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Summary

An engine test facility has been assembled to allow
tests of hydrogen-burning supersonic combustion ram-
jet (scramjet) engine models at simulated Mach 4 flight
conditions. A three-dimensional nozzle having a nom-
inal 13-in-square exit provides a free-jet wind-tunnel
Aow. Flight enthalpy is duplicated by burning hydro-
gen in air with oxygen replenishment to yield vitiated
air containing an oxygen volumetric content of 21 per-
cent. An air ejector enables the facility to exhaust to
the atmosphere and to simulate a Mach 4 flight dy-
namic pressure range from 500 to 1900 psfa (altitude
from 86000 to 57 000 ft, respectively).

The facility is described and calibration test results
are discussed. Some facility-engine interactions experi-
enced in initial engine tests are briefly described. Mi-
nor hardware modifications and operational procedure
changes that alleviated these interactions are discussed.

Introduction

The specific impulse I, as a function of Mach num-
ber is shown in figure 1 for several air-breathing propul-
sion options compared with values typical for rocket
propulsion. With hydrocarbon fuels, the turbojet I,
is superior over a flight speed range from take-off to a
Mach number of about 3.5. From Mach 3.5 to Mach 6,
the I,, of the ramjet is higher. Above Mach 6, the
scramjet is more efficient. The I, of these propulsion
systems is increased by nearly a factor of 3, if hydrogen
is burned rather than a hydrocarbon fuel.

To explore the advantages of a hydrogen-burning
scramjet, a research program to develop technology
for a hydrogen-burning airframe-integrated scramjet
propulsion system is under way at NASA Langley Re-
search Center (refs. 1 to 5). As part of this program
a number of experimental investigations (refs. 6 to 16)
and analytical investigations (refs. 17 to 25) directed
toward establishing a viable concept for a scramjet
propulsion system have been conducted at Langley. The
proposed concept is composed of fixed-geometry mod-
ules installed together on the underside of the vehicle
as shown in figure 2. This airframe-integrated engine
concept takes advantage of the vehicle forebody for en-
gine inlet precompression and the vehicle aft undersur-
face for continued engine nozzle expansion, as depicted
in figure 2. Such a propulsion system would operate
within the scramjet air-breathing corridor of which a
portion is indicated in figure 3. This concept would op-
erate with mixed subsonic-supersonic combustion over
the low flight Mach number range from 3.5 to 6 and
in a supersonic combustion mode for the flight Mach
numbers above 6 (ref. 5).

An advantage of the modular concept is that a single
module, such as that shown in figure 2(a), can be de-

veloped experimentally in reasonably sized ground test
facilities that simulate the flow just ahead of the en-
gine inlet (fig. 2(b)). Specific facility nozzle exit Mach
numbers, as superimposed on the abscissa of figure 3,
are required to represent the flow at the specific flight
Mach numbers behind the indicated cone half-angles
that are representative of vehicle forebody precompres-
sion at specific angles of attack (ref. 26). Tests simulat-
ing Mach 7 flight would allow investigations of engine
fuel burning in a supersonic combustion mode. Like-
wise, tests simulating Mach 4 flight conditions would
allow investigations of engine fuel burning in a mixed
subsonic-supersonic combustion mode.

Two facilities have been assembled at NASA Lang-
ley Research Center which permit inexpensive, highly
productive, combustion and engine research tests to be
conducted on small-scale, gaseous-fuel-burning, scram-
jet models. One is an electric-arc-heated facility
(refs. 27 and 28) which has the capability, with 11-
in-square exit nozzles installed, as represented by the
vertical bars in figure 3; scramjet engine tests have
been conducted in this facility at the simulated Mach 7
flight conditions as reported in references 29 and 30.
The second facility has a hydrogen-burning, vitiated-
air (contains water as a product of combustion) heater
with oxygen replenishment. Attachment of a Mach 3.5
contoured nozzle with a 13-in-square exit to the heater
yielded a free-jet tunnel flow simulating Mach 4 flight
conditions for subscale engine tests. This capability is
also shown by a vertical bar in figure 3; the facility is
designated the Langley Mach 4 Scramjet Test Facility
(Mach 4 STF).

The potential of these facilities to simulate a wide
range of test conditions is represented by the hatched
areas of figure 3. The range of test capabilities of the
arc heater has been demonstrated (refs. 31 and 32).
The low-altitude limits of the arc heater operational
envelope are dictated by the arc power available for
total temperature simulations and the pressure rating
of the apparatus. The high-altitude limits are dictated
by the capability of the vacuum system and operation
of the arc at the lower airflow rates. The potential of
the Mach 4 STF is presently limited to altitudes above
57000 ft (at Mach 4) by a low pressure rating of the
vitiated-air heater duct and to altitudes below 86 000 ft
by the capability of an air ejector which exhausts to the
atmosphere. Proposed pressure upgrade of the heater
and acquisition of a vacuum sphere exhaust system,
along with additional Mach number nozzles, will allow
the full potential to be realized.

The purpose of this report is to describe the Langley
Mach 4 Scramjet Test Facility and to present the results
of calibration tests (at nominal values of total pressure
of 92 psia and total temperature of 520°R and 1630°R).
Although this report addresses the facility as a Mach 4




engine test facility, the heater lends itself to other test
applications, such as large-scale direct-connect combus-
tor tests, structural component tests, and aerodynamic
tests, by interchanging the hardware attached to the
heater.

Symbols
A area, in?
d effective exit diameter of Mach 3.5

nozzle, 14.967 in.

FOO fuel-to-oxidizer mass flow ratio

H nozzle exit height, 13.264 in.

I defined by equation (2)

I, specific impulse, (Ib thrust) /(Ib fuel/sec)

L nozzle length, 50.854 in.

M Mach number

mf mass fraction

P pressure, psi

q dynamic pressure, psfa

r radius, in.

T temperature, °R

u velocity, ft/sec

w nozzle exit width, 13.264 in.

zZp longitudinal coordinate downstream of
diffuser catch-cone entrance, in.

N longitudinal coordinate downstream of
nozzle throat, in.

y vertical coordinate, in.

z lateral coordinate, in.

) boundary-layer thickness, in.

6* boundary-layer displacement thickness,
in.

