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Introduction:

This Semiannual Status Report summarizes the work per-

formed unde.- Grant NAG5°458 entitled "Investigation of

Dynamic Noise Affecting Geodynamics Instrumentation in a

Tethered Subsatellite."

During the reporting period, SAO has
Continued modeling of the atmospherically induced
dynamic noise in the subsatellite through the
modification and use of the SKYHOOK program.

- Written and submitted an invited paper for the
forthcoming Special Issue on Geodynamics of the IEEE
Transactions on Geoscience and Remote Sensing.

- Cooperated with Prof. Silvio Bergamaschi of the In-
stitute of i,ppliod Mechanics in Padova (Italy) in
developing an analytic model of the continuum
tether/shuttle/subsatellite system.

- Begun study of random vibration analysis for model-
ing the TSS under atmospheric perturbation.

Modeling of Atmospheric Effects:

The numerical modeling being done at SAO is with a

modified version of the SKYHOOK program, which simulates the

TSS as set of discrete masses and connecting (massless)

tether segments. As described in the Final Report to 'she

previous contract, NAG5-325, we have added facility for

superimposing spatial fluctuations on the standard atmo-

spheric density routine and outputting the resultant ac-

celerations of the subsatellite, together with ambient den-

sities at each mass, for later analysis. The acceleration

components found to be most elucidating are those tangent to

the tether at its attachment to the subsatellite and or-
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thogonal. Expressed this way, the effects of tether lon-

gitudinal vibrations are separated from the direct effects

of atmospheric drag variations. Restrictions arc, that the

subsatellite is considered a point mass (attitude dynamics

and aerodynamic effects are not yet included) and that com-

putational, effort limits the number of masses to about 10

for routine use, hence limiting the frequency esponse of

the system. So far, all cases considered have been limited

to a tether deployed in the orbital plane, though this

restriction is not inherent in the program.

One simple, yet important, enhancement of SAO

capabilities was the adaptation of graphics tools allowing

informative and compact display of the acceleration and

spectral outputs. Compare the figures in this report with

the hand drawn Figure 7-1, or the printer plots in Appendix D

of the NAG5-325 Final Report .

We resolved a subtle problem in the standard SKYHOOK

atmospheric density routine which had been causing an oc-

casional sharp jump in the orthogonal acceleration com-

ponent. The difficulty arose from an interaction of t;4o

factors: First, to eliminate residual deployment effects we

have been forced to make two SKYHOOK runs for each case

considered, a "reference" run with no atmospheric perturba-

tion and a run with the perturbation we wish to study, The

resulting accelerations are di ff::re:nk.'cd before plotting,

computing spectra or other analy;>i.s, wcond, the atmosphere

routine used simple linear interpolation in a gable, result-
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ing in a p (h) curve with only plecowise continuous deriva

Live.

Because the two runs are different, the subsatellite

will be at slightly different altitudes in each and thus

subject to slightly different drag. If both subsatellites

are in the same tabular interval, this difference will be

constant or vary only very slowly, causing minimal effect.

But when one subsatellite crosses a tabular altitude, and

thus is subjoct to a different density as function of al-

titude, this difference in drag takes a ,sharp ,dump.

To remedy this problem, we created a smoother atmo-

spheric density routine. We first attempted to simply in-

terpolate log(p), but ended up fitting a moderate order

polynomial to the log(p) data (with independant variable

altitude-100km ) at each tabulated temperature and inter-

polating in temperature. This produced the desired smooth-

ness with no noticeable deterioration in execution time.

Our scheme of differencing the two runs may still have some

effect at vary low frequencies, as the relative altitudes of

the subsatellites change gradually over the run.

Tracking down this effect of altitude on drag did point

up one interesting mechanism:

Any variation in the subsatellites altitude due to
tangent accelerations produced by the tether (ap-
proximately vertical) will cause a variation in the
ambient atmospheric uens.'.ty, hence the drag ex-
perienced, hence the orthogonal (approximately
horizontal.) acceleration.

L



Page 5

The version of SKYHQdK created during the previous

contract had allowed only a single density perturbation,

with a sharp cutoff between the enhanced (or diminished)

region and unperturbed density; the region is elliptical in

cross section and extends indefinitely to either side of the

orbital plane, Apart from the obvious restriction to a

single perturbed region, the sharp boundary results in very

long integration time due to tho peculiarities of the Gear

integrator used to solve the differential equations of mo-

tion,

In the reporting period we have extended the allowed

perturbations to include up to two hundred (possibly over-

lapping) regions each with a smooth cutoff to enhance com-

putational efficiency. The parameters of each region are:

a vertical radius, r,,; a horizontal radius, r h ; altitude

of center, hG ; a distance "along orbit" from the start of

the simulation, a,; and an enhancement factor, e. Again,

since we are concerned with deployment in or near the orbi-

tal plane, the density perturbations extend indefinitely

perpendicular to the plane. First, we define a scaled

radius

r = ^h-h.) /r„) s + ( (a-a.) /rh) z

where h is the altitude and a the "along orbit” distance.

Then the density perturbation for a single region, relative

to the "base" unperturbed density, is
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p1ph...	 X + a/ (I+r.2 ) 7

The region so defined has the same total mass (1n a two

dimensional sense) as the previous sharply bounded region

with the Name vertical and horizontal radii and enhancement

factor. When there is more than one perturbed region, the

right hand side of this equation is ccnputed for each per-

turbation and they are all multiplied together to form the

total perturbation.

We have analyzed four cases: smooth and shrirp bounded

regions; impinging on the subsatellite at 120 km and on the

tether at 170 km altitude:. All regions were circular with

20 km (effective) radius, and 20% enhancement.

