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Semmary

The theory of galactic heavy-ion fragmentation has
been furthered by incorporating a T-matrix approach in-
to the description of the three-step process of abrasion,
ablation, and final-state interactions. The connection
between this T-matrix and the interaction potential is
derived. The resulting transition rate is shown to be in-
dependent of the choice of the initial time. For resonant
states, the substitution of complex energies for real
energies is formally justified for up to third-order
processes.

The previously developed abrasion-ablation fragmen-
tation theory is rederived from first principles and is
shown to result from time-ordering, classical-probability,
and zero-width resonance approximations. Im-
provements in the accuracy of the total fragmentation
cross sections would require an alternative to the latter
two approximations. Since a more rigorous test of the
theory would be to compare theoretical and experimental
differential cross sections, a Lorentz-invariant differen-
tial abrasion-ablation cross section is derived which ex-
plicitly includes the previously derived abrasion total
cross sections. This result requires the use of the time-
ordering and classical probability assumptions. It is
demonstrated that spectral and angular distributions
could be easily obtained from the general Lorentz-
invariant form. Future success in calculating these
distributions will require the evaluation of the ablation
T-matrix, which is the remaining formidable task.

Introduction

Research efforts are currently under way to develop
methods for protecting astronauts from the potent:ally
harmful effects of cosmic rays. These effects are par-
ticularly important for astronauts on long-duration mis-
sions and for career space workers making repeated
journeys into space in the era of the Space Station and
the Space Transportation System, because a biologically
significant component of cosmic rays consists of
relativistic nuclei (ref. 1). Theories are presently being
developed to accurately describe their interactions with
matter (refs. 2 through 6). 'n previous work, an optical
model potential approximation to the exact nucleus-
nucleus multiple scattering series has been used, within
the context of zikonal scattering theory (refs. 3 and 4), to
accurately predict total abrasion cross sections. This
method has been extended (ref. 6) to calculate isotopic
and elemental total fragmentation cross sections by
essentially multiplying the total abrasion cross section by
the following two factors: (1) a charge dispersion fraction
giving the probability that z of the abraded nucleons are
protons, and (2) a compound nucleus decay probability
which describes the de-excitation (ablation) of an excited
projectile nucleus prefragment. Final-state interactions

(ref. 7), which describe the interactions between the
abraded nucleons and the remaining projectile prefrag-
ment, are not yet included in the theory.

Because of greater flexibility in comparing theory
with experiment, it is advantageous to develop methods
for calculating Lorentz-invariant differential cross sec-
tions. Aside from direct comparisons with experimental
data, angular and spectral distributions are easily obtained
for anv reference frame (e.g., nucleus-nucleus center of
mass, nucleon-nucleon center of mass, laboratory, etc.).
Angular distributions obtained from eikonal theory are
usually evaluated in the laboratory frame, and transfor-
mations to another reference frame are laborious (ref. 8).
In addition, eikonal theory is not readily generalized to
calculate the Lorentz-invariant differential cross sections
which are often used to present experimental data.
Rather than simply multiplying the abrasion cross section
by approximate factors to obtzin ablation effects, it is
desired to include ablation in a more fundamental and
exact manner by explicitly calculating ablation matrix
elements.

With the preceding considerations in mind, a first-
prin:iples derivation of the transition rate is presented
herein. The transition rate formally includes abrasion,
ablation, and final-state interaction matrix elements and
is easily generalized to produce Lorentz-invariant dif-
ferential cross sections, The interaction potentials V and
transition operators 7 introduced herein are used to
describe the three-step process of abrasion, ablation, and
final-state interaction. This generalization is the main
conceptual difference between their use in references 2
and 3, where they were directly connected to an optical
model description of abrasion only, and their use in the
present work.

Evaluation of Amplitudes

The fundamental equations for the probability
amplitudes are derived in this section. The full Hamilton-
ian H consists of an unperturbed piece H, and an addi-
tional interaction ¥, such that

H=H,+V M

The eigenstates and eigen-energies of H, are obtained
from

H,|n> =¢,in> 2

The full wave function ¥ is determined from the time-
dependent Schrddinger equation

= i Q!
HY lﬂa’ 3

This wave function is expanded in terms of the complete,



orthonormal set of unperturbed states | > generated by
H,as

¥ =) clexp(-ic,t/Min> @

Substituting equation (4) into equation (3) yields (refs. 9
and 10)

de(n 1 i
_k.d'_. - zn: D) exp () Vi, )

which, for a time-independent interaction, has the
solution

(D) =8, + —l’,—'-; Vin l:' cu(l') exp (i ') dt’ (6)

where

Wen = (€, — € )/H v
and

Vin = <kiVin> ()]
Equation (5) is exact, is of fundamental importance, and
does not require ¥, to be small, as might be assumed.

The weak incompletely coupled approximation
(WICA) is defined as

d‘;;‘:') *%‘i(‘) exp (kog0) V., b))
where
w,, =, —€)/h (10)
and
Vi,= <kiV]i> (n

with the initial, fully populated state at time 7, denoted
by |i>. This approximation (eq. (9)) uncouples ¢,(/)
from all other amplitudes except c;(f) and suggests that
the regeneration or depletion of a particular state
depends only upon its being fed from or decaying to one
other state. As is discussed subsequently, this approxima-
tion is equivalent to neglecting higher-order terms in the
interaction matrix elements.

The strong incompletely coupled approximation
(SICA) sets

() = b, (12)

in equation (5) to give

de, () ) .
;’ = exp () V, a3)

This equation is valid only for times which are short com-
pared with the lifetime of the initial state (i.e.,
() << c{). If the perturbation V is transient and
small in magnitude, the amplitudes c,(7) will remain small
for all times. Thus, equation (13) is most com.monly used
for scattering problems with small perturbing interaction
potentials. In contrast, the WICA (eq. (9)) is appropriate
when studying a decaying state over a period of time
equal to several half-lives. Therefore, the WICA is ap-
propriate for evaluating resonance states, since their
complex energy widths result in the usual exponential
decay. The solutions of equations (9) and (13) are iden-
tical except for the appearance of complex energies in
equation (9) where real energies are found in equa-
tion (13). Thus, one of the major results of the present
work is the demonstration that real energies can be simply
replaced by complex energies when studying resonances.

