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Abstract

The stresses in transparentglass-epoxyplates loaded by a steel pin

. througha hole were determinedexperimentallyusing photoelasticity. The pa-

per presents the stresses around the hole edge, acrossthe net section, along

the shear-outline, and on the centerlinebelowthe hole for quasi-isotropic,

unidirectional,and angle-plyplates. Stresses in an isotropiccomparison

specimenare also presented. Stress concentrationfactorsfor several loca-

tions around the plates are tabulated. The paper discussesthe experimental

apparatusand the experimentaltechnique. The isochromaticand isoclinic

fringepatterns for the four plates are shown. An appendixpresents the

necessaryphotoelastictheory.
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INTRODUCTION

There have been many numericalstudiesaimed at determiningthe stress

distributionaround a pin-loadedhole in an orthotropicplate [1-121. This

paper presents the resultsof an experimentalstudy, the stress distribution

being determinedby means of photoelasticity. The photoelastictechnique is

based on the phenomenonof birefringenceand requires the plate to be trans-

parent. Thereforethis study was limitedto the determinationof thestresses

in glass-epoxyplates. Specifically,the stresses in three laminatedglass-

epoxyplates were determined. These plates were: a quasi-isotropicplate

with a lay-up of (04/454/-454/904)s;a unidirectional0°32 plate; and angle-

ply (+454/-454)2splate. Since it is a subject in its own right, photoelasti-

city as it is appliedto fiber-reinforcedmaterials is addressed in an appen-k

dix. The paper itselfdescribesthe experimentalapparatusused to load the

glass-epoxyplates by means of a pin through a hole. Some of the details of

the experimentalprocedureare presented. Typical isochromaticand isoclinic

fringesare illustrated. The radial and hoop stressesaround the hole, net-

sectiontensile stresses,shear-outstresses below the hole, and stresses

along the centerlinebelow the hole are presented. A compilationof stress

concentrationfactorsis also presented. For purposesof comparison, similar

resultsfor a homogeneousisotropicplate, tested at the same time, are pre-

sented.

EXPERIMENTALSET-UP

Figure 1 shows a schematicof the arrangementused to load the plates.

The width, W, of each plate was 203 mm and they were 292 mm long. The glass-

epoxy plates were 2.29 mm thick while the isotropicplate was 3.00 mm thick.

The hole diameter,D, in each plate was 50.8 mm and the distance from the cen-

ter of the hole to the free end, e, was 101 mm. With these dimensions the



plate-widthto hole-diameterratio, W/D, was 4 while the end-distanceto hole-

diameterratio, e/D, was 2. These two dimensionlessparametersare frequently

used to describe single-holejoint geometry. The volume fraction of glass in

the plates was between 50 and 60% and the test specimenswere cut from panels

fabricatedby IITRI {131using a diamond saw. The large hole was drilledwith

an ultrasoniccore drill. Care had to be taken to insure the cutting and

drillingoperationdid not generate excess heat. Heat would generate residual

stressesat the hole edge, and the bottom and sides of the plate. This could

significantlyaffect the experimentaldeterminationof stresses. Thus water-

based coolantswere used during the cutting and drilling operations. The cut-

ting and drilling times were short so that adsorptionof the coolant by the

specimenswas not a problem. Table 1 presents the mechanicalpropertiesof

the three glass-epoxyplates and the one isotropiccomparisonplate. The

isotropicplate was polycarbonate,specificallyPSM-I*. For a photoelastic

stress analysisthese mechanicalpropertiesare not necessary. They are in-

cluded here for completeness. The material propertiesof each plate that are

necessaryare the stress-opticcoefficients. These are discussedand given in

the Appendix.

To one end of each plate were attachedtwo aluminum load-introduction

plates. These plates were 3.18 mm thick, 240 mm long, and 203 mm wide. They

were attachedto the glass-epoxyplates with small no. 10 bolts. The load, P,

was introducedinto the upper end of the aluminumplates by a smooth steel

availablefrom MeasurementsGroup, Inc., PhotolasticDivision,

P.O. Box 27777, Raleigh,NC 27611.
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pin. The aluminumplates servedto distributethe concentratedload P evenly

into the glass-epoxy. In this manner the limitedsupply of glass-epoxywas

not being used to simply smooth the load introduction

?

