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Summary

-OLOR	 ILLUSTRATIONS

This report summarizes the design and experimental testing of end-point
i position controllers for a very flexible one-link lightweight manipulator.

First, we describe the latest upgraded version of the experimental set-up.

Second, Nye discuss the basic differences between conventionnal joint-angle
1 feedback (as used for today's manipulators) and end-point position feedback.

In the third part, we outline a general procedure for applying modern control
methods (steady-state LQG design) to the problem at hand. The main difficulty
with LQG design methods is to choose appropriate values for the weighting
parameters that are used in the performance index to be minimized. We show in
this report the relation between these parameters and the bandwidth and control.,
stiffness of the resulting end-point position closed-loop system. An important
result obtained via the modern control design is that joint rate angle feedback

4
in addition to the primary end-point position sensor us essential for adequate

t
disturbance rejection capability of the closed-loop system.

In the next section, we document results on the use of a low-order multivari-
kr' able compensator- design computer code; called "Sandy". A fourth- or=der com-

pensator was successfully demonstrated on the experimental arm, with similar
performance to the one for the LQG 9th order compensator.

The last section outlines a solution to the problem of control mode switching
between position sensor sets. This method requires the use of a full-order LQG

A
controller.

As a general conclusion, the proof of concept for end-point position feedback

C.
for a one link flexible manipulator has been demonstrated in the laboratory.
The bandwidth obtained with the experimental end-point position controller

I is about twice as fast as the beam's first natural cantilevered frequency, and
comes within a factor of four of the absolute physical speed limit imposed by the
wave propagation time of the beam. The next logical step is to extend this new
capability to multi-link flexible manipulators.

2;

9

—1—

It

i

a

I
i

^I
;

I

J



I Introduction

The research reported in this report is a laboratory demonstration of feed-
back control schemes for fast and accurate end-point positioning of a single link
light-weight and very flexible manipulator. The central problem adressed here is
the problem of controlling the end-point (hand) of a manipulator by measuring
its position at that point and using that measurement to apply a control torque
with an actuator at the other end of the flexible manipulator. With a light-weight
manipulator and end-point sensing, we can achieve both high speed motion and
fast vibration settling times.

Research on elastic manipulators has been concerned so far mostly with the
difficult dynamic modelling problem [11),[121,[15[,[181. Control schemes for elastic
manipulators are still in their first stages of development [1111116]1[17]1[18]1[191.
Note also that there is some common ground between the development of control
algorithms for large space flexible structures [221,[231,[241,[251 and for elastic
manipulators .

The best example of an existing very flexible manipulator is the Space
Shuttle Remote Manipulator System, developed and built by Spar Aerospace
Inc. for NASA. Its first cantilevered vibration frequency with all , joints locked is
in the range of 0:04 Hz to 0,35 Hz, depending on the payload [13],[141. It uses a
conventional independent joint servocontrol, and it moves relatively slowly (0.5
deg/sec) so as to minimize the elastic deformations. It is expected that a variety 	 i
of new manipulators will be developed as part of the Space Station project under
NASA direction. Among other things, manipulators can be used in space as aids
for space-structures assembly and for many specialized tasks such as in-orbit
satellite repair and refueling [211.

This report extends the results given in [1]. After a brief review of the
experimental set-up and of the dynamic modelling, the next three sections cover 	 A,
the position control design problem: (1) basic differences between joint angle
and end-point feedback for some simple feedback laws. (2) design of a high
performance tip position controller using the modern control approach (Linear
Quadratic Gaussian design). (3) application of a design method to reduce the 9th
order LQG compensators to simpler 4th order compensators.

Finally, a new problem specific to elastic manipulators, namely control mode
switching between end-point and joint angle sensors is discussed.

2 Experimental set-up and dynamic modelling

In this section, we describe the latest hardware and software implementations
and then we recapitulate the dynamic model used for control design.

— 2 —
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Fig. 2.1 Overview of the experimental flexible arm (1):

the large hood prevent% the background light frorn disturbing the end-point
photosencor.

Fig. 2.2 Overview of the experimental flexible arm (2):

the analog amplifiers rack, the artaator power amplifier and the MINC H
U!;(' laboratory computer can be seen on the right side of this picture.
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Fig. 2.3 View of the Aeroflex brushless limited angle torque motor:
the lf,% er end of the shaft is connected to a f lni %ire potentiometer. The arm
hub is clamped to the upper end of th , shaft

1

Fig. 2.4 View of the strain-gauges :
* they are glued on each side of the right beam. The strain -gauge positioned

the closest to the hub (left side of the p ;cture) is used for active feedback
control.
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Fig. 2.5 Front view of the arm from the tip:
the last bridKe with its hardened ber llimi cupprr Hex joints (in dark on
the picture) is also ii—d as a mount for the light source detected b% the
photosen'or

Fig. 2.6 Electronics rack :
it contains the differential amplifiers used for amplification and filtering of
the sensors signals.
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2.1 Experimental set-up

The latest version of the one-mater-long experimental arm, shown in Figures
2.1 and 2.2, was designed by Gene Duval, mechanical designer. It is mounted on
the shaft of an Aeroflex torque motor with motion confined in the horizontal
plane. The arm is very flexible in bending (first cantilevered vibration frequency
is 0.5 Hz) but stiff in the other directions. The linearity of the arm elastic motion
has been improved by using a high-grade Aluminum (2024-T3) for each beam
and hardened Beryllum copper for the flex joints (see Figure 2.5). The torsional
rigidity was increased by having a larger separation between each beam and
adding more bridges (8).

End-point position sensing is obtained by focusing the image of a light-bulb
mounted at the tip of the arm on an analog x-y photodetector made by United
Detector Technology. The detector, fixed in the laboratory, has a limited field of
view of about f20 degrees. Other sensors available for feedback are a pseudo-rate
sensor mounted on the actuator shaft and strain-gauges glued on the arm itself
(see Figure 2.4).

	

i	 The overall experimental set-up was upgraded to a professional level by Jim
Maples, electrical engineer. In particular, the following improvements were made:

1. replacement of the Magtech D.C. motor by a brushless limited-angle D.C.
motor made by Aeroflex. The casing for the motor was designed by Cad
Shelef and fabricated in the Aero/Astro department machine shop (see
Figure 2.3). The linear range of the motor is about t50 degrees. The main
advantage of this actuator is its linearity with much smaller friction than
for the Magtech D.C. motor.

2. design and fabrication of a special purpose electronics rack which contains
all the necessary analog amplifiers and filters for sensors signal conditioning.
It is shown in Figure 2.6. For each sensor output, there is an amplifier
with adjustable gain and adjustable low-pass filter (model 21331J by Analog
Devices). The hub potentiometer output as well as the strain-gauges outputs
are also processed through analog differeatiators. 	 )

r 3. a new Analog to Digital board (DAS 1151 made by Analog Devices) replaces
the board from Data Translation because the later generated inacceptable
random noise.

4.

	

	 software improvements on the DEC Mine 11 laboratory computer (LSI
1123): several routines callable from Fortran were added to the user friendly

<<' library of programs available to drive the A/D, D/A and interrupt clock
(JXLIB written by Jim Maples). This includes a fast matrix multiplication
routine written in assembly language. The operating system is RTI1 V.04.

G
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Fig. 2.7 Geometry of the arm models

the flexible arm neutral axis is shown together with the lumped hub inertia.
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The computer codes used to implement the LQG and low-order compen-
sators were re-written so that it is possible for the user to select a desired set of
sensors as well as the order of the compensators.