Real-Energy Transition Amplitude

In this section, equation (5) is integrated directly to
vield an ‘‘exact” amplitude. A convergence factor,
a—0+*, will be inserted to render the integral convergent
for a nonfinite initial time (7, — ~o), where at is much
smaller than unity. Thus, equation (6) becomes

1

X ]:' C,(1') exp (iwy,t' + at’) dU’ (14)

o

and analogously,
1
') =8, +—2_V,
i 1
v » : " ” "
x j:o o (t¥) exp (it + at™) dt (15)

In equations (14) and (15), the correct method is to take
the limit as a—0+ after taking the limit as ¢,—-. Also,
the convergence factor « is not required (Set = 0 before
performing the integrals) for a finite initial time (e.g.,
t, =0).



Inserting equation (15) into equation (14) and
expanding yields and iterative result as follows:

l . ’ ’ »
cln = 6,“. + EV'"' j:exp (o’ + at )y dt

o

l ’ " . 1
+ (T)zg anymf(o l:fl. exp (uni‘

+ at")dl"] exp (kwynt’ + at')dt’

'“ s trr
[‘. exp (ko

fo

1 t t
+(,—,)3§:Zl: VinYu Vi ,‘,;{.[

[

+ at”')d‘”‘] exp (bnl"' + at”) dt”}

x exp(ko,t’ + at’)dt’ + ... (16)

Evaluating these integrals gives

1 exp (kogd + al) —exp (ko tl, + aly)
) = b, + Vi, : —
@y, t i

exp (kg £ + 2al) — exp (i t, + 2aly)

2 ViV {

+

L AR

(~w,, + i) (-, + i)

exp (iw,, Lo + at ) fexp kg,  + ) — expuicsy,, 1o+ 2act,)
(—wp, + i) (—wy, + )

1
o > [Z VinVu Vi
n

exp (ko t + 3af) — exp (kg t, + 3af)
X
(~wy, + i3a) (~w, + i) (—w, + i20)

exp (ko f, + 2al)) [exp (iwy [ + af) — expliwg,l,+ at))]
+

(—wpy + W) (—w,, + ) (~w,, + i)

exp (ko b, +al) [exp iyl + 2a0) - expliwyt, + 2at )l N
(—wg + i20) (~w, + k) (—w, + i)

amn

Equation (17) is the exact final-state amplitude derived
from equation (14).

Real-Energy Perturbation Theory and the SICA

In this section, a much more compact form for the
amplitude is derived through the introduction of a
T-matrix. An ansatz suggested (ref. 10) by the SICA
(eq. (13)) is written as

Ck([) = 6ki +-:‘;,-Tk‘.flexp(hh t' + a(')dl' (ls)

o

where the convergence factor is again inserted to render
the integral convergent for nonfinite initial time
(t, —~ —=), and T, is a transition matrix element whose
relationship to V,; will be determined. Evaluating the in-
tegral in equation (18) and taking the limit as ¢, — —ao
before taking the limit as a—0* yields

Tki . 19
m exp(aw,“l +af) (19)

(tt, — —®)=8,, +
For a finite value of 7,, the convergence factor is not re-
quired and equation (18) becomes

T
bt )=b,; + —— ﬁ:kkexp(&.:k,-ro) {expliw, (1 - 1)i- 1}
1
(20)

Substituting equation (18), and the analogous expression
for ¢ (1,1, — —), into equation (5) yields the relation-
ship between T and V as

Vin T,

ni

T = Vi *; F(—a, + ) @

This same result (eq. (21)) can be obtained from the exact
solution (eq. (17)) by taking the limit as f,~—oc in equa-
tion (17), substituting equation (19) into the left-hand
side of equation (17), and solving for T,,.

Identifying the denominator in equation (21) as the
Green function G,,; and using a modified Einstein sum-
mation convention for triply repeated indices enables
equation (21) to be written as

Tkl = Vlu + anGme' (22)

or, in operator form, as
T=v+VvGT (23)
This is the usual result from scattering theory (ref. 10).
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Because of its extreme compactness and simplicity,
equation (19) would be useful for the fundamental
amplitudes in applications to the heavy-ion fragmenta-
tion problem. There are, however, some questions con-
cerning its general applicability: (1) how do the solutions
depend upon the choice of the initial time ¢,; and (2) how
does one include a description of resonances, which re-
quire complex energies, rather than the real energies used
previously. These questions are addressed in the follow-
ing sections.

Transition Rates and the Initial Time

The choice of a nonfinite ir itial time (£, — —) is ap-
propriate in a scattering situation to ensure that possibly
spurious transient terms are not introduced when the
scattering region suddenly experiences the full potential
at time ¢, It is, however, worthwhile to determine what
effect the choice of 1, has on the experimentally
measurable transition rate (or cross section).

Clearly, the amplitudes given by equations (19) and
(20) differ for different values of t,. The transition rate is
defined as

lim m (24)

W= 1~ g

where, for discrete final states, the probability is

PO =Y P 25
k

and for continuous final states,
P = [ ple,) PO de, (26)
with the probability related to the amplitude as

Pyn = [c(n]? @n

From equation (19),

d—‘: let 1, = —o0)|2= RExp () [T, |2 (28)

™
2

ﬂz(wk' + a)

which, upon taking the limit as a—~0+, becomes

i d 2
qimy + L ety = —)|” = %a(wk,.)m,.n 29)

Since the right-hand side of equation (29) does not
change for the limit as ¢t —oo, the transition rate becomes

4

w=22 7,200 30)

Equation (30) is a fundamental result. In a similar man-
ner, equation (20) yields

d 2 b 5 25in (@
Equation (31) yields
lim

d 2
PN d—,!fk('.'o)lz = ‘mlé(“”‘)‘ T2 32)

which is identical to equation (29). Hence, the transition
rate is independent of the choice of the initial time.