A typical plot of the residual tangent and orthogonal

accelerations experienced after encounter with the perturba-

tion is given in Figure 1; the other cases were similar.

Note the smoother nature, and much smaller magnitude, of the

orthogonal acceleration.

The spectra of the accelerations produced in the

various cases are also surprisingly similar. Figure 2 shows

those for two cases: a smooth perturbation impacting

directly on the subsatellite, and a sharply bounded per-

turbation impacting halfway up the tether. The sharp peaks

corresponding to the spring-mass mode and the expected eight

longitudinal vibration modes a y o clearly visible in the

tangent acceleration. These unperturbed modes are mimicked

I .

(D
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by the orthogonal acceleration, with the addition of a mode

at vary low frequency, possibly due to latitudinal vibration

modes. The spectra are largely similar, though the peaks in

the case with tether impact arcs smaller in magnitude; note

that the background levels are the same in both cases. To

compare in more detail we tabulated the frequencies and

magnitudes of the spectral peaks from a printout. The fre-

quencies are all very close, to within ±0.001 Hz. The mag-

nitudes are plotted in Figure 3. The disturbances with

smooth and sharp cutoffs, at subsatellite altitude, are very

similar in both magnitude and relative strengths of the

peaks. The disturbance at mid-tether altitude also excites

the modes in roughly the same ratios, although with substan-

tially less magnitude.

From Gross, Reber and Huang (1984) and Gross and Huang

(1984), we know that the power spectral density of varia-

tions at 250 km is roughly a power law with exponent -3 at

low spatial frequencies and -3 to -4 at higher frequencies.

We have investigated how to create a set of perturbed

regions for use by the current version of SKYHOOK which will.

have the same spectrum (as seen by the subsatellite travers-

ing the atmosphere). This investigation is largely complete

and will be detailed in the final report, but we have not

yet developed a carefully tailored model atmosphere. To

make full use of the theory we nay wish to make some

modifications to SKYHOOK (e.g., sum the perturbations rather

than multiply them; use gaussian perturbations), but the

J
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approximations used may not be arty cruder than our knowledge

of the actual atmosphere.

We have, however, created a set of 200 regions, with

random centers (altitudes 120 to 220 km, random distance

along track), random radii (up to 30 km vertical, 50 km

horizontal) and random enhancement factors (in the range ..

0.5 to +0.5); all distributions being uniform. The induced

accelerations are shown in Figure 4, and the spectra in

Figure 5. The tangent acceleration is roughly similar to

that produced by single regions, and in the spectrum we see

the same peaks as before although more weakly (note the

higher baseline). The same modes are being excited, but

with more "noise" generated by the random forcing function.

The orthogonal acceleration, however, is totally dominated

by the direct effect of the drag variations, and its

spectrum is featureless, For reference, the ambient density

at the subsatellite is shown in Figure 6, along with its

spectrum. These are similar in character to the orthogonal

acceleration, as expected if we are seeing largely direct

drag effects in the latter.

The above, with the exception of completing the work on

generating a model atmosphere giving the power law spectrum,

represents the anticipated simulation development during the

present contract, except as specific questions may arise in

attacking the problems of noise isolation and instrument

interface. Directions in the future might include:

- Use of Maximum Entropy Method for spectral analysis,
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both theory and the experience shown in our figures
indicate that we should expect a number of sharp
peaks on a smoother background, This sort of
spectrum is ideally suited to MEM techniques, which
effectively use rational function approximations to
the spectrum rather than the simple polynomial ap-
proximation of FOL.rier inalysis, and are thus better
able to represent shar• peaks or lines.

•- Include subsatellite attitude dynamics and aerodyn-
mics . As di 5cussed in the attached paper (see p the
next section), rotational effects, particularly
rotational acceleration, are very important fo.-
measuring gravity gradients. We do not currently
include them in the SMOOK program,

- Add a damped wave (or set of such) to the perturba-
tion options. This feature is suggested by observa-
tions of Gross and Huang (1984) and would also allow
us to natura.:ly include high spatial frequencies in
the atmospheric model.

- Simplify the analysis tools; generate equilibrium
initial conditions to avoid the current differencing
with a reference simulation.

Paper Written for IEEE Transactions on Geoscience and Remote

Sensing:

A paper entitled "Gravity Gradiometry from the Tethered

Satellite System", by G. E. Gullahorn, F. Fuligni and M. D.

Grossi, was written and submitted for the Special Issue on

Geodynamics. This paper is largely of a tutorial or review

nature, since our survey of the open (published) literature

showed virtually nothing available, especially at an intro-

ductory level. The paper also provides a summary of some

SAO efforts in the field.

The paper has been accepted for publi-ation and a

revised version is being prepared. A copy of the draft

version is included as Appendix A of this repor4.

_D I
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Cooperation with Prof. S. Bergamaxchi:

In December Prof. Silvio Bergamesc.;hi or the Institute

of Applied Mechanics in Padova, Italy visited SAO. Though

NAG5-458 provided no direct funds for his visit, wo dial

spend several days discussing tether dynamic-q , particularly

dynamic noise, with Prof. Bergnmoschi. Prof. Bergamnschi is

developing a model of the TSS In which the tather is a full

continuum, and applying modal analysis to this model. We

assisted him with some numerical, mode calculations, and

discussed some non-intuitive physical implications of the

results. We hope to continue the cooperation in developing

this model, which will provide both a valuable check on

SKYHOOK numerical computations, and results not obtainable

with SKYHOOK.

