. @https:/intrs.nasa.gov/search.jsp?R=19850009267 2020-03-20T20:33:49+00:00Z

NASA-TP-2378 19850009267

NASA
Technical
Paper
2378

January;»1985 | MINDS o

A M icmcomputér"I_Vnitemct‘ive Data
System for 8086-Based Controllers

James F. Soederf‘

=

LIERARY COPY

AN db

ey

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

NNSN

NASA
Technical
Paper
2378

1985

NNASAN

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

MINDS

A Microcomputer Interactive Data
System for 8086-Based Controllers

James F. Soeder

Lewis Research Center

Cleveland, Ohio

Summary

A microcomputer interactive data system (MINDS)
software package for the 8086 family of microcomputers
is described. To enhance program understandability and
ease of code maintenance, the software is written in
PL/M-86, Intel Corporation’s high-level system imple-
mentation language. The MINDS software is intended to
run in residence with real-time digital control software to
provide displays of steady-state and transient data. In
addition, the MINDS package provides classic monitor
capabilities along with extended provisions for debugging
an executing control system. The software uses the
CP/M-86 operating system developed by Digital
Research, Inc., to provide program load capabilities
along with a uniform file structure for data and table
storage. A library of input and output subroutines to be
used with consoles equipped with PL/M-86 and
assembly language is described.

Introduction

As microprocessors have become more sophisticated,
they have begun to take over applications formerly
reserved for more costly minicomputers and low-end
mainframe computers. This evolution has resulted in
opportunities to apply digital computer technology to
applications that would never have been considered a few
years ago. The result of this explosion of computer
applications has been an enormous demand for software
to accomplish these many and varied tasks. This demand
has led to what has been called the software crisis (ref. 1).
This crisis has come about because there are too many
applications requiring sophisticated software with too
few programmers to write it. The problem has been
somewhat alleviated in the business software environ-
ment by the adoption of standard operating systems
(e.g., Digital Research’s CP/M (ref. 2) and structured
high-order programming languages such as Pascal.

In the application of microprocessors to real-time
digital control systems, however, each application and
hence each algorithm is unique. This means specialized
software to do each task. This problem can be alleviated
to some extent by standardizing, wherever possible,
through the use of standard software modules as well as

complete standard software systems. Even then
additional means of improving software development
efficiency will be required. This is especially true for
control software development since the software must
run in real time usually in a timed or interrupt-driven
environment. This report describes one particular
method for enhancing the debugging and evaluation of
real-time control software. The approach employs an
auxiliary software routine that operates in conjunction
with the control software. This powerful software utility
is called MINDS for ‘‘microcomputer interactive data
system.’’ It is designed to use spare unused computing
time in between control computation update intervals. It
allows an operator at a keyboard to interactively extract
data from the computer’s memory in several useful
formats. These data can be used for software debugging
or control software performance analysis.

This report gives an overview of the software package,
describes the hardware and software environment
necessary to use the program, details the internal
structure of each of the program’s sections, describes the
currently implemented commands, and gives the
extensions in scope and application that the current
software makes possible.

Overview

The MINDS software utility is designed to run on a
microcomputer in residence with a real-time direct digital
control algorithm. To understand the philosophy on
which MINDS is based, one must understand a simple,
direct digital control application. A timing diagram for
this type of task is shown in figure 1. In this application
an interval timer generates an interrupt at a specified rate
(determined by the bandwidth requirements of the
system). When the central processing unit receives the
interrupt, it samples sensor input signals with an analog-
to-digital (A/D) converter. The CPU then uses these
input signals to compute a control algorithm. When the
control algorithm computation is complete, the results
are output to control actuators with digital-to-analog
(D/A) converters. Once this has been done, the computer
is idle until the next sampling interrupt, at which time the
process starts over again. When the CPU is idle,
information can be input to and output from the CPU to

1

/— Input sampling
/

/ /—Control calculation -
/ /
/
/ VA Actuator output
Ay /7 A A
|/ v
o
/] |

I I I N T Y

\j

F— Sampling interval —

Time

Figure 1.—Direct digital control timing diagram.

provide an operator interface and data-taking capability,
etc., without disturbing the control process that takes
place at each update interval. The MINDS software
package to be described in this report gives exactly this
capability. It provides a modular software package that
can be called by a control algorithm’s real-time executive
routine to run in the spare time while the control
algorithm is waiting for the next update interval timer
interrupt.

MINDS is intended to provide both steady-state and
transient data for variables inside and outside the control
algorithm. This is accomplished by allowing an operator
of the control equipment to assign names and other
designators to storage locations in the control computer’s
memory, thereby creating a MINDS data element. These
data elements can then be displayed separately or in
tabular form to provide a representation of the control’s
steady-state condition. In addition, time histories of these
data elements can be stored in the computer’s unused
memory, retrieved, and put on disks for later data
analysis or plotting. MINDS also has a debug package
that can set conditional breakpoints inside an executing
real-time control and capture steady-state and register
data when a predefined condition is satisfied.

Interactive data-taking software such as MINDS has
been developed previously. One example would be
INFORM (ref. 3), which was developed for the SEL 810B
minicomputer. This program, although very powerful
and heavily used, lacked certain features. First, it could
not handle data elements that were real floating-point
numbers. Second, since it did not interface with an
operating system, it lacked the capability for memory
management and standard file storage format. Third, it
lacked buffered input, thereby making it difficult to
input commands. Finally, the program was written in
assembly language for a computer system produced in
limited quantities and thus had little industry support and
interest.

2

The MINDS data-taking software has attempted to
address these deficiencies. First, MINDS is designed for a
system based on a popular microprocessor, the Intel
8086/8087. Second, it uses the widely accepted CP/M-86
operating system to provide memory as well as file
management. Finally, most of the MINDS software is
written in PL/M-~-86 (ref. 4), a microprocessor version of
the PL/1 higher level language, to aid in the programs
understandability and transportability.

Support Hardware

The microcomputer hardware on which MINDS has
been designed to operate is discussed in some detail. This
is important since various aspects of the hardware (such
as segmented memory addressing) affect the decisions
made in the MINDS software design. The elements used
to implement the MINDS software package include a
single-board computer (Intel iSBC 86/12A) that
incorporates the 8086/8087 microprocessor pair, a disk
controller with floppy disks, and the CP/M-86 disk
operating system. Each of these elements is discussed in
the following sections.

8086 Microprocessor

"Bhe 8086 microprocessor is the first member in the
family of Intel 16-bit microprocessors. The processor has
a 16-bit data bus and a 20-bit address, resulting in a
1-megabyte memory address space. Figure 2 is a register
diagram (i.e., assembly language programmers model) of
the 8086. The processor contains thirteen 16-bit registers.
These registers include general-purpose registers AX and
DX, base pointer registers BX and BP, index registers DI
and SI, counter register CX, instruction pointer IP, stack
pointer SP, and segment registers ES, SS, DS, and CS.
The four segment registers are critical in allowing the

16 Bits

AX Accumulator

BX Base

CX Count

DX Data

SP Stack pointer

BP Base pointer

Si Source index

DI Destination index

CS Code segment

DS Data segment

SS Stack segment

ES Extra segment
l 1P 1 Instruction pointer
LLLLLTTETTTATT) Frags

Figure 2.—Intel 8086 register structure.

8086 to achieve its full 1-megabyte address space. If the
instruction pointer (a 16-bit register) alone is used to
compute memory locations, only 216 or 65 536 memory
locations can be addressed. However, if memory
addresses are computed by using both the instruction
pointer and a segment register, the full 1-megabyte
address space can be accessed by using the formula

(Segment * 10y) + IP = Memory location

where H denotes a hexadecimal number. Furthermore,
once the segment register has been specified, any location
that lies between the segment value and the segment value
plus 65 535 can be addressed directly by merely changing
the value of the instruction pointer. An illustration of this
is given in figure 3. The result of this type of addressing,
however, is that to identify the location of any parameter
in memory, one must specify not only the instruction
pointer (i.e., the offset) but also the segment. Further
information on this addressing scheme and the 8086
architecture in general can be found in reference 5.

The 8087 microprocessor chip is a transparent co-
processor that can be added to the 8086 to augment the
instruction set and the architecture. This chip adds eight
80-bit-wide registers to the 8086 structure defined
previously, along with a status and mode register. This
register augmentation is shown in figure 4. The
coprocessor augments the 8086 instruction set with
instructions that use the 80-bit-wide registers to do
floating-point arithmetic, trigonometric functions, and
logarithms. These calculations are done in accordance
with the proposed IEEE floating-point standard. Further
information on the 8087 coprocessor chip can be found in
reference 6. '

iSBC 86/12A Microcomputer

The iSBC 86/12A single-board computer (fig. 5),
which operates the MINDS software, has a 5-MHz

Segment register = 0400H
Instruction register = 0020H
Memory address = 4000H + 0020H = 4020H

OFFFEFH

4020H 64K segment

4000H

0
Figure 3.—8086 Memory addressing.

80 Bits

A

RO
R1
R2

R3
NDP stack Rd
R5
R6
R7

16 Bits

S
[status register
7 ode register

Figure 4.—Intel 8087 register structure.

8086/8087 microprocessor pair as its central processing
element. In addition, the board contains 32 kilobytes of
dynamic random-access memory (RAM), 32 kilobytes of
expansion RAM, and 32 kilobytes of erasable,
programmable read-only memory (EPROM). The board
also has 24 parallel input/output lines for printer
interfacing, a RS232 compatible serial input/output port
used to interface to a cathode-ray tube, two program-
mable counter/timers for control and sample timing, and
an interrupt controller capable of accepting eight external
or internal interrupts. The board can accept an 8087
(iSBC 337) numerics coprocessor to augment the 8086
with floating-point numerics capability. Lastly, the
86/12A is Multibus compatible. The Multibus/IEEE 796
is a standard microprocessor backplane interface bus
originally developed by Intel. Using this standard set of

3

Figure 5.—iSBC 86/12A single-board computer.

Floppy
disks

Disk

iSBC 86/12A controller

AID D/A

<,

>

Highest priority

Lowest priority

Figure 6.—MINDS hardware configuration.

address, data, power, and control lines facilitates the
interface to a multitude of standard boards manufac-
tured by a variety of vendors. Further information on the
86/12A and the Multibus can be found in references 7
and 8.

Successful operation of the MINDS package in a real-
time digital control environment requires, in addition to
the 86/12A board, Multibus boards of the following
type: an analog-to-digital (A/D) converter board and a
digital-to-analog (D/A) converter board. Figure 6, which
illustrates this configuration in more detail, shows the
single-board computer in the highest priority slot of the
multibus. This is necessary so that under all bus
conditions the computer can get access to the bus to use
the A/D and D/A converters and thereby update the
control law in the specified sampler network. As was
stated previously, the MINDS package has been designed
to use the disk controller during the control’s spare time
in making data and table transfers. Therefore, if the disk
controller cannot be interrupted after every bus cycle,
transparent operation with the direct control algorithm
cannot be guaranteed. Further implementation informa-
tion on this hardware configuration can be found in
reference 9 and appendix A.

CP/M-86 Disk Operating System

As stated earlier, the MINDS program has been
designed to use a permanent storage medium (floppy
disk) to save data extracted from the computer’s

4

memory. The disk operating system with which MINDS
has been designed to operate is CP/M-86.

The CP/M-86 operating system is a general-purpose,
single-user operating system marketed by Digital
Research, Inc., of Pacific Grove, California. The opera-
ting system provides facilities to do console communica-
tions, program load and unload, disk file management,
and rudimentary computer memory management. A
memory map of the 86/12A computer with the CP/M-86
operating system installed (fig. 7) shows that the

65 535
Transient program area

12031
Basic input/output system
Basic disk operating system
Console command processor

1024

Interrupt vector table 0

Figure 7.—iSBC 86/12A memory configuration.

CP/M-86 is located in the lowest part of memory and
occupies approximately 12 kilobytes. The remaining
52 kilobytes is used as a transient program area for
applications programs and an interrupt vector table for
operating system and application use.

The operating system has three main portions:

(1) Console command processor (CCP)

(2) Basic disk operating system (BDOS)

(3) Basic input/output system (BIOS)

The CCP accepts all commands that are typed in from
the console, interprets them, and takes the appropriate
action to see that they are completed. The BDOS contains
the facilities to open, format, read, and organize files on
a floppy disk. In addition, it contains routines to do
memory management (i.e., the reserving and releasing of
memory) for the free or transient program area. The
BDOS has an external entry point or ‘‘hook’’ such that
most file and memory management functions can be
accessed by applications programs. MINDS makes
extensive use of this hook to provide an orderly format
for data storage and retrieval.

The BIOS contains all of the hardware-dependent
information necessary to allow CP/M-86 to operate in a
particular computer configuration. This includes
definition of the disk layout (i.e., number of tracks,
number of sectors, number of bytes per sector, etc.), the
address and input/output format of the console device
and line printer, and the memory configuration of the
transient program area. Because all of the hardware-
dependent information is concentrated in one area,
CP/M-86 can be easily reconfigured for a variety of
hardware environments.