Resonances and Complex Energies

In previous work (refs. 6 and 11), an abrasion-
ablation model was developed to describe heavy-ion
fragmentation. A possible source of disagreement be-
tween theoretical predictions and the available ex-
perimental data might be uncertainties in the excitation
energies of the excited projectile prefragments (refs. 6
and 12). In reference 6 it was assumed that the prefrag-
ment could be treated as an excited compound nucleus.
An alternative app-oach would be to use a nuclear
cascade description (1ef. 13). Since a correct description
of the excited »refragment is essential in predicting
fragmentation cross sectior, a description incor-
porating an intranuclear ca..ade followed by a com-
pound nucleus evaporation process may be required.

The treatment of resonances, such as for the com-
pound nucleus (ref. 14), requires the use of complex
energies (ref. 9). In first-order theory, Merzbacher
(ref. 10) has shown how to use complex energies to
describe resonances, and Norbury and Deutchman
(ref. 9) have shown the same thing in second-order
theory. Both of these presentations, however, depend
upon the use of the WICA (eq. (9)). As previously men-
tioned, the consideration of final-state interactions,
together with abrasion-ablation, requires, in principle,
third-order matrix elements. To accomplish this it is
shown subsequently how to include complex energies
beyond second order without the use of an incompletely
coupled approximation.

The basic second-order process involves a transition
from an initial state |/> to an intermediate resonating
state |n>, followed by subsequent decay to the final
state | k> . This transition involves the use of three cou-
pled equations of the type given in equation (5), whereas
Merzbacher (ref. 10) uses only two coupled equations to
extract the first-order process. The rate of change of the



intermediate-state coefficients is given by

dc, (1)
dt

=LY qepo,dVy (3
-
where the rates of change of the ¢,(#) are given by

dedny .
L bald .—.._2 :c (N exp (w, OV, (34)
di i m Im im

In reference 9, Norbusy and Deutchman solved these
equations by assuming the WICA form for equation (34)
as

defn) _ ,l,, (D) €XP (i) Vi 33

di

Ir the present work, the full equation (34) is considered.
A key factor, however, in the solubility of the three
coupled equations (egs. (5), (33), and (34)) is the separa-
tion of equation (34) as

de(t 1 .
—:l(_) = l-f-i n(’) exp (""’ln') Vln

1 ,
+ mgn Cp(D) XD (ipt) ¥, (36)

so that the first term is simply the right-hand side of
equation (35), which is the WICA contribution.

Integrating equation (36) yields

V. pt
_s + U
("(') 61, + s f

I, cu(t') exp (iwypt') dt’

t
+ l—;— 2 Vim f C(t') exp (iwy, ') dt’ (37)

m#n t

where

C,(lo) = 6], (38)

Equation (33) is rewritten as

dc, (8 _ V'"'c 1
L= Mc()+ — i
» o o 1§n cAD) exp (k) V,yy (39)

which, upon substitution of equation (37) becomes

de(n V, . ™
- 2 (D
i A L

i . ¢ ' o '
+WI§"|V.{|2 exp (i, ) j:“ ') exp (i, 1') €t

1 N
+ — z Z an ylm exp (""nll )
(2 £n m#n

x f ! Clt’) Cap thayt') dE’ (40)
[f

o

Because of the substitution of the Kronecker delta term
from equation (37) into the summation term in equa-
tion (39), n#iin V,,. Because /# n in equation (39) the §,,
in equation (37) implies that niin V, .

The solution of equation (40) c,(f) appears com-
plicated but can he simplified by reducing equation (40)
to an algebraic expression through the use of a Fourier
transform pair. defined as

® -
e = f L) exp ( — ) dhes @h
- oo
and
1 .
Shw) = 3 fm ¢ A exp (i) dt 42)
—
Assuming
1= 1) =0 @3)

for the intermediate state, equation (42) becomes

b T e nenplion de 44
S = = f, ) exp (iw (44)

Multiplying equation (40) by exp [i(w +ia)f] and in-
tegrating from /1o o yields



de, (1)

[ * exp [{w + i) dt
(

o

ao
== e (Hw,, + w + ia)] dt
[

o

>

, Call) exp [fw + ia)f] dt

1

+(iﬂ)21 Ivlf exp [{w,, + w + ia)l]
+n

X [J" e (t') exp (k) dt'] di
(]

(3]

z Z nl Im

G2
(m) {#n m#n

» 00
X j: exp [{w, + w + ia)i]

(4]

X [.‘;lcm(l') exp (iw;,t") dl'] dt (45)

where the o factors have been inserted to render the in-
tegrals convergent. Upon evaluation of these integrals,
equation (45) becomes

~2ni e + i) f(w)

V, €Ppliw, + o+ ia)t,)

n
fi Wy + w + i

V
an
+ “n 27 f(w)

Iz Sylw)
(la)z l&n i(“’nl + w) -«
Z Z l/Im
“ﬂ) l£n m$n + w,,,) @

®
x “: exp [{w,, +@ +ia)t'] ¢, (1") dr  (46)

Solving for f(w) and taking the inverse Fourier
transform yields

. “ .
2xi f J{w) exp (- kwl) dw

V’" - -
= T exp [I(wni+ 'a)to]

exp [iwlt, — 1)) dw

x [~

—w (@ + wy + da) [—(w + i) + £W)]

+_ZZ nllm

h2 {#n m#n

o

w{"::xp [Hw +w,, +ia)'] c,(t") dl'} exp (-iwl)dw
"] [y + @) — @] [~(@ + i) + )]
47

with

2
5(w,_5'z'+_'z_|_ﬂ_ 48)

