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Introduct i on

Within the last few years several investigators1,2 have established

that in certain Mach number and angle of attack regions the conservative

solution for steady full potential flow over a two-dimensional airfoil is

nonunique. This phenomenon occurs at high subsonic Mach numbers and is

connected with an indeterminateness of the shock location. Typically three

distinct equilibrium flows exist, each with a different lift. For example, a

symmetric airfoil at zero angle of attack might have a zero lift symmetric

equilibrium, an asymmetric equilibrium with large positive lift, or its mirror

image with negative lift. If the airfoil is placed at a small positive angle

of attack one finds either a large positive lift, a small negative lift, or a

large negative lift. None of these alternatives seems physically reasonable.

Since the computed flow fields are essentially independent of the numerical

scheme used, there is little doubt that the nonuniqueness is, in fact, a

property of the differential equation.

The present study deals with the eVOlution of these anomalous flows in

time. In this context, nonuniqueness of the steady state arises from a

sensitivity of the final equilibrium to changes in the initial conditions, or,
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equivalently, from the onset of instability in an equilibrium state. Previous

related studies are reported in Ref. 3.

The results given in Ref. 1-2 are for the steady full potential

equation. The present work is based on the unsteady small disturbance

approximation. This does change the equilibrium state structure of the

problem somewhat, but, as will be apparent from the results, does not alter

the basic multiplicity of the steady solutions. The problem is addressed by

pure numerical experimentation using existing time dependent small disturbance

algorithms. The intent of the paper is to report several new dynamic

anomalies of unsteady small disturbance transonic flows, to verify the

harmonic response results given in Ref. 3, (which were obtained with a

slightly different algorithm) and, finally, to speculate on the physical

relevance of these results. Attempts to improve the underlying physics of the

mathematical model will be reported at a later date.

In the first section of the paper the airfoil and flow parameter regime

studied and the numerical algorithm employed are described. The airfoil is

symmetric so that at zero angle of attack one expects the steady flow to be

symmetric. These symmetric flows are described in the second section, and

evidence is given that they are, in fact, weakly unstable over a range of free

stream Mach numbers.

The nature of the instability is mapped out in the third section. It is

shown that, when the symmetric equilibrium is unstable, the flow evolves, very

slowly, to either of two asymmetric equilibria, depending on the sign of the

initial disturbance. The upper and lower surface shock waves, initially at

the same location, split apart, one drifting downstream, the other upstream.
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The effect of this instability on dynamic response is then examined by

imposing a harmonic pitch oscillation on the airfoil. The resulting

hysteresis loops help to further clarify various anomalies which have been

observed in the past (for example, non-zero mean lift in response to

oscillation about zero mean angle3)•

In the fourth section, the effect of the boundary layer on the flow is

exami ned. The results of a simple numeri cal test i ndi cate that a fully

interactive boundary layer does not significantly alter the stability of the

inviscid equilibrium states.

Description of the Flow Regime and Algorithm

The problem examined in the present study is an NACA 0012 airfoil at and

near zero angle of attack at Mach numbers between 0.8 and 0.9. This case was

chosen to correspond to Salas' earlier work on steady flow. 2

All the results reported herein were generated with the conservative,

time accurate, small disturbance program XTRAN2L4 developed at NASA

Langley. This problem is a modification of LTRAN2-NLR5 which includes

(a) The ~tt term in the wave equation, using the Rizzetta-Chin

al gorithm6

(b) Non-reflecting far field boundary conditions?

(c) A Ilmonotonell difference switch to eliminate expansion

shocks. 8

The program was run with the NLR coefficients in the wave equation,

without the Krupp scaling in the vertical direction, on an 80x40 grid (the

default XTRAN3S xz grid).

Since the present results are based on the small disturbance

approximation, they are subject to transonic similarity rules. Hence most of
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the conclusions can be applied directly to any member of the OOXX series of

airfoils. These scaling transformations are discussed in the Appendix.

