

1 N 9 2 - 10 9 3 3

PERFORMANCE ASSESSMENT OF AERO-ASSISTED ORBITAL TRANSFER VEHICLES

Richard W. Powell, Theodore A. Talay, Alan W. Wilhite John J. Rehder, Nancy H. White, J. Chris Naftel, Howard W. Stone, James P. Arrington, and Ronald S. McCandless NASA Langley Research Center

The NASA Langley Research Center is performing analyses of aero-assisted orbital transfer vehicles. The studies to date have been to determine the aerodynamic characteristics over the flight profile and three- and six-degree-of-freedom performance analyses.

The important results, to date, are: 1) The Aerodynamic Preliminary Analysis System, an interactive computer program, can be used to predict the aerodynamics (performance, stability, and control) for these vehicles; 2) the performance capability, e.g. maximum inclination change, maximum heating rate, and maximum sensed acceleration, can be determined using continuum aerodynamics only; 3) guidance schemes can be developed that allow for errors in atmospheric density prediction, mispredicted trim angle of attack, and off-nominal atmospheric interface conditions, even for vehicles with a low lift-to-drag ratio; and 4) multiple pass trajectories can be used to reduce the maximum heating rate.

AOTV CONFIGURATION FOR LOW LIFT/DRAG

Figure 2

Figure 3

AOTV CONFIGURATION FOR MEDIUM LIFT/DRAG

Figure 4

MID L/D CONCEPT PERFORMANCE AERODYNAMICS

Figure 5

Figure 6

AOTV L/D PERFORMANCE COMPARISON

Figure 8

45

Figure 9

ANALYSIS TECHNIQUE

- o 3-D PROGRAM TO OPTIMIZE SIMULATED TRAJECTORIES (POST)
- O GEO-LEO TRANSFER-TIMING, DURATION, ANGLE
- o ATMOSPHERIC PASS--400,000 FT INTERFACE (1962 U.S. STANDARD)
 - O ALL VEHICLES HAVE A LIFT CAPABILITY
 - O MAINTAIN CONSTANT ANGLE OF ATTACK DURING PASS
 - O ROLL VEHICLE ABOUT VELOCITY VECTOR TO VARY LIFT DIRECTION
 - o TARGET TO 300 NMI PHASING ORBIT, 28.5° INCLINATION, SAME LONGITUDE OF ASCENDING NODE AS SHUTTLE
 - 0 3-BURN PROPULSIVE SEQUENCE LEADS AOTV TO RENDEZVOUS WITH SHUTTLE ORBITER

Figure 11

Figure 12

Figure 15

PERFORMAN	ICE	COMP	ARIS	SON	0F	AN	ALL-P	ROPULSIVE	OTV
WITH	AOT	V's	FOR	GE0	RO	UND	-TRIP	MISSIONS	

ΟΤΥ ΤΥΡΕ	ALL PROPULSIVE	LOW L/D	MID L/D	HIGH L/D
INITIAL WEIGHT, LB	66,000	ee,000	66,000	66,000
WEIGHT RETURNED TO SHUTTLE, LB	9,666	15,833	16,396	16,987
MAXIMUM STAGNATATION POINT HEATING RATE TO A 1 FOOT RADUS SPHERE, BTU/FT ² -SEC		102	317	372
MAXIMUM SENSED ACCELERATION, G'S		2.40	2.51	3.50

Figure 17

SIX-DEGREE-OF-FREEDOM SIMULATION ANALYSIS

ANALYSIS UNDERTAKEN TO:

- 1) SIZE THE REACTION CONTROL SYSTEM (RCS)
- 2) EVALUATE GUIDANCE ALGORITHMS
- 3) CONFIRM THREE-DEGREE-OF-FREEDOM ANALYSIS

CONTROL SYSTEM DESIGNED UTILIZED RCS ONLY

THREE GUIDANCE ALGORITHMS EVALUATED

- 1) PREDICTIVE TECHNIQUE
- 2) DRAG REFERENCE ALGOTITHM DERIVED BY OLIVER HILL OF NASA-JSC
- 3) REFERENCE ORBITAL ENERGY FLIGHT PATH ANGLE REFERENCE ALGORITHM

Figure 20

GUIDANCE ALGORITHM

0 AOTV IS COMMANDED TO FLY THE OPTIMUM ORBITAL FNERGY VS INERTIAL FLIGHT PATH ANGLE PROFILE THAT HAD BEEN DETERMINED FROM A 3 DEGREE-OF-FREEDOM ANALYSIS

