N85-16992

SPACE STATION TASK FORCE PERSPECTIVE

C. Hicks NASA Headquarters

No text available at time of printing.

PRESENTATION OUTLINE

- PRELIMINARY PROGRAM DESCRIPTION
 - DEFINITIONS
 - FUNCTIONS
 - CAPABILITIES
 - MANAGEMENT APPROACH
 - SCHEDULES
- SPACE STATION SERVICING CAPABILITY
- SPACE STATION ORBITAL TRANSFER VEHICLE (OTV) PROGRAM INTERFACES

Figure 1

SPACE STATION PLANNING GUIDELINES

MANAGEMENT RELATED

- Three year extensive definition (5-10% of program cost)
- NASA-wide participation
- Development funding in FY 1987
- · IOC: early 1990's
- · Cost of Initial capability: \$8.0B
- · Extensive user involvement
 - Science and applications
 - Technology
 - DoD
 - Commercial
- International participation

ENGINEERING RELATED

- · Continuously habitable
- Shuttle dependent
- Manned and unmanned eiements
- Evolutionary
- · Maintainable/restorable
- · Operationally autonomous
- · Customer friendly
- Technology transparent

Figure 2

SPACE STATION PROGRAM ARCHITECTURE: WHAT IS A SPACE STATION

Figure 3

FUNCTIONS OF A SPACE STATION

- On-orbit laboratory
 - Science and applications
 - Technology
- Permanent observatory(s)
- Transportation node
- Servicing facility
 - Free flyers
 - Platforms
- Communications and data processing node
- Manufacturing facility
- Assembly facility
- Storage depot

A space station is a multi-purpose facility

Figure 4

SPACE STATION FUTURE

Figure 5

SPACE STATION INITIAL

Figure 6

THE RELATIONSHIP BETWEEN THE SPACE STATION PROGRAM AND OTHER PROGRAMS

Figure 7

SPACE STATION DEFINITION PRELIMINARY MISSION DATA BASE (1991-2000)

- · Initial Data Base
- Derived from Shuttle and ELV Base
- Will Change as Station Capabilities Become Better Understood and Mission Priorities Shift
- Not the List of Mission/Payloads the Station Will Fly in 1991

SCIENCE AND APPLICATIONS

Astrophysica
Earth Science and Applications
Solar System Exploration
Life Sciences
Materials Science
Communications

COMMERCIAL

Materials Processing in Space Earth and Oceans Observations Communications

TECHNOLOGY DEVELOPMENT

Materials and Structures
Energy Conversion
Computer Science and Electronics
Propulsion
Controls and Human Factors
Space Station Systems/Operations
Fluid and Thermal Physics

Figure 8

SCOPE OF INITIAL SPACE STATION

			 -		
,	IPS R&D				CO-ORBITING PLATFORM
-	LIFE SCIENCES LABORATORY INTERNAL PAYLOADS				POLAR PLATFORM
	LIVING	·			ATTACHED PAYLOADS
		GIST			OMV SERVICING
-	CONTROL				SATELLITE SERVICING
m	POWER	ATTITUDE CONTROL	ECLS (PARTIA)LOSURE	COMM	PAYLOAD/STRUCTURE ASSEMBLY
S	MAL VER	S P P	IAL JRE)	Ξ ρ.	SCAR FOR OTV
·					
	IN.	TERN	AL.		EXTERNAL