Evaluation of the integrals in equation (47) is simplified
by assuming (ref. 10) that

£(w) = £(0) 49)
and inserting Dirac’s identity (ref. 15)
i 0 Ae,, i T
m = —— e -

e F0= 33 (50)



where the energy shift Ae,, and the width I"are defined as

2

‘Vm‘
Ae,m V, + g n

ltn " t

and
r ' 2
=7 2 |Val - (52)
1#n

The left-hand side of equation (47) is just 2xi c,(1). Using
equations (51) and (52), equation (47) is rewritten as

vV
2xic,() = -:i exp [{w,, + io)t,) I(0)

Y X VuViml® 53)

+ L
2 ltn men

where

exp [iw(t, — 1)) dw

I 5/ ( Ae, il )
ww tw, +i)|-w0+ — -

- n A2

and

[ expli(e + w,, +ia)t’] (1) d!’} exp (- iw!) dw

() -f . - — YT
A Huy + w) —a] |-w +T————,a

k2
(E3))
Equation (54) has two simple poles at
w; = ~(w,, + i) (56)
and
de¢, iD
“T 3 TR G

For 1<, a contour taken in the upper half plane of
figure 1 gives

I(t<t)=0 (58)

since no poles are enclosed. For J (¢ > 1,), the lower
contour, which encloses the poles, is used to yield

~2xiks

I(t>1)=

Ae"——""n_‘l

x {cxp (Hwp, + i) (1 = 1))

- exp-iAe, ~ iT/2 — iaM) (1 - :o)/n)]} (59)

The complex energy ¢, for the intermediate state |n> is
now defined as

€, =€, + Aa¢, — il'/2 (60)

Equation (47) then becomes

( ) Vo €xp (iwp,0)
t>1)= ——]
n o ~

€, — &

x {l ~ exp [de, — €,) (t - lo)/h]}

P > 2 VuVmlo 1)

2nin 1£n m#n

Equation (61) is the probability amplitude for the in-
termediate resonating state. Note that K1) comes entirely
from' the second term on the right-hand side of equa-
tion (36). Thus, the first term on the right-hand side of
equation (61) is the WICA contribution, and the second
term is the contribution from higher order processes.

As a check of the preceding results (eq. (61)). set (¢
= 0 and consider the matching of initial conditions in the
WICA. With (1) = 0, equation (53) becomes

V.
(0 = 2775 exp [i(w,; + ia)t,) 1(0) (62)



which, for 1<, yields

et <1t)=0 63)

since I (t<t)) = O from equation (58). From equa-
tion (61), for t=t,,

V..
Culty) = Zi exp [Hw,, + i)t) I(t) = 0 (64)
xiM

since

® duw
follo) = "_‘, @-wp) (- + @) ¢ ®

using standard contour integration techniques. Thus,
equations (63) and (64) satisfy the initial condition
specified in equation (43). For t>1, and /(1) = 0, equa-
tion (61) becomes

4 A
Cn“>'o) _'m exp (iwpy, )

x{l - exp (e, - &) (t - l,,)/’ﬂ} (66)

The derivative of equation (66) is

de,(t > 1)) V,, exp (iw,)

~
dt f" - Cn

i -~
x 7{«,, — )~ (6= T
xexp li(e, — €,) (¢ - to)/h]} 67)
which, yields in the limit as t—1,,

de,(t))  Vpiexp (i it,)
d in

(68)

This expression satisfies equation (33) when equation (37)
is substituted (after letting #—¢,). Thus, the initial condi-
tions are satisfied in the WICA.

The final-state amplitude is evaluated here by
rewriting equation (5) as follows:

dck(t) 1 .
= ~Ci(t) exp (iw ) V,.
dr I i (Y kl) ki

1 .
+ = 2. cD) exp () Vi, (69)
Ly

where ¢, (1) is given by equation (61). Our interest lies in
processes which proceed via the formation and decay of
intermediate states. Thus, we will ignore the term involv-
ing V,,since it will be negligible or zero. Therefore,
substituting equation (61) into equation (69) and in-
tegrating from ¢, to ¢ yields ’

Vin Vii .
ol = 2 :'ﬂ-_‘ exp (iwgt,)
n#i ¢n T &

exp liwg,; (r — )] - 1
&% — &

exp li(e; - €,) (¢ - )yl -1

€& — €,

_Zrl’l—-’z: z Z ananVIm

n l#n m#n

’ M 1) K X
x j: exp (iwg,t"") (') dt 0)

(4

Equation (70) shows that the WICA is equivalent to
neglecting at least third-order terms compared with
second-order terms in the final-state amglitude.

As was done previously for the intermediate-state
amplitude, the final-state amplitude within the WICA is
evaluated for the initial conditions, which are

Ck(t < to) =0 an
and
dfk(lo)
prai 0 (72)



In equation (71), it is assumed that, before turning on the
interaction at #,, the system is in its initial state. Equa-
tion (72) is obtained from equation (5), with the initial
condition on the intermediate state specified by equa-
tion (43) inserted. For 7= t,, equation (70) satisfies equa-
tion (71) trivially. Differentiating equation (70) and set-
ting ¢ =, then satisfies equation (72).

Finally, the integral I(f) is evaluated. Solution of
equation (55) requires knowledge of ¢, (¢'). Using only
the lowest-order contribution

e, ') = by, (73)

yields
- j':exp [{w + w,; + i) '] dt” Pexp(— iwt) dow

1=
i + ) ~ o (-0 + =2 -] g— :a)
4)

Evaluating equation (74) using the same contour integra-
tion techniques used previously to solve /(#) enable ‘he
final-state amplitude from equation (70) to be written as

V., V.
f )
D = Z 2 exp (iwy,t,)

nei Cn T € TG

{exp it — 1] - 1

exp lil€, — €,) (1 — t)/A] -1

-~

€ — €,

=X X ViaVaVu exp livgt,)
n l#n,i

— )~ )l ~ )

% exp [iwg, (1 — )] = 1
X
(fk

exp [iwg (1 = 1))~ 1

(& — ) - €~ Ep

exp [ie, — €) (1 — t,)/h) - 1}
+

(& —€) e =~ )l - E

+ ... )

If the result for a =0 in equation (17) is compared with
equation (75), the second-order and higher terms are
identical if the real energies ¢, in equation (17) are replaced
by complex energies €,. These results, taken with the
similar results of references 9 and 10, demonstrate that it
is permissible to replace real energies with complex
energies, of the form given by equation (60), when study-
ing resonances.