Table 1

MechanicalPropertiesof Plates

specimen Isotropic(1) quasi-isotropic(2) undirectional(2)angle-ply(2)
property

Ex, GPa 1.38 19.7 37.2 12.4

Ey, GPa 1.38 19.7 12.3 12.4

Gxy, GPa 0.490 7.38 3.93 10.9

Vxy 0.4 0.328 0.300 0.577

(1) from material supplier,see footnoteon previous page.

(2) from ref. 13.

The pin was steel, of a snug fit, and the load was introducedto it by

two steel crossbars. Since primaryinterestwas in the stressesto the side

and below tilehole, no attemptswere made to load tilepin in such a manner

that the region above the pin was observable. The two steel cross-barswere

in turn loaded by the two steel U-shapedyokes which transmittedthe load.

Smooth steel pins were used to join the crossbarand yoke and to transmit the

load at the lower end of the assembly. A loadingframe which utilizeddead

weightswas used to load the specimen.

The specificload levels used in the testingwere a compromisebetween

wanting to use enough load to generate a sufficientnumber of fringes but yet

not cause local damage to the specimen. Local damage such as matrix cracking

in a ply would scatterthe light, change the opticalcalibration,or even

render the glass-epoxyopaque. Therefore,damage was to be avoided. All data



reported here for the three glass-epoxyspecimenswere recorded at a load P of

5.92 kN. The load used for the isotropicspecimenwas 1.56 kN.

FRINGE DETERMINATION

The key to an accurate photoelasticstress analysis is being able to re-

cord the isochromaticand isoclinicFringes. As explainedin the Appendix,

fringe definitionwith the glass-epoxymaterial is not as sharp as it is with

standard homogeneousisotropicphotoelasticmaterials. The scatteringof

light passingthrough the material and the low birefringencesensitivityof

the compositematerial are the primary causes of the poor fringe definition.

In addition,in some circumstancesresidual birefringencecontributesto the

isochromaticand isoclinicfringe patternand so the isoclinicfringes have to

be determined in the presenceof the full isochromaticfringe pattern. As a

result, the fringe recordingand interpretationportion of these photoelastic

experimentswas a significantportion of the total effort. To aid in the de-

terminationof the fringes,high contrast film was used. SpecificallyKodak

Ortho Contrast 101 x 127 mm negativefilm was used for recordingthe isoclin-

ics. The isochromaticswere recordedon a standard film. One exposure of

high contrastfilm was required for each isoclinefringe measured. For those

situationswhen residualbirefringenceeffectswere important,the isochromat-

ic fringe pattern and isoclinicFringe patternwere recorded simultaneouslyin

white light. Since in white light the isochromaticsare colored and the iso-

clinicsare black, overexposureof high contrast film washed out the isochro-

matics and the result was a relativelyclear picture of the isoclinic.
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TYPICALFRINGE PATTERNS

Figures2-5 show the isochromaticfringe patterns for the isotropic,

quasi-isotropic,unidirectional,and angle-plyspecimensrespectively. The

resultsfrom the isotropiccomparisonspecimen are shown first for several

reasons. First, this specimen,with its relativelyhigh fringe density, was

used to check alignmentof the loadingapparatus. Symmetry of the loading, or

lack of it, about the verticalcenterlinecould be checked by visually examin-

ing the symmetryof the isochromaticfringe pattern. There were no adjustment

mechanismsbuilt into the loadingapparatus. However,with proper machining

none would be necessary. As can be seen from the symmetryof the fringe pat-

tern in fig. 2, alignmentwas not a problem. The second reason for showing

the isotropiccase first is to show that the densityof fringes encountered

using standard isotropicmaterial is high when comparedto the density of

fringesusing glass-epoxy. Also, the fringes are sharp and clear. The lower

fringe density in the isochromaticfringe patternsof figs. 3-5 for the glass-

epoxy, despite the higher loads, atteststo the lower birefringence

sensitivityof that material.The lack of sharp fringes in the glass-epoxy is

evident.Finally,the isotropicspecimenwas actuallytested first, acting as

a 'dry run' for the entire test procedure,includingfringe recording and

stress determination. The stressesfrom this more traditionalcase served as

a basis for comparisonwith the cases.

