
NASA-TP-2378 19850009267
NASA
Technical
Paper
2378

January 1985 MINDS

A Microcomputer Interactive Data
Systemfor 8086-Based Controllers

James F. Soeder

[_i_RARggPY

LANGLEYRESEARCHCEI"ITEIR

LIBRARY, NASA

HAMP2rON,VIRGINIA

https://ntrs.nasa.gov/search.jsp?R=19850009267 2020-03-20T20:33:49+00:00Z

NASA
Technical
Paper
2378

MINDS

A Microcomputer Interactive Data
Systemfor 8086-Based Controllers

James F. Soeder
Lewis Research Center
Cleveland, Ohio

NI_SA
National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

Summary complete standard software systems. Even then
additional means of improving software development

A microcomputer interactive data system (MINDS) efficiency will be required. This is especially true for
software package for the 8086 family of microcomputers control software development since the software must
is described. To enhance program understandability and run in real time usually in a timed or interrupt-driven
ease of code maintenance, the software is written in environment. This report describes one particular
PL/M-86, Intel Corporation's high-level system imple- method for enhancing the debugging and evaluation of
mentation language. The MINDS software is intended to real-time control software. The approach employs an
run in residence with real-time digital control software to auxiliary software routine that operates in conjunction
provide displays of steady-state and transient data. In with the control software. This powerful software utility
addition, the MINDS package provides classic monitor is called MINDS for "microcomputer interactive data
capabilities along with extended provisions for debugging system." It is designed to use spare unused computing
an executing control system. The software uses the time in between control computation update intervals. It
CP/M-86 operating system developed by Digital allows an operator at a keyboard to interactively extract
Research, Inc., to provide program load capabilities data from the computer's memory in several useful
along with a uniform file structure for data and table formats. These data can be used for software debugging
storage. A library of input and output subroutines to be or control software performance analysis.
used with consoles equipped with PL/M-86 and This report gives an overview of the software package,
assembly language is described, describes the hardware and software environment

necessary to use the program, details the internal
structure of each of the program's sections, describes the
currently implemented commands, and gives the

Introduction extensions in scope and application that the current
software makes possible.

As microprocessors have become more sophisticated,
they have begun to take over applications formerly
reserved for more costly minicomputers and low-end
mainframe computers. This evolution has resulted in Overview
opportunities to apply digital computer technology to
applications that would never have been considered a few The MINDS software utility is designed to run on a
years ago. The result of this explosion of computer microcomputer in residence with a real-time direct digital
applications has been an enormous demand for software control algorithm. To understand the philosophy on
to accomplish these many and varied tasks. This demand which MINDS is based, one must understand a simple,
has led to what has been called the software crisis (ref. 1). direct digital control application. A timing diagram for
This crisis has come about because there are too many this type of task is shown in figure 1. In this application
applications requiring sophisticated software with too an interval timer generates an interrupt at a specified rate
few programmers to write it. The problem has been (determined by the bandwidth requirements of the
somewhat alleviated in the business software environ- system). When the central processing unit receives the
ment by the adoption of standard operating systems interrupt, it samples sensor input signals with an analog-
(e.g., Digital Research's CP/M (ref. 2) and structured to-digital (A/D) converter. The CPU then uses these
high-order programming languages such as Pascal. input signals to compute a control algorithm. When the

In the application of microprocessors to real-time control algorithm computation is complete, the results
digital control systems, however, each application and are output to control actuators with digital-to-analog
hence each algorithm is unique. This means specialized (D/A) converters. Once this has been done, the computer
software to do each task. This problem can be alleviated is idle until the next sampling interrupt, at which time the
to some extent by standardizing, wherever possible, process starts over again. When the CPU is idle,
through the use of standard software modules as well as information can be input to and output from the CPU to

F Input sampling
/

/ FControl calculation
/ /

/ /

/ // /7 Actuator output/ /
/ / /

/ / -
/

/

I I I I I
Samplinginterval ---_ Time

Figure !.--Direct digital control timing diagram.

provide an operator interface and data-taking capability, The MINDS data-taking software has attempted to
etc., without disturbing the control process that takes address these deficiencies. First, MINDS is designed for a
place at each update interval. The MINDS software system based on a popular microprocessor, the Intel
package to be described in this report gives exactly this 8086/8087. Second, it uses the widely accepted CP/M-86
capability. It provides a modular software package that operating system to provide memory as well as file
can be called by a control algorithm's real-time executive management. Finally, most of the MINDS software is
routine to run in the spare time while the control written in PL/M-86 (ref. 4), a microprocessor version of
algorithm is waiting for the next update interval timer the PL/1 higher level language, to aid in the programs
interrupt, understandability and transportability.

MINDS is intended to provide both steady-state and
transient data for variables inside and outside the control

algorithm. This is accomplished by allowing an operator
of the control equipment to assign names and other Support Hardware
designators to storage locations in the control computer's The microcomputer hardware on which MINDS has
memory, thereby creating a MINDS data element. These been designed to operate is discussed in some detail. This
data elements can then be displayed separately or in

is important since various aspects of the hardware (such
tabular form to provide a representation of the control's as segmented memory addressing) affect the decisions
steady-state condition. In addition, time histories of these made in the MINDS software design. The elements used
data elements can be stored in the computer's unused

to implement the MINDS software package include a
memory, retrieved, and put on disks for later data single-board computer (Intel iSBC 86/12A) that
analysis or plotting. MINDS also has a debug package incorporates the 8086/8087 microprocessor pair, a disk
that can set conditional breakpoints inside an executing controller with floppy disks, and the CP/M-86 disk
real-time control and capture steady-state and register
data when a predefined condition is satisfied, operating system. Each of these elements is discussed inthe following sections.

Interactive data-taking software such as MINDS has
been developed previously. One example would be 8086 Microprocessor
INFORM (ref. 3), which was developed for the SEL 810B
minicomputer. This program, although very powerful The 8086 microprocessor is the first member in the
and heavily used, lacked certain features. First, it could family of Intel 16-bit microprocessors. The processor has
not handle data elements that were real floating-point a 16-bit data bus and a 20-bit address, resulting in a
numbers. Second, since it did not interface with an 1-megabyte memory address space. Figure 2 is a register
operating system, it lacked the capability for memory diagram (i.e., assembly language programmers model)of
management and standard file storage format. Third, it the 8086. The processor contains thirteen 16-bit registers.
lacked buffered input, thereby making it difficult to These registers include general-purpose registers AX and
input commands. Finally, the program was written in DX, base pointer registers BX and BP, index registers DI
assembly language for a computer system produced in and SI, counter register CX, instruction pointer IP, stack
limited quantities and thus had little industry support and pointer SP, and segment registers ES, SS, DS, and CS.
interest. The four segment registers are critical in allowing the

16Bits Segmentregister=04OOH
Instructionregister=OO20H

(Memoryaddress=4000H+O020H=4020H
AX Accumulator OFFFFFH
BX Base
CX Count
DX Data

SP Stackpointer
BP Basepointer
SI Sourceindex
DI Destinationindex

CS Codesegment
DS Datasegment
SS Stacksegment
ES , Extrasegment

IP Instructionpointer

IIIIf}lilllllllll Flags

Figure 2.--Intei 8086 register structure. "-']

4020H J 64Ksegment8086 to achieve its full 1-megabyte address space. If the 4000H
instruction pointer (a 16-bit register) alone is used to
compute memory locations, only 216 or 65 536 memory
locations can be addressed. However, if memory 0
addresses are computed by using both the instruction
pointer and a segment register, the full 1-megabyte Figure 3.--8086 Memoryaddressing.

address space can be accessed by using the formula 80Bits

(Segment * IOH)+ IP = Memory location [R0
R1

where H denotes a hexadecimal number. Furthermore, RZ
once the segment register has been specified, any location NDPstack R3R4
that lies between the segment value and the segment value R5
plus 65 535 can be addressed directly by merely changing R6
the value of the instruction pointer. An illustration of this R7
is given in figure 3. The result of this type of addressing,

however, is that to identify the location of any parameter 16Bits
in memory, one must specify not only the instruction r----_
pointer (i.e., the offset) but also the segment. Further I] Status register
information on this addressing scheme and the 8086 I.] Moderegister
architecture in general can be found in reference 5.

Figure 4.--Intel 8087 register structure.
The 8087 microprocessor chip is a transparent co-

processor that can be added to the 8086 to augment the 8086/8087 microprocessor pair as its central processing
instruction set and the architecture. This chip adds eight element. In addition, the board contains 32 kilobytes of
80-bit-wide registers to the 8086 structure defined dynamic random-access memory(RAM), 32kilobytes ofpreviously, along with a status and mode register. This
register augmentation is shown in figure 4. The expansion RAM, and 32 kilobytes of erasable,programmable read-only memory (EPROM). The board
coprocessor augments the 8086 instruction set with also has 24 parallel input/output lines for printer
instructions that use the 80-bit-wide registers to do

interfacing, a RS232 compatible serial input/output port
floating-point arithmetic, trigonometric functions, and used to interface to a cathode-ray tube, two program-
logarithms. These calculations are done in accordance mable counter/timers for control and sample timing, and
with the proposed IEEE floating-point standard. Further

an interrupt controller capable of accepting eight external
information on the 8087 coprocessor chip can be found in or internal interrupts. The board can accept an 8087
reference 6. (iSBC 337) numerics coprocessor to augment the 8086

with floating-point numerics capability. Lastly, the
iSBC 86/12A Microcomputer 86/12A is Multibus compatible. The Multibus/IEEE 796

The iSBC 86/12A single-board computer (fig. 5), is a standard microprocessor backplane interface bus
which operates the MINDS software, has a 5-MHz originally developed by Intel. Using this standard set of

.3-81-1670

Figure 5.--iSBC 86/12A single-board computer.

Floppy
disks

/_C Disk]

q2A controller AID D/A

I--- --I
%
Highestpriority Lowestpriority

Figure 6.--MINDS hardware configuration.

address, data, power, and control lines facilitates the memory. The disk operating system with which MINDS
interface to a multitude of standard boards manufac- has been designed to operate is CP/M-86.
tured by a variety of vendors. Further information on the The CP/M-86 operating system is a general-purpose,
86/!2A and the Multibus can be found in references 7 single-user operating system marketed by Digital
and 8. Research, Inc., of Pacific Grove, California. The opera-

Successful operation of the MINDS package in a real- ring system provides facilities to do console communica-
time digital control environment requires, in addition to tions, program load and unload, disk file management,
the 86/12A board, Multibus boards of the following and rudimentary computer memory management. A
type: an analog-to-digital (A/D) converter board and a memory map of the 86/12A computer with the CP/M-86
digital-to-analog (D/A) converter board. Figure6, which operating system installed (fig. 7) shows that the
illustrates this configuration in more detail, shows the
single-board computer in the highest priority slot of the 65535
multibus. This is necessary so that under all bus
conditions the computer can get access to the bus to use
the A/D and D/A converters and thereby update the
control law in the specified sampler network. As was Transientprogramarea
stated previously, the MINDS package has been designed
to use the disk controller during the control's spare time
in making data and table transfers. Therefore, if the disk
controller cannot be interrupted after every bus cycle,

transparent operation with the direct control algorithm 12031
cannot be guaranteed. Further implementation informa- Basic input!outputsystem
tion on this hardware configuration can be found in
reference 9 and appendix A. Basicdisk operatingsystem

CP/M-86 Disk Operating System Consolecommandprocessor

As stated earlier, the MINDS program has been Interruptvectortable 1024
designed to use a permanent storage medium (floppy 0
disk) to save data extracted from the computer's Figure 7.--iSBC 86/12A memory configuration.