Evaluation of Abrasion-Ablation T-Matrix

The basic Feynman diagram for projectile fragrn -
tion, with fireball formation, is shown in figure 2. ihe
diagram is similar to those presented elsewhere (refs. 16
through 18). Since our major interest is in the area of
projectile fragmentation, target fragmentation and the
formation and de-excitation of the fireball are noi
discussed in this paper.

P.ccently, there has been considerable interest in
relativistic coulomb dissociation and the excitation of
nuclear giant resonances (refs. 19 through 25). The
typical method for describing these excitations is through
the interaction of the projectile with an equivalent target
phonon. The excitation process is then described in a
manner analogous to a photonuclear reaction. The basic
Feynman diagram for coulomb dissociation is given in
reference 20. The excitation of a giant resonance may be
important in determining projectile prefragment charge
dispersions (ref. 12) and requires further study. Since our
primary interest is in projectile fragmentation, this pro-
cess, rather than fireball formation, is emphasized in the
Feynman diagram. If the fragmentation process is
thought of as a collection of A projectile nucleons sud-
denly being excited into a prefragment, then by analogy
with coulomb dissociation, the exritation process can be
treated as the interaction between a phonon field and the
initial A nucleons in the projectile. The Feynman
diagram for this phonon excitation process is shown in
figure 3. Since the fireball is difficult to depict, it is sim-
ply represented as two separate projectile and target
pieces. Figure 3 is only an alterna‘ive, and more conve-
nient, way of depicting the interaction shown in fieure 2,
and the diagrams yield identical results. In the actual
fragmentation process shown in igure 2, there is no
direct interaction between the target and excited
prefragment,

To simplify the phase space, the separate phase spaces
of the individual particles can be replaced by a single
phase-space factor describing the center of mass of those
particles. Therefore, the fireball and target fragment are
replaced here by target recoil 7' and projectile recoil R
pieces, since we are not interested in the details of the
phase spaces of these pieces. This Feynman diagram,
which is used in this analysis, is shown in figure 4. The
projectile recoil piece R is not the projectile prefragment
P’'. Figure 4 is exactly analogous to a 4-body final-state
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Feynman diagram (fig. 5) used to describe pion produc-
tion via isobar formation and decay (refs. 9, 16, and 26
through 30). This Feynman diagram has recently been
replaced (refs. 16 and 31) by the 3-body diagram (fig. 6),
in which the pion escapes but the nucleon is recaptured
by the projectile nucleus.

When developing expressions for the T-matrices, at-
tention is focused on the interactions occurring in the
projectile prefragment. (See fig. 7.) As noted in the
following section, the prefragment interactions in fig-
ures 4 and 7 represent only the lowest-order interaction.
Higher-order terms are subsequently discussed in detail.

The Two-Potential Problem

In the basic fragmentation process it is assumed that
the projectile nucleus experiences an interaction V1 and
undergoes abrasion. (See fig. 7.) The projectile prefrag-
ment then experiences a different potential V2 and
ablates to yield the final fragment. This type of “‘two-
potential” problem is considered in references 32 through
34, and the simplest solution is stated in the pion-
production work of Townsend et al. (ref. 30).

The T-matrix expansion for abrasion-ablation (44) is

A
T':,, = Vi + VinGuVai

+ anGm Vanm: Vrm +. (76)
where an Einstein summation convention on triply
repeated indices is implied. The full interaction potential
is separated into abrasion ¥ and ablation V2 pieces as

V=W4+ 12 an

Inserting equation (77) into equation (76) and expanding
yields

T -vi+ R+ v G vV

e v+ GV'2+I/2

kn"ni ni

G V?

kn " ni ni

'GV‘GV‘+V‘GV‘GV2

knmnmmm kn ni nm " mi mi

VuGoiVomCnVo + Vi G VG V2

kn " ni nm-m kn " ni nm - mi mi

VZGV'GV'+VZG G V

kn ni nm  mi mi lnm m: mi

+

+

+

<+

PGV vV + WGW»r G vf"

kn"ni nm mi mi kn n: nm m:

+ ... (78)
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Each of these terms represents the higher-order
generalizations of the Feynman diagram in figure 7. The
Feynman diagrams, for the terms up to third order in
equation (78), are shown in figures 8 through 11, where
the abrasion J1 is represented by a wavy line (phonon)
and the ablation V2 is represented by a heavy solid line.
As discussed subsequently, the Feynman diagrams permit
the abrasion-ablation proccss to proceed in a time-
reversed fashion with the ablation occurring prior to the
abrasion. Also, these diagrams do not include exchange
terms (ref. 35), because such exchange diagrams yield
negligible contributions.

Although equation (78) and its accompanying Feyn-
man diagrams are quite complicated, they are shown only
to third order and thus are not yet accurate enough for
the present application. Ideally, interactions to infinite
order should be included. This was effectively done for
the abrasion step through the use of an eikonal scattering
amplitude derived from an equivalent [-body
Schrddinger equation (refs. 2 and 4). This scatteriag
amplitude is simply and directly related to the abrasion
T-matrix which, by definition, includes abrasion interac-
tions to infinite order. Since the T-matrix in equation (78)
includes both abrasion and ablation, the full abrasion
T-matrix must be extracted to incorporate the previously
developed abrasion formalism (ref. 4). In other words,
the abrasion potentials, to infinite order, must be fac-
tored out in equation (78).