There are several interestingfeaturesto the isochromaticfringes of the

glass-epoxyspecimens. First,for the quasi-isotropiccase there was a slight

asymmetryto the fringes. This was more pronouncednear the hole. In light

of the symmetryof the fringesexhibitedby the isotropicmaterial, the lack

of symmetrywas puzzling and was attributedto spatialvariations in material

properties,particularlythe opticalproperties,of the glass-epoxy. Because
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of this lack of symmetry,the photoelasticanalysiswas conducted by averaging

fringe data on both sides of the centerline. The averageddata were then used

in a symmetricanalysisof the right sides of the plates. As far as overall

. shape is concerned,the fringe patternsfor the quasi-isotropicspecimen were

quite similarto the fringe patternsfor the isotropicspecimen. In fact,

tests on quasi-isotropicdisks indicatedthe materialwas optically isotropic.

The isochromaticfringesassociatedwith the unidirectionalplate were

significantlyelongated in the directionof the fibers. There was a slight

amount of asymmetryand again, this was attributedto spatialvariations in

the material itself. There was about 0.1 residualfringe in the unidirection-

al material. As can be seen from the figure of the unidirectionalmaterial,

the fibers tended to smear the fringes.

The fringe pattern in the angle-plyspecimenbehavedas expected, i.e.

, showingsome sort of distinct behavior in the directionof the fibers. From

figs. 2-5 it is evident that fringe determinationwas more of an issue in the

glass-epoxymaterialsthan in standardphotoelasticmaterials.

A typical isoclineis shown in fig. 6. This is the 30° isocline in the

quasi-isotropiclaminateand the patternwas recordedwith the high contrast

film. Figures 7-10 show the isoclinesin 5° incrementsfor all four speci-

mens. These figureswere constructedby tracingthe resultsof isoclinicpho-

tographssimilar to fig. 6 on a common piece of paper. From figs. 6 it is ob-

vious judgementwas required in determiningthe exact center of the Fringe.

There was a lack of perfect symmetry in the isoclinicpattern for all cases

and the isotropicand quasi-isotropicisoclinecharacteristicswere quite sim-

ilar. The isoclinicsfor the unidirectionalcase were clusteredmore directly

beneaththe hole while the isoclinicsfor the angle-plywere clustered in the

±45° directions. From the point of view of data reduction,the clusteringof
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Isocllneswas not deslrable. With clustering,a small error in spatial Ioca-

tion led to a large error in determiningthe isoclineangle.

STRESS COMPUTATIONS

The stressesover the right hand portion below the net section were com-

puted for each plate by the method described in the Appendix. In this paper

the stresses at the hole edge and along several importantloci emanating from

the hole edge are reported. Stressesat other locationscan be found in ref.

14. Specifically,referringto fig. 11, stressesalong hole-edgearc AE, and

lines AB, EC, and ED are reported. Line AB is the centerlineand experiences

bearing stresses. Line EC is referredto as the shear-outline while line ED

is the net-sectionline. The loci are importantbecause the net section near

the hole is the region of tensilefailure, the centerlineunder the hole is

the site of bearingfailures,and the shear-out line is the location of shear-

out failures. Only the dominant stress along each locus is shown, compressive

stressesalong the centerline,tensile stressesalong the net-sectionlocus,

and shear stressesalong the shear-outlocus. Before the stresses are pre-

sented,an importantcheck which was conductedon the experimentallydeter-

mined results is discussed.

To assess the overall validityof the experimentallydetermined stresses,

force equilibriumwas checkedat various locationson the specimen. Along the

net section the integralof the tensile stresses should be directly related to

the total applied load. Specifically

2tfydX__= P, (I) .
ED

where t is the specimenthicknessand P is the total applied load (see fig.
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1). This assumes, correctly,that the pin contact angle is less than 180°.

Similarly,along the shear-out locus below the hole,

FX,°,- 2t = P. (2)

EC

For any horizontalline below the hole

_ydX = O. (3)

Here the integralgoes from the centerlineto the right outsideedge. This

integralbeing zero reflectsthe fact that the hole reacts all the applied

load and there is not net vertical load below the hole. The stresses around

the hole edge could be checked for consistencyin a similarmanner. There the

stresseswere written in polar coordinatesand equilibriumyields

2Dtf(OrCOSe + TreSine)de= P. (4)
AE

Using the computed stresses,the above integralswere evaluatedusing

Simpson'srule. The values of the integralswere divided by the actual load

and the ratio was used as a measure of overallaccuracyof the stress calcu-

lations.