Programs have been written by Jim Maples and Sandy Alexander to
download automatically the control gains from the VAX computer to the MINC
11 so as to facilitate the design/experimental verification process.

b. software additions on the STAR-VAX 782 computer: a major improvement
to our computational power was the installation of the computer-aided
design program called CTRL-C made by Systems Control Technology. This
package is based on the program "MATLAB", originally developed by C.
Moler at the University of New Mexico. It is essentially a powerful "desk
calculator" for multivariable linear control design (continuous and discrete),
digital signal processing and identification. It is also a convenient laboratory
tool for data manipulation and plotting. In particular, experimental data
can be easily loaded in the program and then identification of the open-loop
or closed-loop system can be performed by CTRL-C.

The user can write his (or her) own set of procedures which use the available
primitives: new algorithms can be easily written with much faster turnaround
development time than if they had to be programmed in Fortran,1

4=

F(

rri	
2.2 Dynamic modelling

Figure 2.7 is a schematic of the arm neutral axis of length L 0(t), the angle
between a fixed reference and the tangent line at the root of the arm neutral
axis, is measured with a film-wire potentiometer. The pseudo-rate is obtained by

t<;	 analog differentiation of 0(t) • The tip sensor output is defined as

yt(t) = w(L, t) + LO(t) 	 (1)

wh:.. - ,., (x, t) is the elastic deflection measured from the tangent line at the root
of the arm (w(x, t) is assumed to be small). The output of a strain-gauge mounted

at a distance z from the arm root, is proportional to the quantity tf'' as (z, t),
where ty is the beam thickness.

The dynamic model is identified by open-loop sine sweep tests (see (1) for
more details). The dynamic equations are given as a set of uncoupled second-order
differential equations in modal form:

l We believe that CTRL -C (like its competitor program Matrixx from Integrated Systems
Incorporated) will become some sort of standard in universities as well as in control systems

C:	 research and development centers.
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i=Fa+CT
z = Hx	 (2)

where T is the control torque and x, F, G and H are the following matrices :	 '►

90	
0	 1	 0

40	 0	 0	 0	 1
4t	 0	 10

0
0

I	 IT

9n	 O	 0 z	 1	 d(0)_aln —2Snwn

(3)

1 0	 ^(0) 0 ••.	 ^(0) 0

H=

 [

L 0	 Ol(L)	 0 ...	 On(L) 0

0 0	 d̂ (0) 0 ...	 (p) p

The three rows of H correspond to the mode shapes at the locations of the
hub angle sensor, tip position sensor, and nearly colocated strain-gauge. Note
that the non•,zero elements of the G vector, often called influence coefficients,
are the same as those of the hub angle measurement vector, Ha. This is easily
explained by the fact that the hub rotation caused by the actuator is measured
directly by the hub angle sensor. It was found that 3 elastic modes are sufficient
for an adequate model of the arm dynamics. Table 1 gives the model data for
the first 3 elastic modes of the arm (see (21 for additional data with a payload
tip mass). The total moment of inertia IT is equal to 0.44 Kg m= . The maximum
available torque is about 1.25 Nm.
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TABLE 1 8th order model parameters for flexible arm with no payload

From this model, we can derive the open-loop s-plane transfer functions from
torque input to a given sensor output (see appendix A).

3 Joint angle versus end-point position feedback

In this section, two simple control designs are developed, the first one using
only colocated po8ition sensor and actuator, the second one using the end-point
position sensor not colocated with the actuator.

3.1 Conventional joint angle feedback

3..4.1 Design

Most of today 's robot joint- angle controllers, either analog or digital, consist
of a proportional, derivative and integral control network. The control parameters
are designed for each joint, one at a time, either by analysis or perhaps more
often by trial and error on a prototype.
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Fig. 3.1 Root-locus for proportional and derivative joint feedback:

this locus is plotted versus the rate gain k,.
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Fig. 3 .3 Experimental step responses

proportional and derivative joint feedback (medium gain)
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For a simple proportional and derivative hub angle feedback, the control
torque u(a) is given by

u(a) = —kpO(a) — k,®(e)

_. —k,(a+ k)0(s)	 (4)

The shape of the root-locus of the closed-loop poles depends on the location of
the compensator "zero", se = —. Figure 3.1 shows a typical root-locus of the

closed-loop poles versus the gain k„ for a ratio of 	 equal to 1 second.l

For increasing k„ the rigid-body closed-loop poles move from the origin of the
s-plane towards tho cantilevered zeroes. The first pair of cantilevered zeroes at
f = 0.5 Hz limits the control bandwidth. The rigid hub of the beam will appear to
be clamped for very large gains. For a gain k, = 1 Nm/Rad/Sec -1 , the damping
coefficient of the rigid body poles is equal to 0.7. The corresponding position
feedback gain kp, which is equal to 1 Nm/Rad, is a low gain: the feedback torque
will reach its saturation value of .l  Nm only for a large initial error of 60 degrees.
Because this arm is very flexible - resulting in cantilevered zeroes being close to
the origin and in a large separation between the first zero/pole pair of the hub
angle transfer fuliction - a large value for the position gain kp must be traded-off
versus an adequate damping coefficient for the rigid-body poles.

Theoretically, this colocated control law results in infinite gain margins and
90 degrees of phase margin. However, the gain margin will be always finite
and the phase margin will be lower for any practical system, because there is
always unmodelled actuator and sensor dynamics as well as delays for discrete
implementations. Nevertherless, the practical stability margins remain very good.

3.1.2 Experimental results

Figure 3.2 shows the experimental step response for the colocated control
law implemented with a sampling rate of 100 Hz. The hub angle command is
computed so that the resulting tip sensor offset is 10 cm. The hub angle reaches its
commanded position in 2.5 seconds. There is nearly no overshoot in the response,
as predicted by the design.

Figure 3.3 shows a response for a higher position gain, kp = 3 Nm/Rad, and
a position to rate gain ratio of 2 sec -1 . The rise time is shorter at the expense of
more overshoot and smaller damping.

The recordings of Figure 3.4 were obtained by applying a known tip force
which is then released. The control gains are the same as for Figure 3.3. It takes
more than 4 seconds for the tip motion to be completely damped out.

'The root-locus is also plotted versus the postion gain ky, because the ratio ^ is fixed

- 13 -
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3.2 End-point feedback control

3.2.1 Design

It a proportional and derivative control law is used with the tip position
sensor in3tead of the hub angle, the odd-numbered l flexible modes (#1 and #3)
become unstable for an extremely law gain. A simple end-point controller consists
of a combination of hub rate gain feedback and a lead-lag compensator for the
tip sensor. The corresponding control torque u (s) is expressed as

U(8) 
_ —kr9(s) — kyt(s 

+ 
1) Yt(s )	 (5)(b+1) I

In order to find adequate values for the four design parameters kr, kt , a and b in
Equation (5), we use the method of successive loop closure:

	

► rate loop closure: a root- locus versus the gain kr is shown in Figure 3.5.a 	 j
This locus is slightly different from the one for the standard colocated rate
feedback, because the rate sensor model includes a first-order pole at 10 Hz

Still the gain margin for the analog rate loop is large. kr is chosen so that the
damping coefficient of the first vile `ion mode is equal to about 0.7: kr = 0.5
Nm/Rad/sec.