4

CP/M-86 is located in the lowest part of memory and straightforward software task in direct digital control,
occupies approximately 12 kilobytes. The remaining and for the system described in this report it requires less
52 kilobytes is used as a transient program area for than 0.6 kilobyte of memory.
applications programs and an interrupt vector table for A diagram of the software hierarchy between
operating system and application use. CP/M-86, MINDS, and the real-time control (fig. 8)

The operating system has three main portions: shows that a real-time executive is directly linked to the
(1) Console command processor (CCP) control algorithm and the MINDS software. This is
(2) Basic disk operating system (BDOS) represented by the solid lines connecting the three
(3) Basic input/output system (BIOS) modules. This combined software module is loaded into

The CCP accepts all commands that are typed in from the microcomputer main memory by using the CP/M-86
the console, interprets them, and takes the appropriate operating system, as shown by the dashed-line intercon-
action to see that they are completed. The BDOS contains nection. In this environment the MINDS subroutines can
the facilities to open, format, read, and organize files on provide a general-purpose operator interface, steady-
a floppy disk. In addition, it contains routines to do state transient data collection, and a monitor debug
memory management (i.e., the reserving and releasing of package. Finally, as represented by the wide-arrow
memory) for the free or transient program area. The interconnection, the MINDS software can use the
BDOS has an external entry point or "hook" such that services provided by CP/M-86 to assist in orderly
most file and memory management functions can be memory management and can read and write disk files of
accessed by applications programs. MINDS makes a standard configuration.
extensive use of this hook to provide an orderly format The MINDS software can be broken into four logical
for data storage and retrieval, blocks (fig. 9). Each of these blocks consists of a number

The BIOS contains all of the hardware-dependent of subroutines. The important subroutines contained in
information necessary to allow CP/M-86 to operate in a each block are listed in appendix B. The MINDS main
particular computer configuration. This includes block takes care of variable name definitions, steady-
definition of the disk layout (i.e., number of tracks, state data table definitions, information storage and
number of sectors, number of bytes per sector, etc.), the retrieval, and other miscellaneous tasks. The monitor and
address and input/output format of the console device debug block can display and set any part of main memory
and line printer, and the memory configuration of the as an integer, word, byte, or real number. In addition,
transient program area. Because all of the hardware- the monitor functions as a software debug tool and sets a
dependent information is concentrated in one area, breakpoint in order to collect data tables and register
CP/M-86 can be easily reconfigured for a variety of data if certain conditions are met. The MINDS transient
hardware environments, data block provides all that is needed to take and store

How the operating system loads programs is important transient data.

in understanding MINDS. When the CP/M-86 operating Finally, the input/output library contains the pro-
system is given a command, the CCP processes it and grams necessary to input and output information to the
determines if an external applications program must be
loaded (i.e., a program on the disk). If this is the case, the !
program is loaded from the disk and placed in the CP/M-86

operating
topmost part of memory (i.e., the highest memory system
location). The free memory above the operating system

and below the applications program is still available to be]
I

allocated (managed) by CP/M-86 for the applications I
I

program's use. Further information on CP/M-86 and its I
applications environment can be found in reference 10.

I Rea!-time I
Software Overview executive

As stated earlier, CP/M-86 is a single-user operating
system. It does not do multitasking. A real-time applica- / <tion such as direct digital control, however, requires that

multiple tasks be performed. Thus, a real-time appli- []] _

cation using CP/M-86 must have a subexecutive, or real- Contro
time executive, routine to service interval timers, algorithm MINDS --
interrupt controllers, and A/D and D/A converters and
to execute a control algorithm and MINDS. This is a Figure8.--Softwarehierarchy.

I MINDSmain [take on values of 0 to 65 535, (i.e. 216- 1). An integer is

I

andsteady-

statedata] a signed 16-bit pieceof data (two bytes)that can take onboth positive and negative values since bit 15 is the
two's-complement sign bit. Because of this the range of
the number is -32 768 to 32 767 (i.e., -215 to 215-1).
Finally, a real number is a signed four-byte data type,
consisting of a mantissa and exponent, that can range in

i value from 8.43 × 10-37 to 3.37× 1038(ref. 6).

MINDS MINDS From these definitions of what data types aremonitor transient
anddebug data available, the format for designating a MINDS data

element was devised (fig. 11). A data element designator

_ _ comprises at least four and possibly five pieces ofinformation:

I MINDS I (1) An element name consisting of one to sixinput/0utput J alphanumeric characters, the first of which must belibrary alphabetic; when less than six, it is padded with space
characters.

Figure 9.--MINDS packageinterconnection. (2) A type designator, which identifies the data element
as word, integer, or real

console and printer. In addition, it contains a series of (3) The segment and offset (i.e., the location)
assembly language routines to interface to CP/M-86. designators for the data element. (Note that any memory
This type of library is necessary since PL/M-86 is a location in the 8086 must be specified by using a segment
system implementation language and merely has an and offset because of the architectural definition of the
instruction to input or output a word or byte from or to a processor.)
particular port. The language does not have a sophis- (4) For integer data elements a scale factor is included.
ticated input/output structure like Fortran or Pascal. For a data element of the type "word" no scale factor is

A detailed discussion of the workings and operation of necessary since it is merely considered as an unsigned
each of these four large blocks of code, or software number that represents a pure hexadecimal value.
modules, follows. Similarly, real numbers can be considered pure values

since they vary over such a wide range that most values
encountered in a physical system can be represented in

Main Software Module the real format. Integers represent a different situation.

Dala Element Definition In various applications it may be advantageous to
represent some or all internal central variables as integers

Before a discussion can begin on the operation of the rather than as real numbers. This might be done for
main MINDS program, the variables and control example when calculation speed becomes a factor since
structures must be defined. The MINDS software relies integer arithmetic is much faster than real-number
on the manipulation of data elements. A data element is arithmetic. In this case the integers can be thought of as
simply a memory location or a series of memory locations scaled fraction numbers whereby a certain number of
that have been given a prescribed set of attributes. Data engineering units are represented by a certain number of
elements can be any one of three types (fig. 10): word, machine units. For example, 15 000 rpm might be
integer, or real. Every addressable location in the 8086 represented by the maximum integer number, or 32 767
memory is eight bits, or one byte. machine units. To facilitate understanding of the controls

The figure shows that a word is an unsigned 16-bit operation, every integer data element contains a scale
piece of data, or two bytes of data. This data type can factor. Therefore, when any reference to that element's

value is made, it is modified by the element's respective

Byte.0to255 scale factor for display purposes. This allows the integers
7 0 to be dealt with like real numbers. That is, for data

L J Word,0 to 65535
15 0

Isl] Integer, -32768to 32767 l _ _--] E_ _15 i I I I I

isl exp I Mantissa I Real,8.43x10-37< Ixl< 3.37x1038 Name Type Segment Offset Scalefactor
31 23 (integeronly)

Figure 10.--MINDS data type definitions. Figure 11.--MINDS data element format.

manipulation purposes they can be dealt with directly by element name followed by a command operator; for
using their engineering unit values, example,

Command Control Structure NAME = (CR)

The input command structures for the MINDS main where "NAME" is the name of a previously defined data
and transient software blocks (fig. 9) follow either of two

element and "=" is the command operator requesting aformats. Each of these formats must contain a command
display of the currently stored value of the memory

operator and may or may not contain the "name" of a location name.
data element. A command operator is either an ASCII
punctuation character or an ASCII control character.

Command Interpreter
Examples of ASCII punctuation characters are , ,
";", and "!" control characters are "cntr P", "cntr 0", The method by which input commands are interpreted
"cntr H", etc. A type I format involves simply a and processed by MINDS is shown in figure 12. The start
command operator along with an optional set of flag is the entry point to the MINDS command inter-
parameters if required. For example, a type I command is preter from the real-time subexecutive program. Once

entered, a command is stored in the input read buffer.
? (CR) The buffer is located in the MINDS input/output library

module (fig. 9). How the library works is described in
where "?" is a request to print out certain information detail later in this report. Once the input from the console
and "(CR)" is a carriage return necessary to signify the is complete (signified by the occurrence of an ASCII
completion of a command sequence and to start the carriage return), the first character is examined to
software interpreting and processing of the command. A determine if it is an alphabetic character. If it is not
type I input command would be alphabetic, it is assumed to be a command operator of

the type I format. The input character is then compared
: H1, H2 (CR) with a list of valid command operators. If there is a

match, the command processor software will be
where ":" is a request to add numbers (or named data permitted to read the remaining input string from the
elements) H1 and H2. A type II format contains a data input buffer and process the complete command. The

Start I

Inputcommand
line to buffer

False _ True

Inputcharacter

Call i Error, _

command return to

 ,ro eisor start :

Returnto start

Figure 12.--MINDS control command structure.

7

program then returns to start for more command inputs. The SEG$TAB has two bytes reserved for each data
If there is no match to a command operator, an error is element that identify which memory segment the data
issued and the user is invited to enter another command, element occupies. Likewise, the OFF$TAB also has two
If the first character is alphabetic, the command is bytes reserved for each data element that identify its
assumed to be of type II. Under these circumstances, the respective offset. Finally, the SF$TAB allocates four
character is stored and the next one examined to bytes for eachdataelement. If thedataelementisdefined
determine if it is part of a name. This is done until either as integer data, the SF$TAB contains a real number
a nonalphanumeric character is encountered, or a six- requiring 32 bits (4 bytes), that corresponds to that
letter name is created. In either case the command particular data element's scale factor. If reference is
operator scan is performed to determine if a valid made to the modification or display of the data element,
command has been input. Note that if a less-than-six- the program will use the scale factor to manipulate the
variable name is input, NAME is padded with spaces to element. Note that only data elements of integer type
make it six characters, have a scale factor. Word and real data elements have no

Each time a keyboard input is given to the MINDS scale factor; therefore manipulation of these two types of
software, the command interpreter goes through the steps elements results in the use of the actual bit pattern
just described. In the event an error is detected during the currently stored in memory.
execution of a command, the command processor prints
an error message. The MINDS error codes are listed in Command to Manipulate Tables
appendix C.

Nine commands allow for direct manipulation of data
elements defined in the master table. Six of the

Data Element Designator Table Format
commands use type II command format and three use

As discussed earlier, data elements are used in the type I.
steady-state and transient data collection processes. The The type II commands include , representing a
MINDS main software module contains the routines space character, used to define a data element; "_", used
necessary to define and manipulate data elements. When to overlay the definition of a previously defined data
a data element is defined, the information is stored in a element with a new data element; "&", used to display
series of parallel data tables (fig. 13). The lengths of the definition information of the data element; "= ", used to
tables as shown in the figure will allow for the definition display the value in the appropriate units of the respective
of 256 data elements for each table. The NAME$TAB data element; "#", used to display the value of the data
table reserves six bytes for each data element name. Each element in binary; and , used to set the data element
byte contains one ASCII character from the data element to a particular value. The type I commands include "?",
name. Since each data element name must contain six which displays the names and definitions of all of the
characters to provide correspondence with the other defined data elements and "[", which displays the 8086
parallel tables, names that are less than six characters are segment registers' values for the currently loaded
padded with spaces. The VAR$TYPE table has 1 byte program. Finally, because of the loader operation in
reserved for each data element. Corresponding to each CP/M-86, the possibility exists that a program
data element in the VAR TYPE table is the ASCII containing MINDS could be loaded into a different
character "W," "I," or "R" identifying the data portion of memory every time the size of the program
element as a word, integer, or real number, respectively, changes. Therefore, the segment values of data elements

will also change. Consequently, the command "%" has
NAMESTAB VARSTYPE SEGSTAB OFFSTAB SFSTAB been implemented to allow for changing the values of all

-----_ __ of the data element segment definitions. More detailed

command formats and default options for each
-' (256) command are given appendix D.

(512) 1512)

Steady-State Data Collection Softwarei

I
, The ability to take and display tables of values of the

I (i024) control steady-state data is one of the most important
I capabilities of MINDS. To accomplish this task, pro-

vision must be made in the program to create tables of
data elements, to collect the values for the data elements

(1536) in a timely manner, and to output the collected data
Figure 13.--MINDS data element storage format, element values in a form that is useful to the control

operator. The following paragraphs discuss each of these Steady-State Data Collection Methods
needs and the implemented solutions.