How the operating system loads programs is important
in understanding MINDS. When the CP/M-86 operating
system is given a command, the CCP processes it and
determines if an external applications program must be
loaded (i.e., a program on the disk). If this is the case, the
program is loaded from the disk and placed in the
topmost part of memory (i.e., the highest memory
location). The free memory above the operating system
and below the applications program is still available to be
allocated (managed) by CP/M-86 for the applications
program’s use. Further information on CP/M-86 and its
applications environment can be found in reference 10.

Software Overview

As stated earlier, CP/M-86 is a single-user operating
system. It does not do multitasking. A real-time applica-
tion such as direct digital control, however, requires that
multiple tasks be performed. Thus, a real-time appli-
cation using CP/M-86 must have a subexecutive, or real-
time executive, routine to service interval timers,
interrupt controllers, and A/D and D/A converters and
to execute a control algorithm and MINDS. This is a

straightforward software task in direct digital control,
and for the system described in this report it requires less
than 0.6 kilobyte of memory.

A diagram of the software hierarchy between
CP/M-86, MINDS, and the real-time control (fig. 8)
shows that a real-time executive is directly linked to the
control algorithm and the MINDS software. This is
represented by the solid lines connecting the three
modules. This combined software module is loaded into
the microcomputer main memory by using the CP/M-86
operating system, as shown by the dashed-line intercon-
nection. In this environment the MINDS subroutines can
provide a general-purpose operator interface, steady-
state transient data collection, and a monitor debug
package. Finally, as represented by the wide-arrow
interconnection, the MINDS software can use the
services provided by CP/M-86 to assist in orderly
memory management and can read and write disk files of
a standard configuration.

The MINDS software can be broken into four logical
blocks (fig. 9). Each of these blocks consists of a number
of subroutines. The important subroutines contained in
each block are listed in appendix B. The MINDS main
block takes care of variable name definitions, steady-
state data table definitions, information storage and
retrieval, and other miscellaneous tasks. The monitor and
debug block can display and set any part of main memory
as an integer, word, byte, or real number. In addition,
the monitor functions as a software debug tool and sets a
breakpoint in order to collect data tables and register
data if certain conditions are met. The MINDS transient
data block provides all that is needed to take and store
transient data.

Finally, the input/output library contains the pro-
grams necessary to input and output information to the

CP/M-86
operating

oera E—

T
|
|
|
|
|

Y

Reat-time
executive

Control
algorithm

MINDS <:J_J

Figure 8.—Software hierarchy.

MINDS main

and steady-
state data
MINDS MINDS
monitor transient
and debug data
\ /
MINDS
input/output
fibrary

Figure 9.—MINDS package interconnection.,

console and printer. In addition, it contains a series of
assembly language routines to interface to CP/M-86.
This type of library is necessary since PL/M-86 is a
system implementation language and merely has an
instruction to input or output a word or byte from or to a
particular port. The language does not have a sophis-
ticated input/output structure like Fortran or Pascal.

A detailed discussion of the workings and operation of
each of these four large blocks of code, or software
modules, follows.

Main Software Module

Data Element Definition

Before a discussion can begin on the operation of the
main MINDS program, the variables and control
structures must be defined. The MINDS software relies
on the manipulation of data elements. A data element is
simply a memory location or a series of memory locations
that have been given a prescribed set of attributes. Data
elements can be any one of three types (fig. 10): word,
integer, or real. Every addressable location in the 8086
memory is eight bits, or one byte.

The figure shows that a word is an unsigned 16-bit
piece of data, or two bytes of data. This data type can

[J8yte, 0to2s

7 0

T Iword, 0065535

15 0

B integer, -32768to 32 767
15

f_exp]
31 3

Mantissa] Real, 8.43x10737 < x| < 3,37x10%8

Figure 10.—MINDS data type definitions.

take on values of 0 to 65 535, (i.e., 216 —1). An integer is
a signed 16-bit piece of data (two bytes) that can take on
both positive and negative values since bit 15 is the
two’s-complement sign bit. Because of this the range of
the number is ~32 768 to 32 767 (i.e., —215 to 215—1).
Finally, a real number is a signed four-byte data type,
consisting of a mantissa and exponent, that can range in
value from 8.43 x 10-37 to 3.37 x 1038 (ref. 6).

From these definitions of what data types are
available, the format for designating a MINDS data
element was devised (fig. 11). A data element designator
comprises at least four and possibly five pieces of
information:

(1) An element name consisting of one to six
alphanumeric characters, the first of which must be
alphabetic; when less than six, it is padded with space
characters.

(2) A type designator, which identifies the data element
as word, integer, or real

(3) The segment and offset (i.e., the location)
designators for the data element. (Note that any memory
location in the 8086 must be specified by using a segment
and offset because of the architectural definition of the
processor.)

(4) For integer data elements a scale factor is included.
For a data element of the type ‘‘word’’ no scale factor is
necessary since it is merely considered as an unsigned
number that represents a pure hexadecimal value.
Similarly, real numbers can be considered pure values
since they vary over such a wide range that most values
encountered in a physical system can be represented in
the real format. Integers represent a different situation.
In various applications it may be advantageous to
represent some or all internal central variables as integers
rather than as real numbers. This might be done for
example when calculation speed becomes a factor since
integer arithmetic is much faster than real-number
arithmetic. In this case the integers can be thought of as
scaled fraction numbers whereby a certain number of
engineering units are represented by a certain number of
machine units. For example, 15000 rpm might be
represented by the maximum integer number, or 32 767
machine units. To facilitate understanding of the controls
operation, every integer data element contains a scale
factor. Therefore, when any reference to that element’s
value is made, it is modified by the element’s respective
scale factor for display purposes. This allows the integers
to be dealt with like real numbers. That is, for data

J

T T T 11 T LI
Name Type Segment Offset Scale factor
(integer only)

Figure 11.—MINDS data element format.

manipulation purposes they can be dealt with directly by
using their engineering unit values.

Command Control Structure

The input command structures for the MINDS main
and transient software blocks (fig. 9) follow either of two
formats. Each of these formats must contain a command
operator and may or may not contain the ‘‘name’’ of a
data element. A command operator is either an ASCII
punctuation character or an ASCII control character.
Examples of ASCII punctuation characters are ‘“.”’, <“:”’,
“;”’, and ““!”’ control characters are ‘“‘cntr P”’, ““cntr 07,
“cntr H”’, etc. A type I format involves simply a
command operator along with an optional set of
parameters if required. For example, a type I command is

? (CR)

where ‘7”7 is a request to print out certain information
and ‘‘(CR)”’ is a carriage return necessary to signify the
completion of a command sequence and to start the
software interpreting and processing of the command. A
type I input command would be

: H1, H2 (CR)

$6.9)

where ““:”’ is a request to add numbers (or named data
elements) H1 and H2. A type 11 format contains a data

element name followed by a command operator; for
example,

NAME = (CR)

where “NAME”’ is the name of a previously defined data
element and ‘‘="’ is the command operator requesting a
display of the currently stored value of the memory
location name.

Command Interpreter

The method by which input commands are interpreted
and processed by MINDS is shown in figure 12. The start
flag is the entry point to the MINDS command inter-
preter from the real-time subexecutive program. Once
entered, a command is stored in the input read buffer.
The buffer is located in the MINDS input/output library
module (fig. 9). How the library works is described in
detail later in this report. Once the input from the console
is complete (signified by the occurrence of an ASCII
carriage return), the first character is examined to
determine if it is an alphabetic character. If it is not
alphabetic, it is assumed to be a command operator of
the type I format. The input character is then compared
with a list of valid command operators. If there is a
match, the command processor software will be
permitted to read the remaining input string from the
input buffer and process the complete command. The

Start

Input command
line to buffer

False

True

character
alphabetic
?

True

Character same as
defined command
operator ?

Store character

Input character

Call Error,
command return to
processor start False Is character

Return to start

alphanumeric and
less than 67

Figure 12.—MINDS control command structure.

program then returns to start for more command inputs.
If there is no match to a command operator, an error is
issued and the user is invited to enter another command.
If the first character is alphabetic, the command is
assumed to be of type II. Under these circumstances, the
character is stored and the next one examined to
determine if it is part of a name. This is done until either
a nonalphanumeric character is encountered, or a six-
letter name is created. In either case the command
operator scan is performed to determine if a wvalid
command has been input. Note that if a less-than-six-
variable name is input, NAME is padded with spaces to
make it six characters.

Each time a keyboard input is given to the MINDS
software, the command interpreter goes through the steps
just described. In the event an error is detected during the
execution of a command, the command processor prints
an error message. The MINDS error codes are listed in
appendix C.

Data Element Designator Table Format

As discussed earlier, data elements are used in the
steady-state and transient data collection processes. The
MINDS main software module contains the routines
necessary to define and manipulate data elements. When
a data element is defined, the information is stored in a
series of parallel data tables (fig. 13). The lengths of the
tables as shown in the figure will allow for the definition
of 256 data elements for each table. The NAMESTAB
table reserves six bytes for each data element name. Each
byte contains one ASCII character from the data element
name. Since each data element name must contain six
characters to provide correspondence with the other
parallel tables, names that are less than six characters are
padded with spaces. The VARSTYPE table has 1 byte
reserved for each data element. Corresponding to each
data element in the VAR TYPE table is the ASCII
character “W,” “I,”” or ‘“R” identifying the data
element as a word, integer, or real number, respectively.

NAMESTAB VARSTYPE SEG$TAB OFF$TAB SF$TAB

(256)

(512) (512)

(1024}

(1536)

Figure 13.—MINDS data element storage format.

The SEGS$TAB has two bytes reserved for each data
element that identify which memory segment the data
element occupies. Likewise, the OFF$TAB also has two
bytes reserved for each data element that identify its
respective offset. Finally, the SF$STAB allocates four
bytes for each data element. If the data element is defined
as integer data, the SF$TAB contains a real number
requiring 32 bits (4 bytes), that corresponds to that
particular data element’s scale factor. If reference is
made to the modification or display of the data element,
the program will use the scale factor to manipulate the
element. Note that only data elements of integer type
have a scale factor. Word and real data elements have no
scale factor; therefore manipulation of these two types of
elements results in the use of the actual bit pattern
currently stored in memory.

Command to Manipulate Tables

Nine commands allow for direct manipulation of data
elements defined in the master table. Six of the
commands use type II command format and three use
type I.

The type II commands include ‘“ ”°, representing a
space character, used to define a data element; ¢‘_’’, used
to overlay the definition of a previously defined data
element with a new data element; ““‘&”’, used to display
definition information of the data element; ‘‘ ="’, used to
display the value in the appropriate units of the respective
data element; ““#”’, used to display the value of the data
element in binary; and ““’’’, used to set the data element
to a particular value. The type I commands include “?°’,
which displays the names and definitions of all of the
defined data elements and ‘‘[”’, which displays the 8086
segment registers’ values for the currently loaded
program. Finally, because of the loader operation in
CP/M-86, the possibility exists that a program
containing MINDS could be loaded into a different
portion of memory every time the size of the program
changes. Therefore, the segment values of data elements
will also change. Consequently, the command ‘%"’ has
been implemented to allow for changing the values of all
of the data element segment definitions. More detailed
command formats and default options for each
command are given appendix D.

Steady-State Data Collection Software

The ability to take and display tables of values of the
control steady-state data is one of the most important
capabilities of MINDS. To accomplish this task, pro-
vision must be made in the program to create tables of
data elements, to collect the values for the data elements
in a timely manner, and to output the collected data
element values in a form that is useful to the control

operator. The following paragraphs discuss each of these
needs and the implemented solutions.

Steady-State Data Table Format

To make the MINDS steady-state data collection as
flexible as possible, provision has been made to store
definitions of four logically separate steady-state data
tables. The storage format structure (fig. 14) shows
three arrays, DATA$TAB, DATAS$TABSLMT, and
DATASTABSBIAS, that together define the steady-state
data sampling structure. The DATASTAB table stores
the index values that a particular data element has in the
master data element storage format (fig. 13). By using
the DATA$STABSBIAS table to define boundaries in
DATASTAB, all four of the logically separate data
tables can be stored in DATA$TAB. For example, in
DATASTABSBIAS the first element is 256 and the
second element is 406 (array element numbering starts at
zero), signifying that logical data table 1 runs from
element 256 to, but not including, 406 in the DATASTAB
array. Similarly, tables 2, 3, and 4 run from 406 to 456,
456 to 572, and 572 to 768, respectively. The last word in
DATASTABSBIAS, containing in this case 768 elements,
defines the maximum size of DATAS$TAB. The
DATASTABSLMT keeps track of the number of data
element indexes that are stored in each data table. In this
case the first element in the DATA$STABSLMT array can
be as small as zero if no elements are in the table or as
large as 150 if the table is full. This provides a convenient
counter not only when collecting and printing data but
also in determining when a data table is full. Finally,
three facts should be noted. First, the numbers in the
DATASTABSBIAS allow the logical data table size to be
varied as desired. Second, the size of the three arrays can
be increased to create as many logical data tables as
desired. Third, although it cannot be referenced or
manipulated directly, a table zero has been provided for
in the data table structure. Every time a data element
definition is added to the master table, the appropriate
index value is automatically added to logical steady-state
sampling table zero. This table can then be collected by
the automated data collection command discussed in a

later section.