► t ip loop closure: for a = 3 sec t and b = 30 sec t , a root-locus of the

	

closed-loop poles versus the gain ky, is displayed in Figure 3.5.b The closed-loop	 q

	

rigid-body poles have a damping coefficient of 0.7 for a gain value of ky, = 3.0	 i(
Nm/m. If the tip sensor gain is increased by 65 % from this design value, the

	

closed-loop rigid body poles become unstable. This relatively low gain margin 	 1

	

for the tip loop is explained by the attraction of the right-half plane zeroes. It 	 4
is characteristic of a "strongly" non-minimum phase system.

	

Another interesting result is that because of the colocated rate feedback 	 i

loop, the overall actuator loop transfer function GK(s) has become "less" non-
minimum-phase than if there were no rate feedback at all. More will be said on
that subject in the section 4.4.3.

3.2.2 Experimental results

The control law is implemented with a sampling rate of 100 Hz. Experimental
recordings of the sensor outputs are shown in Figure 3 .6 together with simulated
outputs for a position step command of 10 cm.

tThese modes, also called "unstably-interactive modes", whose modal gains Oj(L) are of opposite
signs to the hub modal gains to).

— 15 —
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` The key features of this step response are (1) a 130 rnsec, pure delay between
initial command and first actual motion of the tip, (2) the non-minimum phase
behavior of the tip motion and (3) the forward and reverse motion of the hub
angle. This typical hub motion is not produced "naturally" for the case of the
colocated control law (1) of the previous section. (Obviously, this is not true for
the case of a high-order compensator — using hub angle feedback control only).

Notice the lightly damped small component at the third vibration mode
frequency, which is present in the strain-gauge output. Agreement between ex-
periment and simulation is quite good.

The recordings of Figure 3.7 shows the system response to initial conditions
i when the tip gain kj is increased by 70 % from its nominal value. In agreement

with the analysis, the control system becomes unstable. The frequency of the
unstable mode (f = 1.45 Hz) is the one predicted from the root-locus shown in
Figure 3.2.

Finally, Figure 3.8 is the counterpart to Figure 3.4, showing the response
of the nominal system to the same disturbance force release for the end-point
position controller, yielding faster damped tip motion than for the colocated
control (2 seconds instead of 4 seconds) . The disturbance response of a dynamic
system is always improved at the location where sensing occurs.

4 LQG design and performance

	

The LQG modern control approach has the primary advantage of being 	 1

able to handle multi-input multi-output systems [3]. In the last ten years, a
considerable research effort has been devoted to the practical use of LQG con-

	

trol design techniques. The concepts of design constraints and stability margins	 ?
previously developed for SISO systems have been extended to NWO systems,

	

]4), (5]. 'These results are directly aprlicable to our design problem. Although the 	
1

experimental set-up involves only one actuator, it is still a truly multi-output
system because in addition to the prime end-point sensor, we have used a colo-
cated rate sensor and strain-gauges mounted on the beam. Attempts to design a
tip control system with three sensors by the classical method of successive loop
closures proved to be a rather difficult task. With the LQG approach, adding
auxiliary sensors to a good nominal design is much simpler. Furthermore, once

	

a satisfactory LQG design has been obtained for one flexible arm, it is easy to 	 +
make a redesign for a different , arm — for instance one that is 10 times stiffer.

The design of an LQG tip compensator was discussed in Reference 1. Using
0	 the separation theorem [3], regulator and estimator are designed independently.

— 18 —

4



After reviewing briefly the regulator design, we focus our discussion on the
estimator and on the performance analysis resultsl.

4.1 Regulator design

Because the quantity to be controlled is the tip position, yt , the cost function
J, may be choosen as

Jr = fco (ye + r2yi -i 	
sm)dt
	 (6)

where an increase in weighting r adds more damping to the closed-loop regulator
poles. T,,.., is a design parameter in units of Nm, and yt is implicitely scaled in
units of meters. The full-state feedback gains C are computed from an automated
computer code (Optsys, * (51) which solves for the steady-state Ricatti equation
derived for the cost function (6) with the linear dynamic model (3). For T 2,,,,,, _
101 Nm 2 /m2 , for example, we find that we can achieve the following well-damped
poles:
—6.1 f 2.7j, —7.7 f 11.4j, —6.5 ± 23.8j, —5.4 f 48.5j.

[11 and 121 explain the fundamental limit of the tip closed-loop system to follow
a given tip command. This limit does not depend on which sensors are used
for feedback, but only on the flexible arm dynamics characteristics via the non-
minimum phase open-loop tip transfer function. Physically, it is explained by the
time required for a bending wave to travel from the actuator to the tip.

4.2 Continuous estimator design

Before starting any design, the first question to answer is which sensors will
be used as inputs to the estimator. Depending on which sensors are used, the
resulting closed-loop performance will change drastically.

The primary sensor is the the tip positon sensor, whose output is to be
controlled. A colocated rate sensor is also available and is known to be a good
means for adding damping to a flexible system. Therefore, it seems reasonable
to consider this sensor as an additional input to the estimator. Then, we have
at our disposal strain gauges; they directly sense the amount of bending of the
arm without measuring any rigid body motion, and they should also be useful to
enhance the quality of the state estimate i.

Isee reference Ili and (21 for more details on this subject, including experimental verification.
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Fig. 4.1 Finite estimator poles root-locus:
this locus is plotted versus the ratio of the tip sensor noise covariance to the
hub rate sensor noise covariance.
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Fig. 4.2 Finite estimator poles root locus:
this locus is plotted versus the ratio of the tip sensor noise covariance to the
strain gauge 1 sensor noise covariance.

— 20

t
l

i
't

a

s

i	 r

f	
}

1

t

i

I

I

1	 I

I.

^II

I
E

- - 
j ^^

5

el

d'

V

!QiH

^	 N

rl M ....

bvn 1



We design several constant gain full-order state estimators. The three sensors
considered as inputs to the estimator are the tip sensor, the colocated hub-rate
sensor and the strain-gauge 1 (the closest to the hub). Estimator #1 uses the
tip sensor only, Estimator #2 uses the tip and hub rate sensor and Estimator
#3 uses tip, hub rate and strain-gauge 1 sensors. Our main design requirement
is to obtain an estimator with fast and well damped closed-loop poles. Next,
we discuss what is the relation between the noise covariance matrices and the
closed-loop estimator pole locations.

The continuous steady-state LQG estimator reconstructs the "optimum"
estimate x of the state x for the following dynamic model :

i = Fx + rw
z = Hx + v	 (7)

given w and v, random processes whose covariance matrices are respectively Q
and R. R is a diagonal matrix with elements Ry t , RA, Rr, .

The LQG estimator desig, problem is then stated as follows: 	
i

► choose a process noise distribution vector r.

► choose adequate values for the covariance Q and for the ratios kl = R and
RJR

k2

The vector P is chosen equal to the actuator distribution vector G: therefore, we
assume that the system is perturbed by a fictitious external actuator disturbance.
As we will see later in section 442, this choice results in a closed-loop system
with adequate disturbance rejection capabilities.
Following Doyle and Stein [5), this choice provides for adequate stability margins
for the closed-loop system with respect to actuator gain and phase errors.