Symmetric Flow Results

A baseline series of calculations was performed with the airfoil held

fixed at zero angle of attack in a uniform free stream with Mach number

ranging from 0.81 to 0.86. In the first run the airfoil was "turned on" in a

uniform stream at M= 0.81 and the flow was allowed to develop to a steady

state. This simulation spanned some 60 chords of travel (about 600 time

steps). In the second run, the Mach number was re-set to 0.82, and the

calculation continued from the 0.81 steady state until a new steady state was

achieved. This process was repeated in Mach number increments of 0.01 to M=

0.86. In each successive simulation, the flow appeared to reach a symmetric

equilibrium in from ten to twenty chords of travel. The resulting steady

pressure distributions are shown in Fig. 1.

In reality, however, these calculations would not all converge to a

symmetric equilibrium if continued indefinitely. If the apparently converged

solution at M = 0.85, for example, is restarted with a large time step

(corresponding to two chords of travel per step) the lift diverges

exponentially, as shown in Fig. 2. In this case the lift history is,

approxi mate1y,

where CLo is of order 10-12 (since the initial asymmetry is a result of

truncation error), and the growth rate, s, is roughly 0.01 U/c. These numbers

explain why the instability was not observed in the original calculation: the
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initial flow asymmetry is exceedingly small and its time constant is large

compared to the time scale for equilibration to the new Mach number. In fact

it would take over 2000 chords of travel for lift coefficients on the order of

0.001 to develop given the present initial conditions.

It is important to note that the same growth rate is observed regardless

of the time step (a large step is necessary only to capture a significant

growth in a reasonable computational time). If the instability were numerical

in origin, the growth rate would depend on ~t. We conclude that the

instability must be a property of the differential equation.

In order to examine the long time evolution of these unstable flows it is

clearly desirable to introduce a controllable disturbance, rather than relying

on truncation errors.

Pulse Responses

The stability of the symmetric equilibria described in the previous

section was tested as follows: starting from the symmetric flow the airfoil

was pitched up to 1/40 angle of attack and back to zero with a slow Gaussian

pulse. The half width of the pulse was 40 and the time step 2 chords

travelled - so that the pulse duration is comparable to the instability time

scale and the time increment is small enough to resolve the disturbance and

long enough to give the post-pulse history in a reasonable number of steps.

The resulting dynamic lift responses are shown in Fig. 3 for Mach numbers

0.82-0.86. It is clear from these results that the symmetric state is stable

at M= 0.82, 0.83 and 0.86 - the disturbance generated by the pulse dies out

in time, and the flow returns to its original symmetric zero lift condition.

At Mach numbers between 0.83 and 0.86, though, the symmetric flow is

unstable - the positive pulse in angle of attack induces a transition to an
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asymmetric equilibrium state with positive lift (a negative pitch pulse would,

of course, cause a transition to a mirror image negative lift state). The

pressure distribution in the asymmetric equilibrium at M= 0.84, ~ = 0 is

shown in Fig. 4. Clearly the large lift is caused by a large shift in the

upper/lower surface shock positions from their common symmetric state

locations. Aside from the shock displacement there is very little change in

the flow.

Equilibrium lift and shock position results over the Mach number range of

instability are shown in Figs. 5 and 6, respectively (each circled point was

obtained by a pulse response calculation; starred points were taken from the

initial symmetric flow fields).

These figures show that at zero angle of attack there are three

equilibrium flow fields at any Mach number between 0.835 and 0.858. The

symmetric state is unstable and the two asymmetric states are stable (with

respect to infinitesimal disturbances). Note further that the shocks cannot

stand symmetrically anywhere between 72% and 88% chord. These limits are of

interest because they are universal within the OOXX family of airfoils (xS/c

is a valid transonic similarity parameter). It is important to observe as

well that the asymmetric equilibrium states are not always associated with

shocks standing near the trailing edge (as in Fig. 4). Indeed, near the lower

bifurcation Mach number the stable shock positions are very close to the

unstable symmetric location and well upstream from the trailing edge. Hence

purely numerical problems associated with trailing edge shocks, while perhaps

an issue, are not an explanation of the phenomenon.