To use the capabilities built into the MINDS package,

Steady-State Data Table Format the user must be aware of the problem of data skew when
taking steady-state data. Since steady-state data are taken

To make the MINDS steady-state data collection as during the control calculation idle time, the control can
flexible as possible, provision has been made to store preempt the data-taking process. When this happens,
definitions of four logically separate steady-state data values inside the control can change. Therefore, if some
tables. The storage format structure (fig. 14) shows of the values in the sampled data table are taken in one
three arrays, DATA$TAB, DATA$TAB$LMT, and update interval and some in the next, all of the data may
DATATABBIAS, that together define the steady-state not match exactly. This phenomenon is known as data
data sampling structure. The DATA$TAB table stores skew.
the index values that a particular data element has in the Several factors can affect how much data skew results
master data element storage format (fig. 13). By using during data collection. First, if the data are collected and
the DATATABBIAS table to define boundaries in output variable-by-variable, the amount of data skew is
DATA$TAB, all four of the logically separate data dependent on the speed of the output device. Therefore, a
tables can be stored in DATA$TAB. For example, in data collection buffer to collect data before they are
DATATABBIAS the first element is 256 and the printed is provided to eliminate this problem. Second,
second element is 406 (array element numbering starts at MINDS must be able to collect values of word, integer,
zero), signifying that logical data table 1 runs from and real data (fig. 10) in a transparent manner. This
element 256 to, but not including, 406in the DATA$TAB becomes a problem because word and integer data
array. Similarly, tables 2, 3, and 4 run from 406 to 456, occupy two bytes, but real data occupy four bytes. For
456 to 572, and 572 to 768, respectively. Thelast word in the lowest computation overhead a simple flag
DATATABBIAS, containing in this case 768 elements, mechanism is used to indicate to the data collection
defines the maximum size of DATA$TAB. The program whether a data element consists of two bytes or
DATATABLMT keeps track of the number of data four bytes. A DATA$TAB table (fig. 15) stores logical
element indexes that are stored in each data table. In this data element indexes that are simply numbers associated
case the first element in the DATATABLMT array can with variable names. By testing the flag bit in each index
be as small as zero if no elements are in the table or as value it is easy to determine if two or four bytes of data
large as 150 if the table is full. This provides a convenient should be stored. Finally, as indicated previously and
counter not only when collecting and printing data but shown in figure 2, the address of any data location is
also in determining when a data table is full. Finally, determined by the addition of a segment register and an
three facts should be noted. First, the numbers in the offset register. Consequently, an increase in data
DATATABBIAS allow the logical data table size to be collection overhead, and hence data skew, is realized if
varied as desired. Second, the size of the three arrays can the segment register must be changed for every data
be increased to create as many logical data tables as element value collected. Since many programs are less
desired. Third, although it cannot be referenced or than 64 kilobytes, a large number of situations arise
manipulated directly, a table zero has been provided for
in the data table structure. Every time a data element
definition is added to the master table, the appropriate
index value is automatically added to logical steady-state Real/wordflagbit(1- real,
sampling table zero. This table can then be collected by 0• word/integerh Dataelementindex
the automated data collection command discussed in a At
later section. _ i t _ I _ _ _ _ J , _ I I

I0 2561061, 61,,6'IoATA' AB,O,AS,6wor°,,

ioloojoiofOATA"A0,LM,, wor°,
Figure 14.--MINDS steady-state sampling data structure. Figure 15.--Real/integer flag bit in DATA$TAB array.

9

where this segment register reload would be redundant command is ",", which adds a currently defined data
and hence cost valuable time in data taking, element to a currently open data table. More detailed

To accommodate all of these data-taking constraints, command formats and default options for each
but also to make the MINDS program as flexible as command are given in appendix D.
possible, four data collection modes have been defined.
Mode A is used when all of the data elements are either

integers or words and they all are in the same 64K File Manipulation Commandssegment. Mode B is used when all of the data elements

are either integers or words but are in different 64K CP/M-86 File Structure
segments. Mode C is used when the data elements are
real, integer, or word and occupy the same 64K segment. One of the most important reasons for using an off-
Mode D is used when the data elements are real, integer, the-shelf operating system like CP/M-86 is the ability to
or word but occupy different 64K segments. Clearly, use its file control system to retrieve and store data from
mode D is the most general mode since it provides for all a floppy disk. Communication to this disk file manage-
eventualities. However, modes A to C have been ment capability can be done through a 36-byte data
provided to reduce data skew in cases where the data structure known as the file control block (FCB). The FCB
elements are of a specialized nature and advantage can be contains such information as the drive number the file
taken of this fact. resides on, the file name, and various file attributes.

Further information on the operation of the file control

Data Display block can be found in references 2 and 10. Since
PL/M-86 is a system implementation language, no

Once the steady-state data have been collected, they provision is made for direct manipulation of FCB's. That
can be displayed in three formats (fig. 16). Format 1 is, no operating system interface libraries exist to directly
prints the data element names and beneath them the link such things as CP/M-86 and PL/M-86. Therefore,
corresponding values of the data elements. Format 2 routines had to be written to accomplish this interface.
prints only the values of the data elements, and format 3 These routines are documented in appendix B, along with
prints only the data element names (i.e., the heading), instructions on how to use their calling sequences.
These table output formats provide a sufficiently rich

selection to handle most steady-state data output when Storage and Retrieval of Program Definitions
device printer speed is not critical.

A program such as MINDS would not be very useful if

Steady-State Data Collection Commands data element definitions and steady-state data table
sampling definitions had to be typed in fresh every time

Seven commands are used to manipulate the steady- the program was reloaded. Therefore, provision has been
state data tables and to print steady-state data. Six of the made in the form of two commands "?" and "*" to
commands areof type I format and one of them is of type store and retrieve, respectively, all of the definitions that
II. The type I commands include "(", to open a steady- have been input through the MINDS software.
state data table to allow data elements to be input; ")", Consequently, once MINDS has been "taught"
to close the currently open data table; "@", to erase all definitions for a particular control, these can be retrieved
of the data elements defined in the currently open table; and modified at any time. These commands are described
"A", to erase the last data element entered in the in appendix D.
currently open data table; "]", to add a new line to the

currently open data table, and "\", to collect data and Automated Steady-State Data Acquisition
print the currently specified data table. The type II

In testing situations where steady-state data must be

\OI,1 Format acquired rapidly or must be archived for a long period of
PLA NINE ALT TT2E PT2E] time, perhaps for reprocessing, an automated data

FrIr PBE MHE NLE I 1 acquisition process has been defined. This is done by

20002-030000000100000058991-03 26000-03) using logical data table zero in the MINDS data49500-02 25000-02 95002-01 66000-01 collection structure. Since this table contains all of the

+\D102) index numbers for all of the data elements defined in the

20002-03 0000000 1000000 58991-0326000-03I 2 MINDS master tables, the values of all of the data49500-02 25000-02 95002-01 66000-01 elements can be stored in the MINDS steady-state data
+\01,3) collection buffer. Once this has been done, these data can

PLA MNE ALT TT2E PT2E t 3 be stored in a CP/M-86 data file on disk. The name of
FTIT PBE NHE NLE this file contains a number preassigned by the operator to

Figure16.--Form of steady-statedata display, correspond to an operational reading number that these

10

particular data represent. The format in which each of command allows for the addition and subtraction of two
these readings is stored on the disk is discussed in hexadecimal or decimal numbers. Further information
appendix E. The MINDS program also contains on these commands is given in the appendix D.
provisions for retrieving the steady-state data file from
the disk and restoring it in an intermediate data collection
buffer. The predefined logical data tables (i.e., tables 1to Data Collection Software
4) can then be printed out by using the data retrieved
from the disk. Overview

Commands for Automated Data Display In the analysis of a control or simulation system its
transient behavior is second in importance only to its

Five commands are used in automated steady-state steady-state set point. Therefore, the MINDS program
data taking. All five commands are of type I format and provides a method whereby data element transient data
include a special form of "\" to take the steady-state can be collected. This capability is represented in figure 9
data and store them in a temporary buffer; "$", to store as the MINDS transient data block. In addition to
the data in a predefined file on floppy disk; "/", to recall sampling transient data this software module can auto-
a data file from disk and store it into atemporary buffer; matically set up the transient timer and interrupt
";", which will allow logical data tables 1 to 4 to be controller, automatically manage memory for the
printed out by using the data retrieved from the disk; and transient variables, and provide a simple storage and
finally the command, to update the name of the recall procedure for transient data.
predefined file where data are to be stored. Further
information on these commands is given in appendix D. Sampling of Transient Data

Miscellaneous Commands The process of sampling transient data is shown in
figure 17. The bottom half of this figure is the direct

Six commands, all of type I format, help in program control timing diagram explained previously as figure 1.
operation but do not play any role in data element Because this task of sampling data, control calculation,
manipulation. First, "-" and "<" allow entry into the and digital-to-analog converter (DAC) output occurs at
MINDS transient sampling program and monitor, the highest priority available, it proceeds as it must,
respectively. These portions of the MINDS package are without outside interference. Where transient data are
shown in figure 9. Second, "." allows one to exit from required, a separate timer is used as a transient sampling
the MINDS main command structure entirely. Third, the signal (top half of fig. 17). Because this timer interrupt
">" and "[" commands allow the MINDS package to has a lower priority than the one used in the control, the
display a CP/M-86 disk directory and to delete a file transient sampling process does not interfere with the
from a CP/M-86 disk, respectively. Finally, the control. Each time that a transient sampling interrupt

Sampling
interrupt -_ _ J--r- Transient

",, _-...__ _ _ - / data

T _ T]-_ c°llecti°n

/ U ;;/ I I"'"

Figure 17.--Direct control timing with transient sampling.

11

occurs, one frame of transient data is collected and stored logical data collection tables with partitions at the values
in the control computer's free memory. However, as shown. The TRANTABLMT array gives a count of the
figure 17 illustrates, even though the transient sampling number of elements in each table. This allows for easy
interrupt can occur anytime, the actual collection of the counting of the number of variables to be sampled. Note
data can only take place during control calculation idle that in the transient data tables there is no logical table
time. Transient sampling interrupts occur until such time zero to allow collection of all defined variables since

as enough data frames have been collected at the it is unlikely that time histories of more than a small
prescribed sampling interval to account for the full length subset of variables would ever be needed. The
of the transient. TRAN$STORE$TAB table stores the addresses of the

Since a separate timer is used to trigger the transient starting locations of each of the memory partitions for
sampling process, it can run asynchronously to the storage of the respective data element transients. Since
control. Consequently, the transient sampling interval TRAN$STORE$TAB is only 64 locations long, it can
need not be an integer multiple of the control interval, only hold the starting locations for one logical transient
Generally, the transient sampling interval is greater than table at a time. The reasons for this become clear in the
five times the control interval. This choice allows the next section.

collected data to have adequate fidelity for plotting and During a transient each of the time histories of the
transient analysis purposes without using large amounts respective MINDS data elements is placed in free
of memory to store intermediate points that would be of memory. Because the size of this free memory can vary
questionable value, between 64 kilobytes and 1 megabyte depending on the

processor board being used, it is necessary to use the
memory management features built into the CP/M-86

Transient Sampling Data operating system to allocate the memory in an intelligent
fashion. Consequently, the memory model shown in

Structures and Memory Allocation figure 19 represents microcontroller memory as allocated

There are two distinct data structure issues in transient by CP/M-86 when transient data are being collected. As

data sampling. The first is the MINDS dynamic sampling shown in figure 7 the interrupt vector table and the
data structure. This is the structure of the internal tables CP/M-86 operating system occupy the lower 12K of

telling which data elements are to be sampled. The second memory. The real-time executive, the control algorithm,
is the structure and allocation of the free memory in the and the MINDS package are loaded into the highest
microcomputer to allow the storage of data element memory locations available in the respective
values during the transient, microcomputer. The free memory for storing transient

The MINDS dynamic sampling data structure (fig. 18) variables is between the upper portion of the operating
is similar in many ways to the one used to store steady- system and the lower portion of the executive/
state data collection tables. Like the steady-state data control/MINDS program. Each transient variable that is
collection structure the TRANTABNAME array stores to be collected is allocated a portion of this memory for

256 data element definition indexes to show which data 65536
element is to be sampled. The TRANTABBIAS array
divides the one TRANTABNAME table into four Executive/Control/MINDS

Transientvariable1
I] I 0 _'-_l_l_ TRANSSTORE$TAB(64w°rds) Transientvariable2

Transientvariable3

TransientvariableN

I III Freememory0 0 64 128 192 256 TRANSTAB$BIAS(6words) 12031

CP/Moperatingsystem

1024

000[_[_[_Lo_ TRAN$TABSLMT(51words) 0
Interruptvectortable

Figure 18.--MINDS dynamicsamplingdata structure. Figure 19.--MINDS transient samplingmemorymap.

12

its time history (fig. 19). This is done by the MINDS Sampling Parameter Commands
transient software (fig. 9) in conjunction with the

Four type I commands are used to control the sampling
CP/M-86 operating system. The partition assignments parameters. These commands are used to display the
start just below the executive/control/MINDS program amount of memory available for sampling and to display
and "build down" in main memory toward the top of the

and alter the transient sampling interval and the transient
operating system. The size of the partition for each time

sampling length. The four commands are as follows:
history is a function of the data element type (real, "%", invites the operator to enter the desired sampling
integer, or word), the length of the time history intervaland samplinglength; "&", displays the currently
requested, and the sampling interval between data points, selected sampling parameters; "[", displays the

Because each of the logical transient data tables can
maximum memory available with the program loaded

contain any mix of word, real, or integer data elements, and all transients disarmed; and "]", displays the free
clearly the memory partitions that one logical data table memory still available with a logical transient data table
would require may be quite different from the armed. Note that the "]" and "[" commands give equal
requirements of another. Therefore, each time that a answers in the event that no logical data tables are armed
different logical transient data table is sampled or the to take a transient.
length or sampling interval of the transient time history is
changed, the memory storage partitions must also be Data Collection Commands
changed. This is done by arming or disarming a
particular transient table. This process sets and resets the Three type I commands are used in transient data
memory portion addresses in the TRAN$STORE$TAB collection. These include "[", which arms (i.e., allocates
to accommodate the particular logical transient data free memory to) one of the four logical transient tables
table being sampled. Once the arming process is done for for sampling; "1", which disarms (i.e., deallocates
one of the logical transient's storage tables, transient data memory to) a logical transient table; and "\", which
sampling can commence, takes the actual transient sample and stores it in the

allocated memory.
Transient Data Software Commands

Data Storage Commands
The command structure for the transient data taking is

the same as the one for the main MINDS program. This The data storage commands allow the sampled data to
command structure is entered by using the "-" command be retained for later analysis. There are four of these
in the MINDS main command structure and listed under commands, once again all type I. The "$" command
Miscellaneous Commands in appendix D. Once this allows sampled data residing in free memory to be stored
command is executed, the MINDS transient data block is in a disk file; "*" allows the recovery of sampled data
entered. The command structure in this block is identical stored on disk to be restored into free memory; ";"
to that shown in figure 12. This command structure has allows the sampled data residing in free memory to be
type I and II commands as described previously. Many of printed out on a console device; and updates the
the commands use the same format as in the main name of the disk file where the collected data are to be
MINDS program, but in this case they influence items stored.
and data in the transient sampling area. A description of
the four classes of commands follows. Additional Operation of Transient Data Package
information on these commands is given in appendix D.