6 cone half-angle that represents sum of
vehicle surface angle and angle of attack,
deg

p density, 1b/ft3

07 fuel equivalence ratio (1.0 for stoichio-
metric burning)

w weight flow rate, 1b/sec

Subecripts:

A,B,C  engine fuel injection systems

]

amb ambient

avg average

brn burner, or heater

cab test cabin

ej ejector

el elbow

FOO based on condition that all H; burned
stoichiometrically

H, hydrogen gas

H,O water

ign ignitor

inj injected

noz nozzle exit plane

0, oxygen gas

s tunnel gas flow (fig. 14)

set hand regulator set pressure

SiH,4 silane gas

t total or stagnation conditions

t,2 pitot pressure

th throat

w based on weight flow rate, p, brn, and
A

0o free-stream conditions

Abbreviations:

DAU data acquisition unit

ESP electronically scanned pressure

I.D. inside diameter

0.D. outside diameter

STF Scramjet Test Facility

Apparatus and Procedure

General Characteristics

The facility has a hydrogen-burning vitiated-air
heater with oxygen replenishment that enables mixing
and combustion research to be conducted at simulated
flight conditions. Attachment of different hardware to
the heater permits the facility to be used in a variety of
ways to develop technology for a viable scramjet propul-
sion system. Installation of appropriate hardware (noz-
zle, combustor duct, and connections to the exhaust
duct) would allow the heater to supply the proper flow
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for direct-connect combustor component tests. A su-
personic expansion nozzle, attached to the heater and
protruding into a test cabin to produce a free-jet flow,
along with the required downstream exhaust ducting,
permits inlet component tests and fuel-burning engine
tests to be performed.

Figures 4 and 5 show the appropriate hardware
configured for a free-jet-flow tunnel to meet the re-
quirements for fuel-burning scramjet model tests. The
vitiated-air heater and the Mach 3.5 free-jet nozzle
(fig. 5) produce the conditions that simulate the flow
behind the bow shock of a 12° half-angle conical body at
Mach 4. A total temperature T; o, of 1630°R and vari-
ous tunnel total pressures produce the conditions repre-
sented by the vertical bar at M, = 4.0 in figure 3. Total
temperatures other than 1630°R with the Mach 3.5 noz-
zle, of course, represent different flight Mach numbers
for conical bodies other than a 12° half-angle cone.

The operation map presented in figure 6 shows the
facility operating characteristics and the flight condi-
tions simulated. The sketch at the top of figure 6 in-
dicates free-stream conditions, conditions behind the
vehicle bow shock and ahead of the engine inlet that
are simulated by tunnel flow, and the vehicle attitude.
Curves in figure 6 that decrease with increased total
pressure are lines of constant Mach number and total
temperature for a given cone half-angle, and the curves
that increase with pressure are lines of constant dy-
namic pressure. The solid line represents the charac-
teristics of the tunnel configuration in figure 4, with
the Mach 3.5 nozzle. The circles indicate calibration
test points. This configuration (fig. 4) was designed for
free-jet tests of hydrogen-burning scramjet models at
simulated Mach 4 flight conditions and is designated the
Langley Mach 4 Scramjet Test Facility (Mach 4 STF).

General Description

The Mach 4 STF test gas heater, or burner, is sup-
plied with air, hydrogen, and oxygen from high-pressure
gas storage. The hydrogen and oxygen flow rates are
controlled so that the resulting combustion product
mixture contains approximately 21 percent free oxy-
gen by volume to simulate the oxygen content of air.
The remaining test gas is a mixture of nitrogen and
water vapor; the higher the stagnation temperature for
higher simulated flight speed, the greater the hydrogen
flow rate required for combustion and thus the larger
the water vapor content in the test gas. Mach 4 flight
simulation results in a nominal test gas composition of
8 percent water, 71 percent nitrogen, and 21 percent
oxygen by volume. For convenience of facility opera-
tion, two parameters are used to describe test gas com-

position: the fuel-to-oxidizer mass flow ratio,

FOO = — M2 (1)
Wair + wo,
and the ratio of the oxygen added to the oxygen neces-
sary to make the test gas contain the same free oxygen
content as air, )
= %0,
I'= 12.140y, (2)
Note that - value of I — 1.0 indicates a test gas
with the same oxygen content as air. Also, since
the burner is always operated fuel lean (excess oxygen
for combustion) and burner combustion is essentially
complete, the stagnation temperature of the test gas is
controiled by FOO.
The test gas from the burner is expanded through
a converging-diverging nozzle to a Mach number of 3.5.
This supersonic stream exhausts as a free jet into a test
cabin that houses the scramjet engine. The test gas
passes through and around the engine into an exhaust-
duct system connected to an annular air ejector that
exhausts to the atmosphere. As shown in figure 4, the
test apparatus is located within a test cell that has an
ambient air intake tower at the upstream end and an
exhaust tower at the downstream end. The tunnel and
ejector flow are directed into the entrance duct of the
exhaust tower to form an ejector which induces a flow
of outside air into the intake tower and through the test
cell. This forced ventilation is intended to remove any
hydrogen leakage which might otherwise accumulate
and ereate an explosion hazard. Important features of
the facility represented in figure 4 are described in more
detail in the following sections.

Test Cell

An overall exterior view of the test cell complex is
shown in figure 7. The complex contains two test cells,
one of which contains the Mach 4 STF. The cells are 16
x 16 x 52 ft each and were originally constructed for
combustion tests of liquid-hydrocarbon-fueled ramjet
engines. They are constructed of 16-in-thick reinforced
concrete walls to withstand and contain any possible
apparatus failure; a cross-sectional view of a cell is
shown in figure 8.

Air, cooling water, and propellants are supplied to
the test cell complex. The air can be supplied to only
one test cell at a time; therefore, all other systems are
also shared. Physical interlocks and procedures with
check lists are used to ensure the proper setup for the
test cell that is in use.

Support Systems

The support systems for the test facility are shown
schematically in the block diagram of figure 9. All
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systems are controlled from a remotely located control
room shown in figure 10. Each of these systems is briefly
discussed in the following paragraphs.

Air. Air is supplied to the facility from a 600-
psi system that can deliver a maximum flow rate of
300 lb/sec for approximately 3 minutes before the de-
creased air supply pressure adversely affects the tunnel
controls. The air enters the tunnel circuit at two loca-
tions: (1) the upstream end of the test cell through
a 16-in-diameter duct to the vitiated-air heater and
(2) a downstream location through two 8-in-diameter
lines to the. air ejector.

Airflow to the heater is regulated from about
8 lb/sec for a continuous air purge to 57 lb/sec for
maximum flow to the test apparatus. The airflow rate
passing into the heater is determined by measuring the
pressure drop across a baffle plate that was calibrated
with an ASME sonic metering nozzle that is discussed
in a subsequent section. The air-ejector flow rate re-
quirement is constant at 175 1b/sec.

