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Introduction

Suppose a program coﬁtains some bugs each of which eventually
manifests itself as a failure of the program to execute correctly. If
each bug is removed when it causes a failure, failures should occur at
a decreasing rate and the program exhibit reliability growth. Suppose

successive failures occur at times
O<t. <t,<t, ...c<t ‘ (1)

and the number of failures observed in [0,t] is denoted as n(t) , 0 <.t ;

Figure 1 shows an example of such data, {n(t) ,0<t<t } . Important
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Figure 1. Observed number of failures as a
function of time; n(t) = number of
failures in [0, t]
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problems in the area of software reliability focus on data as in (1) or
Figure 1: we would like to make various statistical inferénces from the
data. Assuming a time-homogeneous usage environment, what can be said
about future failures? "How many failures are expected over some finite
future horizon? What is the distribution of time until the next failure?
What is the present failure rate of the program? (If bugs causing‘future
failures are not removed at those failure times, the present failure rate
should remain constant into the future.) Many papers in the software
reliability literature address these and related issues. The purpose‘of
this paper is to address the problem of estimating the present failure
rate of a program. Our method is néw; it consists of smoothing a raw

estimate of the failure rate with a completely monotone function.

Reliability Growth Models and Complete Monotonicity

One approach to the inference problems arising from the observed
failure times in (1) is postulation of probability models for the failure
times. Such models include Jelinsky-Moranda [8], Goel-Okumoto [7],
Duane-Crow [4,3], Littlewood [9], and Musa-Okumoto [13]. These are all
parametric models. The general approach consists of selecting a particular
model by goodness-of-fit, past quality-of-prediction, or some other
criterion and then, using that model (with estimated parameters), predict
the future or give estimates of the current failure rate. It is
interesting to note that all the above models have a common property:

complete monotonicity of failure rate function.

‘ Let N(t) equal the (random) number of failures observed in [O,t]
and let M(t) = EN(t) be the expected number. The intensity function
of the point process ({N(t}, 0 < t} is m(t) = %;-M(t) , 0 <t m(*)

is also sometimes referred to as the failure rate of the process. A
function m(-) is completely monotone if and only if it possesses

derivatives of all orders and

ndn
dml®) .0, 0<t, n>0, (2)
de”

(-1)
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see Feller [5, p. 439]. It is simple to verify that all of the above
mentioned software reliability growth models satisfy (2). Futhermore

if the‘failure times are modeled as order statistics of independent but
not necessarily identically distributed Exponential random variables,

(2) is also satisfied; see Miller {11]. Finally the claéé of completely
monotone functions is identical to the totality of intensity functions
for the family of doubly stochastic EXpbnential‘order statistic processes;
see [11] again. Thus, the set of coﬁpletely monotone intensity functions
seems to be a natural basis for a nonparametric approach to estimating

- the failure rate.” Our approach will be to find a completely monotone
rate functioﬁ which, in some sense, best fits the failure data in (1).
Vgrious specific formulations of the problem are possible; we present

two closely related formulations here.

Problem Statement — First Formulation

Consider failure data as in (1). A raw estimate of the failure
rate function is

1 , t. <t < i=1,...,n . (3)

t
. -t i- i+1 °’
i+l i

r(t) =
(t) =<
(This is a rather crude and naive estimate, but it does have some nice
properties such as being totally nonparametric and it has appeared in the
reliability literature, e.g. [12].) The above failure rate estimate is
shown in Figure 2 for the data from Figure 1. (A very naive estimate of

r(tn) would be f(t;) .) Our goal is to find the "closest" completély

* -
monotone function r (t) , 0 < t < tn , to r(t) ,0<¢tc< tn 1 we .

shall use the criterion of "least-squares.' It appears mnecessary to

formulate the problem in discrete time. We shall use the failure times

‘ - " = : * x - .
of (1): 1let r, = r(ti) and r,=r (ti) . The least squares distance

for the discretized problem is

n .
DG, 1) = I (F -rp)” (g -t ) @
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, : *
There is some problem in carrying the complete monotonicity of r ()

. :
over to the sequence ‘{ri » i=1,...,n} because of the unequal spacing

between discrete time points. Thus we shall temporarily consider only

the first two derivatives, which lead'to

* *
r. -r )
x , R _
Ari = -E-]'—-_—--t-i——:L < 0 i=2,...,n (5
‘ i i-1
At * : | f
Azr* - I, - Ari—l >0 i=3,...,n - (6)
1 b3 7 Rl

We now have two optimization problems:

- * ‘
I. For given {ri , i=1,2,...n} find {ri , i=1,2,...n} which minimizes

% *
> 9, »rr, -r <0, i=2,3,...,n .