DATA$TAB (768 words)

0 [256 {406 }456 |572 | 768 | DATASTABSBIAS (6 words)

DATASTABSLMT (5 words)

Figure 14.—MINDS steady-state sampling data structure.

Steady-State Data Collection Methods

To use the capabilities built into the MINDS package,
the user must be aware of the problem of data skew when
taking steady-state data. Since steady-state data are taken
during the control calculation idle time, the control can
preempt the data-taking process. When this happens,
values inside the control can change. Therefore, if some
of the values in the sampled data table are taken in one
update interval and some in the next, all of the data may
not match exactly. This phenomenon is known as data
skew. _

Several factors can affect how much data skew results
during data collection. First, if the data are collected and
output variable-by-variable, the amount of data skew is
dependent on the speed of the output device. Therefore, a
data collection buffer to collect data before they are
printed is provided to eliminate this problem. Second,
MINDS must be able to collect values of word, integer,
and real data (fig. 10) in a transparent manner. This
becomes a problem because word and integer data
occupy two bytes, but real data occupy four bytes. For
the lowest computation overhead a simple flag
mechanism is used to indicate to the data collection
program whether a data element consists of two bytes or
four bytes. A DATASTAB table (fig. 15) stores logical
data element indexes that are simply numbers associated
with variable names. By testing the flag bit in each index
value it is easy to determine if two or four bytes of data
should be stored. Finally, as indicated previously and
shown in figure 2, the address of any data location is
determined by the addition of a segment register and an
offset register. Consequently, an increase in data
collection overhead, and hence data skew, is realized if
the segment register must be changed for every data
element value collected. Since many programs are less
than 64 kilobytes, a large number of situations arise

Real/word flag bit (1 = real,
0= word/mteger)w\. Data element index
X)

\\Illlllllllllll

)/\)

Figure 15.—Real/integer flag bit in DATASTAB array.

where this segment register reload would be redundant
and hence cost valuable time in data taking.

To accommodate all of these data-taking constraints,
but also to make the MINDS program as flexible as
possible, four data collection modes have been defined.
Mode A is used when all of the data elements are either
integers or words and they all are in the same 64K
segment. Mode B is used when all of the data elements
are either integers or words but are in different 64K
segments. Mode C is used when the data elements are
real, integer, or word and occupy the same 64K segment.
Mode D is used when the data elements are real, integer,
or word but occupy different 64K segments. Clearly,
mode D is the most general mode since it provides for all
eventualities. However, modes A to C have been
provided to reduce data skew in cases where the data
elements are of a specialized nature and advantage can be
taken of this fact.

Data Display

Once the steady-state data have been collected, they
can be displayed in three formats (fig. 16). Format 1
prints the data element names and beneath them the
corresponding values of the data elements. Format 2
prints only the values of the data elements, and format 3
prints only the data element names (i.e., the heading).
These table output formats provide a sufficiently rich
selection to handle most steady-state data output when
device printer speed is not critical.

Steady-State Data Collection Commands

Seven commands are used to manipulate the steady-
state data tables and to print steady-state data. Six of the
commands are of type I format and one of them is of type
II. The type I commands include ‘‘(’’, to open a steady-
state data table to allow data elements to be input; ‘)’
to close the currently open data table; “@’’, to erase all
of the data elements defined in the currently open table;
“A”, to erase the last data element entered in the
currently open data table; ‘‘]”’, to add a new line to the
currently open data table, and ““\”’, to collect data and
print the currently specified data table. The type II

\D 1,1 Format
PLA MNE ALT TT2E PT2E
FTIT PBE MHE NLE 1

20002-03 00000 00 10000 00 58991-03 26000-03
49500-02 25000-02 95002-01 66000-01

AD L2

20002-03 09000 00 10000 00 58991-03 26000-03
49500-02 25000-02 95002-01 66000-01

2

ADL,3
PLA MNE ALT TT2E PT2E 3
FTIT PBE NHE NLE

Figure 16.—Form of steady-state data display.

€6 9

command is *“,”’, which adds a currently defined data
element to a currently open data table. More detailed
command formats and default options for each
command are given in appendix D.

File Manipulation Commands

CP/M-86 File Structure

One of the most important reasons for using an off-
the-shelf operating system like CP/M-86 is the ability to
use its file control system to retrieve and store data from
a floppy disk. Communication to this disk file manage-
ment capability can be done through a 36-byte data
structure known as the file control block (FCB). The FCB
contains such information as the drive number the file
resides on, the file name, and various file attributes.
Further information on the operation of the file control
block can be found in references 2 and 10. Since
PL/M-86 is a system implementation language, no
provision is made for direct manipulation of FCB’s. That
is, no operating system interface libraries exist to directly
link such things as CP/M-86 and PL/M-86. Therefore,
routines had to be written to accomplish this interface.
These routines are documented in appendix B, along with
instructions on how to use their calling sequences.

Storage and Retrieval of Program Definitions

A program such as MINDS would not be very useful if
data element definitions and steady-state data table
sampling definitions had to be typed in fresh every time
the program was reloaded. Therefore, provision has been
made in the form of two commands ““?”’ and ‘“*’’ to
store and retrieve, respectively, all of the definitions that
have been input through the MINDS software.
Consequently, once MINDS has been ‘‘taught”
definitions for a particular control, these can be retrieved
and modified at any time. These commands are described
in appendix D.

Automated Steady-State Data Acquisition

In testing situations where steady-state data must be
acquired rapidly or must be archived for a long period of
time, perhaps for reprocessing, an automated data
acquisition process has been defined. This is done by
using logical data table zero in the MINDS data
collection structure. Since this table contains all of the
index numbers for all of the data elements defined in the
MINDS master tables, the values of all of the data
elements can be stored in the MINDS steady-state data
collection buffer. Once this has been done, these data can
be stored in a CP/M-86 data file on disk. The name of
this file contains a number preassigned by the operator to
correspond to an operational reading number that these

particular data represent. The format in which each of
these readings is stored on the disk is discussed in
appendix E. The MINDS program also contains
provisions for retrieving the steady-state data file from
the disk and restoring it in an intermediate data collection
buffer. The predefined logical data tables (i.e., tables 1 to
4) can then be printed out by using the data retrieved
from the disk.

Commands for Automated Data Display

Five commands are used in automated steady-state
data taking. All five commands are of type I format and
include a special form of ‘“\”’ to take the steady-state
data and store them in a temporary buffer; *“$’’, to store
the data in a predefined file on floppy disk; ‘/”’, to recall
a data file from disk and store it into a temporary buffer;
“;»”, which will allow logical data tables 1 to 4 to be
printed out by using the data retrieved from the disk; and
finally the ‘““””’ command, to update the name of the
predefined file where data are to be stored. Further
information on these commands is given in appendix D.

Miscellaneous Commands

Six commands, all of type I format, help in program
operation but do not play any role in data element
manipulation. First, ‘‘~>’ and ‘<’ allow entry into the
MINDS transient sampling program and monitor,
respectively. These portions of the MINDS package are
shown in figure 9. Second, ‘“.”’ allows one to exit from
the MINDS main command structure entirely. Third, the
> and ““{”” commands allow the MINDS package to
display a CP/M-86 disk directory and to delete a file
from a CP/M-86 disk, respectively. Finally, the :”’

command allows for the addition and subtraction of two
hexadecimal or decimal numbers. Further information
on these commands is given in the appendix D.

Data Collection Software

Overview

In the analysis of a control or simulation system its
transient behavior is second in importance only to its
steady-state set point. Therefore, the MINDS program
provides a method whereby data element transient data
can be collected. This capability is represented in figure 9
as the MINDS transient data block. In addition to
sampling transient data this software module can auto-
matically set up the transient timer and interrupt
controller, automatically manage memory for the
transient variables, and provide a simple storage and
recall procedure for transient data.

Sampling of Transient Data

The process of sampling transient data is shown in
figure 17. The bottom half of this figure is the direct
control timing diagram explained previously as figure 1.
Because this task of sampling data, control calculation,
and digital-to-analog converter (DAC) output occurs at
the highest priority available, it proceeds as it must,
without outside interference. Where transient data are
required, a separate timer is used as a transient sampling
signal (top half of fig. 17). Because this timer interrupt
has a lower priority than the one used in the control, the
transient sampling process does not interfere with the
control. Each time that a transient sampling interrupt

Sampling
interrupt <~—o________ — -7~ Transient
N T / data
- Vi collection
[2 BN B)
s >
]]
A A A

Y

Figure 17.—Direct control timing with transient sampling.

11

occurs, one frame of transient data is collected and stored
in the control computer’s free memory. However, as
figure 17 illustrates, even though the transient sampling
interrupt can occur anytime, the actual collection of the
data can only take place during control calculation idle
time. Transient sampling interrupts occur until such time
as enough data frames have been collected at the
prescribed sampling interval to account for the full length
of the transient.

Since a separate timer is used to trigger the transient
sampling process, it can run asynchronously to the
control. Consequently, the transient sampling interval
need not be an integer multiple of the control interval.
Generally, the transient sampling interval is greater than
five times the control interval. This choice allows the
collected data to have adequate fidelity for plotting and
transient analysis purposes without using large amounts
of memory to store intermediate points that would be of
questionable value.

Transient Sampling Data

Structures and Memory Allocation

There are two distinct data structure issues in transient
data sampling. The first is the MINDS dynamic sampling
data structure. This is the structure of the internal tables
telling which data elements are to be sampled. The second
is the structure and allocation of the free memory in the
microcomputer to allow the storage of data element
values during the transient.

The MINDS dynamic sampling data structure (fig. 18)
is similar in many ways to the one used to store steady-
state data collection tables. Like the steady-state data

collection structure the TRANSTABSNAME array stores

256 data element definition indexes to show which data
element is to be sampled. The TRANSTAB$BIAS array
divides the one TRANSTABS$NAME table into four

HEEERRNE

I TRANS$STORESTAB (64 words)

S S TRANSTABSNAME (256 words)

0 | 0 164 I128 |192 256 ITRANTABBIAS (6 words)

| 0 | 0 | 0 I 0 l 0 |TRANTABLMT (51 words)

Figure 18.—MINDS dynamic sampling data structure.

logical data collection tables with partitions at the values
shown. The TRAN$TABSLMT array gives a count of the
number of elements in each table. This allows for easy
counting of the number of variables to be sampled. Note
that in the transient data tables there is no logical table
zero to allow collection of all defined variables since
it is unlikely that time histories of more than a small
subset of variables would ever be needed. The
TRANSSTORES$TAB table stores the addresses of the
starting locations of each of the memory partitions for
storage of the respective data element transients. Since
TRANSSTORESTAB is only 64 locations long, it can
only hold the starting locations for one logical transient
table at a time. The reasons for this become clear in the
next section.

During a transient each of the time histories of the
respective MINDS data elements is placed in free
memory. Because the size of this free memory can vary
between 64 kilobytes and 1 megabyte depending on the
processor board being used, it is necessary to use the
memory management features built into the CP/M-86
operating system to allocate the memory in an intelligent
fashion. Consequently, the memory model shown in
figure 19 represents microcontroller memory as allocated
by CP/M-86 when transient data are being collected. As
shown in figure 7 the interrupt vector table and the
CP/M-86 operating system occupy the lower 12K of
memory. The real-time executive, the control algorithm,
and the MINDS package are loaded into the highest
memory locations available in the respective
microcomputer. The free memory for storing transient
variables is between the upper portion of the operating
system and the lower portion of the executive/
control/MINDS program. Each transient variable that is
to be collected is allocated a portion of this memory for

65 536

Executive/Control/MINDS

Transient variable 1

Transient variable 2

Transient variable 3

V/

Transient variable N

Free memory

12031

CPIM operating system

1024
0

Interrupt vector table

Figure 19.—MINDS transient sampling memory map.

its time history (fig. 19). This is done by the MINDS
transient software (fig. 9) in conjunction with the
CP/M-86 operating system. The partition assignments
start just below the executive/control/MINDS program
and ‘‘build down”’ in main memory toward the top of the
operating system. The size of the partition for each time
history is a function of the data element type (real,
integer, or word), the length of the time history
requested, and the sampling interval between data points.