> Roll Reversal Initiated

O AOTV IS COMMANDED TO FLY CONSTANT ANGLE OF ATTACK

Theoretica Capability

|(inc)_{err}|

0 INCLINATION IS CONTROLLED BY ROLL REVERSALS

OTV LOW L/D NOMINAL ATMOSPHERE

	ATMOSPHERES						
	1962 STANDARD	+25%	-25%	STS-2	STS-4	STS-6	
EXIT APOGEE, NMI	306	287	323	313	311	314	
EXIT PERIGEE, NMI	34	31	35	35	35	35	
EXIT INCLINATION, DEG	28.5	28.5	28.5	28.5	28.5	28.5	
TOTAL ATMOSPHERIC Pass time, sec	392	380	407	408	399	411	
PITCH RCS ON-TIME, SEC	19.44	22.48	24.44	18.72	19.96	28.00	
ROLL RCS ON-TIME, SEC	18.16	22.28	20.72	18.56	18.68	20.92	
YAW RCS ON-TIME, SEC	20.08	23,60	24.48	21.76	21.2	29.84	

COMPARISON OF ATMOSPHERIC PASS FOR LOW L/D CONFIGURATION

Figure 25

TRIMMED ANGLE-OF-ATTACK VARIATIONS $\alpha_{T} = \alpha_{D} - 1 | \alpha_{T} = \alpha_{D} + 1 | \alpha_{T} = \alpha_{D} - 3 |$ $\alpha_{T} = \alpha_{D} + 3 | \alpha_{T} = \alpha_{D} - 5 | \alpha_{T} = \alpha_{D} + 5$ $\alpha_{T} = \alpha_{D}$ EXIT APOGEE, NMI 306 309 305 295 301 297 300 34 34 32 33 32 33 EXIT PERIGEE, NMI 34 EXIT INCLINATION, DEG 28.5 28,5 28.5 28.5 28.5 28.5 28.1 TOTAL ATMOSPHERIC 392 393 392 393 390 393 389 PASS TIME, SEC PITCH RCS 19.44 23,52 17.16 29.52 3,20 36.40 2.36 ON-TIME, SEC ROLL RCS 18.16 20,48 17.84 19,84 12.28 24.08 11.08 ON-TIME, SEC YAW RCS 20.08 26.32 18.56 29.84 14.0 36.48 17.68

COMPARISON OF ATMOSPHERIC PASS FOR LOW L/D CONFIGURATION

Figure 26

ON-TIME, SEC

	ENTRY FLIGHT PATH ANGLE VARIATIONS						
	$\mathbf{Y}_{\mathrm{I}} = \mathbf{Y}_{\mathrm{D}}$	Y _I = Y _D 05	Υ _I = Υ _D 05	$\mathbf{Y}_{\mathrm{I}} = \mathbf{Y}_{\mathrm{D}}1$	$Y_{I} = Y_{D} + .1$	Y _I = Y _D 2	$Y_I = Y_D^+, 2$
VACUUM PERIGEE, NMI	45.4	44.9	45.9	44.4	46.4	43.4	47.3
EXIT APOGEE, NMI	306	298	312	263	326	156	394
EXIT PERIGEE, NMI	34	32	35	27	36	-8	40
EXIT INCLINATION, DEG	28.5	28,5	28.5	28.4	28,5	28.5	28,5
TOTAL ATMOSPHERIC PASS TIME, SEC	392	389	394	382	398	369	406
PITCH RCS ON-TIME, SEC	19.44	21.56	23.48	21.68	23.12	15.76	13.72
ROLL RCS ON-TIME, SEC	18.16	19.32	18.72	17.68	19.24	27 . 36	13.92
YAW RCS ON-TIME, SEC	20.08	22.72	22.32	23.44	18.4	22.4	13.04

COMPARISON OF ATMOSPHERIC PASS FOR LOW L/D CONFIGURATION

Figure 27

COMPARISON OF AOTV TRAJECTORIES

EFFECT OF NUMBER OF PASSES ON HEAT RATE

Figure 29

CONCLUSIONS

- APAS IS APPLICABLE FOR AOTV'S AND CAN BE USED TO PREDICT AERODYNAMICS FROM THE FREE MOLECULAR FLOW REGION TO THE CONTINUUM REGION
- THREE DOF ANALYSIS SHOWED THAT CONTINUUM AERODYNAMICS IS ADEQUATE FOR PERFORMANCE EVALUATION
- O SIX DOF ANALYSIS SHOWED CAPABILITY TO TOLERATE OFF-NOMINAL ATMOSPHERIC DENSITY PROFILES, MISS-PREDICTIVE TRIM ANGLE-OF-ATTACK, AND OFF-NOMINAL ATMOSPHERIC INTERFACE CONDITIONS
- O MULTI-PASS TRAJECTORIES OFFER POTENTIAL TO REDUCE MAXIMUM HEATING RATES