Figure 12 shows the stressesat the hole edge for the isotropiccompari-

son plate. The radial, _r' circumferential,oB, and friction-inducedshear,

T_B, stressesare shown as a functionof circumferentiallocation. For com-

parison,the 4/_ cos(B) radial stress distributionintroducedby Bickley [151

and often used in numericalschemes is shown. The stressesare nondimension-

alized by the bearingstress S, S being defined as
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S : P/Dt . (5)

Figure 13 shows the stresses in the comparison isotropicplate along the three

loci emanatingfrom the hole edge. Figures 14-19 show similar informationfor

the three glass-epoxyspecimens. All data are plottedon a common scale for

ease of comparison.

Referringto figs. 12-15, it is seen there was a similaritybetween the

stresses in quasi-isotropicglass-epoxyand the stresses in the isotropicma-

terial. This was expected. Around the hole edge the radial and circumferen-

tial stresses in the glass-epoxyare quite close to their counterpartsin the

isotropicspecimens. The shear stresses have a differentsign, a difference

that has not been explained. Also, in the glass-epoxythe bearing stress un-

der the hole was higher than it was in the isotropicmaterial. In either case

the 4/x cos(B) only roughlyapproximatesthe measured radial stress distribu-

tion. The cosinusoidaldistributionis more skewed to the e = 0 position than

is the measured distribution. The maximum radial stress did not occur at

e = O, as the 4/_ cos(e) distributionassumes,rather the peak radial stress

is off the centerline. The reduced radial stress at e = 0 is due to friction

effectsand has been documentedanalyticallyby Hyer and Klang [12} and by de

Jong {161. Table 2 summarizesthe stress concentrationfactors, based on

bearing stress,for the isotropic,quasi-isotropic,and other specimens. The

table also indicatesthe locationof the maximum hoop and radial stresses.

Table 3 summarizesthe resultsof the equilibriumchecks for the specimens.

For the isotropicspecimensthe resultswere about 10% too low for the loci

with net loads and very good, 0.1%, for loci with no net load. The quasi-

isotropicspecimen integralswere as good if not slightly better for the
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Table 2

Stress ConcentrationFactors

isotropic quasi-isotropic unidirectional angle-ply

oe/S@ E 1.20 1.11 1.95 1.24

or/S@ A 0.87 1.07 0.94 0.822

max Txy/S 0.50 0.55 0.44 0.69

location.
alongEC(1) 19.0 19.0 19.0 12.7
inmm

max o0/S 1.20 1.11 1.95 1.29

location
alongAE(2) 90° 90° 90° 70°

max or/S 0.93 1.09 1.01 1.06

location(2)along AE 37.5° 15° 45° 45°

(1)alongshear-outlocus,measuredfromnet-section.
(2) e = 0 on centerline.



loaded loci and also good, < 5%, for the unloaded loci.

The stress calculationsfor the unidirectionalspecimenare shown in

figs. 16 and 17. At the hole edge, fig_ 16, there were interestingdiffer-

ences betweenthe quasi-isotropiccase and the unidirectionalcase. For the

unidirectionalspecimenthe friction-inducedshear stress actually reversed

sign severaltimes around the circumference. However, the most interesting

differencewas in the hoop stress. The hoop stressremained low

from e = 0 to e = 50° and then increasedrapidlyto a maximum at the net

section. In contrast,the hoop stress for the quasi-isotropicspecimen

increasedsteadilyfrom e = 0 to e = 90o. This behavior in orthotropic

materialshas been shown qualitativelyby analysisfor graphite-epoxy

[7,12,16]. However,quantitativecomparisonsbetweenthose works and the

present one are not meaningful. The ratio of fiber-directionto matrix-

directionstiffness is 20:1 for graphite-epoxywhereas it was 3:1 for the

glass-epoxyused here. Quantitatively,the 20:1 ratio produces significantly

differenteffects than a 3:1 ratio, all other parametersbeing equal.