- * *
D(r , r ) subject to the constraints r i -1 S

R *
I1. For given {ri , i=1,2,...,n} find {ri , i=1,2,...,n} which

- * * *
minimizes D(r , r ) subject to the constraints T >0, Iy ~ i <0,

ok * *
i=2,3,...,n , and (ri - ri_l)/(ti - ti-l) > (r,_, - ri—2)/(ti-1 - ti—z) ,

i=3,4,...,n ..

Note that the above statements both relax the constraint of complete
monotonicity considerably: Problem I requires only monotonicity and

Problem II requires only convexity and monotonicity.

The above problems are both quadratic programs. We have encoded an
algorithm to solve them which is described in the Appendix. The solutions
of Problems I and II for the data of Figure 1 were computed and are
presented in Figures 3 and 4, respectively. The data of Figure 1 is
actually Monte Carlo simulated data from a nonhomogeneous Poisson process

with intensity r(t) = 1/ V400t , 0 < t , a Duane-Crow model. This "true"

failure rate function is shown on Figures 2, 3, and 4. In this example

_6_
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Present time is = 179,367. The true rate is r(tso) = 1.18 :('10—4 .

t50
The rate estimated from the monotone function (Figure 3) is 0.63 x 10-4 .

The rate estimated from the convex function (Figure 4) is 1.38 x 10-4 .
These results seem promising.

Note that Problem I above is the well-known "isotone-regression"
problem described by Barlow, Bartholomew, Bremmer and Brunk [1} and
addressed in the reliability growth context by Campbell and ott {2]
and Nagel, Schloz, and Skrivan [14]. 1f the last interfailure time
happens to come‘from the right tail of the interfailure time distribution,
;n = §(t;) will underestimate r(tn) and the monotone constraint on r*
will have no effect,leading to a negative bias ; imposing the additional
constraint—-of convexity does have an effect as can be seen in Figures
2, 3, ana 4. In most software reliability applications a positively
biased estimate of failure rate is safer than a negatively biased
estimate, thus the convexity constraint seems to be desirable and the
generalization of isotone regression to completely monotone regression

worth pursuing.

Problem Statement - Second Formulation

The above formulation only considered first and second difference
constraints. It is more straightforward to deal with higher differences
if we formulate the problem in terms of equally-spaced discrete time-

points. Let [O, ﬁn] be divided into k intervals of equal length,

As = t_/k ; and define k time points s; = ibs , i=1,2,...,k . A

suoothed version of the raw failure rate ;(-) is

n 1 - :
r(t) =j. r(s) ds/ds , s, , <t < s, . ‘ (7)
s \ i-1 - i
i-1
Let ¥i = ?(s;),, i=1,2;,..., k . We use {?i , i=1,...,k} as the data

—9—
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point in the least-squares regression problem. The optimal solution

. * .
is denoted as {ri ,» 1-1,2,...,k} as before; we constrain this solution

to satisfy

.
(—l)m Amri >0, ml<i<k,O0O<m<d, (8)

- - - - -

where d corresponds to the maximum difference considered. The least

squares distance is

>D(% . r*) = - r:)2 . : (9)

n e x

We have a family of quadratic programming problems (for d 1,2,3,...):

. . - '\J * . 3 ]
Minimize D(r , r ) subject to constraints in (8). . S e e

We note that there are many possible formulation of the problem of
finding the "best'" completely monotone rate function. The two we have
given seem to be closest to the standard formulations of‘isotone regression
problems and therefore are logical initial approaches to this general '
problem. We plan to consider several other possible formulations in the

future.