The technique for factoring out the full abrasion
T-matrix is most clearly seen by again considering the
Feynman diagrams. In figure 11, the abrasion process to
all orders is depicted along with their correspondine
mathematical expressions. The simplest approac?
abrasion-ablation model would be to incorpora:
first-order ablation into the infinite-order abra..on for-
malism. (See fig. 12.) This is done by simply adding abla-
tion bubbles to the abrasion diagrams in figure 11.
Mathematically, this is equivalent to simply multiplying
the abrasion series by ijo . to yield

BG WV + VGV G

kn " ni kn " m nm ml ma

+

eVevG vV +

kn"ni nl " h im T mi mi

- A A
= knm( + VG ¥

nm - mi mi

+

e v +)

el i Immi om

_ br
= YOy (19)
so that the factorization of the abrasion T-matrix is ap-
parent. In figure 13, second-order ablation coupled with
infinite-order abrasion is presented. The corresponding
series is then of the form



(Vil G, an + Vin) G T::"

+ (time-reversal terms) (80)

where the time-reversal terms correspond to ablation oc-
curring prior to abrasion. If these and any subsequent
time-reversal terms from higher-order diagrams are ig-
nored, the generalization to infinite-order abrasion-
ablation clearly yields

A _ L) br
ke — ;T:n Gm‘ T:: (81)

This remarkable and extremely useful result arises entirely
from equation (77) and the neglect of time-reversal
Feynman diagrams. The neglect of these diagrams is
henceforth dubbed as the ‘‘time-ordering approxima-
tion.”” Pilk»hn (eq. (3.15) of ref. 34) obtains a similar
result when considering the time ordering of the time
evolution operators (eq. (3.7) of ref. 34). For the purpose
of this paper, equation (81) makes possible the incor-
poration of the infinite-order ablation processes into the
previously developed infinite-orde- abrasion formalism
(refs. 2 and 4).

Phase Space

In this section the definitions and recurrence relations
for the Lorentz-invariant, noninvariant, and *‘normal”’
density-of-states factors are developed.

Lorentz-invariant phasc space is given by the
restricted phase-space element (refs. 34 and 36)

d Lips (;py,py, . . - » PN)

1 N dip
= Q) 5 (p —}:p) n (82)

=) N =1 2%,

where the 4-body recurrence relation, in terms of 2-body
phase spaces, is

. 1 .
d Lips (€;py,p3,P3,P4) = a d Lips (,pc,py)

)2
X d Lips (e ;p1,Py)
X d Lips (e py,pg) de dey (83)

where de. and de, represent integrations over the ‘‘non-
observed’’ particles.

The noninvariant phase space, which differs slightly
from that given on page 188 of reference 33, is defined as

d Nips (&;p,03, . . ., D) ® [_v___] Nl 6(5— E e,—)

(21'")3 i
—— — N
xo\p-Lp ) N d (84)
=7 | i~

where » is the normalization volume. For example, the
corresponding recurrence relation for a 3-body phase
space is given as
d Nips (; P, P5,P3)
= d Nips (¢; P P3)
X d Nlps (ec)plv‘pz) de(‘ (85)

Performing the momentum integrals over d Nips
yields the usual density-of-states definiticn (ref. 37)

p,t6) = f dNips (e; D1.Pys - - ., PN)

[ 1% ]N‘l.‘-f’ ‘ ._‘;l_l

Qrh?

X dspl d3P2 e dsp)\l_) 6(6‘(" Z f,)
i

v~ 4
[(Zwﬂ)3] de;, i IN—I

x d3p, d*p, ... d%, (86)

where ¢, is the sum of the final energies of the N par-
ticles. The recurrence relation for th~ N-body density of
states is (ref. 16)

Pherz N =S [ Pery N Palery s N-D)
X pZ((IZ...N‘Z)' . .pz(flz)dtudtu}-' d‘IZ"'N-l

(87)
where, for example,

2. . NTegteat. L tey (88)

Abrasion-Ablation Model Derivation

In previous work (reis. 6 and 38), abrasion-ablation
cross sections have been determined by calculating abra-
sion cross section: (refs. 3 and 4) which are then
multiplied by an ablation probability obtained frc .1 com-
pound nucleus dGecay probabilities (refs. 6 and 38). It is
demonstrated in this section that this method of deter-
mining abrasion-ablation cross sections arises solely froia
particular approximations to the general formalism

11



developed herein, and is therefore only a special case of
this more general formalism.

In terms of the transition rate, the total cross section
is written as

0g=—W (89)

v

where v is the incident velocity of the projectile. Inserting
equations (30) and (86) into equation (39), the total
abrasion-ablation cross section for the phase space
associated with figure 4 is

v w3 d
My (21’”)9 *Z“'RT‘

xfffl T;"f"z d’p, &’p,. d3p, (90)

oZ) =

Using a recurrence relation (ref. 16) derived from equa-
tion (86)

Palezxrp = fff poezxrr

X Poezxr) Polezx) dezx de zxg 91

demonstrates that d3p, can be replaced by d®pp- in equa-
tion (90) where

d3pp. = d3p, 92)

This, together with equation (81), allows the cross section
in equation (90) to be written as

2xp j] 7abl abr|*
= GT
o2 Av (Z‘I’ﬁ)" dEZXRT"' kn o

x d3p, d’pr d’p, (93

A major approximation is now introduced as

2 , rabl rabr (99)