Random Vibration Analysis:

We have done some literature search and reading with an

eye to finding methods applicable to the TSS. This study

and analysis is still in an early stage.
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Figure Captions

Ejg,,,. 1,,, Accelerations, in gals, produced by a single atmo-

spheric density enhancement impacting the subsatellite.

Smoothly cutoff region, 20 km radius, 20% enhancement. Ac-

celeration as a function of time is plotted, the component

tangent to the tether on top and orthogonal on bottom. Irr,-

pact with the enhanced region occurred before the data plot.-

ted, although some of the final direct; effect is visible in

the orthogonal component.

F.j,g, , 2,_ Logarithm of the acceleration spectral mag-

nitude plotted as a function of froquenry (Hz). In each

plot, the top spectrum is for the tangent component, than

bottom for the orthogonal. The top plot is for the case

illust-r • ;	 in Figure 1, a single smoothly falling off en-

hunceD ,.rAnt impacting directly on the subsatellite, The bot-

tom plot is for an equivalent region impacting on the tether

at its center, sharply cut-off to avoid any direct impact on

the subsatellite.

Ej_q. ,_ ,_,_ Comparison of the magnitudes of spectral

peaks. The peak magnitudes are on logarithmic scales. The

top graph compares equivalent regions with sharp and smooth

cutoffs, both impacting directly on the subsatellite. The

bottom compares identical enhancements impacting on the

subsatellite at 120 km altitude and on the tether only at

170 km altitude. In each graph, the top pair of lines is

for the tangent component, the bottom for the orthogonal

component.
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E,q,,, .4,, Accelerations produced by a model atmosphere

with 200 randomly scattered enhancement regions. The or-

thogonal component (top graph) appears to be responding

directly to the ambient atmospheric perturbation, whi ps the

tangent component (bottom graph) is more similar to the

results from ra singlo region model (Fig. 1) .

L14,, r-,,,, Spectra of the time series in Figure 4. Note

that the tangent component spectrum shows distinct peaks

corresponding to excited vibration modes, while the or-

thogonal component spectrum is largely featureless.

El,g,_ k,.,,.. The ambient atmospheric density experienced

by the subsatellite in the simulation of Figures 4 and 5,

and its spectrum. Note the similarity to the orthogonal

ccmponent';s graphs in Figures 4 and 5.
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ABSTRACT

Measurement of the gradient of the gravitational acceleration from a

satellite platform is likely to provide the next improvement in knowledge

of the Earth's gravity field after the upcoming Oeopotential Research

Mission. Observations from the subsatellits of a Tethered Satellite System

(TSS) would increase sensitivity and resolution due to the low altitude

possible. However, the TSS is a dynamically "noisy" system and would be

perturbed by atmospheric drag fluctuations. The dynamic noise is being

modeled in order to evaluate the feasibility of TSS gradiometry and to

design methods of abating the error caused by this noise. The

demonstration flights of the TSS will provide an opportunity to directly

observe the dynamical environment and refine modeling techniques.
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I. INTRODUCTION

The problem of determining the Earth's gravitational field has engaged

both the cleverness and the tenacity of natural scientists since the

seventeenth century. The experimental methods and mathematical

formulations employed have often been in the front ranks of current

research; while the collection and analysis of the data is perennially a

monumental task. In this paper we shall outline a promising proposed

technique for refining our knowledge of the gravity field: measuring the

(tensor) gradient of the gravity vector with instruments suspended some one

hundred kilometers beneath an orbiting Space Shuttle.

The advantages of the proposed approach lie on three levels:

measurements from orbit will be relatively uniform and rapidly obtained,

compared to surface based observations; gradiometric measurement, as

opposed to gravity field reconstruction from orbital perturbations,

emphasizes short scale anomalies; and operation from a tethered

subsatellite, at a lower altitude than possible from a free flying

satellite, increases both the overall sensitivity and the short scale

response. The tethered satellite system (TSS), however, possesses many

natural modes of vibration and will be subjected to perturbing forces,

including fluctuations in atmospheric drag. Methods of abating the

resulting dynamic noise, either by physical damping mechanisms or in data

processing, will at the least provide a challenge to the experiment

designers. The noisy environment may even outweigh the advantages of low

altitude operation, making a free flying (possibly drag compensating as

with CRM) satellite platform more attractive for gradiometric measurements.
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It is our purpose here to place TSS gradiometry in context, and to

provide a snapshot of current work toward assessing its feasibility.

II. THE GRAVITY FIELD AND ITS MEASUREMENT

A. Tbt ar,gyity Field gW AnoUlles

A spherically symmetric Earth would have a spherically symmetric

gravity field, the gravitational acceleration vector pointing toward the

center, with magnitude QM/r2 external to the body; Q is the gravitational

constant 6.67 x 10-8 dy ►i cm2 9-2 , M the total mass, and r the distanco from

the center. The gravitational potential is simply U % -GM/r, and the

acceleration is g T U. Deviation from spherical symmetry in the mass

distribution leads to a non -symmetric potential, allowing us to obtain

information about the internal distribution by observing the external

gravitational field; although an observed field does not uniquely

determine the mass distribution, combination with reasonable physical

assumptions and other data provides valuable results. (For brief surveys

of this geophysical material see (1), [2) and [3), and for more detail, [4)

and [S).)