Cooling water. A high-pressure closed-loop cooling-
water system is used to cool the heater. This system
has the capability of delivering 450 gal/min at 550 psig.

Two additional water systems are also available
for cooling instrumentation or for quenching the hot
exhaust low. One is a continuous water supply at about
60 psig and the other is a 500-gallon tank supply at
550 psia that can supply 50 gal/min with the present
piping.

Gaseous propellants. The hydrogen, oxygen, and
purge nitrogen are supplied from tube trailers visible
in figure 7. The capacity of each hydrogen and oxy-
gen tube trailer is 60000 standard cubic feet (scf) at
2400 psia and each system can have two trailers con-
nected for a total of 120000 scf. The nitrogen trailer
has a capacity of 47000 scf at 2400 psia.

Pretest operations involve purging the hydrogen and
oxygen piping with nitrogen, starting the continuous
airflow through the tunnel, and pressurizing the sys-
tems with hydrogen and oxygen. All the piping is
again purged with nitrogen during facility shutdown
operations.

Hydrogen is supplied to the vitiated-air heater and
also to the test model through separate remotely con-

. trolled systems. Six individually controlled and regu-

lated systems are used to distribute the hydrogen fuel
to the engine; these systems are visible in figures 5(a)
and 5(b). The hydrogen flows are measured by sharp
edge orifice plates (one each for the heater and engine
supply), and the oxygen flow is measured with a ven-
turi (for safety considerations). The model fuel flow is
also computed for each of the six individually controlled
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systems with the assumption that the fuel injectors are
choked and the individual flows are measured by indi-
vidual line turbine flow meters to ensure accurate flow
measurements at low fuel flows when the injector ori-
fices may not be choked. For a typical engine test in the
Mach 4 STF at M, = 4.0 and go = 1000 pef (p¢,brn
= 92.4 psia and T} brn = 1630°R) the mass flow rates
to the heater are 28.0 Ib/sec of air, 2.35 1b/sec of oxy-
gen, and 0.19 1b/sec of hydrogen, and the engine model
hydrogen flow rate is 0 to about 0.15 1b/sec.

Hydrogen and oxygen are supplied from a separate
source (220 scf at 2400 psi) to a hydrogen-oxygen torch
ignitor in the vitiated-air heater. A mixture of 20 per-
cent by volume silane (SiH4) and hydrogen is supplied
from two cylinders (220 scf at 2400 psi) to the test
model to enhance ignition of the engine fuel. Silane
is pyrophoric with air at atmospheric conditions and
has proved to be highly successful as an ignition aid
(ref. 33).

Mixer and Heater Assembly

The relative position of the mixer and heater as-
cembly is shown in figures 4 and 5. The schematic in
figure 11(a) shows some of the major details of this as-
sembly. The design relies heavily upon the knowledge
and experience gained in the design and operation of
the heater in the adjacent test cell (see refs. 34 and 35).
The present concept differs slightly from the heater in
references 34 and 35 in that the air and oxygen are
premixed in the mixer section between the oxygen and
hydrogen baffle plates; thus the hydrogen is injected
into oxygen-rich air. Both baffle plates have 2 rings
of orifices, 10 orifices in the inner ring and 20 in the
outer ring, through which injector tubes pass. Ignition
of the heater propellants is provided by a hydrogen-
oxygen torch ignitor that is installed as shown in fig-
ure 11. Previous designs introduced the air, hydrogen,
and oxygen in proximity to one another in the heater, as
discussed in references 34 and 35. Premixing the air and
oxygen results in better mixing and combustior. in the
heater and thus allows the length-to-diameter ratio of
the heater duct to be smaller than in previous designs.
The design of the passages through the oxygen and hy-
drogen baffle plates (details presented in fig. 11(b) for
the hydrogen injectors) was such that the air velocity
was about M = 0.9 and the air-oxygen mixture velocity
was about M = 0.7 through the respective baffle plates.
Flow passages accund the hydrogen injectors were mod-
ified as shown in figure 11(b) for some tests to increase
the periphery flow to M = 0.95. Oxygen and hydrogen
were injected through orifices at about M = 0.7. Walls
of the heater duct are water jicketed (450 gal/min water
flow) as shown in figure 11(a). The existing heater duct
is limited to internal operating conditions of 175 psia
and 2250°R.
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Tunnel System

The tunnel is a free-jet design, as shown in the
schematic of figure 4. The distance from the nozzle
exit to the diffuser catch cone (free-jet length) was
selected on the basis of the results of reference 36;
this length is about 1.5 times the equivalent diameter
of the square nozzle exit. A straight-duct supersonic
diffuser 8 to 10 diameters long is recommended by
reference 36 and others, an air-ejector mixer duct 10 or
more diameters long is recommended by reference 37,
and a subsonic diffuser with an expansion half-angle
of 2.5° is recommended in reference 38. However,
since the facility is contained within the existing 52-
ft-long test cell, compromises in the supersonic-diffuser
and mixer duct lengths and the subsonic-diffuser duct
expansion angle were required and a turning duct was
necessitated. Details of the various components of the
tunnel system with these compromises are discussed in
the following sections.

Nozzles. The uncooled contoured square nozzle
(fig. 12(a)) was designed on the basis of the streamline-
tracing concept of references 39 and 40. The throat is
4.976 in. square (24.81 in?), and the flow exit is nomi-
nally 13 in. square (actual geometric nozzle exit dimen-
sions are 13.264 in. to account for boundary layers).
At a total temperature of 1630°R the nozzle-exit Mach
number is 3.50. The nozzle entrance, which protrudes
into the heater duct, makes a transition from a circular
to a square cross section. The throat section was con-
structed with a large mass of stainless steel for heat sink,
and the downstream expansion section of the nozzle was
constructed of 0.183-in-thick carbon steel with exter-
nal stiffening webs. The nozzle sidewalls and bottom
wall were extended at the exit to ensure that shocks,
generated when the ratio of cabin to nozzle-exit static
pressure became equal to or greater than 2.0, would not
enter the internal flow region of the engine model.

Two ASME sonic metering nozzles (figs. 12(b) and
12(c)) were used in the heater checkout and calibration
tests. One nozzle had a throat area of 14.07 in? and
was used to determine the differential pressure across
the oxygen baffle to measure the air mass flow. The
second nozzle had a throat area of 24.81 in? and was
used in the diagnostic tests of the beater at operating
temperatures up to 2250°R. These test results were used
to generate an empirical equation for calculating the
heater total temperature as a function of the heater
stagnation pressure and the heater flow rates of air,
hydrogen, and oxygen.