Figure 9

ADDED SCOPE FOR INTERNATIONAL AND COMMERCIAL PARTICIPATION

Figure 10

SCOPE OF GROWTH CONFIGURATION

MOR LABOR	MORE INTERNATIONAL LABORATORIES					MORE COMMERCIAL FREE FLYERS	PL CA	Δ CO-ORBIT PLATFORM CAPABILITY		
MORI	JAPANESE ESA LAH				LAH	COMMERCIAL FREE FLYERS	A POLAR PLATFORM CAPABILITY			
C SCIAL	1 55 83	MPS R&D LABORATORY					CO-ORBITING PLATFORM		VERY LARGE SPACE	
MORE COMMERCIA MODULES	LIFE SCIENCES LABORATORY INTERNAL PAYLOADS					POLAR PLATFORM	STRUCTURES CONSTRUCTION			
ΔL	LIVING LIVING QUARTERS						ATTACHED PAYLOADS	COMM ATTA PAYL	MORE COM- MERCIAL ATTACHED PAYLOADS	
A LOC	LOGISTICS					OMV SERVICING	COMMERC'L ATTACHED PAYLOADS	MORE COM- MERCIAL ATTACHED PAYLOADS		
CAPA	NTROL BILITY		CONTROL				SATELLITE SERVICING		MORE CANADIAN ASSEMBLY & CON- STRUCTION	
NT ERNA- TIONAL	FOR INTER- NATIONAL CAPABILITIES	CELL:	m	CONTRO	LONG	1 1	PAYLOAD/STRUCTURE ASSEMBLY	CANADIAN ASSEMBLY	MORE CANADIAN ASSEMBLY & CON- STRUCTION	
A RES	FOR	SAR WAL	MA L	ROL	TIAL SURED	Z 6	SCAR FOR OTV	INCREASED OMV CAPABILITY		
INCREASED ON-BOARD AUTONOMY/ AUTOMATION		CONCENTRA CELLS)	A THERMAL CAPABILITY	AATTITUD CONTROL	(CLOS	A DAT	GTV DELIVERY OF SATELLITES TO GEO	SATELLITE SERVICING AT GEO		
		HERMAL ABILITY OWER OWER		ROL	SEDO	TA &	GEO PLATFORM DELIVERY	OTV PLANETARY MISSIONS		

INTERNAL

EXTERNAL

Figure 11

THE SPACE STATION PROGRAM WILL EVOLVE THROUGH A "BLOCK" SERIES

Figure 12

SPACE STATION PROGRAM EXTENDED DEFINITION

- SCOPE AND DURATION BEYOND "PHASE B"
- TWO CONTRACTORS COMPETE FOR EACH WORK PACKAGE
- PRODUCTS ARE A BLEND OF DOCUMENTATION AND HARDWARE DEMONSTRATIONS

Figure 13

SPACE STATION OVERALL SCHEDULE

Figure 14

SPACE STATION PLANNING SCHEDULE

Figure 15

Figure 16

Figure 17

SPACE STATION SERVICING CAPABILITY

THE SPACE STATION BASE WILL HAVE THE CAPABILITY TO SERVICE OR PROVIDE SERVICING SUPPORT FOR:

- PAYLOADS ATTACHED TO THE STATION
- SATELLITES BROUGHT TO THE STATION BY THE TMS OR SERVICED REMOTELY BY THE TMS
- TMS BASED AT THE STATION
- CO-ORBITING PLATFORM AND ITS PAYLOADS
- LARGE SPACE STRUCTURE TDM'S
- PAYLOADS TO BE PLACED IN ORBIT BY THE TMS AND TO BE LAUNCHED TO HIGHER ENERGY ORBITS
- SPACE-BASED REUSEABLE OTV
- · SATELLITES IN GEO SERVICED REMOTELY BY THE TMS

SERVICING FUNCTIONS AT THE SPACE STATION WILL INCLUDE:

- REPLENISHMENT OF CONSUMABLES
 - **PROPELLANTS PRESSURANTS** COOLANTS
- RECHARGING/REPLACEMENT OF BATTERIES
- CONSTRUCTION OF LARGE SPACE STRUCTURES
- · ASSEMBLY (POSSIBLE FUELING) AND MATING OF PAYLOADS
- CHECKOUT
 - SATELLITES
 - TMS
 - OTV
 - PAYLOADS
- REPAIR AND UPGRADING, PRIMARILY BY ORU EXCHANGE

Figure 18

SERVICING FACILITIES AT THE SPACE STATION

COMMON FACILITIES

- SUPPORT STRUCTURE
- * REMOTE MANIPULATOR SYSTEM (RMS) RELOCATABLE
- MANIPULATOR FOOT RESTRAINT (MFR)
- MANNED MANEUVERING UNITS (MMU) TWO
- MODULAR EQUIPMENT STORAGE ASSEMBLY (MESA)
- GENERAL STORAGE AREA ENCLOSED MMU'S, MFR, MESA
- WORK AREA (CONSTRUCTION OF LARGE SPACE STRUCTURES)
- EXTERNAL WORK SITE MONITORING AND CONTROL STATION (IN A PRESSURIZED MODULE)

MULTIPURPOSE PRESSURIZED WORK VOLUME-NEED TO BE DETERMINED

ORBITAL TRANSFER VEHICLE (OTV) FACILITIES

- BERTHS TWO
- PROPELLANT AND PRESSURANT TANKS
- ELECTRICAL POWER STATION
- CHECKOUT EQUIPMENT
- HANGARS UNPRESSURIZED TWO
- PAYLOAD ASSEMBLY/CHECKOUT AREA ENCLOSED
- STORAGE AREA ENCLOSED