The gravitational field of a body is commonly expressed by expanding

the potential in spherical harmonics:

« m_

m-0 na0	
mn
	

(1)

where

t

^w
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Ymn n Pmn(sinb) [Cmnoos nX + 4anain nX ]	 (2)

Here Pmn is a Legendre function.. and R is the Earth's radius. Y. will have

wavelength 2rf/m in i and 2n/n in X, and thus to resolve a feature of size x

in the potential field at the Earth's surface, one must retain terms

through order m - nR/x (where a half-wavelength criterion is used). For x

w 100 km, this leads to m - 200; i.e., some 20,000 terms (40,.000

coefficients Cmn and 8m.
) .

Aithough this formulation is convenient for much theoretical work and

detailed modeling, and particularly appropriate when discussing the large

scale feaWres of thu gravity field, for our purposes, focused on short

scale effects and on intuitive feasibility argume:ts, the"flat Earth"

approximation generally proves mt i informative. The Earth is considered

as a horizontal plane, infinite in extent. The caso corresponding to

spherical symmetry is planar symmetry in the mass distribution; the

gravity vector will then be directed vertically, with magnitude g - -20a

(independent of height above the Earth) where a is the surface density,

that is, the total mass beneath a unit area. As in t:3e * herical case,

departure from perfect planar symmetry will also perturb the gravity field;

however, one is typically concerned not with a global expansion such as

(1), but more directly with the local anomalous distribution.

In either framework, a aravity Mgmaly is a departure of the gravity

field from some smooth reference field; in the case of a full spherical

treatment, this is typically a reference ellipsoid, while in the flat earth

approximation, the reference could be a plane symmetric field corresponding

to the mean surface density. Various corrections must bc, applied to the

observed anomaly, e.g. to "sea level" or for the mass (of the local

(DI
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topography such as mountain ranges) between the observation and sea level,

and there are consequently various forms of the anomaly (see the references

for details), These complications largely vanish for spacecraft

observations, and we shall always mean an anomaly at sea level but

uncorrected for local topography, the "fro• air" anomaly, The quantity

generally discussed is the vertical component of the anomalous

gravitational eccoleration, and the appropriate unit is the milligal 0

total - 10-3 cm/340 2). Typical large scale anomalies are tens of milligals,

A one milligal anomaly corresponds to a surface density enhancement of 2.4

x 103 g/cm2.

Anomalies are due to local topography such as mountains (which can be

corrected for) and to variations in the subsurface density distribution;

the latter effect is of primary interest. The scale of an anomaly is

roughly the scale of the density variation; accurate observation of

anomalies on scales around a hundred kilometers would allow exploration of

a variety of phenomena of geophysical interest, such as subduction zones

e.	 and mantle convection. NASA's Geopotent'+1 Research Program (6) has

established as a long term objeW ive an accuracy of 0.5-1 mgal at a

resolution of SO km, with interest in features down to 2S km (comparable to

the thickness of the lithospheric crust).

B. Current cavity Measurements Tochnieues

The historical methods of measuring this gravity field produce local

data, at discrete points on or near the Earth's surface. The methods are

extreme refinements of simple concepts, such as timing a pendulum's p*riod,

measuring the displacement of a spring balance, or observing the

acceleration of a falling body. These methods can provide precise short

)i
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scale information, but are enacting to make, require correction for local

topography, are only available for a portion of the Earth's surface, and

widely separated measurements are difficult to calibrate,

A more recent addition to the arsenal is the observation of satellite

orbits, initially with photographic methods but currently by laser ranging

from ground stations and altimeter data over the oceans. The

irregularities in the gravity fiel,. gradually perturb the orbit, allowing

one to fit for the coefficients in the spherical harmonic expansion of the

potential (1,2). The resulting models havd opposite emphasis fr , m the

surface measurements, being most accurate at large scales. The moat

accurate current results are the Goddard Earth Models (GSM's), some of

which also incorporate surface data. The accuracy of GEM10B, at a

resolution of 1 0 x 10 , is about 20 mgal over continents and 8 mgal over

oceans. (See the summary in [63.)

C. GQpotential Research Mission

An experiment to be flown in the early 1990's, the Geopotential

Research Mission (GRM) [73, will provide a dramatic improvement in our

knowledge of the Earth's gravity field. The mission will consist of two

satellites in the same 160 km altitude orbit, separated by several hundred

•	 kilometers. The satellites will be effectively drag free: each will

contain a test mass shielded from the atmosphere, and hence traveling in a

purely gravitational orbit, together with sensors and thrusters so that the

remainder of the satellite can imitate the orbit of the teat mass. Their

relative velocity will be very precisely measured by dual frequency Doppler

tracking. Any irregularity in the gravitational field will produce

non-zero relative velocities, so that one can fit for the coefficients in

D^
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the field expansion (1,2) from the velocity data. The expected accuracy is

1 mgal (7) or 2 mgal [6) at 100 km resolution (about 10).

D. Gravity Gradiometry

The traditional methods for point gravitational measurements described

in Section B above all measure the gravitational acceleration and thus

requite a fixed platform (or one connected to the solid Earth through the

hydrosphere or atmosphere). They cannot be applied from a platform in free

fall, such its an orbiting satellite, despite the advantages of coverage and

speed this would provide. However, it is also possible to measure the

gradient of the gravity field, i.e. the variation of the acceleration

vector over some small spatial interval, and this technique is applicable

to satellite measurements. In contrast to the orbital perturbation method,

g„avity gradient measurements respond directly and immediately to anomalies

as the satellite passes near them; one can also use the data to f'it a

model of the form (1), but for intuitive understanding and possibly also

for data analysis [8) the direct influence is more enlightening.

(Gradiometry has recently found application to surface measurements [9)

[10), but we shall only consider satellite measurements.)