Table 3

EquilibriumIntegrals

Value of integralx 100%
P
actual

specimen isotropic quasi-isotropic unidirectional angle-ply

location

net section,eq. I 93% 104% 89% 112%

shear-out,eq. 2 90% 96% 95% 109%

horizontalline 0.1% 1.3% 1.2% 2.6%
below hole, eq. 3
(line C-C, Appendix
Fig. AI)

contactregion 90% 91% 91% 106%
on hole edge, eq. 4
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At the net section, fig. 17, the stressesat the hole edge in the uni-

directionalspecimenwere much higher than for the quasi-isotropicspecimen.

The shear-outstresseswere similarto the quasi-isotropiccase, as were the

compressivestresseson the centerlinebelow the hole. It was surprisingthat

the bearing stress directly below the hole was not higher for the unidirec-

tional case than for the quasi-isotropiccase. It was felt the greater stiff-

ness of the material in the loadingdirectionfor the unidirectionalcase

would load the bottom of the hole more than for the quasi-isotropiccase.

This would be true if the shear stiffnessof the unidirectionalspecimenwas

the same as the shear stiffnessof the quasi-isotropicspecimen. The

unidirectionalspecimenshear stiffnesswas actuallymuch less and so the

'plug'of material below the hole simplymoved down as a rigid piece due to

weak shear stiffnessalong the shear-out line. Such a unidirectionalspecimen

would fail by the shearingout of the plug of material below the pin.

An interestingfeatureoccurred in the unidirectionalspecimenat the net

section. Despite the need to transmit a tensileforce through the net

section,at the outside edge the Oy stresseswere actuallycompressive. The

compressivestressesare a characteristicof the responseof orthotropic

materialsloaded in the stiff direction. The compressionis necessarybecause

the materialoverreacts in tensionto the presenceof the hole. The lack of

stiffnessperpendicularto the fibers does not permit the material to respond

to the presence of the hole with as much spatialuniformityas, say, an

isotropicmaterial.

As can be seen from Table 2, the net-sectionstress concentrationfactor

For the unidirectionalspecimenwas the highestamong the specimensand the

maximum hoop stress occurred at the net section. The maximumradial stress

occurred at e = 45o. The numericalevaluationof the equilibriumintegrals,

s
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shown in Table 3, indicatesthe overall accuracywas similar to the accuracies

of the two previouscases.

Finally,figs. 18 and 19 show resultsfrom the angle-plycase. The hoop

stress around the hole, fig. 18, startednegative at e = O, increasedto a

maximum around 70°, then dropped off slightly. This behaviorwas not exhibi-

ted by the other specimensbut the slightly negativehoop stress at e = 0 has

been observed in numericalstudies [12,16]and is due to friction. Overall

the radial stress was similarto the other cases and was differentthan the

cosinusoidalidealization.

CONCLUDINGCOMMENTS

Presentedhas been experimentaldata heretoforelacking. The data were

obtainedfrom plates which were realisticrepresentationsof actual structural

elements. The volume fraction of fiberswas similarto the value encountered

in typical applicationsof glass-epoxy. It would have been ideal if the de-

gree of orthotropyapproachedthat of graphite-epoxy. It did not and so the

data must be viewed in that context. If that is done the data can be use-

ful. Also, there is no questionthat the numericalresultspresentedwere af-

fected by fringe interpretationerrors,material calibrationerrors, and nu-

merical errors in the data reductionscheme describedin Appendix A. This

must also be kept in mind when viewingthe data. However, the equilibrium in-

tegral checks did show that, overall,the experimentalresultswere consistent

and the chance of a large error in the results is low.
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APPENDIX

Stress Determinationin Fiber-ReinforcedComposites

Using Photoelasticity

INTRODUCTION

Becauseof its successin aiding in the study of stresses in structural

and mechanicalcomponentsmade of isotropicmaterial,transmissionphotoelas-

ticity has been extended to study stresses in fiber-reinforcedmaterials. The

terms orthotropicphotoelasticityand orthophotoelasticityhave been applied

to the subject. Because structuralcomponentsfabricatedfrom fiber-

reinforcedmaterials are generallymade of laminateswhich are much thinner

than they are long and wide, the two-dimensionalplane-stressanalysis associ-

ated with transmissionphotoelasticityin isotropicmaterials also applies in

the case of orthotropicfiber-reinforcedmaterials. Obviouslythere is a lim-

ited class of materialsfor which the phenomenoncan be used, the main re-

quirementbeing that both the fiber and the matrix be transparent. In addi-

tion, the index of refractionof the fiber must closelymatch the index of re-

fractionof the matrix or else the light scatterswhen it is transmitted

throughthe composite. The early work in orthotropicphotoelasticitycentered

on the developmentof materials [All and the developmentof appropriate

stress-opticlaws [A1-AT]. At this point, acceptablestress-opticlaws have

been establishedand techniquesfor making the material have been refined

[A8,A91.