The operation of the transient data package is fairly

Table Definition Commands straightforward because most of the critical data
management functions are taken care of automatically.

The transient table definition commands are similar to To use the program, a logical transient datatable must be
the ones described in a previous section for steady-state filled with data element names by using the ","
data. Five of the commands are type 1 commands; the command. Next the sampling time and sampling interval
last two are type II. The type I commands include the must be set by using the "°70" command. Then the
following: "(", opens a transient data table to enter data particular logical data table defined must be armed. As
element names; ")", closes thecurrentlyopenedtransient explained earlier this means that each of the data
data table; "^", deletes the last member from the elements in the logical data table is assigned to a
currently open transient table; "@", deletes all of the particular partition in free memory. Next the actual data
members from the currently open transient table; and sample is taken by using the "\" command. Finally the
"?", displays the current entries in a designated transient data are archived on a disk by using the "$" command.
table. The two type II commands are ",", enters an These data can be read back later by using the "*"
element in a transient data table, and "_", overlays a command, printed out, or uploaded to a mainframe
member of a currently open data table with another, system for data analysis. The "." command allows

13

exiting from the transient sampler to the main MINDS] . Monitorentrypoint]command structure. I I
Clearly, although the "\" command can be used to |

take data, many situations require that the data be

synchronized with an external signal. This can be done I Inputcommandline I
quite easily since the sampling routine that is called by the | to buffer I

"V' command is the public entry point SAMPINT1 T_

(appendix B). Therefore, if the real-time executive is
constructed such that it recognizes when an external
sample signal is present, the SAMPINT1 subroutine can
be called to sample the data elements with the parameters
set up by the MINDS transient block (fig. 9).

Monitor Package i Callrespective [i SenderrorThe third operational block of the MINDS package commandprocessor message

shown in figure 9 is the MINDS monitor and debug. A I I
monitor is usually the first piece of software acquired for

a microprocessor; it lets the user display and change Returnt° I i .e rn oImemory, display and change processor registers, execute entrypoint entrypoint
programs, and set breaks or traps in these programs for
debugging. This MINDS software module provides the
user with some of the features typically found in Figure20.--MINDSmonitorcommandstructure
monitors, it extends some of these features, and it
modifies some features to make the software more useful functions are found in any standard monitor, each has
in debugging the real-time control discussed earlier. All been slightly extended to make it more useful in a control
of these features and important facts on the monitor environment. The "H" command allows the entry of any
operation are highlighted in the following sections, two numbers in decimal or hexadecimal format and gives

their sum and difference in decimals or hexadecimals.
Command Structure The "D" command allows the display of any region of

The command structure for the monitor is somewhat memory. The memory can be displayed as bytes, words,
different from the command structure used in the main integers, or real numbers. Displaying a byte results in a

hexadecimal number between 0 and 255. Displaying a
and transient blocks (fig. 12). In the monitor block word results in a hexadecimal number between 0 and
command structure (fig. 20) only type I commands are 65 535. When a real number is displayed, a memory
recognized. As shown in the figure, once the command
has been completely entered into the input buffer, the image value between 10+38 and 10-37 is output. Finally,
first character is examined to determine if it is a valid when an integer value is displayed, an optional scale

factor can be defined in the command line. Therefore, a
command. If it is valid, the respective command

scaled fraction number is output with a range dependent
processor is called on to parse the rest of the command on the defined scale factor.
and execute it. Although the data element names are

The "S" command operates in much the same way as
known to the monitor block, they are not used to

the display command. It allows the setting of byte, word,
generate a type II command format. This then makes this
portion of the program behave like a classic monitor, integer, or real values one at a time in sequential memorylocations. Like the display command, the "integer"

variable type in this command has an associated scale
Standard Monitor Functions factor. This allows the integer variables to be treated as

The MINDS monitor has the four standard monitor scaled fraction numbers with their display subsequently
commands to manipulate memory. These commands are being in engineering units. The "F" command allows for
"H", to add and subtract two 16-bit values; "D", to the filling of a large block of sequential memory locations
display a segment of memory; "S", to set a series of with a particular piece of data. Finally the "." command
memory locations one at a time; and "F" to fill a series allows exiting from the monitor to the main MINDS
of memory locations with the same value. Although these command structure. In the interest of brevity in the

14

command structure only bytes, words, and real data can insertion of the breakpoint into the executing code. The
be used in this instruction. "X" command displays all of the processor registers as

they appear when the breakpoint is reached. The "T"
Breakpoint Debugging command allows the display of the data table that is

collected when the breakpoint is reached. The "R"
Most monitors allow the user to set breakpoints, start

command prints out the current values of only the
program execution, and then trap to the monitor once the

segment registers so that locations can be quickly
breakpoint has been reached. This allows for step-by-step determined.
assembly language debugging of the application
software. Controls, however, are a somewhat different
story. Because they execute repeatedly, they operate on
different values of input data each time through the code. Input/Output Library
Since errors can occur transiently or only at certainvalues Overview
of the sensed inputs, it would be convenient to be able to
trap to the monitor only at times when a particular The last block shown in figure 9 that is critical to the
condition is fulfilled. To attempt to set conditional operation of the MINDS package is the input/output
breakpoints with a standard monitor while not altering library. This library is a collection of routines that
the control code execution in the cases where the facilitates the input and output of commands, numbers,
condition is not satisfied would require substantial code and messages to a console or line printer and allows high-
patching and possible reassembly for every new condition level command of the CP/M-86 file system. The writing
that is tried. The MINDS breakpoint set and breakpoint of a library like this is necessary because PL/M-86 is a
execution routines address these shortcomings. First, the system implementation language. Consequently, no
breakpoint set routine allows the user to set a breakpoint software input/output drivers or libraries are typically
anywhere in the microcomputer's 1-megabyte address present in languages such as Fortran or Pascal. The
space. Second, once this breakpoint is reached, it allows following discussion gives the overall conceptual
for the collection of the 8086 registers and status flags structure of this library. Appendix B gives the calling
along with any one of the four steady-state data tables, sequences used to access the routines at the library
Finally, the breakpoint data are taken only in the event software interface.
that a certain condition is met. The breakpoint
specification is set by using a data element and specifying Library Structure
a condition that it must be "greater than," "less than,"

The overall structure of the MINDS input/outputor "equal to." Before the breakpoint specification is
met, the control process proceeds unimpeded. However, library is shown in figure 21. The diagram shows the

MINDS instruction processors (main, transient, andthe breakpoint condition is checked each time that the
monitor blocks) interfacing into the input/output librarybreakpoint memory location is executed. Once the break-
software through a set of subroutine calls. The librarypoint specification has been satisfied, the appropriate
can be easily divided into four parts: the hardware-register and table data are collected and the breakpoint is

removed from the code. specific routines, the output routines, the input routines,
and the CP/M:86 operating system interface. TheThis technique of inserting dynamic conditional

breakpoints allows for the quick isolation and debugging hardware-specific routines contain hardware control
of transient errors found in a real-time control. These sequences for controlling the actual physical output and

input ports. These routines, although very small, must beerrors would be extremely difficult to isolate with a
conventional monitor, tailored to the specific hardware being used. A listing of

the routine used for the serial input/output port on the

Breakpoint Command iSBC 86/12A board is included in appendix F.
The output routines consist of two major blocks of

Four commands are used to implement and evaluate code. The character output routine allows an ASCII
breakpoints. Each command is of type I format and is character string of any length to be output to the console.
implemented by using an alphabetic character. The "B" The numerical output routines have the following
command allows all of the breakpoint parameters to be capability: output of 8-bit memory locations as hexa-
set. This includes the setting of the breakpoint location, decimal numbers or unsigned decimal numbers; output
the using of a data element to set the breakpoint of 16-bit memory locations as hexadecimal numbers or
condition, and the choice of a data table to be collected, signed or unsigned integers; output of 32-bit memory
The "G" command causes the actual implementation or locations as plus or minus exponential numbers. The

15

I MINDSinstruction processors

,
P il '

CP/Mfile Character Numerical I
control i input input l
routines routines routines I

system Input I Output
interface I I

CP/M I Inputbuffer I Numerical Character

interface I andconsole i,,_... I output output
[control I routines routines

routines l l
I I

I Consolelprinter
roCP/M-86 I

_'__'_...... specific
input/outputdrivers

Figure 21.--MINDS input/output library structure.

numerical output routines for each case take the binary flexible console input/output system and operating
bit patterns in memory and translate into an ASCII system file interfaces that work not only with MINDS but
character string for printing on the console, with other programs as well.

The input routines consist of three major blocks of
code. The input buffer and console control do the major
storage and editing of the ASCII character strings from

the operator. The editing function includes backspacing, Extensions and Modifications
line deletion, console bell control, and printer control.
Further information can be found in appendix D. Once The previous sections describe a flexible data-taking
the input buffer's full command signal has been received package that can be used in a variety of applications.
(i.e., an ASCII carriage return), the character input Several projects that have already successfully used this
routine block allows the MINDS command processors to software are described in reference 11and 12. During the
access the input buffer. Furthermore, the numerical input conduct of these projects several modifications to this
routines in the third block can access ASCII strings in the package have become apparent. First, various versions of
buffer and translate them into the proper memory image the program can be implemented that use some or all of
of the number. These routines can take numbers that are the blocks shown in figure 9. All that is necessary for the
input as hexadecimal, plus or minus decimal, or even plus program to have the minimum steady-state data
or minus floating point with optional exponents and collection ability is to link the MINDS main program and
translate them into the proper memory images, the MINDS input/output library. The transient data

The operating system interface routines consist of two collection block and the monitor and debug block can be
blocks of code that allow the MINDS command added to the program as the need arises. Furthermore,
processor to directly interface into the CP/M-86 thenumber of variables that can be defined (the standard
operating system. The CP/M-86 interface routines are a version has 256) can be increased or decreased as the
set of small assembly language programs that allow high- program demands dictate. This allows program
level languages like PL/M to set up the 8086 registers so compaction in cases where available computer memory
that various operating system services can be accessed, may be tight.
The next block, CP/M file control routines, allows for Finally, all that can be done with transient data is to
higher level access to the operating system. These collect them, store them, recall them, and print the
routines will create file control blocks, read and write numerical data points on a console device. To plot the
files in various formats, close files, delete files, print disk data, they must be transferred to a large mainframe
directories, etc. By using these routines the MINDS computer, reduced into proper form, and subsequently
instruction processors can easily access the CP/M-86 file plotted by using a standard graphics package. A plotting
system, capability could be very easily added to the transient data

The MINDS instruction processors interface into this block or as another complete data block to facilitate the
input/output library through subroutine calls that send on-line manipulation of control parameters. Note that
or receive information in the manner shown by the this can be accommodated easily since all of the pertinent
arrows in figure 21. The input/output library forms transient table information is public.