A Monte Carlo Study of Performance

We have chosen to do a more thorough investigation of the above
second formulation. We wish to determine how accurately the present
program failure rate (i.e. the failure rate at the end of the observed
data) can be estimated by using the value of a least-squares completely
monotone (up to d differences or derivatives) regression curve at that
point. This is a complex inference procedure wﬁich is not amenable to
analytic evaluation, therefore we use Monte Carlo simulation to estimate

the average relative error and standard deviation of the estimator.

For our initial set of simulated failure data we chose the
Musa-Okumoto [13] Logarithmic Nonhomogeneous Poisson process. This

model seems to describe software failures well and for different

parameter values it covers a range from no growth to extreme growth.

- 10 - |
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The mean function M(*) and the pérameter values considered are shown
in Table I and the corresponding mean functions are graphed in Figure
5; the values of B were chosen so that the ith curve goes through

- (50-51i, 20+2i), i=0,1,...,9 . The amount of growth can be seen from
the curves or by comparing M(50) and M(100) - M(50) in Table I.

Each data point generated consists of 40 observations from one of these

M-0 processes.

The results of the Monte Carlo study appear in Table II. We
considered 7 different models: BO through Bg For each of the first

five we generated 1000 data points, i.e., sample paths of 40 observations
each; for the last two we generated 400 data points. For each data point
we discretized the time inter§31 into 40 equal subintervals and foﬁnd

the least-squares regression lines whose first d differences satisfied
the completely monotone property, d =1, 2, 3, 4, 5, and 6. We then

computed the relative error

* B
ey = (r40 - r(tao))/r(tAO) (10)

for each of the 6 values of d . We then computed the average and
standard deviation of the relative errors over all 1000 (or 400)
replicates for each value of d and B8 . For example, in Table II,
for B8 the monotone (d=1) 1least-squares estimate underestimated

0

the true rate by 26.7 percent on the average and the relative error
. , : ;
had a standard deviation of 24.0 percent.

The numbers in Table II merit some discussion. The first column
(d=1) corresponds to the traditional isotone regression. We see a
significant negative bias in the cases of small and moderate reliability

growth. (The positive bias for 85 and 66 may reflect an

inappropriateness of the mean as a measure of location in these cases
more than anything else.) Note also that the variability, i.e., standard
deviation, of the estimator goes from an acceptable to an unacceptable

level as the growth becomes more extreme. Using higher differences

- 11 -
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Table 1

Cases of Musa-Okumoto Logarithmic Poisson Model

¥

o -0 ok
B M(50) M(100) - M(50)
= .100 x 107" 20.00 20,00
= .24 x 107} 23.93 7 16.07
= .429 x 107} 27.51 12.49
- a3l 30.56 9.44
= .46l 33.02 | 6.98
= .243 x 10 34.99 | 5.01
= .311 x 102 36.55 3.45
- .311 x 10 37.81 2.19
= .100 x 10° 38.80 1.20
= .104 x 107 39.54 46

- 12 -
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Table 11

Performance of completely monotone least squares estimators of
failure rate at 40th failure of M-0 model: Average relative
error and (in parentheses) standard deviation of relative error

8 d=1 d=3 d=4 d=5 d=6

By . —-267 -.051 -.054 _ =.055 ~-.055 -.065
~(.240) (.199) (.205) (.206)  (.206) (.203)

By -.184 .093 .059 .055 .054 .061
(.307) (.290) (.326) (.328) (.328) (.315)

B, -.126 .149 .082 .071 .069 .076
- (.366) (.395) (.442) (.441) (.439) (.434)

B, -.067 .186 .106 .092 .086 .089
(.397) (.462) (.518) (.517) (.514) (.509)

B, -.008 .227 .150 .133 .129 .131
(.439) (.519) (.577) (.579) (.575) (.570)

By .071 .277 .209 .187 .180 .179
(.476) (.578) (.633) (.639) (.640) (.632)

Bg .141 347 .258 .233 .222 .219
(.531) (.654) (.723) (.730) (.728) (.723)

The average and standard deviations are estimated from 1000 independent

replicates for BO , Bl . 82 , 83 and 84

replicates for 85

and 86

- 14 -
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(d > 1) we see an improvement in the bias and a small increase in the
variability for small and moherate growth situations. A positive bias

is conservative when estimating the failure rate and therefore is preferred
to a negative bias. Thus from Table II it seems to follow that estimators
based on higher differences are preferred to the isotone estimators for
small and moderate growth. For cases 6f more extreme growth it simply may

be impossible to get good nonparametric estimates.