Because each of the logical transient data tables can
contain any mix of word, real, or integer data elements,
clearly the memory partitions that one logical data table
would require may be quite different from the
requirements of another. Therefore, each time that a
different logical transient data table is sampled or the
length or sampling interval of the transient time history is
changed, the memory storage partitions must also be
changed. This is done by arming or disarming a
particular transient table. This process sets and resets the
memory portion addresses in the TRANSSTORESTAB
to accommodate the particular logical transient data
table being sampled. Once the arming process is done for
one of the logical transient’s storage tables, transient data
sampling can commence.

Transient Data Software Commands

The command structure for the transient data taking is
the same as the one for the main MINDS program. This
command structure is entered by using the ‘*-’’ command
in the MINDS main command structure and listed under
Miscellaneous Commands in appendix D. Once this
command is executed, the MINDS transient data block is
entered. The command structure in this block is identical
to that shown in figure 12. This command structure has
type I and Il commands as described previously. Many of
the commands use the same format as in the main
MINDS program, but in this case they influence items
and data in the transient sampling area. A description of
the four classes of commands follows. Additional
information on these commands is given in appendix D.

Table Definition Commands

The transient table definition commands are similar to
the ones described in a previous section for steady-state
data. Five of the commands are type I commands; the
last two are type II. The type I commands include the
following: “‘(’’, opens a transient data table to enter data
element names; ¢‘)’, closes the currently opened transient
data table; ‘“A’’, deletes the last member from the
currently open transient table; “@?’, deletes all of the
members from the currently open transient table; and
‘77, displays the current entries in a designated transient
table. The two type II commands are ‘“,”’, enters an
element in a transient data table, and ““_”’, overlays a
member of a currently open data table with another.

Sampling Parameter Commands

Four type I commands are used to control the sampling
parameters. These commands are used to display the
amount of memory available for sampling and to display
and alter the transient sampling interval and the transient
sampling length. The four commands are as follows:
“%’’, invites the operator to enter the desired sampling
interval and sampling length; “‘&’’, displays the currently
selected sampling parameters; ‘‘[’’, displays the
maximum memory available with the program loaded
and all transients disarmed; and ‘), displays the free
memory still available with a logical transient data table
armed. Note that the “]”” and ‘[’ commands give equal
answers in the event that no logical data tables are armed
to take a transient.

Data Collection Commands

Three type I commands are used in transient data
collection. These include *“{’’, which arms (i.e., allocates
free memory to) one of the four logical transient tables
for sampling; “‘J’’, which disarms (i.e., deallocates
memory to) a logical transient table; and ‘“\’’, which
takes the actual transient sample and stores it in the
allocated memory.

Data Storage Commands

The data storage commands allow the sampled data to
be retained for later analysis. There are four of these
commands, once again all type 1. The ““$’’ command
allows sampled data residing in free memory to be stored
in a disk file; ““*** allows the recovery of sampled data
stored on disk to be restored into free memory; ‘¢;”’
allows the sampled data residing in free memory to be
printed out on a console device; and ““”’’ updates the
name of the disk file where the collected data are to be
stored.

Operation of Transient Data Package

The operation of the transient data package is fairly
straightforward because most of the critical data
management functions are taken care of automatically.
To use the program, a logical transient data table must be
filled with data element names by using the *,”
command. Next the sampling time and sampling interval
must be set by using the “%’’ command. Then the
particular logical data table defined must be armed. As
explained earlier this means that each of the data
elements in the logical data table is assigned to a
particular partition in free memory. Next the actual data
sample is taken by using the ‘\’* command. Finally the
data are archived on a disk by using the “‘$’’ command.
These data can be read back later by using the ““**’
command, printed out, or uploaded to a mainframe
system for data analysis. The ‘.”’ command allows

13

exiting from the transient sampler to the main MINDS
command structure.

Clearly, although the ‘““\’> command can be used to
take data, many situations require that the data be
synchronized with an external signal. This can be done
quite easily since the sampling routine that is called by the
“N”’ command is the public entry point SAMPINT1
(appendix B). Therefore, if the real-time executive is
constructed such that it recognizes when an external
sample signal is present, the SAMPINT]1 subroutine can
be called to sample the data elements with the parameters
set up by the MINDS transient block (fig. 9).

Monitor Package

The third operational block of the MINDS package
shown in figure 9 is the MINDS monitor and debug. A
monitor is usually the first piece of software acquired for
a microprocessor; it lets the user display and change
memory, display and change processor registers, execute
programs, and set breaks or traps in these programs for
debugging. This MINDS software module provides the
user with some of the features typically found in
monitors, it extends some of these features, and it
modifies some features to make the software more useful
in debugging the real-time control discussed earlier. All
of these features and important facts on the monitor
operation are highlighted in the following sections.

Command Structure

The command structure for the monitor is somewhat
different from the command structure used in the main
and transient blocks (fig. 12). In the monitor block
command structure (fig. 20) only type I commands are
recognized. As shown in the figure, once the command
has been completely entered into the input buffer, the
first character is examined to determine if it is a valid
command. If it is valid, the respective command
processor is called on to parse the rest of the command
and execute it. Although the data element names are
known to the monitor block, they are not used to
generate a type II command format. This then makes this
portion of the program behave like a classic monitor.

Standard Monitor Functions

The MINDS monitor has the four standard monitor
commands to manipulate memory. These commands are
“H”’, to add and subtract two 16-bit values; ‘‘D”’, to
display a segment of memory; ““S’’, to set a series of
memory locations one at a time; and ‘F’’ to fill a series
of memory locations with the same value. Although these

14

- Monitor entry point

Input command line
to buffer

Is
first
character a valid

command
?

True False

Call respective Send error

command processor message
Return to Return to
entry point entry point

Figure 20.—MINDS monitor command structure

functions are found in any standard monitor, each has
been slightly extended to make it more useful in a control
environment. The ‘“H”’ command allows the entry of any
two numbers in decimal or hexadecimal format and gives
their sum and difference in decimals or hexadecimals.
The “D”’ command allows the display of any region of
memory. The memory can be displayed as bytes, words,
integers, or real numbers. Displaying a byte results in a
hexadecimal number between 0 and 255. Displaying a
word results in a hexadecimal number between 0 and
65 535. When a real number is displayed, a memory
image value between 10+38 and 10-37 is output. Finally,
when an integer value is displayed, an optional scale
factor can be defined in the command line. Therefore, a
scaled fraction number is output with a range dependent
on the defined scale factor.

The ““S” command operates in much the same way as
the display command. It allows the setting of byte, word,
integer, or real values one at a time in sequential memory
locations. Like the display command, the ‘‘integer’’
variable type in this command has an associated scale
factor. This allows the integer variables to be treated as
scaled fraction numbers with their display subsequently
being in engineering units. The ‘‘F’’ command allows for
the filling of a large block of sequential memory locations
with a particular piece of data. Finally the *.”’ command
allows exiting from the monitor to the main MINDS
command structure. In the interest of brevity in the

command structure only bytes, words, and real data can
be used in this instruction.

Breakpoint Debugging

Most monitors allow the user to set breakpoints, start
program execution, and then trap to the monitor once the
breakpoint has been reached. This allows for step-by-step
assembly language debugging of the application
software. Controls, however, are a somewhat different
story. Because they execute repeatedly, they operate on
different values of input data each time through the code.
Since errors can occur transiently or only at certain values
of the sensed inputs, it would be convenient to be able to
trap to the monitor only at times when a particular
condition is fulfilled. To attempt to set conditional
breakpoints with a standard monitor while not altering
the control code execution in the cases where the
condition is not satisfied would require substantial code
patching and possible reassembly for every new condition
that is tried. The MINDS breakpoint set and breakpoint
execution routines address these shortcomings. First, the
breakpoint set routine allows the user to set a breakpoint
anywhere in the microcomputer’s 1-megabyte address
space. Second, once this breakpoint is reached, it allows
for the collection of the 8086 registers and status flags
along with any one of the four steady-state data tables.
Finally, the breakpoint data are taken only in the event
that a certain condition is met. The breakpoint
specification is set by using a data element and specifying
a condition that it must be ‘‘greater than,’’ ‘‘less than,”’
or ‘“‘equal to.” Before the breakpoint specification is
met, the control process proceeds unimpeded. However,
the breakpoint condition is checked each time that the
breakpoint memory location is executed. Once the break-
point specification has been satisfied, the appropriate
register and table data are collected and the breakpoint is
removed from the code.

This technique of inserting dynamic conditional
breakpoints allows for the quick isolation and debugging
of transient errors found in a real-time control. These
errors would be extremely difficult to isolate with a
conventional monitor.

Breakpoint Command

Four commands are used to implement and evaluate
breakpoints. Each command is of type I format and is
implemented by using an alphabetic character. The *“‘B”’
command allows all of the breakpoint parameters to be
set. This includes the setting of the breakpoint location,
the using of a data element to set the breakpoint
condition, and the choice of a data table to be collected.
The ““G”’ command causes the actual implementation or

insertion of the breakpoint into the executing code. The
“X’’ command displays all of the processor registers as
they appear when the breakpoint is reached. The “T”
command allows the display of the data table that is
collected when the breakpoint is reached. The ‘‘R”
command prints out the current values of only the
segment registers so that locations can be quickly
determined.

Input/Output Library

Overview

The last block shown in figure 9 that is critical to the
operation of the MINDS package is the input/output
library. This library is a collection of routines that
facilitates the input and output of commands, numbers,
and messages to a console or line printer and allows high-
level command of the CP/M-86 file system. The writing
of a library like this is necessary because PL/M-86 is a
system implementation language. Consequently, no
software input/output drivers or libraries are typically
present in languages such as Fortran or Pascal. The
following discussion gives the overall conceptual
structure of this library. Appendix B gives the calling
sequences used to access the routines at the library
software interface.

Library Structure

The overall structure of the MINDS input/output
library is shown in figure 21. The diagram shows the
MINDS instruction processors (main, transient, and
monitor blocks) interfacing into the input/output library
software through a set of subroutine calls. The library
can be easily divided into four parts: the hardware-
specific routines, the output routines, the input routines,
and the CP/M-86 operating system interface. The
hardware-specific routines contain hardware control
sequences for controlling the actual physical output and
input ports. These routines, although very small, must be
tailored to the specific hardware being used. A listing of
the routine used for the serial input/output port on the
iSBC 86/12A board is included in appendix F.

The output routines consist of two major blocks of
code. The character output routine allows an ASCII
character string of any length to be output to the console.
The numerical output routines have the following
capability: output of 8-bit memory locations as hexa-
decimal numbers or unsigned decimal numbers; output
of 16-bit memory locations as hexadecimal numbers or
signed or unsigned integers; output of 32-bit memory
locations as plus or minus exponential numbers. The

15

MINDS instruction processors

U T T _"'"_“"'“r__ T 1 T

CPIM file Character Numerical |
control | input input |
routines | routines routines |

Operating |

system L_—_] Input 1 output

interface |
CP/M Input buffer | Numerical Character
interface and console | output output
routines control : routines routines

To CP/M-86

Console/printer
hardware-specific
input/output drivers

Figure 21.—MINDS input/output library structure.

numerical output routines for each case take the binary
bit patterns in memory and translate into an ASCII
character string for printing on the console.

The input routines consist of three major blocks of
code. The input buffer and console control do the major
storage and editing of the ASCII character strings from
the operator. The editing function includes backspacing,
line deletion, console bell control, and printer control.
Further information can be found in appendix D. Once
the input buffer’s full command signal has been received
(i.e., an ASCII carriage return), the character input
routine block allows the MINDS command processors to
access the input buffer. Furthermore, the numerical input
routines in the third block can access ASCII strings in the
buffer and translate them into the proper memory image
of the number. These routines can take numbers that are
input as hexadecimal, plus or minus decimal, or even plus
or minus floating point with optional exponents and
translate them into the proper memory images.

The operating system interface routines consist of two
blocks of code that allow the MINDS command
processor to directly interface into the CP/M-86
operating system. The CP/M-86 interface routines are a
set of small assembly language programs that allow high-
level languages like PL/M to set up the 8086 registers so
that various operating system services can be accessed.
The next block, CP/M file control routines, allows for
higher level access to the operating system. These
routines will create file control blocks, read and write
files in various formats, close files, delete files, print disk
directories, etc. By using these routines the MINDS
instruction processors can easily access the CP/M-86 file
system.

The MINDS instruction processors interface into this
input/output library through subroutine calls that send
or receive information in the manner shown by the
arrows in figure 21. The input/output library forms

16

flexible console input/output system and operating
system file interfaces that work not only with MINDS but
with other programs as well.

Extensions and Modifications

The previous sections describe a flexible data-taking
package that can be used in a variety of applications.
Several projects that have already successfully used this
software are described in reference 11 and 12. During the
conduct of these projects several modifications to this
package have become apparent. First, various versions of
the program can be implemented that use some or all of
the blocks shown in figure 9. All that is necessary for the
program to have the minimum steady-state data
collection ability is to link the MINDS main program and
the MINDS input/output library. The transient data
collection block and the monitor and debug block can be
added to the program as the need arises. Furthermore,
the number of variables that can be defined (the standard
version has 256) can be increased or decreased as the
program demands dictate. This allows program
compaction in cases where available computer memory
may be tight.