The material generallyconsistsof a glass fiber embedded in a resin ma-

trix. Fiber volume fractionsin excess of 50% fiber are possible and for the

most part the material is fabricatedmuch like other resin-matrixcomposites,

requiringelevated temperatureand a vacuum to cure. The final product is a
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thin transparentlaminateand the opticalpropertiesfor light transmitted

throughthe thicknessare a through-the-thicknessaverageof the propertiesof

the glass and resin. For purposes of analysisthe laminate is considered an

equivalenthomogeneousbut orthotropicmaterial. This is much like the situa-

tion when consideringinplanemechanicalpropertiesof fiber-reinforcedmate-

rials. In actual applicationorthotropicphotoelasticityis not as accurate

or as easy to use as its classicalisotropiccounterpart. There are several

reasonsfor this [AIO]. First, the fiber-reinforcedmaterialfabricated so

far is much more insensitiveto the photoelasticeffect than typical isotropic

photoelasticmaterial,e.g. PSM-I.* The sensitivityof the fiber-reinforced

material is 5-10 times less than the sensitivityof isotropicphotoelastic

material and thus there is a factor of 5-10 fewer Fringeswith which to

work. Much more interpolationbetweenfringes is necesarywith the fiber-

reinforcedmaterial, resultingin less experimentalaccuracy. The second

reason for the less accuratenature of orthotropicphotoelasticityis the

tendencyof the light to scatteras it is transmittedthroughthe material.

The scatteredlight leads to wide and sometimespoorly-definedfringes. A

high degree of refractiveindex matching betweenthe fiber material and the

matrix material is necessarybut perfectmatching in the cured state is not

possible. In addition,high stressesnear the fiber-matrixinterface,or even

slightlydifferentmaterial propertiesthere, cause localeffects which lead

to scatteringof the light as it passes near and throughthe fiber. The

scatteringis due to the fact that in reality,the materialdoes not behave

- opticallyexactly like an equivalenthomogeneousmaterial. Thirdly, and to a

availablefrom MeasurementsGroup, Inc., PhotolasticDivisi.on,

P.O. Box 27777, Raleigh,NC 27611.
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lesser degree,the lack of a constantvolume fractionfrom one locationto the

next in the materialcan lead to inaccuracies. The optical sensitivityof the

material dependson the volume fractionsof fiber, resin, and voids. These

can vary slightlyfrom point to point in the materials. If a single set of

stress-opticconstantsis appliedto a given batch of material,as is usually

done, inaccuraciesresult. In contrast,availableisotropicphotoelastic

materialsare extremelyuniform in their properties. Finally,with fiber-

reinforcedmaterialsthere is the issue of residualbirefringence. The

elevated temperaturesassociatedwith curing the material,even if the

temperaturesare due to the exothermicreactionsof a room-temperaturecure

epoxy, lead to residual stresses in the final product.These stresses leadto

fringeseven though the material is free of mechanicallyinducedstresses.

When mechanical loads are appliedmore fringes result. It is only the

difference in the two fringe states that is of interestfor determining

mechanicallyinducedstresses.

The next sectionpresentsthe stress-opticlaws for fiber-reinforcedcom-

posite materialsand discussesthe method for determiningnumericalvalues of

stress from the optical data.

STRESS-OPTICLAW

The speed of propagationof light in a transparentmaterial is related to

the material'sdielectricproperties. The dielectricpropertiesare tensor

quantities,with principalvalues and principaldirections. When a transpar-

ent material is subjectedto a mechanicalload, the dielectricproperties

change from their no-loadvalues. Generallythe applied load changes the di-

electric tensor so that its principalvalues are unequal. Light polarized in

one of the tensor'sprincipaldirectionspropagatesthroughthe material at a
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differentspeed than light polarizedin one of the other principaldirections.