16

Concluding Remarks in detail. Finally, extensions and modifications that can
be made to enhance the program capabilities were

This report has described aprogram that can beloaded discussed. Detailed appendixes are provided on
with a control algorithm to provide steady-state and commands, data table formats, public program entry
transient data collection. The support hardware and points, etc.
software necessary to run the program have been
described. The program was broken down into its four
major component parts: the main program, the transient National Aeronautics and Space Administration
block, the monitor and debug block, and the Lewis Research Center
input/output library block, with each one being discussed Cleveland, Ohio, October 7, 1984

17

Appendix A
Interrupt Map

Location Function
(hexadecimal)

0-3 divide interrupt
4-7 single-step interrupt
8-B nonmaskable interrupt
C-F 1-byte instruction interrupt (type 3)
10-13 overflow interrupt
14-7F Intel-reserved interrupts (mostly for floating-point mathematics emulation)
80-83 instruction timeout interrupt (8259 interrupt 0)
84-87 unused (8259 interrupt 1)
88-8B control timer interrupt (8259 interrupt 2)
8C-8F unused (8259 interrupt 3)
90-93 unused (8259 interrupt 4)
94-97 multiplexer A/D data ready (8259 interrupt 5)
98-9B unused (8259 interrupt 6)
9C-9F transient sampling timer (8259 interrupt 7)
A0-A3 debug intermediate condition
A4-A7 debug less than condition (word)
A8-AB debug equal to condition (word)
AC-AF debug greater than condition (word)
B0-B3 debug less than condition (integer)
B4-B7 debug equal to condition (integer)
B8-BB debug greater than condition (integer)
BC-BF debug less than condition (real)
C0-C3 debug equal to condition (real)
C4-C7 debug greater than condition (real)
C8-DF unused
E0-E3 CP/M-86 operating system BDOS call

18

Appendix B
MINDS ModuleDescription

The MINDS data-taking package can be logically broken into the four blocks shown in figure 9. However, each
of these blocks consists of several PL/M or assembly language object modules to fulfill the required functions. In
addition each of the object modules may have several public entry points or public variables. Therefore, each of the
load modules falls into one of four logical areas:

(1) MAIN program--MINDS.OBJ; INIT.OBJ; TABOUT.OBJ; and GETVAR.OBJ.
(2) Transient data--MTRAN.OBJ; SMPTRN.OBJ; and MTRANS.OBJ.
(3) Monitor and debug--MNDMON.OBJ and INTRBK.OBJ.
(4) Input/output library--IOCON.OBJ; MESSAGE.OBJ; OUTH.OBJ; IOUT.OBJ; OUTR.OBJ;

INBUFF.OBJ; RDATA.OBJ; ININT.OBJ; INHEX.OBJ; INREAL.OBJ; CPMIO.OBJ; and
DISKIO.OBJ.

The function of each of the object modules, the calling sequences for the pertinent public routines, and any public
variables that they contain are discussed here.

Main Program
MINDS.OBJ

MINDS.OBJ, a PL/M routine, is the main MINDS program. It contains the main command interpreter routine,
the routines to define data elements, the routines to define steady-state data tables, the routines to automatically
store transient and steady-state data in a CP/M-compatible file, and the routines to recall the steady-state data
from the CP/M file and display them on the console. This module contains 6827 bytes of code and 7220 bytes of
data.

Public Entry Points

CALL MINDS--main entry point into the command interpreter (no calling parameters; no return parameter)
CALL ERROR (CHAR)--procedure to print error message followed by CHAR, where CHAR denotes an
ASCII alphanumeric character

CALL SPACE (NUM)--procedure to print spaces on the console, where NUM denotes the number of spaces to be
printed

Public Variables

NAMESTAB--array to store data element names

SEG$TAB--array to store data element segments
OFF$TAB--array to store data element offsets
SF$TAB--array to store data element scale factors

VAR$TYPE$TAB--array to store data element types

DATA$TAB--array to store steady-state data table definitions

DATASTAB$BIAS--array to store steady-state data table partitio _s

DATATABLMT--array to store number of variables in each steady-state data table
TRANSTAB$NAME--array to store transient data table definitions
TRANTABBIAS--array to store transient data table partitions
TRANSTAB$LMT--array to store number of variables in each transient data table

TRAN$STORE$TAB--array to store memory locations to be used in storing transient history

INIT.OBJ

INIT.OBJ is an assembly language program to be called by MINDS for initialization. It prints the sign-on
message, initializes the 8087 coprocessor, and finds the segment register values for the currently loaded program.
The program contains entry point INITIALI, which is called by the IOCON program (appendix F). This entry
point reinitializes the entire MINDS package if the program is interrupted during a long printout.

19

TABOUT.OBJ

TABOUT.OBJ is an assembly language program that collects steady-state data and prints them out to a
terminal. The procedure has four collection methods and three table output formats, as outlined in the command
appendix D.

Public Entry Points

CALL BRKCOLLECT--procedure to collect steady-state data. Collection method and table number are
determined by public variables TABCOLLECT and TABNUM, respectively.

CALL TABOUT--procedure to print steady-state data table previously collected. Table output format is specified
by public variable TABCON.

Public Variables

TABCOLLECT--steady-state data table collection method, specified as A to D (appendix D; command "\";
parameter P1)

TABNUM--steady-state data table number to be collected, specified as 1 to 4 (appendix D; command "\";
parameter P2)

TABCON--steady-state data table output format, specified as 1 to 3 (appendix D; command "\"; parameter P3)

GETVAR.OBJ

GETVAR.OBJ is a set of assembly language routines that provide MINDS with a machine-dependent interface
to allow manipulation (loading and storing) of data throughout the 8086 1-megabyte address space.

Public Entry Points

CALL LSVARIW (DSEGMENT, DOFFSET, ADDIW, FUNC)--procedure to load or store a word or integer
variable

DSEGMENT--segment address of variable to be loaded or stored
DOFFSET--offset address of variable to be loaded or stored

ADDIW--offset address of variable where result is to be placed or data are to be taken
FUNC--"L" if data are to be loaded from address DSEGMENT:DOFFSET and placed in location ADDIW;

"S" if data currently at address ADDIW are to be placed at address DSEGMENT:DOFFSET
CALL LSVARR (DSEGMENT, DOFFSET, ADDIW, FUNC)--loads or stores a real variable in the same fashion
as CALL LSVARIW, with same calling parameters

CALL LBITE (DSEGMENT, DOFFSET, ADDIW, FUNC)--loads or stores a byte variable in the same fashion as
CALL LSVARIW, with the same calling parameters

CALL HEXPACK (APTR, HPTR)--routine to take 2 bytes of absolute data and pack it into 4 bytes of
hexadecimal data

APTR--pointer to source data (absolute)
HPTR--pointer to result data (hexadecimal)

CALL UNHEXPACK (APTR, HPTR)--routine to take 4 bytes of hexadecimal data and pack it into 2 bytes of
absolute data

APTR--pointer to source data (absolute)
HPTR--pointer to result data (hexadecimal)

Minds Transient Data

MTRAN.OBJ

MTRAN.OBJ, a PL/M-86 program, contains the command interpreter for all of the transient data sampling. In
addition, it contains the routine to set the transient sampling interval and transient sampling length, the routines to
manipulate the transient sampling tables, the routines to arm and disarm transients by allocating and deallocating
memory, and the capability to recall and print transient data from a CP/M file. This module contains 3940 bytes of
code and 998 bytes of data.

2O

SMPTRN.OBJ

SMPTRN. OBJ is an assembly language routine that does the actual data sampling and storage of transient data
tables that have been set up by the routines in MTRAN.OBJ. These routines are particular to the interval timers
and interrupt controllers on the Intel 86/30 or Intel 86/12A microprocessor boards. Use on boards with different
hardware would give unpredictable results.

Public Entry Points

CALL SAMPINT0--procedure called by original initialization sequence in executive to set up the interrupt vector.
It is based on using interrupt vector 7 on the Intel 86/12A or Intel 86/30 board.

CALL SAMPINTl--procedure called by executive when it has detected that transient sampling should commence.
This routine initializes memory counter, flags, counter hardware, etc., every time that a transient sample is to start.

CALL SAMPLE--program that does the actual sampling of the transient in three steps. First, it initializes memory
that is going to store the transient. Second, it collects the data specified in the logical transient data table. Third, it
stores the data in locations specified in TRAN$STORE$TAB. The location of this procedure is the one that
SAMPINT0 stores in interrupt vector 7.

MTRANS.OBJ

MTRANS.OBJ, a PL/M-86 module, computes the value for the counter on the Intel 86/12A or 86/30 single-
board computers. This routine assumes that the 153.6-kHz clock is connected to counter 2 of the 8253 integrated
circuit on these boards. For this routine to work, the sample interval passed must be between 0.013 and 426.67 ms.

Public Entry Point

ECHK=COUNT$SET (@SAMP$CNT, SAMP$INT)--procedure to compute number of counts for the 8253
counter to generate proper transient-sampling interval

ECHK = 0 if error occurred
ECHK = 1 if interval set properly

@SAMP$CNT--address of word variable that returns number of timer counts

SAMP$INT--real number describing the request sample interval in seconds

Monitor and Debug

MNDMON.OBJ

MNDMON.OBJ, a PL/M-86 module, contains the monitor command interpreter along with the routines to
allow the display, filling, and changing of memory locations. The variable types can be byte, word, integer, or real,
with the integer data type having the provision for an optional scale factor. In addition, this module contains the
command processors to define a dynamic breakpoint.

Public Entry Point

CALL MONITOR--procedure to interpret monitor commands

INTRBK.OBJ

INTRBK.OBJ, an assembly language module sets up the interrupt vectors that implement the dynamic
breakpoints. In addition, it contains the routines that check, execute, and reset the dynamic breakpoints.

Input/Output Library
IOCON.OBJ

IOCON.OBJ is a hardware-specific module that drives the RS232 part on the Intel 86/12A or Intel 86/30 boards.
This routine provides the logical input/output device that all of the other higher level input/output drivers use. A
listing of this routine is provided in appendix F.

21

Public Entry Points

CALL OUTCON (CHAR)--routine to output "CHAR" byte to console
CHAR = INCON--routine to return ASCII "CHAR" from console

Public Variables

CONCONTR--word variable to determine output device
1=output to console device only
2 =output to console and list device

MESSAGE.OBJ

MESSAGE.OBJ, an assembly language routine, prints an ASCII string on the console.

Public Entry Point

CALL MESSAGE (@STRING), where STRING is the address of an ASCII character string to be output to the
console. The string must be terminated with a null character (i.e., 0).

OUTH.OBJ

OUTH.OBJ, an assembly language routine, outputs variables in hexadecimal format.

Public Entry Points

CALL OUTH (VAR)--outputs a 2-byte memory location in hexadecimal format, where VAR denotes a word
variable

CALL OUTHB (VAR)--outputs a 1-byte variable in hexadecimal format, where VAR denotes a 1-byte variable

IOUT.OBJ

IOUT.OBJ, a set of assembly language routines, outputs one and two variables in decimal format.

Public Entry Points

CALL OUTISW(VAR)--outputs a 2-byte variable as a signed number between -32 768 and + 32 767, where
VAR denotes a 2-byte variable

CALL OUTIUW(VAR)--outputs a 2-byte variable as a signed number between 0 and 65 535, where VAR denotes
a 2-byte variable

CALL OUTISB(VAR)--outputs a 1-byte variable as a signed number between - 128 and 127, where VAR denotes
a l-byte variable
CALL OUTIUB(VAR)--outputs a l-byte variable as an unsigned number between 0 and 255, where VAR denotes
a l-byte variable

OUTR.OBJ

OUTR.OBJ, an assembly language routine, outputs a 4-byte memory location as a real number.

Public Entry Point

CALL OUTREAL(VAR)--outputs 4-byte memory location as a real number, where VAR denotes a 4-byte
variable

INBUFF.OBJ

INBUFF.OBJ, a set of PL/M routines, does buffered input to the console, controls the console, and reads the
console input buffer.

Public Entry Points

CALL INPUT BUFF--inputs ASCII characters from the console by using subroutine INCON and stores them in a

22

buffer. In addition, this routine permits backspacing, line termination and reset, bell control, etc.

CHAR= READBUFF--accesses the next character in the input buffer and places it in byte variable "CHAR,"
where CHAR denotes a 1-byte variable

RDATA.OBJ

RDATA.OBJ, an assembly language routine, reads ASCII characters from the input buffer, decides what type
of number was input, and calls the proper conversion routine to create the correct core image corresponding to the
input string.

Public Entry Points

RCHK=RDATA--same description as RDATA.OBJ, where RCHK denotes a word of returned data
corresponding to the type of data that was input. The following six conditions are possible:

0 = error
1= default

2=integer between (-32 768 and -1)
4 = integer or word between (0 and 32 767)
8 = word between (32 768 and 65 535)
16= real number

Public Variables

RWORD, RINT, RREAL--public variables where the RDATA routine places the results of the converted input
string.

ININT.OBJ

ININT.OBJ is a set of assembly language routines used by RDATA to do decimal integer or word conversions.

INHEX.OBJ

INHEX.OBJ is a set of assembly language routines used by RDATA to do hexadecimal word conversions.

INREAL.OBJ

INREAL.OBJ is a PLM/86 routine used by RDATA to do real-number conversions.