In order to choose the two ratios kI and k2r we know that the closed-loop
estimator poles are the stable roots of the root square ::haracteristic equation [3]:

det[R + Z(s)QZT ( —s)[ = 0 (8)

where Z(s) is a column vector made of the three sensors open-loop transfer

functions. When the ratio I&t goes to infinity, six of the estimator poles will

converge towards finite locations l , while the remaining two poles converge to
infinity in a second-order Butterworth pattern. As shown in Appendix B, we

IThese asymtotic poles are called "compromise zeroes" by Professor A.E. Bryson.
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obtain the asymptotic locations of these finite estimator poles from Equation
(8): they represent an upper limit on the maximum bandwidth attainable for an
estimator driven by a given sensor set.

The revults are the following:

► The finite estimator poles of Estimator 1 approach the stable open-loop tip
transfer function zeroes, and the unstable zeroes reflected about the jw axis:

k the slowest pair of poles will go to the location s = —12.
For A =104 Nm 2 /m2 , the estimator poles are: 
— 10.2.+ 13.1j, 	 —8.0:: 2,9j,	 —0.7 d: 24.9j,	 —3.5 d: 48.5j.

► The finite poles of Estimator 2 belong to the stable part of a symmetric root

locus versus the gain k i =, as shown in Figure 4.1. These poles travel from

the open-loop tip :,^,-oes towards the open-loop hub rate zeroes (which are at
the cantilevered fro p 2ncies) . The choice of ki will dictate how much the hub 	 i
rate sensor is used in the closed-loop system. As shown in the figure, adding	 kthe hub rate sensor decreases the maximum estimator bandwidth (but it has
some prime advantages as we show in sections 4.4.2 and 4.4.3) .

{ For A., = 10 4 Nm2/m2 and ki = 2000 m2/Rad/Sect , the estimator poles are:

—0.6,	 —09.4 1 , 	—5A d: 8.6j,	 —3.0 1 18.3j,	 —1.7 :b 48.7j.

► For each value of the ratio k i , the finite poles of Estimator 3 again belong to a 	 1

locus versus the gain k2 =. One such locus is shown in Figure 4.2 for the

l previously chosen ratio kj = 2000 m 2/Rad/Sec2 . Again, for increasing values

I of k2 , one pair of estimator poles will move toward the origin: this indicates 	 Y
that for large k2i the rigid body information from the tip sensor is lost at	 l
the expense of the strain gauge signal. For= 10 4 Nm2/m2 and k2

m2 /Rad 2 , the estimator poles are:	 A
—7.5,	 —98.4 1	—6.4 f 5.8j,	 —3.5 f 17.8j,	 —2.6 f 46.2j.

t
For: = 10 4 Nm2/m2 and k2 = is m2/Rad2 , SEie estimator poles are:

—13.3,	 —96.3,	 —5.9 f 4.Oj,	 —3.7:h 16.4j,	 —3.6 f 45.3j.

In conclusion, the method described above givr q a guideline to choose the

sensor noise covariance ratios k i and k2 . The process noise covariance Q is in-
creased iteratively until the finite estimator locations get close to their asymptotic
locations discussed above. Once Q and R have been chosen, a computed code
(Optsys, [81,[81) is used to solve for the steady-state filter gains K.

This method could be extended to multi-input designs: for instance for a
two-input system, there will be one more design ratio, the ratio of Actuator
2 process noise covariance over the one of Actuator 1. This ratio balances the

participation of one actuator versus the other.
C
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4.3 Closed-loop performance

The combined continuous regulator/eatimator can be viewed as a cla sicaS
compensator whose transfer function is: H(s) =+ —C(s1— F+GC+KH)" 1 Ky(e)
where the transfer function matrix H(s) is a row matrix with up to three ele.
ments, C is a row matrix for the full-state feedback gains, and K Is the filter
gain matrix with up to 3 columns. From the previous section, we obtain three
different feedback systems which originate from the same regulator design but
from different estimators: Compensator #1 uses only the tip position for feed-
back; Compensator #2 uses the hub rate in addition; Compensator #3 uses
both hub rate and strain gauge 1 in addition. Table 2 summarizes the design
parameters chosen for these three compensators. Our objective is to compare
their closed-loop performance.
All the results discussed in this section have been obtained for the s-plane
design, unless mentioned otherwise. The discrete implementation is discussed in
Appendix D, following the approach of Katz and Powell [8].

h
.Y

acMs
eorarisaa (^( ^ (^') (^^

tip ottly UP 00 ca

tip and
hub rata 1M 1 2000 cc

tip, hub
rata sad llt 1 2000 90

strain CLup

TABLE 2 9-plane weighting matrices used for the three different compensators:

4.3.1 Step response command,

The standard way to implement a tip command yta to the LQG compensator
is to feed the command to both the actuator and th:; estimator.
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i
The resulting Equations are

i = (F — CC — KH)x + Cue + Ky
e

ue = Krefyte

K,ef is chosen so that the steady -state gain from commanded to actual tip
position is unity. As long as the actual beam dynamics does not deviate from the
model, and the estimator is not excited by unmodelled external disturbances, we
know by the separation theorem that the closed - loop transfer function from tip
command to tip position will be given by:

Me) _	 N01(e)	 (10)
yee(e)	 det(a!—F+CC)

where N,1 (8) is the zeroes of the open-loop tip numerator. Consequently, whether
the hub rate and/or the strain -gauge are fed back or not in addition to the tip
position measurement, the tip step response will be the same. Furthermore, even
if the hub angle is used for feedback instead of the tip position, Equation (10)
still holds.

4.3.2 Disturbance response

One of the most important items to consider when designing a robot position-
ning system is the effect of actuator friction. If Td is the average friction from
the D.C. motor, the resulting offset error on the tip position will be: y, = V

It.L.,
where K„ is the steady-state tip compensator gain. Therefore the design goal is
to make K„ as large as possible.

The expression for K„ is given by : K„ _ —C(—F + CC + KH)'Ke
where Kt is the tip filter gain. Figure 4.3 shows a plot of K„ as a function
of the design ratio, for the three different compensators. We first notice

the dramatic improvement when the hub rate is added in the feedback system.
The limitat,on in K„ for a "tip only" compensator is due to the non-minimum
phase properties of the open -loop tip transfer function. When the hub rate is
added, K„ will tend asymptotically toward the asymptotic value it would have
for full-state feedback; this value depends only on the regulator gains; it does not
depend on the estimator gains as long as the system (F, G, HL ) —where HL is the
measurement vector— has no non-minimum phase transmission zeroes. When the
nearly-co located strain-gauge is added to the estimator, the rate of convergence
of K„ toward its asymtotic value is faster than for the "tip and hub rate"
compensator as shown in Figure 4.3.
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4.3.3 Robustness

In the design of a feedback control system, the most important step is to
assess how much error can be tolerated in the system parameters before instability
occurs. In the present section, we study two types of parameter errors:

1. variation in the open-loop frequencies.

2. gain and phase errors in the actuator loop and in the tip sensor loop.

Sensitivity to open-loop vibration frequencies:

For the three compensators designed previously, each vibration frequency
(i.e. one eigenvalue of F) is increased or decreased by a given step, one at a
time; the closed-loop eigenvalues of the total feedback system are computed at
each step, until a pair of closed-loop eigenvalues goes in the right-half plane. The
results are summarized in Table 3. The "tip only" compensator is very sensitive
to the open-loop vibration mode frequencies, because it relies on highly tuned
notch filters to provide damping to the system. As soon as the hub trite is added
in the feedback loop, the closed-loop system becomes less sensitive. There is
further improvement when the strain gauge 1 is also added.

n

i

compensator # 1 2 3
increase modal	 neucy 1 23 40 87
decrease modal frequency 1 14 45 100
increase modal frequency 2 72 26 >100
decrease modal frequency 2 26 25 32

%increa"E30frequency3 >100 >100 >100
decrease modal	 nency 3 27 1	 20 Sd

TABLE 3 Allowable error in the open-loop vibration frequencies:

instability will occur for the percentage error indicated

Stability margins

Actuator loop

For a single-input single-output system, the stability margins with respect
to actuator dynamics are obtained by studying a Bode plot c'. the open-loop
transfer function "G(s)K(s)", where G(s) and K(s) are respectively the open-
loop model and the compensator transfer function.