Test cabin. The test cabin (fig. 13(a)) is 30 in.
wide, 42 in. high, and 96 in. long and was structurally
designed for a maximum internal pressure of 35 psia

which is sufficient to allow a normal shock to pass
through the system during tunnel flow starting. A
9-in-diameter viewing port in each sidewall is located
so that the cowl region of the engine model is visible. A
6-in-diameter viewing port in the bottom wall of the test
cabin allows motion picture and television monitoring
of this same region of the model.

Both sidewalls of the test cabin are easily remov-
able (see figs. 5(a) and 13(a)) for unrestricted access
to an installed model. Each sidewall is retained by
10 fuse bolts (see fig. 13(b)) that are designed to fail
at a cabin internal pressure of 25 psia. Movement of
only one sidewall is sufficient to relieve the overpres-
sure. The shock-absorption system that can be seen in
figure 13(a) is used to absorb the impact of the sidewalls
during a cabin overpressure and to retain the sidewalls.
The absorption mechanism employs fragmenting tubes
(ref. 41) that are depicted in figure 13(c).

Supersonic diffuser. The supersonic diffuser (figs. 4
and 14) consists of a catch cone with a 24-in. entrance
diameter and a 4.18° half-angle and of a straight duct
with a 19-in. internal diameter and a length of 5.26 di-
ameters. With the employment of an ejector, this
length appeared to be sufficient. The aft 28 in. of the
supersonic diffuser is actually the internal duct wall of
the annular air ejector.

Air ejector and mixer. The results of reference 36
indicated that the tunnel diffuser system exhausting to
the atmosphere would not provide sufficiently low back
presssure for tests with large model blockage. An air
ejector and mixer, diffuser, and exhaust ducting were,
therefore, designed to provide the low back pressures
required for such tests. The relative positions of these
sections are shown in figure 4.

The annular air ejector is shown schematically in
figure 14. The present ejector was designed on the basis
of reference 37. Manual movement of the ejector inner
wall changes the ejector annular throat and thus the
ejector Mach number. Two positions of the design yield
Mach numbers of 3.72 and 4.16. The ratio of ejector
exit area to diffuser exit area is nearly equal to 1.0,
and the nominal operational ratio of ejector mass flow
to diffuser mass flow is about 6.0. Air is supplied to
the tunnel and the ejector from the same source, but
the mass flows are controlled separately. During a test,
the tunnel and ejector airflows are stabilized prior to
ignition of the heater flow.

The tunnel and ejector flows are mixed in a constant-
area duct (25.25-in. 1.D.) downstream of the ejector exit
prior to exhausting to the atmosphere. This mixing
duct has a length of 6.3 diameters.

Subsonic diffuser and exhaust. The subsonic



diffuser, located downstream of the mixer duct (fig. 14),
consists of a short length of duct with a 3.8° half-angle
expansion, a turning duct with internal vanes, and a
short section of expanding duct with a 5° half-angle.
Exhaust flow from this expanding duct passes to the
atmosphere through the top of the test cell as shown in
figures 4 and 8.

Test cell ventilation. To ensure that air is always
flowing through the test cell before, during, and after
each test, a low-pressure air ejector was installed in the
test cell ceiling exhaust tower. This ejector, designed on
the basis of results of reference 42, consists of a 6-ft-long
duct 6-ft in diameter positioned 5 ft above the turning
duct exit and protruding into the test cell exhaust
tower. During tunnel pretest setup with the propellant
systems pressurized into the test cell, a low flow rate of
tunnel air is maintained. This tunnel air exhausts into
the low-pressure ejector, entrains the test cell air, and
thus ensures, for safety purposes, ventilation of the test
cell.

Instrumentation and Data Systems

The facility was heavily instrumented during cali-
bration tests and during initial engine model tests to
determine the characteristics of the vitiated-air heater,
the tunnel nozzle-exit flow, and the tunnel exhaust-
duct flow. Locations of the instrumentation are shown
schematically in figure 11(a) for the mixer and heater
section and the propellant supply lines, and in figure 15
for the facility sections downstream of the heater.

Nozzle-exit rakes. Photographs and details of the
various nozzle-exit rakes are shown in figure 16. A
combination pitot-pressure and total-temperature sur-
vey rake, shown in figure 16(a), was installed at the exit
plane of the Mach 3.5 nozzle. Details of the rake and
the pitot and temperature probes are shown schemati-
cally in figure 16(b). A static-pressure rake, shown in
figure 16(c), was also installed at the nozzle-exit plane.
Details of the rake and probes (design based on ref. 43)
are shown schematically in figure 16(d). Both rakes
were mounted at identical locations in the nozzle-exit
plane: on the vertical centerline and at horizontal po-
sitions z/H of 0.20, 0.35, 0.50, 0.65, and 0.80. The
pitot-pressure and static-pressure rakes did not have
identical probe spacing; therefore, data interpolation
was necessary during data analysis. An eight-probe
pitot-pressure rake, shown in the photograph of fig-
ure 16(e) and schematically in figure 16(f), was used
to estimate the characteristics of the tunnel nozzle top
wall boundary layer that would be ingested by engine
models aligned with the nozzle top wall. This rake was
mounted in three lateral locations on the nozzle top

wall at the nozzle exit: y/W = 0.20, 0.35, and 0.50.
At y/W = 0.50, a 1/8-in. shim was installed under the
mounting base and a repeat of run conditions resulted
in a 16-point survey. A sketch depicting probe locations
during the calibration tests is shown in figure 16(g).

Data acquisition system. A schematic of the data
acquisition system (DAS) for the Mach 4 STF is pre-
sented in figure 17(a). The main computer of the sys-
tem, shown in the photograph of figure 17(b), is a mul-
tiprogrammable, 32-bit, general purpose digital com-
puter with parallel 500000 word paged memory. The
DAS is designed for high-speed data acquisition and
data analysis in a real-time environment. The system
includes a console terminal, two disk drives (a 24 and
a 48 megabyte size}, a card reader, two 800 bits/in.
tape drives, and a line printer. A graphics terminal was
attached to the main computer over an RS-232 inter-
face that permitted desired data to be plotted at a rate
of 2400 bits/sec. A series of electronic amplifiers al-
lowed up to 192 analog signals to be digitized. An elec-
tronically scanned pressure (ESP) measurement system
(ref. 44) was attached and controlled over a standard
IEEE-488 interface. The ESP is used for some of the
facility duct pressure measurements, but its main pur-
pose is to provide model pressure measurements up to
75 psia. Model thrust and drag is measured with a
one-component strain-gauge force balance.