CPMIO.OBJ

CPMIO.OBJ, a set of assembly language routines, provides a high-level language interface to the functions of
the CP/M-86 operating system. Each public entry point and the corresponding CP/M-86 function number listed
in reference 2 are described here. Reference 2 should be consulted if further description of an individual function is
needed.

Public Entry Points

All of the following routines return a "1" if successful and a "0" if unsuccessful in variable RTRN, except where
otherwise noted. Furthermore, the calling arguments @MCB and @FCB are addresses of CP/M-86 memory
control and file control blocks, respectively. These control block definitions are defined in reference 2.
CALL RESETCPM (Function 0)--calls the CP/M-86 operating system hut does not release the allocated program
memory

CALL RESETCPMS (Function 0)--calls the CP/M-86 operating system and releases the allocated program
memory

RTRN =RESETDSK (Function 3)--resets the entire disk file system to read/write status

CALL SELDSK (NUM) (Function 14)--selects disk drive "NUM" as currently logged in and defaulted disk drive,
where NUM = 1 corresponds to disk A, etc.

RTRN =OPNDSK (@FCB) (Function 15)--opens a currently existing disk file for reading or writing
RTRN =CLOSDSK (@FCB) (Function 16)--closes a currently open disk file

23

RTRN = SRCHF (@FCB) (Function 17)--searches for first disk directory entry corresponding to FCB

RTRN = SRCHN (Function 18)--searches for next disk directory entry

RTRN = DELETE (@FCB) (Function 19)--deletes a disk file directory entry

RTRN = READSK (@FCB) (Function 20)--reads a 128-byte record from currently open disk file

RTRN = WRITEDSK (@FCB) (Function 21)--writes a 128-byte record to a currently open disk file

RTRN = MAKEDSK (@FCB) (Function 22)--opens a new file on disk for writing

CALL SETDMA (@BUFF) (Function 26)--sets the disk DMA offset address for disk file transfer, where @BUFF
denotes address of disk file input/output buffer

CALL ALLOMAP (@SEG, @OFF) (Function 27)--returns segment and offset of current disk allocation map
i

@SEG = address of location in which to place allocation map segment
@OFF = address of location in which to place allocation map offset

CALL DSKPARMS (@DSKMP) (Function 31)--returns disk parameters for currently logged-in disk, where
@DSKMP denotes address of data structure to store disk parameters

RTRN = RESETDRV (NUM) (Function 37)--resets disk drive "NUM" to read/write status, where NUM denotes
number corresponding to drive code: NUM = 1 resets disk A, etc.

CALL SETDMAB (@SEG) (Function 51)--sets the disk DMA segment or paragraph address for disk file transfer,
where @SEG denotes segment and paragraph address of disk buffer

RTRN = GMAXMEM (@MCB) (Function 53)--returns maximum amount of free memory available
MCB = address of memory control block
RTRN = OFFH if no memory is available; 0 if some memory is available

DISKIO.OBJ

DISKIO.OBJ, a set of PL/M-86 routines, performs high-level disk file control to allow a programmer to
interface with the CP/M-86 operating system by reading a file name, opening a file, and reading from and writing
to the opened file. It is also possible to display a disk directory and to delete any file from that disk.

Public Entry Points

RTRN = RD FILE NAME (@FCB, @DFCB, DFLT, DSK)--routine to read in a file name from the input buffer
or place a defaulted name in proper file control block for later operation

@FCB = pointer to operational file control block
@DFCB = pointer to default file control block that may be used
DFLT = "Y" if default file control block is to be used; "N" if file name is to be read from input buffer
DSK = "A", "B" etc.--corresponds to drive to be designated for disk file

RTRN = ALLOCMEM (@MCB) (Function 55)--allocates memory as per MCB
RTRN = 0 if request is successful; OFFH if request is unsuccessful

CALL FREEMEM (@MCB) (Function 57)--frees allocated memory

RTRN = OPN$FILE$CNM (@FCB,TYPE)--routine to open a disk file with the name specified in FCB
@FCB = pointer to file control block
TYPE = "Y" if new file is to be opened; "N" if old file is to be opened

RTRN = DSKRW (@DATA, @FCB, RLTCH)--routine to input or output a 128-byte record from a disk with
the memory address of the record pointed to by @DATA

@DATA =pointer to 128-byte record in memory
@FCB = pointer to file control block
TYPE = "Y" if new file is to be opened; "N" if old file is to be opened
RLTCH = "W" if write to disk is desired, "R" if read from disk is desired

RTRN = HL$DSKIO (@DATA, @FCB, RLTCH, FLTCH, NUM)--routine to read and write 128-byte records to
and from a disk file in either absolute format or hexadecimal format

@Data = pointer to 128-byte record memory location
@FCB = pointer to file control block
RLTCH = "W" if write to disk; "R" if read from disk
FLTCH = "A" if absolute data to be read/written; "H" if hexadecimal data to be read/written
NUM = number of words to be output in hexadecimal format, with nulls being padded for the rest

24

Appendix C
Error Summary

Error Explanation

A data elementalreadydefinedin mastertable
B undefined or incorrect data type in input sequence. This error is usually generated by the

input/output library
C steady-state or transient data tables closed
D invalid default attempted in command sequence
E transient sampling parameters not set
F master data element definition table or currently open steady-state or transient sampling table full
G improper command sequence for overlay
H improper argument sequence in command string
I inproper steady-state data collection command sequence
J requested steady-state transient data table has no elements defined in it

K input number type incompatible with type of number required for command sequence
L input too large to convert to an integer
M unable to open a disk file on read
N variable not defined in master definition table
O open table error

(1) Table number not between 1 and 4
(2) Another table (steady state or transient) open

P unable to open disk file on write
Q transient sample size requested is too large for current memory configuration
R read error on disk
S memory allocation error in CP/M-86
T transient sampling armed; no changes possible in variable or table definitions at this time
U undefined command request
V error code not currently implemented
W write error on disk

X steady-state or transient data table already empty
Y variable types not matched for proper transient overlay
Z close file error in CP/M-86
1 transient sampling parameters not set
2 memory configuration cannot accommodate present number or mix of variables
3 not enough memory for present number of variables at current sample length
4 transient sampler not armed
5 printout requested for an undefined transient sample
6 length of variable name requested or table length requested not compatible with current program

version

7 table version requested for read-in not compatible with current version of program
8 table format (hexadecimal or absolute) not compatible with format requested
9 table format (steady-state or transient) not compatible with format requested

25

Appendix D
Users Command Summary

Main Static Data Display Section

Data Element Definition and Display Commands

Command Description

NAME TY,SEG,OFF,SFN,SFD teaches the program a data element definition (NAME denotes name (up to six
letters) of a selected location; TY denotes type of data element (I = integer;
W=word; R=real); SEG denotes a data element memory segment; OFF
denotes a data element memory offset; SFN denotes a numerator scale
factor; and SFD denotes denominator scale factor). Note that SFN and SFD
can be replaced directly by one real number representing the scale factor if
only the SFN entry is made. The TY, SEG, OFF, SFN, and SFD parameters
can all be defaulted, if desired, to the previous element's definition. If offset
is defaulted, the appropriate offset is computed from the previous one
depending on its variable type

NAME1,NAME2,TY,SEG,OFF, overlays "NAMEI" data element definition in master table with "NAME2."
SFN,SFD Defaults can be used but offset is updated from "NAMEI"

NAME = displays value of data element "NAME" in engineering units. The character
"=" can be entered by itself to display the value of the previously referenced
data element.

NAME# displays value of a word or integer data element in binary units. The character
"#" can be entered by itself to display the value of the previously referenced
data element.

NAME 'P1 sets value of data element "NAME" to PI. P1 must be a real number if
NAME is real. If P1 is a word, P1 must be between 0 and 65 535. If P1 is an
integer, P1 divided by the scale must be between -32 768 and 32 767.

NAME& displays definitions parameters of data element "NAME"

? displays master table and all data element definitions

[displays current segment registers being used by the executive/control
algorithm/MINDS program load

% allows alteration of segment register values in the master data element defini-
tion table

Steady-State Data Table Manipulation and Collection Commands

Command Description

(P1 opens a steady-state data table for input of data elements. (PI denotes table
numbers 1 to 4.)

) closes current open steady-state data table

@ erases all definitions from current open steady-state data table

] starts new output line in current open steady-state data table

\P 1,P2,P3 outputs a data table to screen in desired format. P 1denotes collection method,
specified as a letter A to D (method A" all data are integer or word and all
data lie in same data segment; method B: all data are integer or word but can
be in different data segments; method C: data can be integer, word, or real
but all data must lie in same data segment; method D: data can be integer,
word, or real and can be in different data segments.) P2 denotes number of

26

table to output to CRT; must be between 1and 4. P3 denotes format of table
to be output (1--output heading and data; 2--output only data; 3--output
only heading). Note that parameters P1, P2, and P3 can be defaulted to their
previous values by using commas.

NAME, puts variable "NAME" in current open data table

!D:FILENAME saves all data element definitions along with steady-state and transient table
definitions in a CP/M-compatible file (D denotes disk A or B; FILENAME
denotes CP/M-compatible file name with optional extension). Disk and file
name can be defaulted.

*D:FILENAME recalls data element definition and steady-state or transient table information
from a CP/M-compatible file. (D denotes disk A or B; FILENAME denotes
CP/M-compatible file name with optional extension). No disk or name
default is allowed in this command since more than one data element
definition could be stored on a disk.

Automatic Static Data Collection and Retrieval Commands

Command Description

\PI,0 special version of "V' command to collect the values of all defined data
elements but not print them out; that is, to collect table 0. This command
should be used in conjunction with the "$" command for automated data
taking. (PI denotes data collection methods A to D). P1 and 0 can be
defaulted after the first entry.

$P1,P2 stores the respective collected data in a CP/M-compatible file with a defaulted
name. The defaulted name depends on the type of data being stored
(transient or steady state) and the reading number. (PI--S means store
steady-state data; P1 =T means store transient data; P2 =A means store data
in absolute format; P2 =H means store data in hexadecimal format.) PI and
P2 can be defaulted to their previous values.

\D:FILENAME,P 1 recalls steady-state data from a CP/M-compatible file. (D denotes disk A or B;
FILENAME denotes CP/M-compatible file name with optional extension;
P1 =A if data are stored in absolute format; P1 =H if data are stored in
hexadecimal format.) No disk or name default allowed since a large number
of data files may exist on the same disk.

;P 1,P2 prints the recalled steady-state data. Command is used in conjunction with the
"/" command to display stored data that have been taken previously. (P1
denotes number of table to be output to CRT; must be between 1 and 4. P2
denotes format of table to be output: 1--output headings and data;
2 = output data only; 3--output headings only).

updates transient and steady-state reading numbers for default file names
assigned in "$" command. This command also updates the default reading
number for the MINDS data element definition tables. This number is used in
conjunction with a default in the "!" command.

Miscellaneous Commands

Command Description

> D displays disk directory and remaining free space of selected disk. (D denotes
disk A or B.)

[D:FILENAME deletes CP/M file from selected disk. (D denotes disk A or B; FILENAME
denotes CP/M-compatible file name with optional extension.) No disk or
name default allowed for safety reasons.

27

:H1,H2 adds or substracts two numbers. (H1,H2 denotes two hexadecimal or decimal
integers or words.)

< calls monitor/debug package

- calls transient data sampling package

exits main command structure and returns to main calling program (i.e., real-
time control executive)

Transient Sampling Package

Transient Data Table Definition Commands

Command Description

(P1 opens transient data table for input of data elements. (P1 denotes table
number; must be between 1 and 4.)

) closes current transient data table

NAME, puts data element "NAME" in current open data table

NAMEI_NAME2 overlays "NAMEI" data element in current open transient data table with
"NAME2"

A deletes last data element defined in current open transient data table

@ deletes all data element entries in current open transient data table

?P1 displays selected transient sampling table data element members. (P1 denotes
table number; must be between 1 and 4.)

Transient Sampling Parameter Commands

Command Description

% sets transient sampling parameters (sample interval, sample length)

& displays current sampling parameters and current sampling memory allocation

[displays maximum memory available for storage of transient data. The value
displayed by this command is the same whether a transient table is armed or
not.

] displays memory left for further storage of transient data. The value displayed
by this command is equal to that displayed by "[" if a transient data table is
unarmed. However, if a table is armed, this command only displays the
amount of free memory actually left.

Transient Data Collection Commands

Command Description

[P1 arms a transient data table in preparation for a transient sample. (P1 denotes
table number; must be between 1 and 4.) This command allocates the proper
amount of memory for each variable in the respective table.