Finally, all that can be done with transient data is to
collect them, store them, recall them, and print the
numerical data points on a console device. To plot the
data, they must be transferred to a large mainframe
computer, reduced into proper form, and subsequently
plotted by using a standard graphics package. A plotting
capability could be very easily added to the transient data
block or as another complete data block to facilitate the
on-line manipulation of control parameters. Note that
this can be accommodated easily since all of the pertinent
transient table information is public.

Concluding Remarks

This report has described a program that can be loaded
with a control algorithm to provide steady-state and
transient data collection. The support hardware and
software necessary to run the program have been
described. The program was broken down into its four
major component parts: the main program, the transient
block, the monitor and debug block, and the
input/output library block, with each one being discussed

in detail. Finally, extensions and modifications that can
be made to enhance the program capabilities were
discussed. Detailed appendixes are provided on
commands, data table formats, public program entry
points, etc.

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio, October 7, 1984

17

Location
(hexadecimal)

0-3
4-7
8-B
C-F
10-13
14-7F
80-83
84-87
88-8B
8C-8F
90-93
94-97
98-9B
9C-9F
A0-A3
Ad4-A7
A8-AB
AC-AF
B0-B3
B4-B7
B8-BB
BC-BF
C0-C3
C4-C7
C8-DF
EO0-E3

Appendix A
Interrupt Map

Function

divide interrupt

single-step interrupt

nonmaskable interrupt

1-byte instruction interrupt (type 3)

overflow interrupt

Intel-reserved interrupts (mostly for floating-point mathematics emulation)
instruction timeout interrupt (8259 interrupt 0)
unused (8259 interrupt 1)

control timer interrupt (8259 interrupt 2)
unused (8259 interrupt 3)

unused (8259 interrupt 4)

multiplexer A/D data ready (8259 interrupt 5)
unused (8259 interrupt 6)

transient sampling timer (8259 interrupt 7)
debug intermediate condition

debug less than condition (word)

debug equal to condition (word)

debug greater than condition (word)

debug less than condition (integer)

debug equal to condition (integer)

debug greater than condition (integer)

debug less than condition (real)

debug equal to condition (real)

debug greater than condition (real)

unused

CP/M-86 operating system BDOS call

Appendix B
MINDS Module Description

The MINDS data-taking package can be logically broken into the four blocks shown in figure 9. However, each
of these blocks consists of several PL/M or assembly language object modules to fulfill the required functions. In
addition each of the object modules may have several public entry points or public variables. Therefore, each of the
load modules falls into one of four logical areas:

(1) MAIN program—MINDS.OBJ; INIT.OBJ; TABOUT.OBJ; and GETVAR.OBIJ.

(2) Transient data—MTRAN.OBJ; SMPTRN.OBJ; and MTRANS.OBJ.

(3) Monitor and debug—MNDMON.OBJ and INTRBK.OB]J.

(4) Input/output library—IOCON.OBJ; MESSAGE.OBJ; OUTH.OBJ; IOUT.OBJ; OUTR.OBJ;
INBUFF.OBJ; RDATA.OBJ; ININT.OBJ; INHEX.OBJ; INREAL.OBJ; CPMIO.OBJ; and
DISKIO.OBJ.

The function of each of the object modules, the calling sequences for the pertinent public routines, and any public
variables that they contain are discussed here.

Main Program

MINDS.OBJ

MINDS.OBJ, a PL/M routine, is the main MINDS program. It contains the main command interpreter routine,
the routines to define data elements, the routines to define steady-state data tables, the routines to automatically
store transient and steady-state data in a CP/M-compatible file, and the routines to recall the steady-state data
from the CP/M file and display them on the console. This module contains 6827 bytes of code and 7220 bytes of
data.

Public Entry Points

CALL MINDS—main entry point into the command interpreter (no calling parameters; no return parameter)
CALL ERROR (CHAR)—procedure to print error message followed by CHAR, where CHAR denotes an
ASCII alphanumeric character

CALL SPACE (NUM)—procedure to print spaces on the console, where NUM denotes the number of spaces to be
printed

Public Variables

NAMES$TAB—array to store data element names

SEG$TAB—array to store data element segments

OFF$TAB—array to store data element offsets

SF$TAB—array to store data element scale factors

VARSTYPE$TAB—array to store data element types

DATAS$TAB—array to store steady-state data table definitions
DATASTABSBIAS—array to store steady-state data table partitio s
DATASTABSLMT—array to store number of variables in each steady-state data table
TRANSTABSNAME-—array to store transient data table definitions
TRANSTABS$BIAS—array to store transient data table partitions
TRANSTABSLMT—array to store number of variables in each transient data table
TRANSSTORE$TAB—array to store memory locations to be used in storing transient history

INIT.OBJ

INIT.OBJ is an assembly language program to be called by MINDS for initialization. It prints the sign-on
message, initializes the 8087 coprocessor, and finds the segment register values for the currently loaded program.
The program contains entry point INITIAL1, which is called by the IOCON program (appendix F). This entry
point reinitializes the entire MINDS package if the program is interrupted during a long printout.

20

TABOUT.OBJ

TABOUT.OBJ is an assembly language program that collects steady-state data and prints them out to a
terminal. The procedure has four collection methods and three table output formats, as outlined in the command
appendix D.

Public Entry Points

CALL BRKCOLLECT—procedure to collect steady-state data. Collection method and table number are
determined by public variables TABCOLLECT and TABNUM, respectively.

CALL TABOUT—procedure to print steady-state data table previously collected. Table output format is specified
by public variable TABCON.

Public Variables

TABCOLLECT—steady-state data table collection method, specified as A to D (appendix D; command ““\’’;
parameter P1)
TABNUM—steady-state data table number to be collected, specified as 1 to 4 (appendix D; command ‘“\”’;
parameter P2)
TABCON-—steady-state data table output format, specified as 1 to 3 (appendix D; command ““\”’; parameter P3)

GETVAR.OBJ

GETVAR.OBJ is a set of assembly language routines that provide MINDS with a machine-dependent interface
to allow manipulation (loading and storing) of data throughout the 8086 1-megabyte address space.

Public Entry Points

CALL LSVARIW (DSEGMENT, DOFFSET, ADDIW, FUNC)—procedure to load or store a word or integer
variable

DSEGMENT-—segment address of variable to be loaded or stored

DOFFSET—offset address of variable to be loaded or stored

ADDIW—offset address of variable where result is to be placed or data are to be taken

FUNC—*L” if data are to be loaded from address DSEGMENT:DOFFSET and placed in location ADDIW;

“S’” if data currently at address ADDIW are to be placed at address DSEGMENT:DOFFSET

CALL LSVARR (DSEGMENT, DOFFSET, ADDIW, FUNC)—loads or stores a real variable in the same fashion
as CALL LSVARIW, with same calling parameters
CALL LBITE (DSEGMENT, DOFFSET, ADDIW, FUNC)—loads or stores a byte variable in the same fashion as
CALL LSVARIW, with the same calling parameters
CALL HEXPACK (APTR, HPTR)—routine to take 2 bytes of absolute data and pack it into 4 bytes of
hexadecimal data

APTR—pointer to source data (absolute)

HPTR—pointer to result data (hexadecimal)

CALL UNHEXPACK (APTR, HPTR)—routine to take 4 bytes of hexadecimal data and pack it into 2 bytes of
absolute data

APTR—pointer to source data (absolute)

HPTR—pointer to result data (hexadecimal)

Minds Transient Data
MTRAN.OBJ

MTRAN.OBJ, a PL/M-86 program, contains the command interpreter for all of the transient data sampling. In
addition, it contains the routine to set the transient sampling interval and transient sampling length, the routines to
manipulate the transient sampling tables, the routines to arm and disarm transients by allocating and deallocating
memory, and the capability to recall and print transient data from a CP/M file. This module contains 3940 bytes of
code and 998 bytes of data.

SMPTRN.OBJ

SMPTRN. OBJ is an assembly language routine that does the actual data sampling and storage of transient data
tables that have been set up by the routines in MTRAN.OBJ. These routines are particular to the interval timers
and interrupt controllers on the Intel 86/30 or Intel 86/12A microprocessor boards. Use on boards with different
hardware would give unpredictable results.

Public Entry Points
CALL SAMPINTO—procedure called by original initialization sequence in executive to set up the interrupt vector.
It is based on using interrupt vector 7 on the Intel 86/12A or Intel 86/30 board.

CALL SAMPINT1—procedure called by executive when it has detected that transient sampling should commence,
This routine initializes memory counter, flags, counter hardware, etc., every time that a transient sample is to start.

CALL SAMPLE—program that does the actual sampling of the transient in three steps. First, it initializes memory
that is going to store the transient. Second, it collects the data specified in the logical transient data table. Third, it
stores the data in locations specified in TRAN$SSTORESTAB. The location of this procedure is the one that
SAMPINTO stores in interrupt vector 7.

MTRANS.OBJ

MTRANS.OBJ, a PL/M-86 module, computes the value for the counter on the Intel 86/12A or 86/30 single-
board computers. This routine assumes that the 153.6-kHz clock is connected to counter 2 of the 8253 integrated
circuit on these boards. For this routine to work, the sample interval passed must be between 0.013 and 426.67 ms.

Public Entry Point

ECHK = COUNTSSET (@SAMP$CNT, SAMPSINT)—procedure to compute number of counts for the 8253
counter to generate proper transient-sampling interval

ECHK =0 if error occurred

ECHK =1 if interval set properly

@SAMPSCNT—address of word variable that returns number of timer counts
SAMPSINT—real number describing the request sample interval in seconds

Monitor and Debug

MNDMON.OBJ

MNDMON.OBJ, a PL/M-86 module, contains the monitor command interpreter along with the routines to
allow the display, filling, and changing of memory locations. The variable types can be byte, word, integer, or real,
with the integer data type having the provision for an optional scale factor. In addition, this module contains the
command processors to define a dynamic breakpoint.

Public Entry Point
CALL MONITOR—procedure to interpret monitor commands

INTRBK.OBJ

INTRBK.OBJ, an assembly language module sets up the interrupt vectors that implement the dynamic
breakpoints. In addition, it contains the routines that check, execute, and reset the dynamic breakpoints.

Input/Output Library

I0CON.OBJ

IOCON.OBJ is a hardware-specific module that drives the RS232 part on the Intel 86/12A or Intel 86/30 boards.
This routine provides the logical input/output device that all of the other higher level input/output drivers use. A
listing of this routine is provided in appendix F.

21

22

Public Entry Points

CALL OUTCON (CHAR)—routine to output ‘“CHAR’’ byte to console
CHAR =INCON—routine to return ASCII ““CHAR’’ from console

Public Variables

CONCONTR—word variable to determine output device
1 =output to console device only
2 =output to console and list device

MESSAGE.OBJ
MESSAGE.OBJ, an assembly language routine, prints an ASCII string on the console.

Public Entry Point

CALL MESSAGE (@STRING), where STRING is the address of an ASCII character string to be output to the
console. The string must be terminated with a null character (i.e., 0).

OUTH.OBJ

OUTH.OBJ, an assembly language routine, outputs variables in hexadecimal format.

Public Entry Points

CALL OUTH (VAR)—outputs a 2-byte memory location in hexadecimal format, where VAR denotes a word
variable
CALL OUTHB (VAR)—outputs a 1-byte variable in hexadecimal format, where VAR denotes a 1-byte variable

I0UT.OBJ

IOUT.OBJ, a set of assembly language routines, outputs one and two variables in decimal format.

Public Entry Points

CALL OUTISW(VAR)—outputs a 2-byte variable as a signed number between —32 768 and +32 767, where
VAR denotes a 2-byte variable

CALL OUTIUW(VAR)—outputs a 2-byte variable as a signed number between 0 and 65 535, where VAR denotes
a 2-byte variable

CALL OUTISB(VAR)—outputs a 1-byte variable as a signed number between — 128 and 127, where VAR denotes
a 1-byte variable

CALL OUTIUB(VAR)—outputs a 1-byte variable as an unsigned number between 0 and 255, where VAR denotes
a l-byte variable

OUTR.OBJ

OUTR.OBJ, an assembly language routine, outputs a 4-byte memory location as a real number.

Public Entry Point

CALL OUTREAL(VAR)—outputs 4-byte memory location as a real number, where VAR denotes a 4-byte
variable

INBUFF.OBJ
INBUFF.OBJ, a set of PL/M routines, does buffered input to the console, controls the console, and reads the
console input buffer.

Public Entry Points
CALL INPUT BUFF—inputs ASCII characters from the console by using subroutine INCON and stores them in a

buffer. In addition, this routine permits backspacing, line termination and reset, bell control, etc.

