0.034 | —0.035 |—-0.035 | —0.035
—0.036 | —0.036 | —0.038 |—0.039 |—0.040 |-0.039
—0.040 [—0.041 | —0.043 | —0.043 | —0.045 |- 0.045
—0.046 | —0.046 [ —0.049 [—0.050 |—0.051 |-0.051
—0.053 {—0.054 | —0.057 }—0.058 {-0.059 |-0.059
—0.063 | —0.065 | —0.068 {—0.069 |-0.071 |—0.071
—0.077 | —0.080 | —0.084 |—0.085 |—0.087 |—0.087
—0.100 {—0.103{-0.109 |-0.110 |-0.113}-0.113
—0.140 | —0.146 | —0.153 |—0.156 {—0.160 |-0.160
-0.236 | —0.246 | —0.257 |—0.261 [—0.267 |-0.267
—0.705{-0.738{—0.756 {—0.766 {—0.770 | -0.773

(b) Dominant in lower wing surface (c) Dominant in upper wing surface

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.019| 0.020{ 0.020{ 0.020| 0.020| 0.020
0 0 0 0 0 0 —0.8951—0.956 | —0.980 | —1.000 | —0.999 | —0.956
0 0 0 0 0 0 0.010] 0.026| 0.031] 0.030| 0.026] 0.009
0 0 0 0

0 0 0 0
—-0.003 —-0.009 0 0
—-0.076 —~0.139 0 0
—0.049 {-0.018 | —0.056 | —0.071 |-0.033 |—0.081 0 0 0 0 0 0
—0.046 | —0.016 | —0.053 | -—0.067 |-0.028 |-0.076 0 0 0 0 0 0
0.521| 0.482] 0.575| 0.752| 0.853| 0.998 0 0 0 0 0 0
0.522| 0.483 0.576 | 0.754| 0.854| 1.000 0 0 0 0 0 0
0.390| 0.424] 0.507| 0.615| 0.657} 0.779 0 0 0 0 0 0
0.019| 0.126| 0.137 | 0.118{ 0.106| 0.109 0 0 0 0 0 0
—0.318|-0.236 | —0.304 {—0.423 |-0.476 | —0.591 0 0 0 0 0 0
—0.416|-0.459 | —0.552 {—0.691 |-0.772 | -0.915 0 0 0 0 0 0
—0.260|-0.417 { —0.471 |-0.554 |-0.631 [-0.705 0 0 0 0 0 0
—0.006 | —0.135 | —0.123 [-0.118 |-0.146 |—0.124 0 0 0 0 0 0
0.216| 0.226} 0.280 | 0.359| 0.408| 0.489 0 0 0 0 0 0
0.294]| 0.459] 0.516| 0.628| 0.730| 0.819 0 0 0 0 0 0
0.247| 0.431| 0470 0.564| 0.659| 0.724 0 0 0 0 0 0
0.111| 0.165| 0.182| 0.217]| 0.247| 0.275 0 0 0 0 0 0
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Figure 2. Simplified model of Shuttle orbiter wing.
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