The gravity gradient is a tensor whose components in Cartesian

coordinates are defined as

Wij = ag
i/exi	- a2U/8;tiaxi	(3)

The gravity gradient is expressed in E8tvos units, 1 EU = 10 -9 gal/cm =

_,
10 9 sec . Note that because the gravity vector arises from a potential,

Wij = Wei' and in free space Poisson's equation will relate the three
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diagonal components, W xx + Wyy + WzZ • 0. Thus, of the nine components,

only five are truly independent.

Measurements made with an instrument linearly accelerated relative to

a rest frame will not be affected due to the phenomenon of common mode

rejection discussed below. However, if the instrument is subject to a

rotation with angular velocity ;(t), the measured, gradient will be

eoas =Wrest + f + T
2 	(4)

where Wrest is the gradient of (3), T(t) is the matrix

	

I 0	 3	 w2

T(t)	 w3	 0	 -w1	 (^;

	

^w2	 w1	 0

and T2 means matrix multiplication in the common sense. Note that the term

dependent on the angular acceleration is anti -symmetric and can be

immediately distinguished from the inertial frame gradient if the

measurements are accurate , enough; the term dependent on the angular

velocity is symmetric, and cannot be removed from the observations without

knowledge of the instruments rotation.

The gravity field is a linear functional of the mass density

distribution. Thus, the gradient due to a point mass, the impulse function

as it were, is of interest. In Cartesian coordinates, the gradient due to

a point mass M at the origin is simply

Wij _ (GM/R3 ) (3(xi/R)(xj/R) - bij)
	

(6)

F t

4

1

R Air *:'O
'^) I
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where R is the distance from the origin and bid is the Kronecker delta. To

put this in a more useful format, let us return to the "flat Earth"

scenario. Consider a satellite moving at constant altitude Z above the X-Y

plane, We then have

3x2-r2 3xy	 3x

W - (GM/Z3)(1/r5)
	

3xy	 3y2-r2	 3y
	

(7)

[3x	 3y	 3-r2

where x - X/Z, y - Y/Z, r - R/Z. This format emphasizes two factors: a

strength factor, GM/Z 3 , depending only on the altitude Z and a shape

factor which depends only on the geometry, i.e, on the horizontal distances

scaled by the altitude.

If the satellite moves parallel to the X axis then the gradient is a

function of one along-path coordinate X; the set of shape functions is

plotted for several values of the scaled offset y in Fig. 1. For a path

directly over the anomaly (y - 0), the width of the response is about unity

in the scaled coordinate x (indeed, for WzZ , FWHM - 1.0014), that is, the

width is about the altitude; the values of those components which are not

identically zero are of order unity also. As the offset becomes larger,

the gradients become smaller and the width of the shape function increases,

though the effect is not pronounced for offsets smaller than the altitude.

For a satellite moving with constant velocity, these plots (appropriately

relabelled) show instrument response as a function of time. At a velocity

of 7.6 km/sec the temporal width of the impu,Lse functions due to an anomaly

immediately below the flight path will then be about 16 see at 120 km

altitude and 29 see at 220 km.

J I
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The radial component of the gradient due to a point mass is seen to

predominate (Wzz of (7) with x - y . 0). This is W rr = 2CH/r3 . The

gradient due to the full Earth mass at the surface is about 3000 EU. This

unavoidable background imposes a substantial dynamic range requirement when

compared to the signals due to anomalies; The goal for anomaly detection,

a 50 km square 0.3 mgal anomaly with an equivalent mass of 3 x 10 16 g, will

require gradient measurement to 2 x 10-3 EU at 120 km altitude and 0.3 x

1073 EU at 240 km altitude. The NASA Ceopotential Research Program [6] has

established as a goal a gradiometer noise level of 3 x 10-4 EU Hz-112 (the

accuracy of the measurement depends on the integration time available).

The instruments used to measure the gravity gradient, gradiometers,

are under active development (see, e.g., [6),[11)-[13)). The technology

required to achieve goals of 10-3 or 10-4 EU is formidable, but all

gradiometers rest on the same fundamental principal: measuring the

difference response of a pair of parallel but displaced accelerometers will

give one component of W. A very simplified scheme to measure Wzz is shown

in Fig. 2, with a somewhat more realistic version in Fig. 3. in practice

one does not usually make two measurements of the acceleration and then

take their difference, but measures the differential response directly, in

this case as the separation of the two test masses. In some proposed

I.	 gradiometers, e.g. Fig. 4, the independent test masses are replaced by a

single body with a gap whose deformation is measured, but one is still

effectively differencing two accelerometers.

If the gradiometer is not attached to at completely motionless

platform, the measured gradient may contain errors. A linear acceleration,

with no rotation, is relatively innocuous due to the phenomenon of "common

mode refection": the two test masses will to subject to the same

0
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non-gravitational acceleration, so the difference, the measured gradient,

will not be affected. Rotation of the instrument, however, will innately

alter the sensed gradient as shown by (4). If the rotation has angular

velocity w(t), ignoring for simplicity the vector nature, then the T 2 term

of (4) will have magnitude approximately w2 . Measurements at the goal

level of 3 x 10-4 EU s 3 x 10-13 sec-2 will be degraded if w 2 5.5 x 10^7

sec-1 . 0.1 deg/hr. Stability at this level should be readily achievable,

and if not, such rotational velocities can be easily measured and their

effect removed via (4). The rotational acceleration term, t, however, will

interfere with measurements if L 2 3 x 10713 see -2 ; to subtract the

effects would require, over a one second integration, knowledge of w to

about 3 x 10713 sec-1 - 6 x 16-8 deg/hr, well beyond current technology.