CHAR =READBUFF—accesses the next character in the input buffer and places it in byte variable ““CHAR,”’
where CHAR denotes a 1-byte variable

RDATA.OBJ

RDATA.OBJ, an assembly language routine, reads ASCII characters from the input buffer, decides what type
of number was input, and calls the proper conversion routine to create the correct core image corresponding to the
input string.

Public Entry Points
RCHK =RDATA—same description as RDATA.OBJ, where RCHK denotes a word of returned data
corresponding to the type of data that was input. The following six conditions are possible:

O=error

1 =default

2 =integer between (—32 768 and —1)

4 =integer or word between (0 and 32 767)

8 =word between (32 768 and 65 535)

16 =real number

Public Variables

RWORD, RINT, RREAL—public variables where the RDATA routine places the results of the converted input
string.

ININT.OBJ

ININT.OBJ is a set of assembly language routines used by RDATA to do decimal integer or word conversions.

INHEX.OBJ

INHEX.OBJ is a set of assembly language routines used by RDATA to do hexadecimal word conversions.

INREAL.OBJ
INREAL.OBJ is a PLM/86 routine used by RDATA to do real-number conversions.

CPMIO.OBJ

CPMIO.OBJ, a set of assembly language routines, provides a high-level language interface to the functions of
the CP/M-86 operating system. Each public entry point and the corresponding CP/M-86 function number listed
in reference 2 are described here. Reference 2 should be consulted if further description of an individual function is
needed.

Public Entry Points

All of the following routines return a ‘1"’ if successful and a “‘0’’ if unsuccessful in variable RTRN, except where
otherwise noted. Furthermore, the calling arguments @MCB and @FCB are addresses of CP/M-86 memory
control and file control blocks, respectively. These control block definitions are defined in reference 2.

CALL RESETCPM (Function 0)—calls the CP/M-86 operating system but does not release the allocated program
memory

CALL RESETCPMS (Function 0)—calls the CP/M-86 operating system and releases the allocated program
memory ,

RTRN =RESETDSK (Function 3)—resets the entire disk file system to read/write status

CALL SELDSK (NUM) (Function 14)—selects disk drive ‘““NUM’’ as currently logged in and defaulted disk drive,
where NUM =1 corresponds to disk A, etc.

RTRN=0OPNDSK (@FCB) (Function 15)—opens a currently existing disk file for reading or writing

RTRN =CLOSDSK (@FCB) (Function 16)—closes a currently open disk file

23

24

RTRN =SRCHF (@FCB) (Function 17)—searches for first disk directory entry corresponding to FCB
RTRN =SRCHN (Function 18)—searches for next disk directory entry
RTRN =DELETE (@FCB) (Function 19)—deletes a disk file directory entry
RTRN =READSK (@FCB) (Function 20)—reads a 128-byte record from currently open disk file
RTRN =WRITEDSK (@FCB) (Function 21)—writes a 128-byte record to a currently open disk file
RTRN =MAKEDSK (@FCB) (Function 22)—opens a new file on disk for writing
CALL SETDMA (@BUFF) (Function 26)—sets the disk DMA offset address for disk file transfer, where @ BUFF
denotes address of disk file input/output buffer
CALL ALLOMAP (@SEG, @OFF) (Function 27)—returns segment and offset pf current disk allocation map
@SEG = address of location in which to place allocation map segment
@OFF =address of location in which to place allocation map offset
CALL DSKPARMS (@DSKMP) (Function 31)—returns disk parameters for currently logged-in disk, where
@DSKMP denotes address of data structure to store disk parameters
RTRN:=RESETDRYV (NUM) (Function 37)—resets disk drive ‘“‘NUM’’ to read/write status, where NUM denotes
number corresponding to drive code: NUM =1 resets disk A, etc.
CALL SETDMAB (@SEG) (Function 51)—sets the disk DMA segment or paragraph address for disk file transfer,
where @SEG denotes segment and paragraph address of disk buffer
RTRN =GMAXMEM (@MCB) (Function 53)—returns maximum amount of free memory available

MCB =address of memory control block
RTRN =OFFH if no memory is available; 0 if some memory is available

DISKIO.OBJ

DISKIO.OBJ, a set of PL/M-86 routines, performs high-level disk file control to allow a programmer to
interface with the CP/M-86 operating system by reading a file name, opening a file, and reading from and writing
to the opened file. It is also possible to display a disk directory and to delete any file from that disk.

Public Entry Points

RTRN=RD FILE NAME (@FCB, @DFCB, DFLT, DSK)—routine to read in a file name from the input buffer
or place a defaulted name in proper file control block for later operation
@FCB = pointer to operational file control block
@DFCB = pointer to default file control block that may be used
DFLT =Y’ if default file control block is to be used; ‘‘N’’ if file name is to be read from input buffer
DSK=“A", “B”’ etc.—corresponds to drive to be designated for disk file

RTRN =ALLOCMEM (@MCB) (Function 55)—allocates memory as per MCB
RTRN =0 if request is successful; OFFH if request is unsuccessful
CALL FREEMEM (@MCB) (Function 57)—frees allocated memory
RTRN =OPNSFILE$CNM (@FCB,TYPE)—routine to open a disk file with the name specified in FCB
@FCB = pointer to file control block
TYPE =Y’ if new file is to be opened; ‘N’ if old file is to be opened
RTRN =DSKRW (@DATA, @FCB, RLTCH)—routine to input or output a 128-byte record from a disk with
the memory address of the record pointed to by @DATA
@DATA =pointer to 128-byte record in memory
@FCB = pointer to file control block
TYPE =““Y”’ if new file is to be opened; ‘N’ if old file is to be opened
RLTCH =““W”’ if write to disk is desired, “R’’ if read from disk is desired
RTRN =HL$DSKIO (@DATA, @FCB, RLTCH, FLTCH, NUM)—routine to read and write 128-byte records to
and from a disk file in either absolute format or hexadecimal format
@Data = pointer to 128-byte record memory location
@FCB = pointer to file control block
RLTCH = “W”’ if write to disk; “R’’ if read from disk
FLTCH =“‘A"’ if absolute data to be read/written; ‘““H’’ if hexadecimal data to be read/written
NUM =number of words to be output in hexadecimal format, with nulls being padded for the rest

Error

CZEZEMrR—«=TOmmIn

AU BALWN~RNRASI LI RIOT

oo

Appendix C
Error Summary

Explanation

data element already defined in master table

undefined or incorrect data type in input sequence. This error is usually generated by the
input/output library

steady-state or transient data tables closed

invalid default attempted in command sequence

transient sampling parameters not set

master data element definition table or currently open steady-state or transient sampling table full

improper command sequence for overlay

improper argument sequence in command string

inproper steady-state data collection command sequence

requested steady-state transient data table has no elements defined in it

input number type incompatible with type of number required for command sequence

input too large to convert to an integer

unable to open a disk file on read

variable not defined in master definition table

open table error
(1) Table number not between 1 and 4
(2) Another table (steady state or transient) open

unable to open disk file on write

transient sample size requested is too large for current memory configuration

read error on disk

memory allocation error in CP/M-86

transient sampling armed; no changes possible in variable or table definitions at this time

undefined command request

error code not currently implemented

write error on disk

steady-state or transient data table already empty

variable types not matched for proper transient overlay

close file error in CP/M-86

transient sampling parameters not set

memory configuration cannot accommodate present number or mix of variables

not enough memory for present number of variables at current sample length

transient sampler not armed

printout requested for an undefined transient sample

length of variable name requested or table length requested not compatible with current program
version

table version requested for read-in not compatible with current version of program

table format (hexadecimal or absolute) not compatible with format requested

table format (steady-state or transient) not compatible with format requested

25

26

Appendix D
Users Command Summary

Main Static Data Display Section

Data Element Definition and Display Commands

Command
NAME TY,SEG,OFF,SEN,SFD

NAMEL,NAME2,TY,SEG,OFF,
SFN,SFD

NAME =

NAME#

NAME ’P1

NAME&

%

Description

teaches the program a data element definition (NAME denotes name (up to six
letters) of a selected location; TY denotes type of data element (I =integer;
W =word; R=real); SEG denotes a data element memory segment; OFF
denotes a data element memory offset; SFN denotes a numerator scale
factor; and SFD denotes denominator scale factor). Note that SFN and SFD
can be replaced directly by one real number representing the scale factor if
only the SFN entry is made. The TY, SEG, OFF, SFN, and SFD parameters
can all be defaulted, if desired, to the previous element’s definition. If offset
is defaulted, the appropriate offset is computed from the previous one
depending on its variable type

overlays “NAME]1”’ data element definition in master table with ‘“NAME2.”
Defaults can be used but offset is updated from ‘‘NAME1"”’

displays value of data element “NAME”’ in engineering units. The character
=" can be entered by itself to display the value of the previously referenced
data element.

displays value of a word or integer data element in binary units. The character
“#”” can be entered by itself to display the value of the previously referenced
data element.

sets value of data element “NAME’’ to P1. P1 must be a real number if
NAME is real. If P1 is a word, P1 must be between 0 and 65 535. If P1 is an
integer, P1 divided by the scale must be between —32 768 and 32 767.

displays definitions parameters of data element ‘“NAME”’
displays master table and all data element definitions

displays current segment registers being used by the executive/control
algorithm/MINDS program load

allows alteration of segment register values in the master data element defini-
tion table

Steady-State Data Table Manipulation and Collection Commands

Command
P1

)
@

]
\P1,P2,P3

Description

opens a steady-state data table for input of data elements. (P1 denotes table
numbers 1 to 4.)

closes current open steady-state data table
erases all definitions from current open steady-state data table
starts new output line in current open steady-state data table

outputs a data table to screen in desired format. P1 denotes collection method,
specified as a letter A to D (method A: all data are integer or word and all
data lie in same data segment; method B: all data are integer or word but can
be in different data segments; method C: data can be integer, word, or real
but all data must lie in same data segment; method D: data can be integer,
word, or real and can be in different data segments.) P2 denotes number of

table to output to CRT; must be between 1 and 4. P3 denotes format of table
to be output (1—output heading and data; 2—output only data; 3—output
only heading). Note that parameters P1, P2, and P3 can be defaulted to their
previous values by using commas.

NAME, puts variable “NAME”’ in current open data table

ID:FILENAME saves all data element definitions along with steady-state and transient table
definitions in a CP/M-compatible file (D denotes disk A or B; FILENAME
denotes CP/M-compatible file name with optional extension). Disk and file
name can be defaulted.

*D:FILENAME recalls data element definition and steady-state or transient table information
from a CP/M-compatible file. (D denotes disk A or B; FILENAME denotes
CP/M-compatible file name with optional extension). No disk or name
default is allowed in this command since more than one data element
definition could be stored on a disk.

Automatic Static Data Collection and Retrieval Commands

Command Description

\P1,0 special version of ‘“\’’ command to collect the values of all defined data
elements but not print them out; that is, to collect table 0. This command
should be used in conjunction with the ““$*’ command for automated data
taking. (P denotes data collection methods A to D). P1 and O can be
defaulted after the first entry.

$P1,P2 stores the respective collected data in a CP/M-compatible file with a defaulted
name. The defaulted name depends on the type of data being stored
(transient or steady state) and the reading number. (P1=S means store
steady-state data; P1 =T means store transient data; P2 = A means store data
in absolute format; P2 = H means store data in hexadecimal format.) P1 and
P2 can be defaulted to their previous values.

\D:FILENAME,P1 recalls steady-state data from a CP/M-compatible file. (D denotes disk A or B;
FILENAME denotes CP/M-compatible file name with optional extension;
Pl=A if data are stored in absolute format; P1=H if data are stored in
hexadecimal format.) No disk or name default allowed since a large number
of data files may exist on the same disk.

;P1,P2 prints the recalled steady-state data. Command is used in conjunction with the
“/>> command to display stored data that have been taken previously. (P1
denotes number of table to be output to CRT; must be between 1 and 4. P2
denotes format of table to be output: 1=output headings and data;
2=output data only; 3 =output headings only).

updates transient and steady-state reading numbers for default file names
assigned in “‘$”” command. This command also updates the default reading
number for the MINDS data element definition tables. This number is used in
conjunction with a default in the ““!”’ command.

Miscellaneous Commands

Command Description
>D displays disk directory and remaining free space of selected disk. (D denotes
disk A or B.)
{D:FILENAME deletes CP/M file from selected disk. (D denotes disk A or B; FILENAME

denotes CP/M-compatible file name with optional extension.) No disk or
name default allowed for safety reasons.

27

28

:H1,H2 adds or substracts two numbers. (H1,H2 denotes two hexadecimal or decimal
integers or words.)

< calls monitor/debug package
- calls transient data sampling package

exits main command structure and returns to main calling program (i.e., real-
time control executive)

Transient Sampling Package

Transient Data Table Definition Commands

Command Description

(P1 opens transient data table for input of data elements. (P1 denotes table
number; must be between 1 and 4.)