By passingthe two polarized light beams with differentvelocitiesthrough the

proper opticalelements,the beams can be made to interfere. When viewing a

stressedphotoelasticmodel the interferenceresults in fringesappearingon

the model. It is the purposeof the polariscopeto providethe two incident

polarizedlight beams to the model, and to providethe opticalelements to ef-

fect interferenceof the two beams emerging from the model at different

speeds. There are two sets of fringesassociatedwith the stressedmodel, the

isochromaticfringe, here denotedby N, and the isoclinicfringe, denoted by

e. The notatione is used becausethe isoclinicfringe gives information

about the principaldirectionsof the dielectrictensor. Oftentimesthe

isoclineis directly relatedto the principalstress directionin the stressed

material.

Considera stressedfiber-reinforcedmaterialwith orthotropicmechanical

and optical propertiesand with the material'sprincipalelastic axes aligned

with an x-y coordinatesystem. The relationsbetweenthe isochromaticand

isoclinicfringe numbers and the stressesat a point in this coordinatesystem

are:

ox _ Oy = NTC°S(2OT) _ NRC°S(2BR) (Ala)
fx fy

TXY = NT NR
_- sin (20T) --_ sin(2eR). (Alb)

fxy

Here NT is the isochromatic fringe number at the point, eT the isocline, NR is

the residual isochromatic fringe number, and eR is the residual isocline. The
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term residual,subscriptR, appliesto the state when no mechanicalloads are

applied. The subscriptT refersto the state of total birefringence,residual

plus mechanicallyinduced. The values of NR and eR are determinedprior to

applyingthe load. The quantitiesfx, fy, and fxy are the material's stress-

optic coefficientsand they also are determinedby prior calibration. The

angles oT and eR are measured relativeto the +x axis. EquationsA1 are re-

ferred to as stress-opticequations. The stress-opticrelationscan be re-

ferred to anothercoordinatesystem,for examplean r-O coordinatesystem ro-

tated an angle e from the x-y system. The angle e is measured

counterclockwisefrom the +x axis to the +r axis. Using standard

transformations,eqs. Ala and b transformas

ar _e Tre NRCOS(2OR) (A2a)+ - NT cos -c I c2 c3 (20T)

_r - ce _re. NT NR+ - sin - sin
c4 c5 _ (2BT) --_ (2BR). (A2b)

llere

1 - c°s20 sin2e (A3a)
c I Tx Ty

I _ c0s28 sin2O

c2 Ty Tx (A3b)

1 _ 21_x + _y)Sine cose (A3c)c3

1 _ sinecos6 (A3d)
c4 fxy

1 - c°s20 - sin20 . (A3e)
c5 fxy

Both forms of the stress-opticequations,A1 and A2, were used here.
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The key issue is that at each point in a loadedmaterial there are three

stressesto be determined,ox, Oy, Txy or or, oe, TrB. At each point there

are only two quantitiesof experimentaldata, NT and eT. (As stated previous-

ly, NR, BR, fx' fy' fxy are known a priori and are consideredmaterial proper-

ties). Thus there is one less item of experimentalinformationat each point

than there are unknown stresses. Traditionallyexperimentalistshave relied

on a third experimentalmeasure at the point, such as measuringthe thickness

change with an interferometer,or they have used auxiliaryconditions the

stressesmust satisfy. The latter is the approach used here. The determina-

tion of all three stresscomponents is termed separationof stresses. The

sectionbelow describeshow it was done in this study.

STRESS-SEPARATIONSCHEME

At each point in the pin-loadedplate, the stresses,in addition to sat-

isfyingthe stress-opticequationsA1 or A2, had to satisfythe plane stress

equilibriumequations. The stress-opticequationsare algebraicequations.

The two equilibriumequationsare first-orderpartialdifferentialequations.