/ disarms a transient data table so sampling parameters, table data element
members, or table requested for sampling can be changed

\ activates currently armed transient data table and takes transient data

28

Transient Data Storage Commands

Command Description

$P 1,P2 stores respective collected data in CP/M-compatible file with defaulted name.
The defaulted name depends on type of data being stored (transient or
steady-state and reading number). (P1 =S stores steady-state data; P1 =T
stores transient data; P2=A stores data in absolute format; P2=H stores

data in hexadecimal format.) P1 and P2 can be defaulted to previous values.

" updates transient and steady-state reading numbers for default file names
assigned in the "$" command. This command also can update the default
reading number for the data element definition tables. This number is used in
conjunction with a default in the "!" command

*D:FILENAME,P1 recalls transient data from CP/M-compatible file. (D denotes disk A or B;
FILENAME denotes CP/M-compatible file name with optional extension;
P1 =A if data stored in absolute data format; P1 =H if data stored in

hexadecimal data format.) No disk or name default allowed since a large
number of data files may exist on the same disk. The transient table
definition corresponding to the respective transient must be armed for the
recall to take place.

;P1 prints transient data at console of respective variable number in currently
armed transient table. (P1 denotes transient variable number in currently
armed table.) If P1 is defaulted, all variables in currently armed transient
table will be printed.

Transient Package Miscellaneous Commands

Command Description

returns to main steady-state collection program

Monitor/Debug Package

Standard Monitor Memory Display and Set Commands

Command Description

returns to main steady-state data display program

H V1,V2 adds or substracts V1 and V2 (V1,V2 denote two hexadecimal or decimal
integers or words)

D T,SEG,OFF1,OFF2,SFN,SFD displays main memory from OFF1 to OFF2. (T denotes data type: byte, word,
integer, or real; SEG denotes data segment; OFF1 denotes starting data
offset; OFF2 denotes ending data offset; SFN denotes numerator scale
factor; SFD denotes denominator scale factor.) SFN and SFD are ignored
unless variable type is integer. Variable type and segment can be defaulted;
however, if T is defaulted, byte data are assumed.

F T,SEG,OFF1,OFF2,DATA fills data from SEG:OFF1 to SEG:OFF2. (T denotes data type: byte, word, or
real; SEG denotes data segment; OFF1 denotes starting data offset; OFF2
denotes ending data offset; DATA denotes data to be filled.) If T is
defaulted, byte data are assumed.

S T,SEG,OFF,SFN,SFD sets memory locations with input data. (T denotes data type: byte, word,
integer, or real; SEG denotes data segment; OFF denotes data offset; SFN

29

denotes scale factor numerator; SFD denotes scale factor denominator.) If T
is defaulted, byte data are assumed. SFN and SFD are ingored except for
integer data. Inputting a comma will not change current memory location but
will increment to next location. Input is terminated by entering an error.

Breakpoint Set, Display, and Execute Commands

Command Description

R displays current segment registers of load program; used to provide
information for setting breakpoints

B SEG,OFF,OPT,TABC,NAME sets a dynamic breakpoint at a particular location with a set of characteristics
< = >VAL (SEG denotes breakpoint segment address; OFF denotes breakpoint offset

address; OPT denotes breakpoint option (0 = collect 8086registers; 1= collect
8086 registers and table 1; 2 = collect 8086 registers and table 2; 3= collect
8086 registers and table 3; 4=collect 8086 registers and table 4); TABC
denotes table collection method A to D. See command "V' for complete
explanation of data collection methods; NAME denotes name of any word,
integer, or real data element to be examined for a conditional break; < = >
means that less than, equal to, or greater than are the three permissible
conditions; VAL denotes appropriate value for the conditional.) If
"NAME" parameter is omitted, an immediate breakpoint is set (i.e., a
breakpoint is initiated as soon as the location is reached). SEG, OFF, and
TABC can be defaulted.

G commands to begin above breakpoint. Current conditional in force and
breakpoint location are printed out.

X displays collected data registers

T P1 outputs collected data table (P1 denotes table output formats 1 to 3 described
in the "V' table output command.)

Keyboard Commands

Command Description

AH backspaces input buffer
AG turns bell on or off

AX deletes entire input line

AP turns optional output to line printer on or off

ANY KEY striking any key during output will terminate printing

3O

Appendix E
Data Table Format

The data collection program can store three types of data table on disk. These data tables include parameter
definition tables, steady-state data tables, and the transient data tables. The steady-state and transient data tables
are output to the disk in CP/M format with default names STDYXXXX.DAT and TRANXXXX.DAT. The
XXXX stands for a number between 0 and 9999 that is automatically incremented every time a table is written. In
addition, the data tables can be output to the disk in either hexadecimal or absolute format. The absolute format
takes up less space and stores the memory image of the steady-state or transient data in a CP/M file.

The hexadecimal format converts each memory byte into a 2-byte ASCII representation of the contents of the
memory location. In addition, it adds carriage return and line feed characters at appropriate places in the data to
create data records of the proper length. This hexadecimal file can then be uplinked directly into a mainframe
computer for data reduction and plotting since all of the characters are ASCII between "0" and "F." Therefore,
no spurious control codes will be given to the mainframe computer. The data format for data writing and readback
is chosen in the data storage and retrieval commands.

The parameter definition tables are handled in a different manner than the data tables. The parameter definition
tables can only be written to the disk in absolute format since there will never be any necessity to uplink them to a
mainframe computer. The name of the disk file to which the information is being written may be defaulted to
MINDXXXX.TAB or may be chosen by the user. As with the steady-state and transient data files the XXXX
number is incremented every time a file is written or modified to an appropriate user-selected value by using the
""" command.

The format of each of the three data tables is given here. All of the data in the file header and transient preamble
are automatically stored.

Transient Data Tables

Record 1--file type record

(1) Space
(2) File type (H = hexadecimal file; F =absolute file)
(3) Check sum

Record 2--transient parameter record

(1) Transient number
(2) Number of transient variables in file
(3) Total number of memory paragraphs used for transient sampling (paragraph = 16 bytes)
(4) Number of sample points per variable
(5) Number of sample paragraphs per real variable
(6) Number of sample paragraphs per word variable
(7) Counts for sampling interval timer
(8) Check sum

Record 3--transient data record preamble for variable 1

(1) Integer, word, or real variable flag (27 =integer or word transient; 22 =real transient)
(2) Full-scale scale factor (SF)
(3) Full-scale modifier (SM); i.e., full scale = SF *2 *SM
(4) Name of transient variable
(5) Check sum

Scale factor and full-scale modifier only apply if integer data are being written. If data are word or real, the scale
factor is zero (SF--0).

Record 4--transient tlata record for variable 1

For an integer or word variable, one record consists of 30 data points (i.e., 60 bytes) and a check sum. For a real
variable, one record consists of 15 data points (i.e., 60 bytes) and a check sum.

A series of type 4 records are written until the entiretransient trajectory has been written to the file. For the next
transient variable a type 3 record is written along with the requisite number of type 4 records to completely output
that transient. This procedure is followed until all of the transient variables have been written.

31

Steady-State Data Tables

Record 1--file type record

(1) Space
(2) File type (H = hexadecimal file; F = absolute file)
(3) Check sum

Record 2--steady-state parameter record
(1) OFFFFH
(2) Steady-state reading number
(3) Number of steady-statevariable values collected
(4) Sizeof steady-state data collectionbuffer

Record J--steady-state parameter data element values
Integer,word, and realnumbersare collectedandoutputin a seriesof records. Each recordconsistsof 60bytes

and a check sum.The variablesare collectedandstored in the sameorder as they aredefinedin the mastertable.

Parameter Definition Tables

Record 1--Data table version number

Record 2

(1) Steady-state data table partitions
(2) Number of variables stored in each steady-state data table
(3) Free
(4) Number of variables defined in master table
(5) Maximum size of each name
(6) Maximum size of table to define data element names
(7) Maximum size of data element definition tables
(8) Steady-state data table print parameter

32

Record 3

(1) Transient data table partitions
(2) Number of variables stored in each variable data table
(3) Number of paragraphs necessary to store a word data element transient sample
(4) Number of paragraphs necessary to store a real data element transient sample
(5) Transient parameter set latch
(6) Total number of memory paragraphs used for transient sampling
(7) Counts for sampling interval timer

Record 4

(1) Total transient sampling time
(2) Transient sampling interval

Records 5 to 16

Store array of data element definition names (NAME$TAB).

Records 17 to 24

Store array of data element scale factors (SF$TAB).

Records 25 to 32

Store array of data element offsets (OFF$TAB).

Records 33 to 40

Store array of data element segment (SEG$TAB).

Records 41 to 42

Store array of data element types (VAR$TYPE$TAB).

Records 43 to 54

Store array of steady-state data table definitions (DATA$TAB).

Records 55 to 58

Store array of transient data table definitions (TRANTABNAME).

33

Appendix F
Routines for Console Input and Output

c.p._Tpc:-II I ?.i':,:qa,?,7;_:;:q/1RAHAF:ROASSEMBLERV2.0ASSEMBLYOFt4nr,__i................................... E IOCON
I[.P-".IE[:z MOOUI.EPLACE[IIN:F2:!OCON,OBJ
AS:E_IBLERINYOKEI]BY" A_M@6,:::6:F2_'IO::ON,:-;RCXREF

LO(" OBJ LINE SOURCE

1 +1 STITLE("IOCON--ROLtTINESFORCnNSOLEINPUT!OUTP.T')
"2 i
3
4
5 ; !OCONtS A SETOFTWOF'ROCEDURESTODOCONSOLE,
6 ; L!STANDGRAPH!.::SIiEYICEINPUT_._iDOUPUT,
7 1
8 i INCON---DOESC:H:S,R#,CTERINPUTFROMTHECF!N:.:;OLE
,? ,.

10 ; OUTCON--DOESCHARACTEROUTF'UTTOTHECnNSNLEDEYI::E
II ; L!xTINGDEYII':E.._'_,!rI,,,,GRhF'H!CS._.,.,.n_'un-c._,_!}EFEND!NG
12 ; ON THESEITIN(_OFTHEYAR!ABLE:'ON.::ONTF,'
!3 I
14 • CONL:ONTR= i OLITF'UTTOCONSOLEDEYiCE.nNLY
15 ; C:ONCONTR= -!OUTPJTTOCON:='.OLEANDLISTDE"!F:ES
1_. 1 O]NL']NTR= 20UTF'L.I"T.iGRAPHD-:S[EYiCE
17
18 ; THE:ROU!INESASTHE'(NOWSTANDARECI.,ST]'UlZEDTOD!-_
19 I ua_r,.:arJpDEPENDENT"I]_'tTPi3"OF"GIPSERIAl_F'!_'TONTHP
•Pn .,, IF'JTEt SK':R'_,'t2I-_c,J.r:.:nBOARDS.THESETWOBn{_,RD':;R"ITH
21 ; USEAN82.5'..;FOR:SERIALRF;RTCONTROL,THESEROVT!NE',SDRIVE
22 ; THE82':.,'?INTERFACE])IRECrLY,HOWEYER,THEYCOULDBECO!,IFiC.,:L!RED
2S _ lIOWORKTHROL!GHTHEBIOS!N THECPiM-86IPERATI_}SY:.:;TE,_!,
Z4 _ tr" TJ,_IN'ERFACETOTHELISTINGF'nPTANDTHEC':F;AF'H!CSPORF,_,::r
:'_: ; PORTSI A_,_D? RE:-_PEr.TIYEIY ONTHET_ITI::II!:d'if'.534'::'rPiAlC,4RD
26
27 ; NOI'E:SET-LPOFTHECONSOLE,LISTINGANDGRAPHICSPORTONTHE
28 ; THESBC_6/.S0AND:';BC5:34BOAR[iSISA::'.:SI.!ME:fTOBE
D ; DONEBYTHECPIM-86OPERATINGy,YSTEM
:30
Sl I
"3'3.....' CALLINGSEnUENI:EFORCHARARTEROUF'UTROUTINE"OUTr:ON"
3:3 .,' #NDCHARACTER!NF'LFFROUTINE'INCON".
:34 ;
-:5 ; PUSHWOR])(BYTE)TOBEOU!F'UT
36 ; CALLOUTCON
37
38 .."
39 ; CHAR= IOL':ON
40 ; CHARACTERRETURNSiN THP,,_ ALREGISTERIF ,_,.,,_,,_,_._,:',:._.-_mv LA_plmC_p.,,....,,..