I

!

!

a

-28-



F-

1

FRED. IRDS./SEC.I

w
N
c
x
a

w

ti

L

w

x
a

FRED. IRDS./SEC.I

Fig. 4.4 Bode plot of open-loop transfer function CK(s)t
only the tip sensor is fedback

O

ao	 um tuD + rare + S	 i.

so.

le.

0.

l0.

FRED. IRO!i./SEC.I	 i

FRED. IRDS./SEC.1

Fig. 4.5 Bode plot of open-loop transfer function CK(e):

the tip, hub rate and strain gauge I sensors are fedback.

—27—

I
1



For a single-input multi-output system, it is also possible to compute the
open-loop transfer function GK(s) as shown in Appendix C. Figures 4.4 and
4.5 are the Bode plots of GK(s) respectively for the "tip only"(#1) and for the

t "tip, hub rate and strain gauge 1" (#3) compensators. For Compensator #1,
the rigid body gain margin is 3 dB at ws = 4 Rad/sec and the phase margin,
30 degrees. For Compensator #3, the phase always stays above —180 degrees.
There is theoretically no gain margin limit; in reality, there will always be a finite
gain margin because of unmodelled phase lags than occur at higher frequencies.
The crossover frequency is much higher, we = 35 rad/sec The phase margin
is about 50 degrees, a noticeable improvement compared to Compensator #1.
Compensator #3 corresponds to a high gain system.

Its transfer function GK(s) has become minimum phase, while it was non-
minimum phase for Compensator #1. The main advantage provided by a mini-
mum-phase GK(s) is less sensitivity to actuator gain increase. The same thing
happens for Compensator #2. It seems that with high gain colocated rate feed-
back, the open-loop transfer function GK(s) becomes minimum-phase again. The
generalization of this statement to an arbitrary elastic structure is left for future

	

C,	 research.

Doyle and Stein (4) (5) have shown that by increasing the actuator process
noise in the estimator design, the open-loop transfer function GK(a) tends
asymtotically towards the full-state feedback transfer function. This enables the
closed-loop system to "recover" the stability margins of the full-state feedback

E regulator obtained for the actuator loop (60 degrees of phase margin and at
least 6 dB of gain margin). One necessary condition is that the open-loop system
transfer function be minimum-phase.

The only concern in examining the gain plot of Figure 4.5 is the crossover
frequency at 35 rad/sec, which might be too high. At the same time, it might
also be useful to increase the roll-off at high frequencies from ; to -L .  These
two improvements could be obtained by adding an actuator low-pass filter in the
regulator desi gn, or by making the process noise colored instead of white in the
estimator design.

Ti p sensor loop:

Because our primary goal is to control the tip position, it is also necessary
to study the stability margins of the tip sensor loop, with all the other feed-
back loops closed. The corresponding transfer function Gy,Ky,(s) is derived in

w Appendix C. For the "tip only" compensator, the transfer function Gy,Ky,(s) is
the same as the actuator transfer function, GK(s), and the corresponding mar-
gins are given above. For Compensator #3, the rigid body gain margin is about
3.7 dB, which corresponds to a tip gain increase of 55%. This relatively small
gain margin seems to be characteristic of the non-minimum-phase open-loop tip
transfer function. In order to get good performance for the tip position loop,

1

I
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either we have to rely on an accurate model of the system, or we have to identify
the model on-line, a, first step toward adaptation. The rigid -body phase margin
is about 35 degrees (which is acceptable).

5 Low-order compensator

One drawback of the LQG compensators described in the previous section is
that they might be unecessarily complicated. This is especially true for designing
a position controller for a multi - link elastic robot with linearized dynamics. Low-
order compensators might provide for similar performance while being simpler
to implement.

5.1 Description of the design algorithm

An output feedback control design algorithm for the designp	 g	 g 	 of low-order	 f
controllers is described (0), Given a linear dynamic system

'i	 {
x.—Fx+Gu+rw
y=Hx+v	 (11)

where w and v are white noise processes, and assuming a feedback compensator
in a minimal realization form

z=Ax+By
u=Cz+Dy	 (12)	 ,

+
I	 p

the algorithm will find the elements of A, B, C and D 1 by minimizing the
standard LQG quadratic performance index, z J	

i

^	 /1
J = Joy 

e:as(xT`G rx+ JRru)dt	 (13)

l a non -zero column of the direct transmission matrix D requires the corresponding sensor to be
either noise-free or contaminated by colorend noise only

°The performance index J can also be chosen as a weighted sum of individual indexes for a set
of different F, G, r and H matrices, so that the resulting design is robust to changes in the
system parameters.

^.^sc z^° T	 _	 na
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j	 Instead of minimizing d irectly the steady-state performance index J, the op-
timization is done on a finite-time performance index Jy. Therefore the closed.
loop system does not need to be stable initially and at each step of the optimizar
tion. Steady-state convergence is obtained by increasing tf gradually. Note that
the computational effort required by such an algorithm is still several orders of
magnitudes higher than for the standard LQG design. The main difficulty for

5	 the user is to choose a proper compensator structure to be optimized. Although
the initial guess for the compensator matrices A, B, C and D does not need to

t'	 produce a stable closed-loop system, a "reasonable" initial guess will maximize
°	 the likelihood of a successfull convergence as well as a "reasonable" optimized

compensator.

5.2 Design procedure

We discuss in this section low-order compensators using the tip and the hub
rate sensors. The weighting matrices and noise covariances are chosen the same
as the ones previously obtained for the 8th order LQG compensators successfully

e tested. The LQG compensators provide for notch filters for the second and
third vibration modes. After having set the 8th order compensator in a minimal
realization form, the states associated with the third vibration mode are deleted.
The resulting 6th order compensator is re-optimized with "Sandy". The same
thing is done for the states of the second vibration mode notch filter. A 4th

it order compensator is finally obtained for the 8th order dynamic model. It is then
optimized again for the 9th order model which includes the first-order low-pass
filter of the pseudo-rate sensor.

In the course of this design process, the rigid-body closed-loop poles always
remain too close to the origin resulting in a bandwidth of 0.5 Hz Also, the
damping coefficient of the first flexible mode tends to remain relatively small
i.e., S = 0.2. One remedy to this problem is to use a non-zero value for the
destabilization factor a in Equation (13) so that the closed-loop poles have real
parts less than —a. The value of a is progresaiveiy increased from 0 to 3.0 sec—i.
One potential drawback of this method is that damping for the high frequency
modes (the third vibration mode in particular) is artificially added, while it might
be preferable not to do so.