SPARE ASSEMBLIES, ORU'S, MANNED GEO MISSION MODULE

Figure 19

THE SERVICING FACILITY AND OPERATIONS

- PLACE SEVERE REQUIREMENTS ON THE SPACE STATION
 - SAFFTY
 - CONTAMINATION
 - CONTROL STATION VIEWING OF SERVICING OPERATIONS
 - APPROACH/DEPARTURE CORRIDORS
 - THERMAL CONTROL OF FLUIDS STORED ON THE STATION
 - EVA CORRIDORS
 - ACCESS TO PRESSURIZED WORK VOLUME (IF DEEMED NECESSARY)
 - CONSUMABLES AND CARGO TRANSFER
 - ATTITUDE CONTROL AND PROPULSION
 - RMS REACH CAPABILITY
 - POSSIBLE CRYOGENIC PROPELLANT BOIL-OFF USAGE (ECLS, PROPULSION, POWER)
 - GROWTH CAPABILITY
- AFFECT OTHER ELEMENTS OF THE SPACE STATION
 - SCIENTIFIC INSTRUMENTS FIELDS OF VIEW
 - G LEVEL OF THE LABORATORIES
 - CONTAMINATION OF ENVIRONMENT

THE SERVICING FACILITY AND OPERATIONS ARE A MAJOR DRIVER FOR BOTH THE INITIAL AND GROWTH STATIONS

Figure 20

CRITICAL TECHNOLOGY DEVELOPMENT FOR OMV/OTV/SATELLITE SERVICING

- FLUID MANAGEMENT
 - CRYOGENICS
 - STORABLE FLUIDS
- LONG-TERM ORBITAL STORAGE OF CRYOGENICS
- CONTAMINATION CONTROL/REMOVAL
- IMPROVED EXTRAVEHICULAR MANEUVERING UNIT (EMU)
- ROBOTIC SERVICING CAPABILITY
- RENDEZVOUS, APPROACH, AND BERTHING
 - OMV
 - 0TV
 - SATELLITES
 - PLATFORM

Figure 21

DESIRABLE FEATURES FOR A SPACE STATION BASED OTV

- SPACE MAINTAINABLE
- MODULAR
- HIGH REUSEABILITY
- SIMPLE PAYLOAD INTEGRATION AND SERVICING CAPABILITY
- SYNERGISTIC WITH SPACE STATION SYSTEMS/ ELEMENTS
- COMMONALITY WITH SPACE STATION SYSTEMS/ ELEMENTS
- STANDARDIZED INTERFACES OMV, SATELLITES, SPACE STATION
- GROWTH CAPABILITY
- HIGH EFFICIENCY (LOW WEIGHT, HIGH ISP)
- NON-CONTAMINATING
- WIDE THRUST LEVEL CAPABILITY

TOP LEVEL SERVICING FACILITY ISSUES

- OTV PROPELLANT DEPOT LOCATION
 - ATTACHED
 - TETHERED
 - FREE FLYING
- DEGREE OF SERVICING AUTOMATION
 - INITIAL STATION
 - GROWTH STATION
- NEED FOR A PRESSURIZED WORK VOLUME

Figure 22

PROPOSED OTV TECHNOLOGY DEVELOPMENT FLIGHT EXPERIMENTS

SHUTTLE SORTIE FLIGHTS (1987 - 1990)

- PROPELLANT TRANSFER, STORAGE, AND REFRIGERATION/ RELIQUEFACTION
- DOCKING AND BERTHING
- EMU/EVA OPERATIONS
- PAYLOAD MATING/INTERFACE
- OTV SHELTER STRUCTURE
- SERVICING FACILITIES/EQUIPMENT

TECHNOLOGY DEVELOPMENT MISSIONS ON SPACE STATION (1991 -)

- PROPELLANT TRANSFER, STORAGE, AND REFRIGERATION/ RELIQUEFACTION
- DOCKING AND BERTHING
- MAINTENANCE
- PAYLOAD INTEGRATION

SPACE-BASED OTV OPERATIONS (1995)

ORBITAL TRANSFER VEHICLE (OTV) - SPACE STATION PROGRAM INTERFACES

Figure 25