I"41 l ..=,EB
42 ;
4:3
44 .,'; NOTE:ROUTINE[ESTROYESTHEAX;CX,ANDDXREG

34

45 ;

47+I _E_!ECT
48 ;
47

50 NAME IOCON
51 CGROUPGROUP CODE
52 DGROUPGROUP DATA
53 ASSUMECS:COROUP_DS_DGROUP
5_ PUBLICOU_CON_CONCONTR_INCON
55 EXTRN IN!TIAI.i_NEAR
56 ;

58 ; DEFINEEXTERNALI!OPORTS
5'_ ;
60 _ CONSOLEI!OPORTS

CODA 61 OUT_CON_STATE_U ODAH ; OUTPUTSTATUSPORTADDRESSON8251
GODS 62 OUT_CON_CHARE!_L DDSH ; CHARACTEROUTPUTPORTADDRESSON8251
DODA 63 IN_CON_STAT EQU ODAH _ INPUTSTATUSPORTADDRESSON_251
00D8 64 IN_CON_CHAR E_U ODSH ;CHARACTERINPUTPORTADDRESSO_8251

65 ;
66 ;
67

68 _ LISTI!OPORTS
00AI 69 OUT_L.!ST_STATEQU OAIH ;LISTSTATUSPORT
00A0 70 OUT_LIST_CHAREeU OAOH I LISTCHARACTERPORT

71 ;
72 ; GRAPHICSOUTPUTPORTDEVICES

OOAS 73 GRAF°H_OUT_SI'ATUSEQU OASH ; GRAPHICSSTATUSPORT
OOA2 74 GRAPH_OUT_DATA EQU OA2H _ GRAPHICSDATAPORT

76
..... 77 DATA SEGMENTPUBLIC"DATA"
00000100 7S CO_CONTRDW i _ CONSOLE/LISTDEVICECONTROLWORD

.... 80 DATA ENDS
81+I SEJECT
82 ;

83 CODE SEGMENTPUBLIC'CODE"
84 ;

0000 85 OUTCON:
000055 86 PUSH BP _ SAVEBPREGISTER
00018BEC 87 MOV BP,SP

88 _ DOCHARACTEROUTPUTTOTHE
8_ _ CONSOLEDEVICE

0003A10000 R 71 MOV AX,CONCONTR i GETCONSOLECONTROLFLAG
00063D0200 _2 CMP A_,2 ; CHECKIFTEKOUTPUTDESIRED
00077_4A _3 JE GD ;GOTO TEKOUTPUT

_4
O00B _5 LOOPI_

O00BBADAO0 _6 MOV DX,OUT_CON_STAT; GETCONSOLESTATUSPORTADDRESS
O00EEC 97 IN AL,D_ ; GETCONSOLESTATUS
O00F2401 98 AND AL,I : CHECKIFCONSOLEISFREE

35

001174F8 99 JZ LOOPI ; LOOPTILLCONSOLEBUFFERE_PTY
00i3BADDO0 I00 MOV DX,OUT_CON_CHAR; LOADCHARACTEROUTPUTPORTADDRESS
00i68A4604 !01 NOV AL_[BP+4] ; GETOUTPUTCHARACTERFROMSTACK
00i9EE 102 OUT DX,AL ; OUTPUTCHARACTERTOCOHSOLE

103
104 1
105 ; CHECKIFLINEPRINTEROUTPUT
!06 _ REOUESTED

001AA10000 R 107 MOV AX,CONCONTR ; _]VCONSOLECONTROLLATCHTOAX
O01D3D0000 108 CMP AX,O ; CHECKIFSETFORPRINTEROUTPUT
00207FOB 109 dG OUT1 I JUMPIFNOPRINTEROUTPUTREQUESTED

1i0 ;
111 ; PRINTEROUTPUTDRIVER

0022 112 LSTI:
I13 ;

0022E4A! 114 IN AL,OUT_LIST_STAT ;GETLISTINGDEVICESTATUS
00242401 115 AND AL,I ; CHECKLISTINGDEVICESTATUS
002674FA 116 JZ LSTI ; STATUSNOTREADYCHECKAGAIN
00288A4604 i17 NOV AL,EBP+4] ; GETCHARACTERTOBEOUTPUT
002BE6AO 118 OUT OUT..LIS!_CHAR,AL I OUTPUTCHARACTER

119
120
121 ; ROUTINETODETECTCHARACTER
122 _ PRESENTDURINGINPUT.THIS
123 ; ROUTINEABORTSFURTHEROUTPUT
124 ; ANDREINITIALIZESTHEPROGRAM
125

002DE4DA 126 OUTI: IN AL,IN_CON_STAT; INPUTCONSOLESTATUS
O02F2402 127 AND AL,2 ; CHECKIFCHARACTERPRESENT
00317405 128 JZ OUT2 i NOCHARACTERCONTINUE
0033E4D8 129 IN AL,IN_CON_CHARI CLEARCHARACTERBUFFER
0(}35EDO000 E 130 CALL INITIAL1 I CALLREINITAILIZATIONSEQUENCE

t31 ;
00385D 132 OUT2: POP BP ; RESTOREBPREGISTER
0039C20200 133 RET 2 ; RETURNTOCALLINGPROGRAM

134+i SEJECT
135 ;

003C 136 INCOME ; CONSOLEINPUTROUTINETO
137 ; TOALLOWCHARACTERINPUT
!38 ; FROMKEYBOARDANDECHOBACK
139 _ TOCONSOLE
140 ;

003C55 141 PUSH BP ; STOREBPREGISTER I
003D8BEC 142 NOV BP,SP ; GETSTACKPOINTER

143 ;
t_n O.003F 144 L_P_.

003FBADA00 145 MOV DX,IN_CON_STATI GETINPUTCONSOLESTATUSADDRESS
0042EC 146 IN AbDX ; GETINPUTCONSOLESTATUS
00432402 147 AND Ab2 ; CHECKIFCHARACTERPRESENT
004574F8 148 JZ LOOP2 ; LOOPT!LLCHARACTERPRESENT

149 ;
0047BAD800 150 MOV OX,IN_COR_CHAR_ GETCHARACTERINPUTPORTADDRESS
O04AEC !51 IN AL,DX ; INPUTCHARACTER
004B247F 152 AND AL_7FH ; STRIPOFFPARITYB!T

153 ;
154 ; ECHOCHARACTERBACKTOCONSOLE

004D50 155 PUSH AX ;SAVECHARACTERFORRETURN
O04E50 156 PUSH AX ; LOADCHARACTERFORECHOBYOUTCON
O04FEBAEFF 157 CALL OUTCON _OUTPUTCHARhCTERTOCONSOLE
005258 158 POP AX i GETCHARACTERFORRETURNTOCALLING

159 ; PROGRr_M
00535D 160 POP BP ; RESTOREBP
0054C3 161 PET _ RETURNTOCALLINGPRI_RAM

162+I SEJECT
163 ;
164 ; ROUTINETOOUTPUTCHARACTERSTO
165 _ TOTHETEKTRONIXGRAPHICSTERMINAL
166 ;

0055 167 GO:
0055E4A3 168 IN AL,GRAPH_OUT_STATUS; GETSERIALPORTSTATUS
00572401 !69 AND AL,I ; C_CK IFPORTEMPTY
005974FA 170 dZ GD ; IFNOTEMPTYCHECKAGAIN
O05B8A4604 171 MOV Ab[BP+4_ ; GETCHARACTERTOBEOUTPUT
005EE6A2 172 OUT GRAPH_OUT_DATA,AL _ OUTPUTCHARACTER
00605D 178 POP BP ; RESTOREBPREGISTER
0061C20200 174 RET 2H ; RETURNTOROUTINESTART

175 CODE ENDS
176 END

XREFSYMBOLTABLELISTING

NAME TYPE VALUEATTRIBUTES,XREFS

??SEG...... SEGMENT SIZE=OOOOHPARAPUBLIC
CGROUP...... GROUP CODE 51#53
CODE....... SEGMENT SIZE=OO64HPARAPUBLIC'CODE'51#83 175
CONCONTR..... V WORD 0000HDATAPUBLIC5478#91 107
DATA....... SEGMENT SIZE=OOO2HPAPAPUBLIC'DATA"52#7785
DGROUP...... GROUP DATA 52#53
6D........ L NEAR 0055HCODE 93 167#170
GRAPH_OUT_DATA.. NUMBER OOA2H 74#172
GRAPH_OUT_STATUS.NUMBER OOASH 73#168
IN_CON_CHAR. . . NUMBER OODBH 64#129150
IN_CON_STAT. , . NUMBER OODAH 63#126145
INCON...... L REAR 003CHCODEPUBLIC54 136#
INITIALI..... L NEAR 0000HEXTRN55#130
LOOPI...... L NEAR 000BHCODE 95#
LOOP2...... L NEAR O03FHCODE 144#148
LSTI....... L NEAR 0022HCODE 112#116
OUT_CON.CHAR,. . NUMBER OOD8H 62#100
OUT..CON_STAT...NUMBER OODAH 61#96
OUT_LIST_CHAR., NUMBER OOAOH 70#118
OUT..LIST_STAT..NUMBER 00AIH 69#114
OUTI....... L NEAR 002DHCODE 109126#
OUT2....... L NEAR 0038HCODE 128132#
OUTCON...... L NEAR 0000HCODEPUBLIC5485#157

ENDOF SYHBOLTABLELISTIF_O

ASSEMBLYCOMPLETE,NOERRORSFOUND

37

References

1. Posa, John G.; and LeBoss, Bruce: Intel Takes AIM at the '80s. 8. Intel Multibus Specifications. Intel Corp. (Manual Order No.
Electronics, vol. 53, no. 5, Feb. 28, 1980, pp. 89-95. 9800683), 1978.

2. CP/M-86 Operating System User's Guide. Digital Research, 1981. 9. Delaat, John C.; and Soeder, James F.: Design of a
3. Cwynar, David S.: INFORM--An Interactive Data Collection and Microprocessor-Based Control, Interface, and Monitoring (CIM)

Display Program with Debugging Capability. NASA TP-1424, Unit for Turbine Engine Controls Research. NASA TM-83433,
1980. 1983.

4. PL/M-86 Programming Manual. Intel Corp. (Manual Order No. 10. Miller, Alan R." Mastering CP/M. Sybex Corp., 1983.
9800466A), 1978. 11. Blech, R.A., et al.: A Real-time, Portable, Microcomputer-Based

5. Morse, Stephan P.: The 8086/8088 Primer, an Introduction to Its Jet Engine Simulator. NASA TM-83550, 1984.
Architecture, System Design, and Programming. Second Ed., 12. Baez, A.: Design Description of Microprocessor-Based Engine
Hayden Book Company, Inc., 1982. Monitoring and Control Unit (EMAC) for Small Turboshaft

6. The 8086 Family User's Manual, Numerics Supplement. Intel Engines. NASA TM-86860, 1984.
Corp. (Manual Order No. 121586-001), July 1980.

7. The iSBC 86/12A Single Board Computer Hardware Reference
Manual. Intel Corp. (Manual Order No. 9803074-01), 1979.

38

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASATP-2378

4. Title and Subtitle 5. Report Date

MINDS- A Microcomputer Interactive Data System for January 1985
8086-Based Control 1ers 6 Performing Organization Code

505-43-3

7. Author(s) 8. Performing Organization Report No.

E-2172
James F. Soeder

10. Work Unit No.

9. Performing Organization Name and Address
11. Contract or Grant No.

National Aeronautics and Space Administration
Lewis Research Center
C1evel and, 0hio 44135 13 Type of Report andPeriodCovered

12. Sponsoring Agency Name and Address Technical Paper
National Aeronautics and Space Administration
Washington, D.C. 20546 14.SponsoringAgencyCode

15. Supplementary Notes

16. Abstract

A microcomputer interactive data system (MINDS) software package for the 8086
family of microcomputers is described. To enhance program understandability and
ease of code maintenance, the software is written in PL/M-86, Intel Corporation's
high-level system implementation language. The MINDSsoftware is intended to
run in residence with real-time digital control software to provide displays of
steady-state and transient data. In addition, the MINDS package provides classic
monitor capabilities along with extended provisions for debugging an executing
control system. The software uses the CP/M-86 operating system developed by
Digital Research, Inc., to provide program load capabilities along with a uniform
file structure for data and table storage. Finally, a library of input and output
subroutines to be used with consoles equipped with PL/M-86 and assembly language
is described.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Microprocessors Unclassified - unlimited
Digital control STARCategory 61
Data systems

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price
Unclassified Unclassified 39 A03

For sale by the National Technical Information Service, Springfield, Virginia 22161 NASA-Langley, 1985

National Aeronautics and THIRD-CLASS BULK RATE Postage and Fees Paid
National Aeronautics and

"-bpaceAdministration Space Administration
NASA-451

Washington, D.C.
20546

Official Business

Penalty for Private Use, $300

N_A POSTMASTER: If Undeliverable (SectiOn 158Postal Manual) Do Not Return