C,	 5.3 Design 1

For all the compensators given in this section, the following units are used:
Nm. for the control effort, meters for the tip sensor and Rad/sec for the hub rate
sensor. The initial 8th order LQG Compensator #2 is transformed in a minimal

G	 realization form expressed as follows
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0 1 0 0 0 0 0 0
—127.00 —14.09 0 0 0 0 0

0 0 —9,04 0 0 0 0 0

Am 0 0 0 —143,1 0 0 0 0 (14)0 0 0 0 0 1 0 0
0 0 0 0 —334,6 —5.24 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 —2212,9 —3.87

120.2 —2,478)
409.9 10,509 i
1235.9 6,53

B 646,18 101,82
(15)4.68 0.136

—305,16 —9,39
0.395 0.01

—108.16 4.0
1

C = (0 —1 —1	 —1 0	 —1 0	 —1) (16)	 ?

As a result of the lengthy process discussed in the previous section, the following
4th order compensator is obtained

0	 1	 0	 0
__	 90.66 -12.4	 0	 0	 (17)A	 - 0	 0	 -12.04	 0	 1?

0	 0	 0	 -193.0

	

102.5	 -1.88 I

E _ -302.0 11.0	 (18)

	

1362.7	 0.0
0.0	 153.10

C = (0 -1 -1 -1) (10)

The closed-loop poles for this feedback law are all well damped (with real part
less than —4 sec — ') and about as fast as the one of the LQG design. Also the
steady-state tip compensator gain is close to the LQG one (7.7 compare to 0.0
Nm/m). However, the phase margin of the actuator loop GK(8) is only 20 degrees
at 6 Hz. If a discretized version of this compensator were implemented with a
50 Hz. sampling rate, the resulting closed-loop system would be unstable. The
reeaon is that the phase lag caused by a 50 Hz. sampling and zero-order-hold
process is about 22 degrees at 6 Hz.

( (D = 57.3w T' degrees, where T. is the sampling period in seconds and w is the
frequency of interest in Rad/sec).

In the next section, we discuss one method to improve the phase margin of
the actuator loop GK(8).
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5.4 Design 2

An approximate model for the phase lag caused by the sampling and zero-
order-hold process is added to the dynamic model. The corresponding transfer
function H(e) for a delay of T seconds (or equivalently a sampling rate of 2jo
Hz.) is

	

H(s) = ( ±1)	 (20)

( sd; + 1)

The augmented dynamic equations become

	

Fa'° ° (O -4f ) Gn.o = (a fa )	 (21)

The sampling rate f, is chosen equal to 50 Hz. The 4th order compensator of
Design #1 is the initial guess with the augmented 10th order system. The new
optimization by "Sandy" yields the following compensator:

F:
0	 1	 0	 0	 !

A =	 155,56 —21,730	 0
0	 0	 -10.2	 0	 i22")	 {
0	 0	 0	 -607,5

	

193.7	 -0,95	 )

B _	 1021.7 3.56	 (mil
2030,4	 0.0	

2

	

0.0	 546.7

iC = (0 —1 —1 —1)	 (24)	 ^ (

The phase margin of the original dynamic system for the actuator loop transfer
function GK(8) is now 40 degrees. The artificial phase lag of 20 degrees at 6 	 f
Hz. is essentially recovered. The closed-loop eigenvalues compare favorably with
the ones for Design #1 . However, the tip compensator D.C. gain is lower (5.6
Nm/m), because some performance must be traded-o9' versus stability margins.

5.5 Experimental verification

5.5.1 Implementation

0

C,

The continuous compensator equations (12) are discretized via a zero-order-
hold.
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Fig. 5.1 Response of the tip-sensor -controlled flexible arm

to a step command with the 4th order compensator #2.

—33—

p



. 9	 ^A^ -^C"6a... F.,	
7d

• Wr M, .. . .,.

To improve the phase matching between the continuous and the discrete
compensator, a "current" version of the compensator is used

x(k + 1) = Adz(k) + Bd (2y(k + 1) + y(k))

u(k) = Cx(k)	
3.0	 (25)

This is equivalent to adding a discrete compensator zero at z= —0.5. Ad and Bd
are the discretized version of A and B for a zero-order-hold process. The resulting
compensator is then recast in a form with a direct transmission term.

5.5.2 Closed-loop response

A step response for a 10 cm command is shown in Figure 5.1 for Design #2.
The trace corresponding to the LQG design is shown superimposed. The low-
order compensator compares favorably with the LQG full-order compensator.

The main drawback of this low-order design method is that it is not yet
available as a direct discrete design method, therefore requiring fast sampling
rates ! . Also, design by this method is really computationally intensive, and

	

further improvements are needed in the algorithm implementation (1) to obtain 	 j
faster convergence (2) to add "safeguard" limits in the optimization process where
for example the compensator poles and zeroes are constrained to stay in a given
region of the s-plane. Also, it would be useful for the user to have some graphics

	

display in order to monitor the optimization process and therefore to have more	 t
control on it.

Nevertherless, this computer code is very attractive because it allows the
designer to specify general compensator structures. Its application should be
well-suited for the compensator design for linearized version of a multi-link elastic
manipulator. i

6 Switching between sensor sets

0.1 Motivation

Perhaps the most immediate robotics application of end -point position feed-
back is for accurate pick and place operations.

'As mentioned previously, it might be possible to alleviate part of this problem by adding more
roll-of in the actuator loop transfer function. It is not clear at this point if this would imply
some reduction in performance.
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One can envision a series of workstations placed at several locations of the
robot workspace, each being equipped with its own end-point sensor (see Figure
6.1). Because each tip sensor has a limited field of view, it becomes necessary to
implement two different control modes:

► colocated mode: when the manipulator is outside a given tip sensor field of
view, the only available position informations are from the joint angle sensors,
which are therefore the primary sensors.

► non•colocated mode: once the manipulator is inside the tip sensor field of view,
the end-point sensor is now the prime position sensor. Whenever the tip crosses
in or out the boundaries of a given tip sensor field of view, switching must be
implemented between these two control modes in such a way that no unwanted
transients in the actuator(s) commands occur.

6.2 Proposed solution

When switching occurs 'between control modes, the arm dynamics does not
change, only the available position sensors do. Consequently, if we stay in the

' frame of the LQG modern control theory (section 4), one possible solution is to
implement a dynamic estimator whose gains will be varied as a function pf the
arm position. The tip sensor or the hub sensor are "faded" in or out depending
on the actual location of the tip. This estimator reconstructs the unique beam
dynamic state vector i, which is then fedback to the actuator through a unique
set of constant regulator gains,

6.3 Design of the estimator

In principle, the estimator discussed above is an estimator with time-varying
gains, which could be computed by solving for the time-varying Ricatti equation
where the tip and hub sensor noise covariances are made time-varying (101,
Outside the tip sensor field of view, the tip noise covariance is chosen very large
compared to the hub sensor noise covariance: this makes the tip filter gains
essentially equal to zero, Inside the tip sensor field of view, the situation is
reversed.

For a practical implementation, a discrete set of constant estimator gains
using the tip, hub angle and hub rate sensors is used, Somewhat arbitrarily, we
chosed to implement four sets of estimator gains: one set for outside the field of

C view for the hub position only (#i), two intermediate sets where both tip and
hub sensor are used in the transitioa region of the tip sensor field of view (#2
and #3) and finally one set inside the field of view where the tip sensor only is
used (#4). Figure 6.2 shows a block diagram of the corresponding control system
implementation.
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The main reason for having a set of intermee-ate gains in the transltion
region is to alleviate any undesirable torque transient due to an unmodelled
difference between the tip sensor and the hub sensor nulls. When the tip of

the manipulator comes inside the tip sensor field of view, such a difference

	

i	 corresponds to a step input for the tip compensator, Because it is a double-lead
type feedback network, its output will go through a large transient.