IE TabIG r'ibr
n

which will henceforth be referred to as the *‘classical
probability approximation,’” since it involves the classical
addition of probabilities (right-hand side) rather than the
quantum mechanical addition of amplitudes (left-hand
side). In essence, it involves ignoring the interference
terms on the left-hand side of equation (94). It is our
belief that the famous Bohr assumption for ~ompound
nucleus deca: (ref. 14), which justifies the separation of a
two-step cross section (such as compound nucleus forma-
tion and decay, or abrasion-ablation) into a product of
formation and decay (partial width) cross sections, is
based upon this classical probability approximation. The
Bohr assumption is so widely used because of the
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reasonableness of the classical argument. Equation (94) is
sometimes justified quantum mechanically, especially
when dealing with angular-momentum matrix elements
(refs. 32 and 39) where theorems on Clebsch-Gordan
coefficients are available (ref. 16, chapter 4). This is
especially true, for example, for a single (one-level) reso-
nant state involving several different angular-momentum
projections M (ref. 39), where the summation over n
simply becomes a summation over M for the single
resonance state of a particular energy. This was also the
case for the pion production work of references 26
through 31, where there was only the single intermediate
isobar A resonance at a fixed energy but with various spin
and isotopic spin projections. Norbury (ref. 16) has
shown that equation (#4) results from the spin-isospin
Clebsch-Gordan algebra. Another example is the
photonuclear excitation of a compound nucleus where
the formation of a resonant state of a single energy, but
with different spin projections ' ef. 40), justifies the use
of the Bohr assumption when calculating (y,n) cross sec-
tions via compound nucleus formation and decay. in
general, however, the preceding simplifications which
justify the classical probability assumption do not hold
for the abrasion-ablation process. For example, a par-
ticular final projectile fragment could result from the
ablation of numerous different prefragments, each with a
quite different excitation energy.

The partial width, which is simply a transition rate
multiplied by Planck’s constant, is

95

r, =

g |y

2x
(21103 de

Substituting equations (94) and (95) into equation (93)
yields

2
oZ) = LA r, 2Jpabr |2
n v (2‘!’ﬁ)6 dEZXRT Iff n m
X d3pp' dspr' d(P' (96)

which can be rewritten as

o(2) —Z,,v Jrrjc, | abr|2

X dNips (€p g75 Pp.» Pgo,PT/) dep, 9N

The abrasion cross section is
o, (A) = .1rv 'Tabrlz

X d Nips(ep g73 Pp P, Pr') 98)



which yields
oD =3z T S T|Guil* 00y %)
n

Inserting the Green's function, the abrasion-ablation
cross section is

2=+

L
0l A) dep. (1
2 & .[(e,, — &) +(I/2P pr (100)

where the total I'and partial widths are related by
r=3r, (101)
n

To evaluate the integral in equation (100), the zero-
width approximation (ref. 34)

: I2x
lim 7% s - (102)
r-o (e, - e,)z +(I/2) € - €)

is introduced. Writing the energies explicitly as
€y =¢€p + et g (103)

with an initial-state energy given by

€, =¢€p+ €r (104)

and the final-state energy as

fk=fx+fz+fTv+(R (]05)

then conservation of energy

€ =€, (106)

yields
E" -_ (' = (Pr - (éx + Gz) (107)

Inserting equation (107) into equation (100) indicates a
variable, intermediate, virtual resonance energy ¢p
centered about ey + €z, which is integrated over. The
nature of the delta function in equation (102), however,
destroys this quantum mechanical feature of virtual
energy in the integral. The zero-width approximation,
then, can be considered as another classical approxima-
tion. Inserting equations (102) and (107) in equation (100)
yields

o(2) = Y (T,/T)o,(A) (108)
n

If the branching ratio is defined as
g,=T,/T (109)

and is recognized as the usual ablation probability factor
(refs. 6 and 18), then

o(2) = 3 8,9,(4) (110)
n

which is the standard abrasion-ablation cross-section
result (refs. 6, 7, 38, 41, and 42).

This result (eq. (' 10)) can also be obtained from equa-
tion (100) by an alternative method. Since o,(A) is ob-
tained by integrating over all impact parameters, it is in-
dependent of ¢p.. Taking it outside the integral enables
equation (100) to be written as

1 Tn
= — A de,,. (111
A2) =5 T o )f(e”_q)2 —35 e (1D

Inserting

=1 (112)

=y

inside the integral in equation (111) and substituting
equation (109) yields

1 r
Z) = — A dep. (113
@ 2x ;0"( )fg,, € — €2 +(I/2R p (113)

If g, is indepenuent of ¢ ,,. (which merely requires I, and I'
to possess the same energy dependence), then it can be
taken outside the integral to yield

=1 r
oZ) = 2 ;g" on(A) ﬁe,, ~- ¢ +(I/2)P dep: (114)

In principle, if the dependence of I'on €. is known, then
the integral can be calculated numerically if not
analytically. If the zero-width approximation is inserted
from equation (102), equation (110) is again obtained.

Equation (110) is one of the central results of the pres-
ent work. It represents a first-principles derivation of the
usual abrasion-ablation cross section and results directly
from: (1) the time-ordering approximation, (2) the
classical probability approximation, and (3) the zero-
width approximation. Ctearly then, the most obvious im-
provements to the abrasion-ablation theory would be to
remove these assumptions (the time-ordering approxima-
tion is the least important). The zero-width approxima-
tion is removed in the next section.
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Lorentz-Invariant Differential Cross Section

For an arbitrary number N of particles in the final
state, the total cross section is

2xv v N-1d
g = = —_— e
[(2:#)3] de, ff fN—l

x|T4 dpy dp, . .. dPpy_,  (115)

For a specific final particle or fragment Z the differential
cross section is

BoZ) gy v N
dP), [(Zr")’]

d 2

X de S - 'g—l";n'” N—lI ki l

x d3p| . ..d3pz_ld3p2+| "'dspN—l
(116)

This is formally cast into Lorentz-invariant form as

da(2) _22mvr v N1 d f---f
Xdpe), S Av [(zm)l] de, Z-1
Ai2iddp . . .}
x',;fl.“jl;-lln‘i' - Pz
xdpy,, ... d°py_, (nmn

The € ; which appears in equation (117) is canceiled by an
¢z which appears when the interaction matrix elements
are explicitly evaluated.