Data were recorded at a scan rate of 10 frames per
second and were generally printed at a rate of 2 per
second for a nominal 20-second run. The printed data
are in engineering units, ratios, and/or calculations
using raw data; printing starts within 1 second after the
end of the test. Data are immediately plotted on the
graphics terminal from which a standard set of plots
is obtained on a hard copier for on-site preliminary
run analysis. Once selected data are stored, the data
can be recovered for additional analysis either on site
or by remote computer terminals interfaced with the
computer.

Procedures

The test sequence used for engine tests in the Mach 4
STF is depicted in figure 18. The pressures required
to obtain the correct airflow rates to the ejector and
heater, the oxygen and hydrogen flow rates to the
mixer and heater, and the hydrogen flow rate to the
engine are determined and preset. Duration of the
test is controlled by the selected time on a run timer.
Time sequences for the various engine fuel injectors are
input into the automatic controller (activated by the
run timer) which causes the engine fuel injector valves
to open and close at selected times during the test.
Once all pressure values are set, the ejector and heater
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airflows are initiated, the heater ignitor is activated,
and, if ignition is detected, the heater hydrogen is
introduced. Combustion of the hydrogen to yield the
desired facility flow total temperature causes the preset
nonburning heater pressure to increase to the desired
steady-state heater pressuce. The heater total pressure
and temperature values are digitally displayed, and once
these indicate steady-state conditions, the automatic
timer is initiated which starts the heater oxygen flow
and :equence of events shown in figure 18 (typically
20-sec duration). After a normal run, all systems are in
a dormant state but with a low tunnel airflow (8 Ib/sec)
for continuous tunnel purge. Within the next 5 to
10 minutes, the data are printed and stored, a standard
set of data plots is obtained for desired times during
the run, a preliminary run analysis is made using the
printout and plots, the desired set pressures and times
are changed if required, and the next run is performed.
During the facility calibration tests, this procedure
allowed decisions on data validity immediately after a
run and the option to repeat the run if required. During
engine test programs, this procedure allowed up to 12
or more runs a day.

Facility Calibration and Performance

Facility calibration and checkout were performed in
three types of tests, namwely, (1) unheated airflow tests
with an ASME sonic metering nozzle, (2) hot flow tests
with an ASME sonic metering nozzle, and (3) hot flow
tests with the Mach 3.5 contoured nozzle. These tests
and the results are discussed in the following sections.
Facility performance during some preliminary engine
tests is then discussed including some of the operational
difficulties encountered and their resolution.

Sonic Nozzle Unheated Airflow Tests

Tests were performed with unheated airflow to cal-
ibrate the airflow rate as a function of pressure drop
across the oxygen baffle plate (fig. 11(a)). During these
tests, pressures in the heater with the unheated airflow
were maintained at levels that would occur with hot
flow (1630°R) at the same mass flow rates for which
the facility contoured nozzle was designed. Such condi-
tions were achieved by using an ASME sonic metering
nozzle (fig. 12(b)) that was properly sized by

[Teo
Acold = Apot Tf o (3)
hot

The standard mass flow rate equation for choked flow
was used with the nozzle throat area, heater 'rt stag-
nation pressure, and heater duct stagnation . pera-
ture to determine the unheated air mass flow. Pres-
sures measured in the nozzle throat ensured high noz-
zle efficiency.) These flow values, the measured pressure
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upstream of the oxygen baffle plate, and the differential
pressure (Ap) across the oxygen baffle plate were used
to determine an empirical equation of the air weight
flow based on the baffle-plate pressure measurements:

Wair = 0.59309 — 0.40103%2 4)

Sonic Nozzle Hot Flow Tests

Once the unheated airflow :calibration tests were
completed, a larger ASME sonic metering nozzle (fig.
12(c)) was installed for tests to examine the heater op-
eration. The throat area (5.62-in. diameter) of this
Mach 1.0 nozzle was equal to the throat area of the
Mach 3.5 contoured square nozzle (fig. 12(a)). Tests
were conducted with heated flow at total temperatures
of 1630°R and stagnation pressures in the heater of 46.0,
69.0, 92.0, and 160 psia (Mach 4 flight dynamic pres-
sures of 500, 750, 1000, and 1730 psfa, respectively).
A few tests were performed at a total temperature of
2250°R and a total pressure of 92.4 psia (Mach 5 flight
total enthalpy and dynamic pressure of 575 psfa).

Total-temperature determination. The following
procedure was adopted to estimate the bulk total tem-
perature of the facility nozzle-exit flow using the mea-
sured burner pressure, gas flows supplied to the burner,
and the known nozzle throat area. The stagnation tem-
perature in the heater for the oxygen-replenished test
gas (I = 1.0) was determined from real-gas thermody-
namic calculations using a computer program such as
that used in reference 34 and is a function of the fuel-
to-oxidizer mass flow ratio, FOO (see eq. (1)). For con-
venience, the theoretical stagnation temperature with
complete combustion was correlated in a fourth order
polynomial fit as a function of FOO as follows:

T.roo =(~1.3939 x 10°)FO0O*
+ (1.1313 x 10%)FOO?
+ (—5.0144 x 10°)FOO?
+ (2.2255 x 10°)FOO + 524.47  (5)

For a sonic throat .e stagnation temperature is related
to the stagnation pressure and total mass flow by the
relationship

T - [(FKA)p,,bmAm]’
tw = |/
Whrn

(6)

The parameter FKA which would be constant for a
perfect gas is a weak function of stagnation temperature
and FOO for nearly complete combustion. Again, a
fourth order polynomial fit was used to specify FKA as
a function of FOO alone for complete combustion:

* i - - h




FKA =(-3.5152 x 10*)FOO*
+ (1.1313 x 10%)FOO?
+ (29.242)FO0?
+ (—2.9953)FOO + 0.53214 (7

An initial estimate of Ti. was then obtained from
equation (6) with the measured values of Pt,brn, Ath,
and Wyep.