If eight of the nine components of W are measured, the rotational

acceleration effects can be removed by their anti-symmetry. However, even

a very small W will generate large spurious gradients, and an enormous

dynamic range requirement, so it will still be very important to isolate

the gradiometer from rotational acceleration. Alternately, one can measure

the diagonal terms only, which are not affected by the rotational

acceleration; but then one must be careful to avoid contamination by the

cross terms.

III. TETHERED SATELLITE SYSTEM GRADIOMETRY

The Tethered Satellite System (TSS) is a concept in which two orbiting

objects (typically a large deployer such as the Space Shuttle and a smaller

"subsatellite") are connected by a sub3tantlal length of cable (typically

20 to 100 km of 2 or 3 mm diameter Kevlar). The objects, seeking to travel

in different orbits, pull the tether taut; the two stable configurations

M)
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are with the subnatellite directly above or below the deployer, with slight

corrections for differential air drag or other forces (see Fig. 5). We are

interested here in a case with a deployer in orbit above the atmosphere at,

say, 220 km, and a aubsatellite instrument platform deployed downward to a

120 km altitude. A free flying satellite could not stay in such a low

orbit, but with the substantial mass of the deployer above the effects of

drag the system can operate for many orbits, allowing continuous

observation in an otherwise inaccessible region. (There does not appear to

be any readily available review of the TSS; [141 provides some general

discussion, and (151 is one recent paper in the open literature.)

The advantages of making gravity gradient measurements at a low

altitude from a tethered subsatellite, as opposed to a free satellite in a

higher orbit, are readily apparent. As discussed in Section II.B, the

strength of the gravity gradient due to an anomaly decreases strongly

(inverse cube) with the altitude. Also, the width of the gradient response

due to a point source is proportional to altitude; at a lower altitude the

signal due to distinct features will be sharper and less confused by the

signals from nearby features. The more rapidly varying signal seen by a

moving satellite at low altitude will require a faster response from the

gradiometer (equivalent to a higher overall precision), but an error

analysis performed by Kahn [161 confirms that the overall balance is in

favor of the lower altitude: comparing altitudes from 80 to 160 km, the

error in detecting features at a resolution of 55 km improves by up to a

factor of 5 at the lower altitude using the same gradiometer at all

altitudes.

r
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Unfortunately, the subsatellite provides a less than ideal platform

for delicate dynamical instruments such as gradiometers. The environment

will be dynamically "noisy", being shaken and rotated with significant

amplitude. The system itself has many modes of vibration, which will be

excited by such internal forces as deployment, attitude and tether control,

and motion of crew aboard the deployer. Additionally, there will be

external forces, primarily atmospheric density variations, which will

directly perturb the subsatellite and also excite the system modes. For a

TSS gradiometer mission to be successful, methods must be devised to damp

the vibrations, to isolate the instruments from the remaining subsatellite

motions and/or to remove the effects in data processing.

For these design purposes, detailed knowledge of TSS dynamics and the

perturbations to be expected is raquired. At SAO we are currently engaged

in estimating these effects; we summarize our findings here, and indicate

some plans for future research in the next section. Some of this material

is presented in more detail in 1171 and [181.

When discussing the dynamical noise of the TSS, we must distinguish

between three interacting phenomena:

- the natural modes of vibration of the system and the

associated frequencies;

- the excitation of these modes by causes external or

internal, discrete or seemingly r,uldom;

- the direct perturbations of the sti,ibeatellite by external

forces, the primary one of which xs air drag fluctuations.

The natural modes of the system include
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ether vibration modes, both latitudinal and

angitudinal ("stretching")

he "mass-spring" mode, oscillation of the system as a

whole, as if two masses on the end of a massless spring

- deployment boom oscillations

- aubsatellite and orbiter attitude oscillations.

The modal frequencies have been estimated using simple models: for the

tether modes, the end masses are assumed fixed; for the spring-mass mode,

the tether is assumed massless; interactions between the modes are

ignored. The results are listed in Table I. The excitation amplitudes are

more difficult to estimate, and at the current stage of model development

are largely speculative. What estimates have been made are also summarized

in Table I, but these should be viewed as very approximate and

non-exhaustive.

Sources of noise, either acting directly on the subaatellite or

serving to excite the natural modes, include:

Internal sources:

- tether control

- thruster activation

- venting from orbiter

- overall librational motion

- crew motion on the orbiter

External sources:

- fluctuations in air drag due to density variation
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- directly on oubaatellite

- on the tether

- fluctuations in tether heating due to density variations

- terminator effects

- earth albedo pressure

- solar radiation pressure

- micrometeoroid impact

Where estimates of these effects have been made, these are also included in

Table I.

The primary external source of dynamic noise will be fluctuations in

air drag as the subsatellite traverses irregularities in density.

Unfortunately, this region of the atmosphere in one almost completely

unstudied. The only significant In Al" data at low altitudes (100-150 km)

appears to come from perigee passages of satellites with elliptical orbits

[19)-[21]. Apart from providing only brief samples, the constantly varying

altitude confuses effects due to horizontal variation and vertical

stratification. Figura 3 of [20], though, does indicate substantial

variations in density, up to 20%, with distance scales of tens to hundreds

of kilometers. Higher altitudes allow stable circular orbits, and data

suitable for detailed analysis. The most recent analysis is that of [22]

and [23] for data around 250 km altitude. They find variability at all

distance scales from tens of kilometers up to global scales; of particular

note is the observation of discrete waves of finite extent, e.g. a wave of

250-300 km wavelength extending for only 1500 km of a total path of 4100

km. The induced acceleration from 10% density fluctuations will be about

0.5 gal.