- "In order to get some feeling for the significance of the variability
of the above estimators we consider the problem of estimating the failure

rate in a known time-homogeneous environment, i.e. no growth. Let
Xi ,...xn be i.i.d. Exponential random variables with mean 1, then
n

n/ T X,
i=1 *

>
n

is an estimator of the failure rate, and because 2 =1, A -~ 1 1is an

estimator of the relative error. It can be shown that

- _ _n
EG) = —7
2
T2, _ n
EQD) = n e
2
. n
Var(i) = —
(n-1)"(n-2)
For n=40 , we get Var(i) = .0277 and the standard deviation equals .166

Comparing this to the standard deviations in Table II for BO we see a

surprisingly small difference; so we do not seem to lose much precision
by using the nonparametric approach which makes no assumptions about

time homogeneity.

Finally, we note that the mean and standard deviation of the
estimators do not give a complete picture of the performance. The
complete distribution of relative errors is more revealing. Figure 6

shows the empirical distributions of the 1000 relative errors observed

- 15 -
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left.) '

- 16 -



T-497

for model 83

to prefer the convex (d=2) estimator to the monotone (d=1) one even

using d=1 and d=2 . From these plots we are tempted

though the absolute averagé error is three times larger. One reason for
this choice is that the monotone estimator underestimates 62.6 percent

of the time while the convex estimator underestimates 35.9 percent of

the time.

Conclusions and Future Work

. We have presented a new nonparametric method for estimating the
current failufé-£;ﬁév6f7;”b£6ér;;,Hi.e.ﬂlhémféilure réte atrthe end of
a sequence of observed failures. A limited Monte Carlo study shows that
the method works well for data sets with small or moderate growth but

not for data sets with extreme growth.

This initiél study shows that the method has potential. We are
pursuing several paths which should improve the method and allow it to
achieve its full potential. We are looking at formulations in terms .
of the mean function instead of'the failure rate function. anstraining
the solution to be completely monotonic into the future may improve the
estimate of present failure rate; this extension may lead to predictions
of future reliability growth. Finally, it may be possible to develop a

more efficient and more stable numerical algorithm.

- 17 -
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APPENDIX

The Optimization Algorithm )

The optimization problems of‘ﬁhe two formulations presented are

" both linearly constrained quadratic programming problems (in the

variables ri) . A computer program was written for solving these

problems, using a Newton type variable reduction algorithm . (Such
algorithms are described in detail in McCormick [10] and in Gill et al. [6].
The program uses a Cholesky decomposition (see Gill et al [6]) to factorize
the projected Hessian matrix, It should be noted that the system of

equations (8) is equivalent to the reduced system of equations

*
-1¢ 2¢ r, 20 d+l < i <k

(11)

T
P
N’
B>
]
v
o
o
A
jun
I A
o,
!
—

This reduction to a system of non-redundant equations (prior to solution),
is necessary, since all algorithms for constrained optimization assume

linear independence of the constraint gradients.

For smaller values of d , the optimization program proved quite
efficient. As examples, the running time for 900 problems of 40 variables
each, with B = 0.1 and d=3 was under 3 CPU minutes on an IBM 4341,
while 600 problems.of 40 variables with B = 0.00001 and values of d
varying from 1 to 6 took just under 1 CPU minute. However, for larger
values of the maximal order of constraint differences d , numerical
problems arise. As the value of d increases, the constraint coefficient
matrix becomes increasingly ill conditioned. As a result, a solution
which satisfies the system of equations (11) up to an acceptable
tolerance (say, 10_7) does not necessarily satisfy system (8) to an
acceptable tolerance, and hence is unacceptable. Another problem
encountered for larger d is that the program fails to complete the
Cholesky decomposition of the projected Hessian, even though this matrix

is known to be positive definite.

- 18 -
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Various steps can yet be taken to improve tﬁe efficiency of the‘
program. Various measures to restore‘feasibility have been intfoduced,
and these could still be improved. In addition, an orthogonal factoriza-
tion, rather than a Cholesky decomposition could be used. This would tend

to increase the numerical stability at the expense of increased running

time.

- 19 -
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