This estimate of T: ., which is based on a value
of FKA corresponding to complete reaction, was then
used to estimate the heat loss (HL) to the water-cooled
heater and heat sink nozzle walls and to iterate to
a corrected value of nozzle-exit total temperature as
follows:

- Ttroo — T u(n)
HL(n) ~ T, ro00 ~ Tamb ®

A correction for FKA was calculated from a power fit
to theoretical results for complete reaction where

K(n) = 66.3 FOO*°7 HL(n) (9)

and the corrected value is

FKA' = FKA[1.0 + K (n)] (10)

The corrected value for FKA was then substituted in
equation (6). This iteration procedure was performed
only five times since changes in properties are small with
heat loss, with the value of T, ;,(n) on the fifth iteration
taken as an estimate of the bulk gas temperature T b,y
at the nozzle exit.

Comparison of this computed temperature with the
theoretical temperature indicated a heat loss of about
11.0 percent. A total heat loss of about 10 to 11 percent
was indicated to be a reasonable value in reference 34.
During these tests, the measured rise in the heater
duct cooling water temperature indicated a heat gain
of about 6 to 8 percent of the heater fuel energy. Heat
loss to the nozzle was not measured but was estimated
to be about 3 to 5 percent.

Total temperature affected by air-oxygen injec-
tion velocity. Heater diagnostic tests were performed
with two different velocities of the air-oxygen mixture
at the heater hydrogen injectors. The two different ar-
rangements of the hydrogen injection tubes in relation
to the air-oxygen passage tubes shown in figure 11(b)
yielded air-oxygen velocities corresponding to M ~ 0.7
and 0.95.

Data from several tests with the higher air-oxygen
velocity (M =~ 0.95) indicated that the total tempera-
ture based on the sonic throat calculations was much

less than the theoretical combustion temperature and
did not parallel the theoretical curve, as shown in fig-
ure 19. Also, higher values of FOO than desired were
required to ensure heater ignition, and the heater be-
came unstable with possible “Aameout” at FOO less
than 0.007. The increased air-oxygen velocity was ap-
parently too great to allow complete combustion. The
tube arrangements (fig. 11(b)) were then changed to
yield the present lower air-oxygen velocity (M =~ 0.7),
and the resulting total-temperature values based on the
sonic throat calculation were somewhat less but paral-
lel to the theoretical combustion temperature curve, as
shown in figure 19. The heater then operated in a sta-
ble mode at bulk temperatures down to approximately
1300°R.

Operating Parameters

Standard thermodynamic computations for combus-
tion of hydrogen in air with oxygen replenishment (de-
veloped into a computer program and previously used,
e.g., ref. 34) yield parameters such as those presented in
figure 20. During the Mach 1.0 hot flow tests, the heat
loss to the heater and nozzle walls was determined and
the mixture ratio curve of figure 20(a) was corrected
as represented by the cross-hatched band (representing
accuracy). Using the corrected band to relate a desired
heater temperature to the no-heat-loss temperatures,
one can determine the required mass fractions of hy-
drogen, oxygen, and air. From these, the facility opera-
tional parameters can be determined which will produce
simulated air (correct amount of oxygen) at the proper
total temperature for experimental combustion inves-
tigations. Operational parameters (Pt,brns Tebrn, and
total mass flow) for a nozzle throat area of 24.81 in?
are presented in figure 21. The required tunnel to-
tal pressure necessary to simulate a particular altitude,
or dynamic pressure, at M = 4 and 1600°R (point A
in fig. 21) is used to determine the tunnel total mass
flow rate and thereby indicate the burner total pressure
for air only at 530°R (point B in fig. 21). From the
Mach 1.0 unheated airflow tests, the upstream pressure
settings were correlated with the heater total pressure
and are represented in figure 22(a); point B of figure 21
is used on figure 22(a) to determine air pressure setting.
The heater hydrogen and oxygen mass flows required
are related to the upstream pressure settings (on the
control panel gauges) and the injected pressures. These
pressures are also correlated with the hot flow heater
total pressure represented by point A in figure 22(b).
The proper settings for desired test conditions deter-
mined from curves such as those shown in figures 21
and 22 allowed good test condition repeatability.

Nozzle Calibration

Once the heater flow calibration tests were com-




pleted and the appropriate operating parameter set-
tings were determined for good test condition repeata-
bility, facility nozzle flow calibration tests were per-
formed. These tests were performed at nominal val-
ues of total pressure (92 psia) and total temperature
(520°R and 1630°R) with the survey rakes descri'.zd
in figure 16 positioned at the exit of the basic nozzle
(zn = 50.854 in.) without the nozzle extension installed
(fg. 12(a)) and at the positions depicted in figure 16(g).

In analyzing test data, it was noted that the noz-
zle wall static pressure near the exit, zy = 48.35 in.
(zn/L = 0.95), was consistently higher than the up-
stream pressure at zy = 39.1 in. (zn/L = 0.77), as
shown in figure 23. Examination of the nozzle indi-
cated that an inner wall surface distortion that resulted
from external welding of a flange to the nozzle external
surface at zy ~ 42.0 in. (zy/L = 0.83) was the cause
of the slight flow compression. The total-pressure loss
associated with this wall distortion and its impact on
nozzle-exit flow uniformity is negligible.

A nozzle-exit wall pressure was calculated by as-
suming a one-dimensional isentropic expansion from the
area and pressure at xy = 39.1 in. to the exit area with
Mach number determined from pnoz/pPt,brn. All sub-
sequent analyses involving an exit wall pressure were
made using this calculated p,o,. Average exit Mach
numbers, based on pyoz and burner total pressure, were
3.55 and 3.52 for the unheated airflow and hot flow test
conditions, respectively.

Survey data. The resuits of the surveys are pre-
sented in figures 24 and 25 for the unheated airflow
and hot flow conditions (T%brn nominally 520°R and
1630°R), respectively. The nozzle-exit flow was uni-
form and symmetrical for both cold and hot conditions.
Quantitatively the data compared well when the Mach
number and mass flow were calculated using various
combinations of the measured parameters. Results of
a survey made with the pitot-pressure rake on the exit
vertical centerline were consistent with horizontal sur-
vey center-point values.

Pitot-pressure data, nondimensionalized by burner
total pressure, are presented in figures 24(a) and 25(a).
Small deviations of nonuniformity are noted but are
considered acceptable for such tunnel flow. These
small nonuniformities are, however, symmetric about
the nozzle centerline.

Total-temperature data, nondimensionalized by burn-
er total temperatures (based on weight flow), are pre-
sented in figures 24(b) and 25(b). Thermocouple probe
failures occurred during some of the tests because of
tunnel vibration causing wire breakage or electrical
shorts; failures are evident by missing data points. The
high-temperature data exbibit nonuniform trends which
are not readily explainable. The profile for the ver-

tical centerline is, however, very uniform. Overall,
the nozzle-exit total-temperature profiles are considered
sufficiently uniform for testing scramjet engines.