J
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In addition to the idealized model calculations, we have modified a

general purpose TSS modeling program, SKYHOOK [14), to allow irregularities

in the atmospheric density. The results of one preliminary study, in which

the subsatellite encountered a single region of enhanced density, are shown

in Fig. 6. The induced accelerations of the subsatellite were decomposed

into components tangent to the attached tether and orthogonal.

(Subsatellite attitude dynamics are not yet in the model, so there are no

results on the subsatellite rotation.) After the encounter, the tangent

component shows continued variability, with amplitude comparable to the

direct effect during the encounter; oscillation modes have been excited

quite substantially by the essentially orthogonal force. The orthogonal

component behaves much more smoothly, a observation borne out by the

spectra in Fig. 6. Note that the orthogonal component spectrum is some

four to five orders of magnitude below the tangent spectrum. Also note the

distinct peaks in the tangent spectrum; the first peak, at about 0.09 Hz,

corresponds to the spring-mass mode, and ti.s remaining eight to the eight

low order longitudinal tether oscillation modes. (Higher modes are not

observed due to a modeling artifact: SKYHOOK uses a lumped mass approach,

dividisig the tether into finite segments and approximating them by masses

and springs.) Thi mimicking of these peaks by the orthogonal spectrum is

due to the change in air density, hence orthogonal acceleration, as the

subsatellite moves up and down in response to the tangent oscillations.

The distinct peak at 0.001 Hz, however, is probably due to the first mode

of latitudinal tether vibration.
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IV, FUTURE DIRECTIONS: MODELING AND EXPERIMENT

Much work remains to properly assess the feasibility of using the TSS

as a platform for gravity gradiometry. Some directions are outlined here:

A. MgAll Improvements

The Skyhook model program must be extended to include a number of

details, including:

- attitude dynamics of the subaatellite and orbitsr,

- aerodynamics of the subsatellite, including instrument

and stabilization booms,

- improved atmospheric density fluctuations, e.g. a

random fluctuation or, a damped wave as in [23),

- dynamics of the deployment system, particularly the

boom which has a transverse vibration mode with

period about 2 seconds,

- gradiometer suspension and damping mechanisms.

Vibrations of the TSS with periods down to 1 second or even lower are

of interest for the gradiometric measurement, and also because in this

frequency region there may be complex interaction between, for instance,

deployment boom vibration modes and tether oscillation modes. For Skyhook

to model accurately tether longitudinal modes to period 1 second will

require some sixty tether segments in the diseretization. The

computational cost increases rapidly with the number of segments, with a

practical limit of about twenty for all but the most simple situations.
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Thus, for detailed modeling we sisall have 40 adopt A I rats direct

approach. One possibility in to linearize the equations about a reference

configuration or history and use this linearized model to simulate small

departures similarly to SKYNOOK. Another direction would be to abandon

direct simulation and apply methods such as random vibration analysis 1241

to proceed directly from a statistical description of the system

perturbations (such as drag variations) to a statistical description of tho

responses of interest. This method would also rely on a linearized model

of the TSS, but we would not actually evolve the model in time. Probably

both of these approaches will be advantageous for studying different

oircumstances; e.g., it is hard to see how the statistical method would

cope with an impulsive disturbance such as a thruster.

B. TU Demonstration Missio p,T

NASA and PSN/CNR (the Italian spacae agency) have announced [251 the

flight of it least one, and tentatively three, demonstration missions of

the TSS for the purpose of studying the system and utilizing it for

scientific experiments. The first mission is to be an electrodynamic

tether, a 20 km conductor deployed upward from the orbiter and intended

largely to examine interactions with the plasma. The second (tentative)

mission would be atmospheric, with a 100 km tether deployed downward to an

altitude of 120-150 Irs, and the third would be another electrodynamic

mission.

Included in the subsatellite core equipment to be provided by NASA and

PSN/CNR are a three axis linear accelerometer and a three axis rate

integrating gyro. These instruments will allow the measurement of the

dynamic characteristics of the system and (on the second mission) direct

J
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observation of the perturbations induced by atmospheric drag fluctuations.

SAO till and others have submitted proposals to analyze the data from the

aooelerometers and gyros.

The observations will be useful directly in providing a picture of the

dynamic environment wn an actual deployed system. In particular, the

offsets of atmospheric drag irregularities should be observable by rotating

the accelerometer data to a system tangent and orthogonal to the tether.

From the spectra in Fig. 6 it is seen that the direct effect of the drag

variations is far stronger than the residual response in the orthogonal

direction; and it will probably prove possible to utilize the strong

spectral signature of the tangent component to perform the rotation. This

is likely to be the first solid data on density variations in the lower

thermoaphere, and thus crucial in the design of the gradiometer mission.

Simply observing the dynamic noise will not be adequate. The

gradiometer mission will almost certainly require damping mechanisms or

carefully designed instrument suspension, specifically to alter the noise.

The dampers, suspension and the gradiometer itself will become part of the

system, quite possibly affecting its overall behavior; the noise

environment cannot simply be taken as a given. Thus, a mayor contribution

of the demonstration missions will be the validification and refinement of

detailed models of the TSS. The modifications required for the

gradiometric mission can then be cor!fidently modeled. Of particular

interest will be the presence of known system perturbations, such an

thruster firings and reel control. These will allow detailed comparison of

model predictions with observed response.

t.