•
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Harmonic Responses

One of the more important applications of small disturbance theory is the

evaluation of the fluctuating aerodynamic forces which result from airfoil

oscillation. Here we shall examine what happens to these forces when the

airfoil is oscillated harmonically in pitch about zero angle of attack with a

free stream Mach numb~r in the range of instability.

The harmonic response characteristics depend on the amplitude of the

oscillation, the redu~ed frequency, k = wc/U, and, sometimes, on the way the

oscillation is started. Figure 7 illustrates this, for the case M= 0.85, by
I

means of dynamic CL -:a loops at three reduced frequencies; 0, 0.01 and
I

0.05.

The quasi-steady'(k = 0) curve was obtained by a sequence of unsteady

calculations (with different a) starting from the asymmetric a = 0 state

labeled S in the figure. As long as a is greater than -0.060 the

computation converges to a point on the upper branch of the quasi-steady

curve. The lower branch is simply the mirror image of the upper, by

symmetry. The middle branch, shown in dashes, is unstable and so cannot be

computed with a time accurate algorithm. The quasi-steady curve is

qualitatively similar to that obtained by Sa1as2, using a conservative full

potential code. (He was also able to fill in the middle branch by using an

inverse steady solver).

A harmonic oscillation in a at an infinitesimal reduced frequency would

lead to one of two results:

(a) if the amplitude were less than 0.060 the flow would track the

upper equilibrium curve (centered at S) or the lower curve, depending

on initial conditions.
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(b) if the amplitude were larger than 0.060 the flow would

transition between the upper and lower branches during

the cycle, resulting in a hysteresis loop with abrupt

jumps at ex =2.0.060.

Recall that the instability time scale is on the order of 100 c/U. Hence

the quasi-static hysteresis loop just described would be seen only at reduced

frequencies k «0.01. The loop at k = 0.01 for a 1/40 amplitude

oscillation is shown in Fig. 7. In this case the flow does transition back

and forth between the two stable branches, though with considerable lag
,

because the oscillation period is cpmparable with the instability time scale.

Note that the mean lift is zero. A~ k = 0.05 (again for a 1/40 amplitude)

the period is small compared to the instability scale. In consequence the

flow does not have time to transition between branches during the cycle. The

lift loop shown in Fig. 7 remains near the upper branch because the

computation was begun on the upper branch. If the initial state had been

chosen on the lower branch the final steady state oscillation would have been

about the lower branch. Presumably any initial condition with k = 0.05 will

eventually produce either the loop shown in Fig. 7 or its image. Note that at

this "hi gh" reduced frequency the mean 1ift is not zero. This type of result

- in which a harmonic oscillation of a symmetric airfoil about zero mean angle

produces a nonzero mean lift was observed and discussed by Dowell, et al. 3

Boundary Layer Effect

Experimental data9 for the 0012 airfoil show no unequivocal evidence

for any instability of the symmetric flow at ex = 0 in the Mach number range

where small disturbance theory predicts instability. One possible explanation

•
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for this failure of the theory is that the interaction between the inviscid

flow and the boundary layer stabilizes the shocks in the symmetric

confi gurati on.

This hypothesis was tested with a preliminary viscous version of XTRAN2L

currently being developed at NASA Langley (by James Howlett of the Unsteady

Aerodynamics Branch). The model, which is based on Rizzetta's 'viscous

modification of LTRAN210 , couples a quasi-steady, integral, turbulent

boundary layer calculation of the displacement thickness with the existing

inviscid code through 'the surface boundary condition. Strong interaction

regions at the shock and trailing edge are not included in the formulation.

From the point of view of the external flow, we see an inviscid flow over an

airfoil with a compliant surface, such that the surface shape adjusts to the

pressure distribution (and vice-versa).

The test case chosen was this:

1) The flow field was initialized in the inviscid asymmetric

steady state at a = 0+, M= 0.85.

2) The boundary layer was turned on and the flow field marched

forward in time, simultaneously integrating the boundary

layer and inviscid equations, with a and Mfixed.