The static-pressure survey data normalized by the
burner total pressure are presented in figures 24(c)
and 25(c). Both distributions are very uniform. The
static-pressure rake contained five probes and the wall
values plotted at y/W = 0 and 1.0 are the calculated
exit wall pressure ppo;. For both test conditions, the
free-stream survey pressures agree well with the nozzle
wall pressures.

The nozzle top wall boundary layer was surveyed
with the seven-probe stationary pitot-pressure rake.
Measurements were made on the vertical centerline and
at lateral positions of y/W = 0.20 and 0.35. Assuming
a constant static pressure p,o; through the boundary
layer, the local Mach number was calculated from the
pitot survey data. Velocity distributions were then ob-
tained from the Mach number and an assumed constant
total temperature. From the turbulent boundary-layer
velocity profiles (not shown), the thickness 6 was esti-
mated. In the unheated airflow cases, velocity profiles
could be interpreted to show é§ = 1in. or 0.75 in. There-
fore, the data for unheated airflow were analyzed with
both values. For the hot flow conditions, the thickness
& was shown to be 1 in. at all three positions. From the
local Mach number, constant static pressure (pnoz), and
total temperatures, boundary-laycr mass flow distribu-
tions were determined and are shown in figures 24(d)
and 25(d); distance from the wall is measured in inches
and local mass flow per unit area is nondimensionalized
by the free-stream value. The boundary-layer displace-
ment thickness 6* was then evaluated from

* 1.0/
e[ w

Integration of the plots in figure 24(d) (unheated air-
flow) produced a value of 6* ~ 0.23 in. for y/H = 0.5
and 0.35 and 6* = 0.17 in. at y/H = 0.2. These inte-
grated values of 6* were the same for both values of §
(1.0 and 0.75 in.). For the hot flow cases (fig. 25(d)), an
average value of 6* = 0.23 in. was found for the three
rake positions. This value (6* = 0.23) was assumed to
be constant in subsequent analyses involving boundary-
layer mass flow deficit.

Mach number profiles are shown in figures 24(e),
24(f), 25(e), and 25(f). Where the boundary layers
influence the results, nonuniformities are evident for all
cases and are most prominent near the walls. The values
at y/W of 0.5 and 0.95 based on p; 2 /Pt,brn are therefore
in error since the total pressures at these points are not
equal to Pt,ben-

Mass flow rates. To assess the accuracy of the
calibration data, an estimate of the nozzle-exit mass
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flow was made for comparison with the metered tunnel
flow. Mass flow integration was accomplished by the
summation of flows through incremental areas assigned
at survey points. A sketch of this integration map is
shown in figure 26. The dashed-line rectangle repre-
sents the capture area of a scramjet inlet. Because of
some uncertainty of the survey data, the Mach number
and corresponding mass flow per unit area at the sur-
vey points were calculated from the four measured pres-
sure parameters, p2/Ptbrny Poo/Pt,2y Poo/Ptbrn, and
Pnos/Pt,2- All calculations were made for real gas (ther-
mally perfect). The integration results are tabulated in
table I.

In general, good agreement exists between the mea-
sured bulk flow rates and the flow rates obtained from
integrations of the survey results. The average Mach
number shown is simply an arithmetic average of the
survey point values. Average Mach number in the cal-
culations using survey static pressure (po,) for the un-
heated airflow conditions (T}, = 520°R) appears to
be low. The Mach number derived from pitot measure-
ments is considered more reliable because of the sensi-
tivity of static-pressure probes to flow misalignment.

Flow angularity. A brief study of flow angularity
was conducted during unheated airflow tests using a
single 25° half-angle conical probe (ref. 45). The probe
tip was blunted to 0.025 in. in diameter to accept a
0.010-in-diameter pitot-pressure orifice. Four individual
0.029%-in-diameter static-pressure orifices were located
0.360 in. from the cone tip. The probe was mounted and
accurately aligned with the horizontal. Measurements
were taken in the nozzle-exit plane (zy = 50.854 in.)
on the nozzle axis and 2 in. above the horizontal cen-
terline on the vertical centerline. Yaw alignment of the
probe was performed by accurately mounting the probe
parallel to the nozzle walls.

The pressure measurements obtained with this
probe were used along with references 46 to 48. Re-
sults indicated a nozzle-exit Mach number of 3.55 which
agreed with the nozzle-exit pitot survey results. Noz-
zle flow angularity was shown to be less than 1° in the
downward direction, which is within the mounting ac-
curacy of the probes and model installation.

Facility-Engine Interactions

During initial research tests of a hydrogen-burning
scramjet engine model, interactions between the fa-
cility and engine occurred as fuel injection into the
model was incrcased, especially if poor engine combus-
tion occurred. Exhaust-duct wall pressure and station-
ary pitot-pressure rake measurements indicated the on-
set of these disturbances; figure 27(a) shows the rela-
tive locations of the wall pressure measurements and
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rakes. The unburned engine fuel apparently ignited
in the duct and generated back pressure that eventu-
ally affected the tunnel flow in the region of the en-
gine and, at times, caused the tunnel nozzle flow to
separate. Several techniques were attempted to elimi-
nate these facility-engine interactions. A combination
of high burner total pressure (p¢brn =~ 160 psia) and
water sprayed into the diffuser catch cone and at the
elbow turning vane leading edges was found to be most
successful. This tech:ique resuited in the undisturbed
measurements of figure 27(b). During a later engine test
program with improved engine fuel mixing and burning,
successful tests could be performed at lower burner to-
tal pressures (pybrn =~ 92 psia). Also, replacement of
the nozzle extension shown in figure 12(a) with an ex-
tension 9 in. longer decreased the facility free-jet length
and made the nozzle flow less sensitive to increases in
the exhaust-duct back pressure. The success of all of the
above means of resolving the facility-engine interaction
is also evident in figure 27(c). Prior to the resolution
of the interaction problem, the increased pressures in
the exhaust system affected the engine measurements.
When the engine inlet flow “unstarted,” the facility
nozzle flow was drastically affected. Data of a post-
resolution test indicated that an engine combustor-inlet
interaction, caused by combustor fuel-burning pressure
rise, occurred before tunnel disturbances. Also, after
the changes were made, even with the inlet unstarted
and a facility flow breakdown, the facility nozzle flow
was seldom affected. With the present Mach 4 STF con-
figurations, hydrogen-burning scramjet models which
block 35 percent of the tunnel flow cross section have
been successfully tested (refs. 49 to 51).