Page 21

Detailed objectives for each flight are:

Mission I (upward deployed, electrodynamic tether):

- measure system responses and natural frequencies

- compare with theory and simulations

- obtain estimates of system damping

- utilize known perturbations due to thrusters

Mission II (downward deployed, atmospheric miavion):

- observe effects of atmospheric density fluctuations

- measure properties of this different system:

- different tether material

- possibility of resonance between subsatellite

attitude oscillations and longitudinal tether

oscillations

- fly a simple, non-cryogenic gradiometer (see

Section C below)

Mission III (upward):

- repeat and refine analyses of Mission I

- possibly twat noise damping methods

C. A Non-Cryogenic Gradiometer "r Ug Second Demonstration Misaion

Observations of the dynamic noise environment will certainly be useful

in designing a dedicated gradiometrie mission. But one would also like to

directly measure the gradiometric noise with a gradiometer, rather than

rely solely on extrapolation from the accelerometer and gyro data. The

I ^ ' 0) 1
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second proposed demonstration mission is the most suitable of the three for

mounting a gradiometer: one will have had the opportunity to observe

system dynamics on the first mission and possibly implement some form of

damping mechanism; and the system itself W the atmospheric perturbations

will provide the closest similarity to the dedicated mission.

The subsatellite for the demonstration flights imposes some

significant constraints on the size and mass allowable for an instrument.

Most of the instruments under development for an eventual gradiometric

mission (either free flying or on the TSS) require cryogenic cooling and

are thus too large to eor^ete with other experiments and system equipment

for space in the 1.5 meter diameter subsatellite. However, IFSI-CNR in

Frascati, Italy has under development a non-cryogenic gradiometer [12) with

a sensitivity of about 3 x 10-2 EU Hz-112. This is two orders of magnitude

leas sensitive than the eventual design goal, but should provide adequate

information on the dynamic environment and may produce data of geodyname

interest if dampers are implemented for the second mission. This

gradiometer, in addition to being non-cryogenic, also employs very small

proof masses, 0.5 kg each (two being required); it consists of a pair of

sensitive accelerometers with torsional deflection of the proof mass.

Testing of sensitive gradiometers on the Earth's surface is difficult,

due to the extreme isolation from vibration which must be achieved while

still maintaining mobility relative to a large test mass. SAO is

developing a testing technique [11) in which a gradiometer falls freely

down an evacuated tube. A ring around the tube forms the gradient

generating test mass and the gradiometer falls through this localized area

of enhanced gradient. By suitably choosing the height of the tube and the

size of the mass ring oe can adjust the temporal width and magnitude of

*Cow
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the measured pulse. The proposed tower is 11 meters tall with 1 m

diameter; the ring mass is 9 kg.

V. SUMMARY

The use of gravity gradiometey to measure the Earth's gravity field is

probably the next step after the upcoming Ceopotential Research Mission.

Flying a gradiometer in a tethered subsatellite at low altitude, as opposed

to a Freely orbiting satellite, has the dual benefits of increasing

gradient signal levels due to mass distribution near the Earth surface and

narrowing the pulse width due to a looalized anomaly; this could either

improve the accuracy achievable or reduce the accuracy demanded of the

gradiometer. However, the subsatellite is expected to be a dynamically

noisy environment due to the influence of atmospheric density

irregularities encountered and to interaction with the rest of the system.

Characterizing this environment and evaluating the feasibility of dynamic

noise abatement methods is a topic of current research. Accelerometers and

gyros on the demonstration flights of the Tethered Satellite System will

provide an opportunity to measure the dynamic environment and test system

models, in preparation for final evaluation and design of a dedicated

mission.
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FIGURE CAPTIONS

EJL_, 1,,, Gravity gradient due to a point mass. The shape functions of

Equ. (7) in the text are plotted as a function of distance along a

straight horizontal path for three paths, one directly over the mass and

two whose closesthorizontal approaches are one and three times the

altitude. The gradient is scaled by the factor (GM/T 3 ) and the along path

coordinate by Z, where Z is the altitude. Note that the gradient response

is both weaker and more extended as the path offset increases.

Fig. 2,,, A schematic gradiometer for measuring the single component Azz'

In order that both masses will have the same displacement for the same

gravitational acceleration, k l /m l = k 2 /m2 . Raab mass/spring combination

responds to the vertical (z) component of the gravity vector, and since

they are at different heights, any vertical gradient in this component will

appear as a differential response. The observed quantity is the vertical

separation AZ.

Fie. ,3,s, Cross section of a gradiometer realizing the principle of Fig. 2

in somewhat greater engineering detail. The springs are tubular.

Fig. A,,,, A gradiometer which measures the distortion of a slot in a plate,

forming the equivalent of two separated test masses. The configuration

shown measures the gradient in several directions allowing reconstruction

of the gradient tensor; however. the six measurements will not allow full

reconstruction in the presence of an antisymmetric part caused by rotation

(see Equ. 4).
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Figure Captions, Page

Ems.L 1,, A schematic illustration of the Tethered Satellite System (TSS).

Ejj,, G Results of a simulation in which the subsatellite encountered an

atmospheric density enhancement of 20% extending for 100 kin. The residual

accelerations of the subsatellite after the encounter are plotted (a) for

the component tangent to tho tether and (b) orthogonal to the tether 	 in

the orbit plane. The tangent accelerations are comparable to the direct

acceleration produced (0.0$2 gal in approximately the orthogonal direction)

by the encounter, and are complex in form. The orthogonal accelerations

are much smaller in magnitude, and smoother. The two time series in (a)

and (b) were Fourier analyzed and the magnitudes of the resulting spectra

are shown in (c). The orthogonal component is weaker and strongly

dominated by the first two modes. See the text for discussior of the

modes.
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