Using a finite-differencerepresentationof each equilibriumequation resulted

in two other algebraicequations. The stresseshad to satisfythese equations

also. Using simple forward,backward,or centraldifferencerepresentations,

the equilibriumequationsinvolvedstressesfrom neighboringpoints. With two

stress-opticequationsand two equilibriumequationsin finite-difference

form, there were four algebraicequationsthe three stress componentsat a

" point had to satisfy. If this patternwas repeated from point to point on a

finite-differencemesh superposedon the plate, there resultedmany more equa-

tions the stress components,at the mesh points, had to satisfythan there

were unknownstress components. In addition,there were boundary conditions
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the stresseshad to satisfy. This resulted in an overdeterminedset of linear

a]gebralcequations. The solution to these equationssatisfiedall equations

in a least-squaressense.

Figure A1 illustratesa plate with a rectangularfinite-differencemesh

superposedon the right half. The meshes are divided into zones and there are

differentdensitiesto the meshes. Figure A2 shows a polar mesh surrounding

one-half the hole. The zones are numbered 1-9 on the rectangularmesh and 10

and 11 on the polar mesh. In the work here the stresseswere computed on the

right half in a zone-by-zonefashion. The stresseswere computed in zone 1

using the stress-freeconditionsalong the lower and right edges as boundary

conditions. In addition,the shear stresswas assumed to be zero along the

model centerline. After the zone i computationsthe stresseswere computed in

zone 2. The stresses computed along line A-A in the zone i computationswere

used as boundaryconditionsfor the lower edge of zone 2. In addition zone 2

utilizedthe traction-freeconditionson the right edge and shear-free

conditionon the centerline.Computationsproceeded like this from one rec-

tangularzone to the next. The procedurewas altered slightly for the finer

mesh zones but the basic idea was the same. Computationsthen proceededto

the polar zones. Since the coordinateaxes at each point in the polar mesh

did not align with the x-y system, the transformedstress-opticlaws, eqs. A2,

were applied at each point, the constantscI - c5 being differentat different

circumferentiallocations. At each point in the polar meshes the two stress-

optic equationsand the two equilibriumequations,in polar finite-difference

form, were applied. Computationsstarted in zone 10. The boundary conditions

for the outer arc, line c-a, were determinedby interpolationof results from

zone 3, 5 and 6 computations. On radial line coincidentwith the centerline

the shear stresseswere set to zero. The compuationswere then done in zone
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11. Zone i0 computationsalong radial line ab and linear interpolationfrom

zones 6, 8 and 9 computationsalong outer arc a-d were used as boundary

conditions. Detailsof the computationalprocedureare available in ref.

[A111.

Voloshin [A12] used a similarscheme in computingstresses in a tensile

specimen but incorporatedthe compatibilityequationsas well.

Chandrashekharaand Jacob {A131 relied on just the compatiblityequationsto

effect separationof stresses. The numericalapproach,as opposed to a third

experimentalmeasure, to stress separationwas chosen here so that a simple

standardpolariscopeset-up could be used. Extra optical apparatusfor an in-

terferometricmeasure can be complicatedand it is not clear oblique incidence

is as accuratefor fiber-reinforcedmaterialsas it is for homogeneousmateri-

als. The stress-opticcoefficientsand the residual birefringencedata for

the four plates tested are given in Table AI. As can be seen from eqs. A1 and

A2, elasticproperty data for the material were not necessaryfor stress

calculations.

Table AI

OpticalCalibrationData for Plates(1)

isotropic quasi-isotropic unidirectional angle-ply

fx,kPa/fringe/m 51.0 96.8 129 674

fy,kPa/fringe/m 51.0 96.8 68 674

fxy,kPa/fringe/m 51.0 96.8 57 115

NR, fringe 0 0 0.12 0

eR 0 0 0 0

(1) determinedfrom four-pointbend specimens
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Fig. 2 Lightfieldisochromaticfringe pattern, isotropicspecimen,
load = 1.56 kN
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Fig. 3 Lightfieldisochromaticfringe pattern,quasi-isotropicspecimen,
load = 5.92 kN
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Fig. 4 Lightfieldisochromaticfringe pattern,unidirectionalspecimen,
load = 5.92 kN
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Fig. 5 Lightfieldisochromaticfringe pattern, angle-plyspecimen,
load = 5.92 kN
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Fig. 6 Thirtydegreeisoclinefor quasi-isotroplcspecimen.
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Fig. 7 Isoclinicsin isotropicplate, isoclineangles indicated.
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Fig. 8 Isoclinicsin quasi-isotropicplate, isoclineangles indicated.
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