) closes current transient data table

NAME, puts data element ‘“‘NAME’’ in current open data table

NAMEI1_NAME2 overlays “NAMEI1"’ data element in current open transient data table with
“NAME2”

A deletes last data element defined in current open transient data table

@ deletes all data element entries in current open transient data table

7P1 displays selected transient sampling table data element members. (P1 denotes

table number; must be between 1 and 4.)

Transient Sampling Parameter Commands

Command Description
% sets transient sampling parameters (sample interval, sample length)
& displays current sampling parameters and current sampling memory allocation
[displays maximum memory available for storage of transient data. The value
displayed by this command is the same whether a transient table is armed or
not.
] displays memory left for further storage of transient data. The value displayed

by this command is equal to that displayed by ‘[’ if a transient data table is
unarmed. However, if a table is armed, this command only displays the
amount of free memory actually left.

Transient Data Collection Commands

Command Description

{P1 arms a transient data table in preparation for a transient sample. (P1 denotes
table number; must be between 1 and 4.) This command allocates the proper
amount of memory for each variable in the respective table.

} disarms a transient data table so sampling parameters, table data element
members, or table requested for sampling can be changed

\ activates currently armed transient data table and takes transient data

Transient Data Storage Commands

Command Description

$P1,P2 stores respective collected data in CP/M-compatible file with defaulted name.
The defaulted name depends on type of data being stored (transient or
steady-state and reading number). (P1=S stores steady-state data; P1=T
stores transient data; P2= A stores data in absolute format; P2=H stores
data in hexadecimal format.) P1 and P2 can be defaulted to previous values.

updates transient and steady-state reading numbers for default file names
assigned in the *‘$”’ command. This command also can update the default
reading number for the data element definition tables. This number is used in
conjunction with a default in the ‘!’ command

*D:FILENAME,P1 recalls transient data from CP/M-compatible file. (D denotes disk A or B;
FILENAME denotes CP/M-compatible file name with optional extension;
P1=A if data stored in absolute data format; P1=H if data stored in
hexadecimal data format.) No disk or name default allowed since a large
number of data files may exist on the same disk. The transient table
definition corresponding to the respective transient must be armed for the
recall to take place.

Pl prints transient data at console of respective variable number in currently
armed transient table. (P1 denotes transient variable number in currently

armed table.) If P1 is defaulted, all variables in currently armed transient
table will be printed.

Transient Package Miscellaneous Commands

Command Description

returns to main steady-state collection program

Monitor/Debug Package

Standard Monitor Memory Display and Set Commands
Command Description

returns to main steady-state data display program

H V1,V2 adds or substracts V1 and V2 (V1,V2 denote two hexadecimal or decimal
integers or words)

D T,SEG,OFF1,0FF2,SFN,SFD displays main memory from OFF1 to OFF2. (T denotes data type: byte, word,
integer, or real; SEG denotes data segment; OFF1 denotes starting data
offset; OFF2 denotes ending data offset; SFN denotes numerator scale
factor; SFD denotes denominator scale factor.) SFN and SFD are ignored
unless variable type is integer. Variable type and segment can be defaulted;
however, if T is defaulted, byte data are assumed.

F T,SEG,OFF1,0FF2,DATA fills data from SEG:OFF1 to SEG:OFF2. (T denotes data type: byte, word, or
real; SEG denotes data segment; OFF1 denotes starting data offset; OFF2
denotes ending data offset; DATA denotes data to be filled.) If T is
defaulted, byte data are assumed.

S T,SEG,OFF,SFN,SFD sets memory locations with input data. (T denotes data type: byte, word,
integer, or real; SEG denotes data segment; OFF denotes data offset; SFN

denotes scale factor numerator; SFD denotes scale factor denominator.) If T
is defaulted, byte data are assumed. SFN and SFD are ingored except for
integer data. Inputting a comma will not change current memory location but
will increment to next location. Input is terminated by entering an error.

Breakpoint Set, Display, and Execute Commands

Command
R

B SEG,OFF,OPT, TABC,NAME

<=>VAL

G

X
T P1

Keyboard Commands

Command
AH
AG
AX
AP
ANY KEY

30

Description

displays current segment registers of load program; used to provide
information for setting breakpoints

sets a dynamic breakpoint at a particular location with a set of characteristics
(SEG denotes breakpoint segment address; OFF denotes breakpoint offset
address; OPT denotes breakpoint option (0 = collect 8086 registers; 1 = collect
8086 registers and table 1; 2 =collect 8086 registers and table 2; 3 =collect
8086 registers and table 3; 4=collect 8086 registers and table 4); TABC
denotes table collection method A to D. See command ““\’’ for complete
explanation of data collection methods; NAME denotes name of any word,
integer, or real data element to be examined for a conditional break; < = >
means that less than, equal to, or greater than are the three permissible
conditions; VAL denotes appropriate value for the conditional.) If
“NAME’”’ parameter is omitted, an immediate breakpoint is set (i.e., a
breakpoint is initiated as soon as the location is reached). SEG, OFF, and
TABC can be defaulted.

commands to begin above breakpoint. Current conditional in force and
breakpoint location are printed out.

displays collected data registers

outputs collected data table (P1 denotes table output formats 1 to 3 described
in the ““\”’ table output command.)

Description
backspaces input buffer
turns bell on or off
deletes entire input line
turns optional output to line printer on or off
striking any key during output will terminate printing

Appendix E
Data Table Format

The data collection program can store three types of data table on disk. These data tables include parameter
definition tables, steady-state data tables, and the transient data tables. The steady-state and transient data tables
are output to the disk in CP/M format with default names STDYXXXX.DAT and TRANXXXX.DAT. The
XXXX stands for a number between 0 and 9999 that is automatically incremented every time a table is written. In
addition, the data tables can be output to the disk in either hexadecimal or absolute format. The absolute format
takes up less space and stores the memory image of the steady-state or transient data in a CP/M file.

The hexadecimal format converts each memory byte into a 2-byte ASCII representation of the contents of the
memory location. In addition, it adds carriage return and line feed characters at appropriate places in the data to
create data records of the proper length. This hexadecimal file can then be uplinked directly into a mainframe
computer for data reduction and plotting since all of the characters are ASCII between ‘0"’ and ‘‘F.”’ Therefore,
no spurious control codes will be given to the mainframe computer. The data format for data writing and readback
is chosen in the data storage and retrieval commands.

The parameter definition tables are handled in a different manner than the data tables. The parameter definition
tables can only be written to the disk in absolute format since there will never be any necessity to uplink them to a
mainframe computer. The name of the disk file to which the information is being written may be defaulted to
MINDXXXX.TAB or may be chosen by the user. As with the steady-state and transient data files the XXXX
number is incremented every time a file is written or modified to an appropriate user-selected value by using the
7 command.

The format of each of the three data tables is given here. All of the data in the file header and transient preamble
are automatically stored.

Transient Data Tables

Record 1—file type record

(1) Space
(2) File type (H =hexadecimal file; F =absolute file)
(3) Check sum

Record 2—transient parameter record

(1) Transient number

(2) Number of transient variables in file

(3) Total number of memory paragraphs used for transient sampling (paragraph = 16 bytes)
(4) Number of sample points per variable

(5) Number of sample paragraphs per real variable

(6) Number of sample paragraphs per word variable

(7) Counts for sampling interval timer

(8) Check sum

Record 3—transient data record preamble for variable 1

(1) Integer, word, or real variable flag (27 =integer or word transient; 22 =real transient)
(2) Full-scale scale factor (SF)

(3) Full-scale modifier (SM); i.e., full scale =SF *2 *SM

(4) Name of transient variable

(5) Check sum

Scale factor and full-scale modifier only apply if integer data are being written. If data are word or real, the scale
factor is zero (SF =0).

Record 4—transient data record Sfor variable 1

For an integer or word variable, one record consists of 30 data points (i.e., 60 bytes) and a check sum. For a real
variable, one record consists of 15 data points (i.e., 60 bytes) and a check sum.

A series of type 4 records are written until the entire transient trajectory has been written to the file. For the next
transient variable a type 3 record is written along with the requisite number of type 4 records to completely output
that transient. This procedure is followed until all of the transient variables have been written.

31

Steady-State Data Tables

Record 1—file type record
(1) Space
(2) File type (H =hexadecimal file; F =absolute file)
(3) Check sum

Record 2—steady-state parameter record

(1) OFFFFH

(2) Steady-state reading number

(3) Number of steady-state variable values collected
(4) Size of steady-state data collection buffer

Record 3—steady-state parameter data element values

Integer, word, and real numbers are collected and output in a series of records. Each record consists of 60 bytes
and a check sum. The variables are collected and stored in the same order as they are defined in the master table.

Parameter Definition Tables
Record 1—Data table version number

Record 2

(1) Steady-state data table partitions

(2) Number of variables stored in each steady-state data table
(3) Free

(4) Number of variables defined in master table

(5) Maximum size of each name

(6) Maximum size of table to define data element names

(7) Maximum size of data element definition tables

(8) Steady-state data table print parameter

Record 3

(1) Transient data table partitions
(2) Number of variables stored in each variable data table
(3) Number of paragraphs necessary to store a word data element transient sample
(4) Number of paragraphs necessary to store a real data element transient sample
(5) Transient parameter set latch
(6) Total number of memory paragraphs used for transient sampling
(7) Counts for sampling interval timer
Record 4
(1) Total transient sampling time
(2) Transient sampling interval
Records 5 to 16

Store array of data element definition names (NAMES$TAB).
Records 17 to 24

Store array of data element scale factors (SFSTAB).
Records 25 to 32

Store array of data element offsets (OFF$TAB).
Records 33 to 40

Store array of data element segment (SEG$TAB).
Records 41 to 42

Store array of data element types (VARSTYPESTAB).
Records 43 to 54

Store array of steady-state data table definitions (DATA$TAB).

Records 55 to 58
Store array of transient data table definitions (TRANSTABSNAME).

34

Appendix F
Routines for Console Input and Output

SERIES-1TT @024/87/%3/186 HOCED AS

LJECT MODULE PLACED IN sF 2 IOCON DBJ
WREENBLER TRVOKED BY: GSM3I6.86 fF20IOCON, 5RO XREF

)
533
m
=
5]
[_
|

ROVZ.0 ASSENBLY OF MODULE 1000

Lo CRJ LINE SOURCE

+1 STITLE(" IDCON~- ROUTINES FOR CONSOLE INPUT/DOTRUTY)

Py I S A SO

WIS A SET OF TWO FROCEDURES TO [0 CONSOLE,

-
2T AND GRARHICS DEVICE INPUT &ND OUPUT,

100
L1

S~~~

INCON--DOES CHERACTER INPUT FROM THE CONZOLE

00

p—

QLITCON--DOES CHARACTER OUTRUT TO THE COMSOLE DEVICE
LIETING DEVICE SND GRAPHICE DEVIDE [EFENDING

—
—

? (W THE SETTING OF THE VARIQBLE CONCONTR
13

fu—y
-

= 1 QUTPUT TO COMSOLE DEVICE [NV
= -} UHTD“T T COMSOLE ANDE LIST DEVICES
T GRAPHICS TEVICE

13

oy
i~

X

o
~~J

T”E RGUTIB S f 5 THEY NHJ T%“D HP_ CUZTGﬂIZ“D T D

Py oy
R)

e wom td uK wR e ue AW aw caE e wR uk aN cem R we w4

20 INTEL SBC 8417 (9 9A730 ROGRDS, THESE THi BBQRDS BOTH
21 ! USE M 3339 FOR SERITAL PORT COMTROL, THESE AOUTINES DRIVE
2 H THE 5257 INTERFACE DIRECTLY, HOMEVER, THEY COULD BE CONFIGURED
i3 H T WORK THROUGH THE BIOS IN THE CP/M-34 OPERGTIMG &
24 : THE INTERFACE O THE LISTING FORT AND THE GRAPHICS PORT USE
5 3 PORTS | AND 2 RESPECTIVELY ON THE IMTEL ISRC S34 SERIAL CARD
2t ;
7 : MOFTE: ET-UP [F THE CONSOLE, LISTING AND GRAPRICS RORT ON THE
2 : £ SEC 24/30 AND SRC 534 BOARDS 15 ATSUMED TO 5E
2% ; £EhE BY THE CP/M~24 OFERATING SYSTEM
30 ;
2 ! CALLING SEQUENCE FOR CHARACTER OURUT ROUTINE “DTCONY
2 ! ONTt CHARACTER INFUT ROUTINE < INCONC,
K H
23 ! FUSH WoeR (BYTE) T0 EE QUTFUT
34 ; CaLL OUTCON
37 :
3 !
39 : CHAR = I0C0H
44 ! CHARACTER RETURNS IN THE AL RESISTER IF ASSEMELY LANGUAGE
41 H LSED
Z i
43 3
44 5 MOTE: ROUTIME DESTROYES THE AX, CX. AND DX REG

45 i
4t PHERERHE R R R R S S S A B R RS 1 4 48
47 +1 $EJECT

48
49
50 NAME 10CON

3 COROUP GROUP COOE

52 IGROUP GROUF DATA

33 ASEUME CSECOROUP, s DGROUE
M PUBLIC (UTCOM, CONCONTH, TNCOH

25 EXTRN INITIAL1:NEAR

ew am

}
H
3 } [EFINE EXTERNAL 170 PORTS
i
}
H

CONSOLE 1/0 PORTS
A 41 JUTLCONLSTAT B ODRH 5 CUTPUT STATUS PORT ADDRESS 0N 8251
Q08 L2 OUT_CONCHAR - B ODSH 1 CHARACTER CUTPUT PORT ADDRESS ON 5251

G004 43 IN.CON_STAT EQl GDAH 1 INPUT STATUS PORT AEDRESS OM 625
Oona & INCON_CHAR EQl ODEH 3 CHARACTER IMFUT PORT ADDRESS OM 5251
A3 i

L1 i

47 H

& } LIST 1/0 PORTS

CUT_LIST_STAT Ed DRIH 7 LIST STATLS FORT
UT_LTST.CHAR ERU OA0H 5 LIST CHARACTER FORT

; GRAFHICES OUTPUT FORT DEVICES

GRAFH_OUT _5TATLS Bl OAH 3 GRAPHICS STATUS PORT
GRARH_OUT_DATA el 0AZH 5 GRAPHICS DATA FORT

»
?