Several outcomes of this test are conceivable:

a) The flow approaches a symmetric equilibrium

b) The flow oscillates without approaching an equilibrium

c) The flow approaches a new asymmetric equilibrium.

The actual outcome was (c): the boundary layer smears the shock profiles

and displaces the shocks upstream, but does not alter the essential asymmetry
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of the flow. The initial and final pressure difference distributions are

shown in Fig. 8. This shift in the loading corresponds to a drop in CL from

0.307 with no boundary layer to 0.228 with a fully adjusted boundary layer.

The transition to the new viscous equilibrium was essentially complete

within ten chords of travel. As a precaution the calculation was continued to

over a hundred chords with no significant change.

Although the particular boundary layer model used in this calculation has

several theoretical shortcomings, it is difficult to imagine that a more

refined model would alter the basic conclusion: including boundary layer

interactions in the small disturbance inviscid model does not cure its

"unacceptable" dynamic properties.

Conclusions

The major conclusion to be drawn from the results presented here is

clear: when solved as a weak conservation law, the transonic small

disturbance equation predicts flow dynamics which are physically unexpected.

At lower supercritical Mach numbers there is one, stable, equilibrium state.

As the Mach number increases the original state becomes unstable and two new

stable states appear. At a certain high Mach number these states

re-coalesce. This sequence appears to be unaffected by (at least a simple

version of) inviscid flow/boundary layer interaction. Moreover the

equilibrium state structure (and presumably the dynamic response

characteristics as well) is common to small disturbance and full potential

theory.

Perhaps the most surprising property of the instability is its extreme

slowness - even on the time scale of upstream wave propagation. No

,
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satisfactory explanation for this long time behavior has been found, though it

is clearly associated with a slow drift in the shock position.

The most pressing unresolved question is whether these anomalous flows

are intrinsic to inviscid theory or simply a consequence of some approximation

made in small disturbance theory (and, presumably, in full potential theory as

well). In this regard it is significant that both the small disturbance and

full potential theories display the anomalous behavior while Salas' solutions

of the Euler equations show no conclusive evidence of it. Small disturbance

and full potential theory share a common neglect of the vorticity and entropy

which are generated by shock waves - effects which are present in the Euler

equations. Hence there is a suggestion that the shock instabilities are

caused by the neglect of these mechanisms.

A more persuasive argument can be made, however, that the instabilities

must arise in the Euler equations as well. Small disturbance theory (unlike

full potential theory which is ad-hoc when shocks are present) is a rational

asymptotic limit of the Euler equations for Mach numbers near one and small

thickness ratios (0 + 0, (1 - M2)/02/3 fixed). In the transonic scaling

the Euler equations can be written symbolically as

No(U;K) = 02/3 N1 (U)

where U is the scaled state vector, K is the transonic similarity parameter

and No and N1 are nonlinear operators. If we set 0 = a we get small

disturbance theory (No = 0). It is difficult to imagine how the solution of

the Euler equations for 0 nonzero but arbitrarily small could differ

substantially from the solution of small disturbance theory•

If the solution of the Euler equations does approach the solution of

small disturbance theory as 0 + 0, then the Euler equations must displ~ the
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same instability and nonuniqueness properties as seen in small disturbance

theory. Since Salas' numerical results indicate that the Euler solutions are

well behaved for the 0006 and 0012 airfoils it would seem that a bifurcation

must occur at some finite 0 less than 0.06 (for the NACA OOXX family at zero

angle of attack). This might occur as sketched in Fig. 9. Figure 9a shows a

hypothetical steady state bifurcation for a fixed K (between the limits

imposed by small disturbance theory). Figure 9b shows a hypothetical M-o

parameter map of the region of nonuniqueness in the steady Euler equations.

These figures are consistent both with the present numerical results and with

Salas I Euler solutions. Whether or not they in fact represent the behavior of

the Euler equations, of course, awaits further investigation. If it does turn

out that Figure 9 is qualitatively correct, then either the phenomenon is real

or it results from the neglect of viscous forces. In the latter event, a

better model of viscous effects would be required than that used in the

present investigation. In this regard it should be noted that existing

experimental evidence (which is for relatively thick airfoils) does not

preclude the phenomenon illustrated in Fig. 9. It is quite possible that the

flow instabilities reported here do in fact occur in nature, but that their

domain of occurrence has simply not been studied experimentally.