Concluding Remarks

A test facility has been assembled at NASA Lang-
ley Research Center to provide the capability for various
types of air-breathing propulsion research, that is, inlet
tests, fuel-air mixing experiments, direct-connect com-
bustor tests, or engine tests. Hydrogen is burned in air
with oxygen replenishment to yield simulated air with
the proper oxygen content for combustion tests. The
present configuration downstream of the heater is a free-
jet wind tunnel with a three-dimensional Mach 3.5 noz-
zle (nominal 13-in-square exit) for simulation of Mach 4
flight conditions at the inlet of an airframe-integrated
scramjet.

The overall results of the calibration tests of the
Langley Mach 4 Scramjet Test Facility indicate that the
uniformity of the nozzle-exit flow is adequate for testing
hydrogen-burning scramjet engine models. Nozzle-exit
Mach number was determined to be nominally 3.52
for the Mach 4 hot (1630°R) flow conditions, and
nozzle-exit flow angularity measured during unheated
inflow tests (520°R) was less than 1° in the downward




direction. In a current research program for developing
technology for a hydrogen-burning airframe-integrated
scramjet, models which block as large as 35 percent
of the tunnel flow cross section have been successfully
tested.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

October 1, 1984
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TABLE I. MASS FLOW INTEGRATION RESULTS

Parameter P1,2/Ptbem Poo/Pt,2 Poo/Pt,bra Puaos/Pt,2

Ttoen°R. . . . . . .. .. 520 1630 520 1630 520 1630 520 1630
Measured flow rate, Ib/sec . . 54 31 54 31 54 31 54 31
Integrated flow rate

without boundary

layer, Ib/sec . . . . . . . 53 31 50 30 53 31 50 30
Integrated flow rate

with beundary

layer, Ib/sec . . . . . . . 50 29 47 28 49 29 50 28
Average M,,, . . . . . .. 3.55 3.53 3.42 3.51 3.52 3.52 3.56 3.52
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~ 160 [ - 163 Arc-‘h?ated test 106
; facility Existing _— [
nozzles -~
' - 150
140 200
/
1
120 / 500
/
s ~
- //
e 1000
100 3
Air-breathing
/ corridor st 1500
/
Altitude, 30
ft — / 2y 2 o
: G0, 2t A ” - 3000
.. X p i ° —
i
60—
Potential
Existing Mach 4 Scramjet Test Facility
- : nozzle
40} pd
20
12° 7.5° 7.5° 7.5° Cone half-angle
3.5 4.5 5.3 6.0 Tunnel Mach no.
0 ] | | | | J
2 3 4 5 6 7 8
Flight Mach number
Figure 3. Typical dual-mode scramjet operation flight envelope.
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" Engine fuel
E valve system

L-82-3469
(a) Overall view.
|

Regulator valve

L-82-3464

(b) Engine fuel supply and control system.

Figure 5. Langley Mach 4 Scramjet Test Facility.
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1/4 - 28 NF, Grade 8

\\h— Machined to 0.175 in. dia

(b) Sidewall fuse bolts.

Load (failure load,
5400 1b)

J
|

].1

dl

1,010

AR AU NY

T

T T L T T O . . S S S S S S S S S NSAISNAANANANNANAANN

0.120 Aluminum

drawn tube,
7 2024-T3 -\

,“TTTS S S S S S S U SSASAANNNAN

4.0
Fragments
14°
outside
taper
0.259
-1
\
Die

(c) Side wall shock absorption system; details and sketch illustrating fragmenting
process (ref. 41). Linear dimensions are in inches.

Figure 13. Concluded.
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L-82-4365
(a) Pitot-pressure and total-temperature rake.

0.06 0.D. shielded
thermocouple; exposed

0.90 dia tubing bead 0.13 in. long

Two vent holes;
0.02 dia

0.13 dia tubing

Total-temperature probe details

— e — . ——

Pitot-pressure probe details

Pitot-pressure probe (7)
Total-temperature probe (6)
(b) Details of the pitot-pressure and total-temperature rake.

Figure 16. Nozzle-exit survey rakes. Linear dimensions are in inches.
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L-82-4362
(c) Static-pressure rake.

|

— Flow I"I~50"'l
{} (Typ)

Nozzle wall

Pressure tube

Pressure measuring 0.06 0.D.; .04 1.D.

orifices; 0.02 dia,
4 holes

Probe details

—_—_—

A-A

Cooling water passages to
tip; two in and two out

(d) Details of the static-pressure rake.

Figure 16. Continued.
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(e) Boundary-layer pitot-pressure rake.

i

5 |

i
A*—j 3172 )
Rake
support

i Rake support bar {

34

P

NN

L | Jue VNN
A — i ; 1/4 S
/ ) T1/3 N hozzte I I
With and without -_— inner
1/8 in. spacer surface

0.060 in. stainless

steel tube
1/4 x 2_./
Construction angle Il/d typ
[}
| '
172 1 1/4—>
A-A

A

(f) Details of the boundary-layer pitot-pressure rake.

Figure 16. Continued.
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(a) Mixture ratio of hydrogen mass flow to oxygen and air mass flow FOO.
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(b) Mass fraction of hydrogen.

Figure 20. Parameters of hydrogen burning in air with oxygen replenishment to yield vitiated simulated air.
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(c) Mass fraction of oxygen.

| 1
.88 .90
mnf

air
(d) Mass fraction of air.

Figure 20. Concluded.
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Figure 21. General operational parameters for a nozzle with a throat area of 24.81 in?.
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(b) Hydrogen and oxygen pressures correlated with heater total pressures. T} ., = 1630°R.

Figure 22. Langley Mach 4 Scramjet Test Facility operational pressures.
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Figure 23. Langley Mach 4 Scramjet Test Facility nozzle wall pressure distribution.
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Piorn = 92 psia; Tibrn = 1630°R; Mpos = 3.5; and L = 50.845 in.
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(e) Mach number profiles based on pe2/Pt,brn-

(f) Mach number profiles based on pnos /pt.2.

Figure 24. Concluded.
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(¢) Mach number profiles based on Pt,2/Pt brn- (f) Mach number profiles based on pnoz/pt,2-

F{gure 25. Concluded.
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Figure 26. Area assignments for nozzle mass flow integration.
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Detectable interactions
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(c) Pressure measurement trends that indicate resolution of interaction problem.

Figure 27. Concluded.