Using
d’p = pt dpdn (118)
it follows that
2 2 3
d-o - | P d’o (119)
dpd [ frame € [frame dp’/e
and
2 3
d“o _ [P dJa (120)
de d ) frame (.'2 frame dp /€
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where (d30/dp’/¢) is the Lorentz-invariant differential
cross section obtained from equation (117). The notation
“frame”’ in equations (119) and (120) denotes that the
specified quantity is evaluated in the desired reference
frame, which is completely arbitrary. The angular
(do/dQ) and spectral (do/de) distributions are then ob-
tained f{rom equation (120) by performing the ap-
propriate energy or angle integrations in that particular
specified frame.

For the abrasion-ablation Feynman diagram of fig-
ure 4, the Lorentz-invariant differential cross section is

d3a(Z) _ €z 2xy V3 d
Xﬂl zT‘MGmT::” d’pp- d3p1~
a21)

Employing the classical probability approximation and
introducing d Nips, equation (121) becomes

€z 2xv v

d3a(2)
Adp’re, © AV Qxmp

M ALy

X d Nips ((P' RT';pp'vpkva') (122)

which, upon inserting equation (98), becomes

dsU(Z) €2 v
Ndp¥/e), S Q2rhp

bl {2 2
X Z l T;n ‘ IGml Un(A) (123)
n
Inserting the Green’s function yields

d3O(Z) €z v

Ndpre), & Qxnp
kn n
124
% ,,Z (e, — €)? + (I/2)2 1z



which demonstrates the need to evaluate the ablation
(decay) matrix elements directly (when dea*ng with dif-
ferential cross sections) rather than using partial widths
(see eq. (110)), as was done with tetal cross sections.
Equation (124) is a major result of the present work,
since it provides the framework for calculating angular,
spectral, and Lorentz-invariant distributions for the
abrasion-ablation process in terms of the previously
developed abrasion cross-section formalism (ref. 4).
Fragment angular and spectral distributions can be ob-
tained from equations (124) and (120) by performing the
appropriate integrals. Clearly, the comparison of these

distributions with experiment is of major importance in
determining the accuracy of the present abrasion-
ablation theory. Although these comparisons have not
yet been done, equation (124) provides the framework
necessary to do them. The remaining najor task is to
evaluate the ablation matrix element T::'

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 7, 1984
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Symbols

A mass number of final projectile prefragment
AA abrasion-ablation process

c speed of light, 3x 108 m/sec

c(n initial-state probability amplitude

c{n) final-state probability amplitude

cAn  arbitrary-state probability amplitude

c,(f)  intermediate-state probability amplitude

d Lips Lorentz-invariant phase-space element

d Nips Noninvariant phase-space element, MeV ~!
d3c  differential cross-section element, mb

de energy element, MeV

d’p momentum phase-space element, (MeV/c)3
dQd element of solid angle, sr

F' highly excited fireball

J{w)  Fourier transform of probability amplitude
G Green's operator, MeV !

G,  Green’s function, MeV-!

& branching ratio

H full Hamiltonian, MeV

H, unperturbed Hamiltonian, MeV

] Planck’s constant (6.58 x 10~ 22 MeV-sec)
Kb time-dependent integral

[i> initial-state vector

[k> final-state vector

M angular momentum projection, MeV-fm-c-1
N number of bodies in final state

{n>

L U]
PD

~N ™ ®

~>

intermediate-state vector
projectile

total transition probability
single-state transition probability
excited prefragment

momentum, MeV-c~!

recoil projectile

target

transition operator, MeV
transition matrix element, MeV
recoil target

time, sec

initial time, sec

interaction potential, MeV
matrix element of interaction potential, MeV
abrasion potential, MeV
ablation potential, MeV

incident projectile velocity, m/sec
transition rate, sec -1

ablated projectile particles

final projectile fragment

number of abraded protons
convergence factor

total decay width, MeV

partial decay width, MeV
photon

intermediate isobar resonance
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Dn
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cnergy shift, MeV

Kronecker dela

Dirac delta function on frequency, sec
energy, MeV

initial-state energy, MeV

final-state energy, MeV
intermediate-state energy, MeV

final energy of ablated particles, MeV
intermediate complex energy, MeV
volume normalization element, fm3
density of final states, MeV -1

cross section, mb

full wave function

solid angle, sr

angular frequency, sec—!

frequency difference between states |k> and

in>, sec—1

Subscripts:

i initial state

k final state

{ arbitrary state

m arbitrary state

n intermediate state

P projectile

T target

Superscripts:
AA abrasion-ablation

ab! ablation

abr abrasion
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Figure 1. Contour for 1,(1).
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Figure 2. Feynman diagram of projectile fragmentation and fireball formation.
(Final-state interactions are ignored.)
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Figure 3. Feynman diagram of equivalent target phonon excitation of projectile
prefragment.

Figure 4. Equivalent Feynman diagram (lowest order; no time
reversal) of projectile prefragmentation used in this work.



P

\R

Tl

Figure 5. Feynman diagram of pion production with

4-body final phase space.
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Figure 6. Feynman diagram of pion production with 3-body final
phase space.
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22

Figure 7. Lowest-order projectile prefrag-
ment interactions. Wavy line represents
abrasion ¥/, and heavy solid line
represents ablation V2,

2
Vki

7

Figure 8. First-order matrix elements of abrasion-ablation T-matrix
in equation (78).
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Figure 9. Second-order matrix elements of abrasion-ablation T-matrix in equation (78).
(The first abrasion process on left-hand bubbles is that of figure 4. All other abrasion
processes are only indicated schematically. Particle number conservation is not shown
explicitly as it is for ablation.)
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Figure 10. Third-order matrix ¢lements of abrasion-ablation T-matrix in equation (78). (Abrasions
are indicated schematically as in fig. 9.)
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Figure 11. Abrasion to all orders.
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Figure 12. Abrasion to all orders with ablation to first order.
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Figure 13. Abrasion to all orders with Ablation to second order.