The two intermediate gain sets are obtained by varying the ratio of the tip to
the ,hub covariance noise in the same way as in section 4. Tna*, sampling rate used
for this experiment is 50 Hz. Instead of a current estimator, a predictor estimator
is implemented (7), The reason for this choice is that a current estimator yields a
z-plane compensator with direct feedthrough of the sensor signals. Therefore, an
unmodelled difference between the tip and hub angle sensor zero readings would

	

l:	 create a jump in the torque command. This will be somewhat alleviated for the
predictor.

6.4 Regulator and slew command profile

Tl:e unique regulator gains set is the same as described in section 4.2. For F
large angle slew maneuvers, a smooth command profile is used instead of a step
input u f . The profile u,(r) is a fifth order spline polynome; its first and seeond
derivative are equal to zero at t = 0 and t = tj, where tj is the slew duration.

^

The expression for u, is
^	 S

( r) = 6r5 — 1574 + 10r3
af

(26)

6.5 Experimental results
C

We present here a typical recording with the switching algorithm. Figure 3.3
shows a 40 degrees slew maneuver with a commanded duration of 1.2 sv- onds.
The beam is initially positionned outside the tip sensor field of view and is
commanded to slew to the middle of the tip sensor field of view. The transition

C from one gain set to the other is indicated by the switch flag which changes
from 4 to 1. The control effort does not exhibit any noticeable transient jumps
in the switching region. As shown by the time traces of the first flexible mode
estimate (scaled in equivalent tip deflection) and of the hub rate, the arm motion
is very different from the one of a rigid body. Nevertherless, the motion of the
tip position is well behaved.

^j
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7 Conclusion

We have described in some detail the design of a tip position controller using
several approaches from classical to modern control theory. It has been shown

that colocated rate feedback is a pre-requisite to obtain adequate performance
such as high control stiffness for end-point position regulation. Adding a colocated
strain gauge make:, the feedback system less sensitive to parameter variations and
improves the closed-loop disturbance response to external tip forces. l Low-order
compensators can be designed to obtain performance similar to the LQG method.
Modern control methods could be applied to obtain a tip position controller for
the linearized dynamics of a multi-link flexible arm.

All the experimental results obtained here began with good knowledge of
the flexible arm dynamic parame ters. Research needs to be done to extend the
experimental work to include adaptive control strategies.

i
^f

l We note here that these results are mostly the outcome of having an experimental laboratory
set-up, as opposed to p y re simulation work.
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Appendix A.
Flexible arm open-loop transfer functions

This appendix gives the open-loop s-plane transfer functions from torque input T to sensors
outputs. They are obtained with a computer code (Optsys) from the equations (3) and Table 1
of section 2. Open-loop transfer functions are useful for understanding the basic characteristics
of the control problem at hand, and also for control design with the root-locus and Bode plot
methods.

Colocated hub ani Ie5 sensor (in units of Rads per Nm)1

A(s) =	 46.32	 ((a+0.1)2 +3.42 )	 ((8. +0.29)2+17.472)((a+1.15)2+46.422)
T(a)	 s(a + 0.2) ((a + 0.2) 2 + 11.792 )	 ((a+0.4)2 +21.62 )	 ((8+1.2)2+48.052) (1)

Colocated pseudo hub rate angle sensor (in units of Rails/sec per Nm)

B(e) _	 64.7	 B(s) (2)
T(8)	 a+64.7T(a)

Tip position sensor (in units of m per Nm)

y e 	 _ _	 2.177	 (a + 12.05)(a — 12.13) ((a + 22.2) 2 + 24.1 2 )((a — 21.6) 2 +25.442) 3(	 )T(s) '	s(a+0.2) ((s+0.2)2 +11.792 )	 ((s+0.4)2+21.62)((a+1.2)2+48.052)

Nearly colocated strain-gauge sensor

aI(e).7986 ((s+0.2)2+13.72)((a+0.9)2+39.122)((8+1.15)2+46.422)
(d)T(s)	 ((a + 0.2)2 + 11.792 )((a + 0.4)2 + 21.62)((6 + 1.2)2 + 48.052)

'The Laplace variable a is in units of Rad/sec.
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Appendix B
Locus of asymptotic estimator poles

This appendix explains the derivation of the three root-loci given in section 5,2 of chapter 5.
The poles of the steady -state continuous Kalman filter are the roots of the characteristic equation

MIR + 9Z(8)ZT (—a)l = 0
	

(1)

f	 where R is a diagonal matrix with strictly positive elements (Rv„Rd , R(1 ) and q is a positive real
number corresponding to the process noise covariance.

Z(s) is a column vector which consists of the three open-loop transfer functions for the sensors
mounted on the beam.

From the general relatiou valid for two arbitrary matrices A and B,
C

det(/n + An,m Bm.nl = det(Im + Bm,n A n,m)	 (2)

equation (1) can be expressed an

1 + 9ZT ( —a)R” , Z ( a ) = 0	 (3)
t•

if H,(3) is the open-loop transfer function for sensor x, equation (3) becomes
i

I + R'wl( a )Hvl( —a) + Ra Hsla )He(- 8 ) + 
Re 

H^r(s)H,,(—a) = 0	 (4)
YI

With the notation: H,(a)= N`; , we obtain

C	
1 } Rur o(s)o( —

a)(Nvl(a)Nvl( —a)+ RA (—a2)Ne(a)Ne( —a) 	

(5)

Let the ratio	 go to infinity.n	 ,
Given the ratios R, and	 , the finite estimator poles will tend asymtotically toward the stable

zeroes of the quantity between brackets in equatioa (5).

0

,
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Let us first consider the case where the strain-gauge 1 is not used, i.e. ;!.L — 0. Then, from (b),
eterthe finite estimator poles belong to the Evans root-locus whose charstetic equation is

	

8—" 	 NAONA—a) — 01 +Re(-82) Nv,(a)Nv,(—a)	 (0)

When the strain-gauge 1 is used, and if we flx the ratio, the estimator poles belong to the

Evans root-locus given by

1 + Ru, e4 Na ( a )Na (—a) — 0

	

R, t	N(e)N(—e)

where N(e) is defined as

N ( e )N ( —a ) — Nv,(o)Nv,(—a) + Ra ( —a2 DNA(a )Nd( —a )	 (8)

This derivation is valid only for a single-input multi-outputs system. It would be useful to derive
an algorithm to test the existence and obtain the location of the finite estimator poles of a MIMO
system.

(7)

11
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Appendix C
Transfer function calculations

JW

In this appendix, we explain how to obtain the actuator loop and tip loop transfer functions
discussed in section 4.4.3.

The dynamic system equations of order na are
i

t = Fz + Gu
y — Hz	 (1)

where y are the nz sensor outputs, and u is the control input (only one input for our case). The
corresponding open-loop transfer function matrix is

e
(

G(s) = H(s4, — F)— 'G	 (2)	 !
r
8

The compensator dynamic equations of arbitrary order r arel

i — Ax+By
U = C,z	 (3)

For the case discussed in this report, the matrix B is made-up of three column vectors, By„ B«,
BA

The corresponding open-loop compensator transfer function is

K(, ) = C,(al., — A)—'B

The quantity K(0) _ —CA—'By, is the steady-state tip compensator gain which is one of
the performance measures for the tip position closed-loop system as shown in section 4.4.3.