L]

J0A1
A0

g e
— D

0083
(0AZ

N
S ra

~d
(Sm Lo

~3 =g
PO |

”QTA SEGMENT PUELIC -DATR”
...... {

2000 0100

e e 3
£ g
ar gy e
=
f:
5
el
i)
=

CONGOLE/LIST DEVICE CONTRCL WORD

o
LX<

- 20 ﬂATA ENIS
81 41 $EJECT
a2 i
—— 33 CODE - SEGMENT FUBLIC “CODE-
24 i
33 TITEON:
000 = 24 FlsH BF
(001 SREC 37 M 8P, 3P

SAYE BF REGISTER

Lo a]

[CHARACTER CUTPUT TO THE
CONSOLE DEVICE

oo oo
fasd -3 g
- e

-

000% A10000 R
0004 300200
Q009 7444

n AX, CONCONTR i HET CONSOLE CONTROL FLAG
Cip AX.2 HECK IF TEK OUTRUT DESIRED
JE Gl P 6 0 TO TEE OUTRUT

o I B R
[SN
—-

=
Ly R R 2]

LOOPLs

S~

2008

Q0O BADROO
DARE EC
OQOF 2401

]
o

MV OX, OUT_CON_STAT 3 GET COMSOLE STATUS PORT ADDRESS
IN AL B 3 GET CONSOLE STATUS
AND ALs1 ? CHECH IF CONSOLE 15 FREE

L G
O g

35

36

0011 74FR
0013 BADEDO
G016 3A4404

O01A B10000

OO0 200000

G020 IR0

0070 EALA
GORF 2802
0031 7405
(033 EAD3
0035 E80000
Q038 50

GO3% C20200

00zt

0030 53
(030 BBEC

X

003F BADACO
0042 EC
0043 2402
0045 74

DO4T BALROO
0048 EC
0dg 247F

+]

LETL:
ouTt:
ouTz:
$EJECT
INCON:
Logpz:

ﬁgv
MV

T

MY
CHP
Ji

I
AND
JI
HOV
T

N
AND
ls7

'l b

IN
caLL

FOF
RET

Bl
MOV

My
IN
AN
JZ

M
IN
AMD

LoGpt

I BT _CON_CHAR
AL, [BP+4]

¥, AL

- am ww ww

AX, CONCONTR
AX:0
0Tt

we me A e

AL, OUT_LIST_ETAT
At

LETY

AL, [BP+4]

(LT LIST_CHAR, AL

[T

LOOP TILL CONSOLE BUFFER EWPTY
LOAD CHARACTER OUTPUT PORT ADDRESS
GET OUTPUT CHARACTER FROM STACK
CUTPUT CHARACTER Tit COMSOLE

CHECK IF LINE FRINTER OUTPUT
REQLESTED

MOV CONSOLE CONTROL LATCH TO AX
CHECK IF SET FOR PRINTER QUTPUT

3 JUMP IF MO PRINTER OUTPUT REQUESTED

FRIMTER CUTPUT DRIVER

i GET LISTING DEVICE STATUS

3 CHECK LISTING DEVICE STATUS
i STATUS MOT READY CHECK AGAIN
i GET CHARACTER T4 BE CUTPUT

i OUTPUT CHARACTER

ROUTINE TO DETECT CHARACTER
FRESENT DURING INPUT, THIS
ROUTIME ABORTS FURTHER OUTPUT
AMD REINITIALIZES THE FROGRAM

INPUT CONSDLE STATUS

CHECK IF CHARACTER PRESENT

MO CHARACTER CONTIMUE

CLEAR CHARACTER BUFFER

CALL REIMITAILIZATION SEQUENCE

RESTURE BP REGISTER
RETURN T CALLING PROGRAM

1 CONSOLE INPUT ROUTINE TG

AL IN.CON_STAT 3
AL, 2 H
T2 ;
AL, IN_CON_CHAR 3
INITIALY i
i }
i i
BP. 5P H
DX, INLCOM_STAT
AL, I i
AL.2 ;
LRz ;
0% INCOHCHAR 3
AL, I i
AL, 7FH ;

TO ALLDW CHARACTER INPUT
FROM KEYBOARD AND ECHO BACK
T4 COMSOLE

STORE BP REGISTER
GET STACK POINTER

GET INPUT CONSILE STATUS ADDRESS
GET INPUT COMSOLE STATUS

CHECK IF CHARACTER PRESENT

LOOP TILL CHARALTER FRESEMT

BET CHARACTER INPUT PORT ADDRESS
INPUT CHARACTER
STRIP OFF PARITY BIT

0040 50
004E 50
(004F ESAEFF
0052 58

2033 5D
0034 £3

0033

0035 E4A3
0057 2401
0039 74FA
(0GR 3R4604
Q0%E EtAZ
(060 30
0061 C20200

133
154
155
134
157
158
159
140
144
142
163
164
145
164
167
148
149
170
171
172
173
174
173
176

+1 SEJECT

[0DE

XREF SYMBOL TABLE LISTING

NAME TYPE
TEG SEGMENT
COROMP, GROUP
CODE, o 0 0 . . SEGMENT
CONCOMTR, . . ., . V YORD
DATA, . L L L, SEGMENT
OGROUP, . ., . . GROUP

5 L NEAR

GRAFH_OUT_DATA,
GRAPH_OUT_STATUS,
IMCON_CHOR , ,
INCON_STAT . .
INCON . . W
INITIALL, . . .
RLL S S
LooFz . . . L
(-1 P
CUT_CON.CHAR,
OUT.CON.5TAT, .
OUT_LIST_CHAR . .
OUT_LIST.RTAT ,
LT
wrz.
OUTCON,

=

MUMBER
MUHBER
MUMEER
NUHBER
L MEAR
L MEAR

.+ L NEAR

L NEAR
L MEAR

. NUMBER
» NUMBER

NUHEER
MUHBER

. L NEAR
. L NEAR
. L NEAR

EMD OF SYMBOL TABLE LISTING

ASSEMBLY COMFLETE, NO ERRORS FOUND

PHSH
PUEH
CALL
PR

Fop
RET

I
AND
JZ
MGV
i
Fop
RET
ENDS
ENDH

VALLE

0000H

0053H
D0AZH
(0AZH
000
QODAH
003CH
0000H
GOBH
003FH
00224
0ODEH
OODAH
O0ACH
O0ATH
O020H
0033H
O000H

i ECHO CHARACTER BACK T CONSOLE
X i SAVE CHARACTER FOR RETURN
Ax i LOAD CHARACTER FOR ECHD BY OUTCON
OUTCON i QUTPUT CHARACTER TO CONSOLE
AX i GET CHARACTER FOR RETURN TG CALLING
7 PROGROM
BF i RESTORE BP
i RETURN TO CALLING PROGRAM

ROUTINE TO OUTPUT CHARACTERS TO
T0 THE TEKTRONIX CRAPHICS TERMINAL

-

AL, GRAPH_CUT_STATUS i GET SERIAL PORT STATUS
ALt i CHECK IF PORT EWPTY

6o i IF NOT EMPTY CHECK AGAIN
AL, [RP+41 i GET CHARACTER TGO BE OUTFUT
GRAPH_OUT_DATA, AL 3 OUTPUT CHARACTER

BP i RESTORE BP REGISTER

2H 3 RETURN TO ROUTINE START

ATTRIBUTES. XREFS

SIZE=0000H FARA PUBLIC
CODE 514 53
BIZE=0064H PARA PUBLIC ‘CODE” Si# 93 175
DATA PUBLIC 54 734 91 107
SIZE=0002H PARA PUBLIC “DATAY 524 77 €0
DATA 324 53
CODE 93 18678 170

744 172

734 168

644 129 150

£38 124 145
CODE FUBLIC 54 13a4
EXTRN 55# 130
CODE 754 99
CODE 1444 148
CODE 1124 114

624 100

A1% 96

708 118

&9 114
CODE 109 {248
CODE 128 1324
CODE PUBLIC 54 854 157

37

38

References

. Posa, John G.; and LeBoss, Bruce: Intel Takes AIM at the ’80s.

Electronics, vol. 53, no. 5, Feb. 28, 1980, pp. 89-95.

. CP/M-86 Operating System User’s Guide. Digital Research, 1981.
. Cwynar, David S.: INFORM—An Interactive Data Collection and

Display Program with Debugging Capability. NASA TP-1424,
1980.

. PL/M-86 Programming Manual. Intel Corp. (Manual Order No.

9800466A), 1978.

. Morse, Stephan P.: The 8086/8088 Primer, an Introduction to Its

Architecture, System Design, and Programming. Second Ed.,
Hayden Book Company, Inc., 1982.

. The 8086 Family User’s Manual, Numerics Supplement. Intel

Corp. (Manual Order No. 121586-001), July 1980.

. The iSBC 86/12A Single Board Computer Hardware Reference

Manual. Intel Corp. (Manual Order No. 9803074-01), 1979.

8. Inte] Multibus Specifications. Intel Corp. (Manual Order No.
9800683), 1978.

9. Delaat, John C.; and Soeder, James F.: Design of a
Microprocessor-Based Control, Interface, and Monitoring (CIM)
Unit for Turbine Engine Controls Research. NASA TM-83433,
1983.

10. Miller, Alan R.: Mastering CP/M. Sybex Corp., 1983.

11. Blech, R.A., et al.: A Real-time, Portable, Microcomputer-Based
Jet Engine Simulator. NASA TM-83550, 1984.

12. Baez, A.: Design Description of Microprocessor-Based Engine
Monitoring and Control Unit (EMAC) for Small Turboshaft
Engines. NASA TM-86860, 1984.

1. Report No. 2. Government Accession No.

NASA TP-2378

3. Recipient’'s Catalog No.

4. Title and Subtitle

MINDS - A Microcomputer Interactive Data System for
8086-Based Controllers

5. Report Date

January 1985

6. Performing Organization Code

505-43-3

7. Author(s)

James F. Soeder

8. Performing Organization Report No.

E-2172

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

10. Work Unit No.

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

13. Type of Report and Period Covered

Technical Paper

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

A microcomputer interactive data system (MINDS) software package for the 8086
family of microcomputers is described. To enhance program understandability and
ease of code maintenance, the software is written in PL/M-86, Intel Corporation's
high-Tevel system implementation language. The MINDS software is intended to

run in residence with real-time digital control software to provide displays of

steady-state and transient data.

In addition, the MINDS package provides classic

monitor capabilities along with extended provisions for debugging an executing
control system. The software uses the CP/M-86 operating system developed by
Digital Research, Inc., to provide program load capabilities along with a uniform

file structure for data and table storage.

Finally, a library of input and output

subroutines to be used with consoles equipped with PL/M-86 and assembly language

is described.

17. Key Words (Suggested by Author(s))
Microprocessors
Digital control
Data systems

18. Distribution Statement
Unclassified - unlimited
STAR Category 61

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of pages 22. Price

39 AO3

For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1985

" National Aeronautics and © THIRD-CLASS BULK RATE Postage and Fees Paid
Space Administration U D S National Aeronautics and

Space Administration -
) NASA-451 -
Washington, D.C..

20546

Official Business
Penalty for Private Use, $300

. A L c . . 'POST) . If Undeliverable (Section 158
) NMA . .) - A OSTMASTER Postal Manual) Do Not Return