Appendix

Similarity Laws for the Instability Region

Since the instability is extraordinarily weak, it should be describable,

with negligible error, by the low frequency small disturbance equation,

2M~ t + (M2 - 1 + B~)~ - ~ = 0x x xx yy

where x,y are measured in units of the chord c, t in units of clU, and where B

..
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is a constant. Correspondingly we impose the quasi-steady boundary conditions

•

~ = .f'(x) on airfoil, 0 < x < 1, y = 0y

~~ = 0 on wake, x > 1, y = 0x

(A. 2)

(A. 3)

•
where. is a scale factor for both thickness and angle of attack.

If no external time scale is introduced through the boundary condition

(eg. if the airfoil is fixed) then the solution of the above problem must

scale as:

~ = ~ "$ (x, ?' t; K)

S = .; 1 - M
2 , K = B'/S

3

y = ey, t = e2t/M,

from which it is apparent that the lift and shock position are:

CL = ~ CL(f; K).

Xs = xS(t; K)

(A.4)

(A.5)

•

•

Suppose, now, that a symmetric airfoil (thickness/chord ratio .) is at

zero angle of attack. Suppose, further, that the flow is initially in the

symmetric equilibrium state, with CL = 0 and xs = xso(K). If this

flow is unstable, so that the lift grows like est, then the growth rate of

the instability must scale like:

M -s = 2" s(K) • (A.6)
e

Instability onset occurs when s = 0, that is, for specific values of the

similarity parameter K, or, equivalently, at specific values of the symmetric

shock position XSo• For the 0012 airfoil, with the NLR coefficient

B = M2(2 + (y - I)M2) instability appears at M= 0.835 and disappears at
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0.858. These limits correspond to K1 = 1.144, xSo = 0.72 and

K2 = 1.496, xSo = 0.88 respectively. Hence, for any airfoil DOT, with

any coefficient B, the symmetric flow will be unstable whenever BT/S3 is

between K1 and K2' or, equivalently, whenever the symmetric shock lies

between 0.72 and 0.88. When the instability occurs the flow will transition

to a new asymmetric equilibrium, the lift and shock positions of which can

easily be calculated from (A.5) and Figures 5 and 6.

A puzzling feature of the numerical results is the extremely slow growth

rate of the instability, which has a time scale t N 100. This is not

explained by the scaling law since in the middle of the unstable region

(M = 0.85), the scaled time is t N 33. We give here a simple ad-hoc model

of the instability, based on the scaling law and the computed equilibrium

shock locus (Fig. 6), which does predict the correct growth rates.

Suppose that the shock velocity is governed by the differential equation

so that xSo is the symmetric equilibrium position and xS o ~ b are the

asymmetric equilibria. By similitude, b and A must be determined by xSo•

Note that if A is positive the symmetric state is unstable and the two

asymmetric states are stable. Linearizing about the symmetric state we find

the behavior,

•

(A.8)

where

(A.9)
/I



15

From Fig. 6 the maximum value of b is 0.15 at M= 0.845, which yields a

maximum growth rate of 0.008A. This value agrees with the observed growth

rate if A is of order 1. Over the range of instability, then, we expect

growth rates given by the empirical relation

(32
s = 2.5 Mr (xS - .72)(.88 - xs )

o 0
(A.10)

•

(which comes from fitting a parabola for b2 to the results of Fig. 6).

This derivation is, of course, quite crude since Eq. (A.7) has no

justification beyond its consistency with Fig. 6 and the scaling laws. What

has been shown is that the small growth rates observed ari se "natura lly, II

without large nondimensional factors being inserted arbitrarily. A rational

analysis of the growth rate would require solving the eigenvalue problem which

results from linearizing Eqs. (A.l)-(A.3) about the symmetric equilibrium.

Even if this were done, though, the cause of the instability would likely

remain as mysterious as it is now•
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