For the case of an LQG compensator, the matrices A, B, C, are respectively

'We assume here that the compensator does not have any direct transmission term from sensor
output to control input.

Q	 44.
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A=F—GC—KH
B—K
C'WC

where K and C are respectively the steady-state filter gain and full-state feddbact gain matrices.

The actuator loop transfer function, commonly called G(a)K(a) , is obtained as the
open-loop transfer-function for the system (A, B, C) of order r,+ r r, where

A =
 l 11 Q] B a LOJ

C = (O Cr)

For the system discussed in this report, G(s)K(s) is a single-input single-output transfer function,
because only one actuator is used. Therefore, we used a simple Bode plot to discuss the stability
of the closed-loop system with respect to actuator dynamics.

In the same fashion, the tip position loop transfer function (with the hub rate and strain-
puge sensors loops closed) is obtained as the open-loop transfer function for the system (A, B,
C) of order na + r, where

F	 GC,

	

f1
I 	

_ If
.4 = 1 BAHa + B

jj H<<	 A J B [BOyj
C = (Hy' O)

Again, we obtain a single-input single-output transfer function.

(4)

(5)

(e)
l
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Appendix D
Discrete LQG compensator implementation and check-out

1 LQG compensator implementation

This section is based on Franklin and Powell, Ref. (71 (p148 and p 166161). For our
particular application, we choosed to implement a current estimator instead of a predictor	 G

estimator, This is because only a small amount of sensor data processing needs to be done before 	 f
the feedback control signal can be sent to the D to A board. For other applications involving

many sensors and actuators, only a predictor estimator could be implemented. The order of the
estimator is na, the number of sensors is nz and there is only one actuator, Given the zero-order
hold dissete equivalent ( ,V and [')I of the open-loop system matrices (F a.^d C), the current
estimator equations are

s(k + 1) — 41(k) + ru(k)
z(k)'a(k)+K(z(k)—Hs(k)) 	 (1)

where K are the discrete current estimator gains , 2 Given the discrete steady-state regulator gains
C, the control signal uw is computed according to	

&

u(k) m Ci(k)	 (2)	 &

r

As it is shown in Reference 7, the equations (1) and (2) can be recast into a general

compensator form which is the one we choosed to implement. Actually, we used a slightly modified
form in order to implement actuator torque saturation limits. These equations are the following

se(k+ 1) — Aze(k) +B„u(k)+ Btz(k)
C
	 u(k) — Cze(k) + Dz(k) 	 (3)

u
ij	 It is set into modal form according to the dynamics model given in section 2.

2the notation K for the filter gains is used instead of L.	 u

C
1
8
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with the following definitions:

i
talk) — k(k) — KIM

A = (/.. — KH)d
Be = (lot — KH)r	 (4)

Bs a (rat — KH)*K
pasCK

Implementing equations (3) takes 3ns less multiplication operations than implementing
equations (1) and (2). With equation (3), no X ns more multiplications are needed in addition if
we want to compute the state estimate s(k) for checking purposes.

The block diagram shown in Figure 1 gives an overview of the control algorithm imple-
mented on the computer. Figure 2 shows how much time is necessary to perform each of the
above operations on the Mine 11 DEC laboratory computer, with the operating system RT11.VO4
(Boating point hardware). As shown in Figure 2, the sampling period is 20 msec, The LQG com-
pensator is 9th order with 3 sensors inputs. Between tow succesive clock ticks, there is abort 1.4
cosec of idle time left, which can be used for data storage for latter plotting. Note that all the
code is written in Fortran and no particular effort was done for speed optimization.

t.

2 Compensator check-out

This section is a potpourri of obvious checks which should be useful only for the unex-
perienced experimental control systems engineer.

0) first commandment

When testing an active control aystem on an expensive mechanical system that can un-
dergo substantial elastic deformations under the action of its controlled actuator, it is highly

	

recommended to use on-off switches at several convenient locations close to the experiment. )	jj
r

	

	 Safety is also an important consideration as we are concerned here with manipulators of relatively
large sizes.

Y,

1) zero i n = zero out

That is, if we ground all the inputs to the compensator (A to D bnc's), the control signal output
should be zero (D to A bnc).

3) check compensator transfer fu nction

First, check that the sign of the compensator is correct; for a minimum phase compensator,
a positive sensor input (with all the other sensor inputs grounded) should produce a negative
torque command for the actuator (assuming everything follows a given positive sign convention).
The D.C. gain from a given input of the compensator to the control signal output can easily
be checked with its theoretical value. For frequencies which are much below the Nyquist rate,
we can perform a frequency response, test and compare the gain/phase Bode plot with the one

I As a corollary, if nothing happens when the experimentator turns on the closed-loop feedback
C	 system, the moat likely explanation is that the kill switch has not been reset, or the power has

not been turned on.
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predicted by the analysis. Another method Is to compare the step response of the experiartstal
compensator (from a given Input to the control output) with the theoretical one,

These checks can only be dome if the compensator has stable poles.'Whea designing an LQG
compensator for the flexible arm, we found that sometimes the reenitiag compensator woald have
some poles slightly unstable, especially for the esee of colocatcd hub angle and hub rate LQG
compensators. At least, for a slightly unstable compensator, one can check it the frequency of
the slowly unstable mode agrees with the one predicted by the theory. ( The personal opinion of
this writer is that unstable compensators are baelcally unsafe as rar as practical implementation
goes.

A properly designed LQG compensator should result in a closed-loop system with adequate
atabiity margins. Nevertherlem, if one of the feedback loop is opened, the resulting system is
not necessarily stable. For the case of the flexible arm, the rate loop for the tip and hub rste
LQG compensator designed in section 3 has some lightly damped closed-loop poles, This might
not be always desirable for a manipulator system. It might be possible to choose other weighting
matrices or modify the design procedure so that the closed-loop poles are more damped.

3) misceallenous

it is wise to have a variable loop gain In front of the computed control signal which is sent
to the D to A board. if the closed-loop system is unstable, we can try again with a loop gain
reduced by two, and so on and so on...

If the closed-loop system presents a small amplitude limit cycle, here see a few things to
look at:

1. actuator non-litiearities: friction and togging torque. One possible solution is to use a high
rate loop around the actuator so that the effective friction level are reduced.

2. poor phase margin: if for instance the actuator loop (G(e)K(e)) has a small phase margins
(10 degrees or less), it is possible to get a closed-loop limit cycle resulting from aon-linear
dynamics (friction) and unmodelled phase lags such as actuator dynamics and computational
delays (between sensors data readings and control signal output),

3. sensor roise aliasing: the sensor noise spectrum can be aliased by the computer sampling
process in low frequency signal which can be amplified by the compensator transfer function
resulting in an unwanted limit cycle. One simple test is to change the sampling ras «-
frequency of the limit cycle should change accordingly.

When the controlled output is zero (Le, the tip position sensor for the flexible arm), it
should remain at zero as long as the control system is on. if it changes with time, one has to look
for sensors drifts, One can easily obtain for each sensor used for feedback the sensitivity factor
defined as the ratio of change in controlled output to change in a given sensor signal D.C. bias
(this is for the case where we do not have integral control).

11

l it is quite an experience to let the controller run open-loop unstable for a few hundred mil-
liseconds and then to close the loop with the flexible arm to obtain a resulting stable systeml
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