General Disclaimer
 One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

```
(AASA-CR-174350; THE EVALUATICN OFA NE5-16309
DEPORAABLE DIFPEACIICN GFAIIAG FOEA
STIG&ATIC EOV SEECTEOEELICMETEF ErOgress
Heport, 15 Feb. - 15 Aug. 1984 (Stanford Unclas
Univ.) 11 F HC AO2/AE AO1 CSCL 14B G3/35 01157
```

the evaluation of a deformable diffraction grating
FOR A STIGMATIC EUV SPECTROHELIOMETER

Progress Report for NASA Grant NAG1:-540 for the period 15 February to 15 August 1984

J. Gethyn Timothy
Principal Investigacor
Center for Space Science and Astrophysics
Stanford Univeisity
Stanford, California 94305

The program to develop a high-resolution, extreme ultraviolet (EUV) spectroheliometer, which was started at the University of Colorado under NASA Grant NAGW-396, was terminated at the University of Colorado on 30 November 1983, and transferred to Starford University. The program was restarted at Stanford on 15 February 1984, under NASA Grant NAGW-540.

The first six menths of the program at Stanford have concentrated on the two key areas of technology that are crucial to the development of the highresolution EUV spectroheliometer: namely, the elastically deformable toroidal diffraction grating and the open-structure imaging pulse-counting detector system.

In order to verify the optical performance of a high-frequency toroidal grating at EUV wavelengths, a 3600 -groove- mm^{-1} master grating on a spherical concave blank has been procured from Hyperfine, Inc., in Boulder, Colorado, by M. C. E. Huber, the co-investigator at the Institute for Astronomy in Zurich, using Swiss Federal Institute of Technology funds. This grating has been successfully replicated onto a deformable metal blank fabricated ©or Huber by Lemaître and his collaborators at Marseilles (see Figure 1). The master grating was replicated onto the metal blank when it was in a relaxed spherical condition. After replication, the sub-master grating was elastically deformed into the appropriate toroidal form for stigmatic imaging in first order at a wavelength near 600 A. With the grating in its toroidal form, a replica grating was fabricated on a fixed toroidal blank for the initial optical evaluation. This grating was osmium coated for high reflectivity at EUV wavelengths.

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

Figure 1. a) 3600 groove ma^{-1} diffraction grating on elastically-deformable substrate.

Figure 1. b) Substrate with deformation actuator.

In May of this year, Huber and Timothy made measurements of the aspect ratio of the toroidal surface of the grating using a Twyman-Green interferometer and also by observing the quality of the image in zeroth order at the appropriate angles of incidence and reflection. From the equation

$$
R_{v} / R_{h}=\sin \alpha \cos \beta=\cos ^{\delta} . \gamma=0.9782
$$

for imaging with a $3600-$ groove $-\mathrm{mm}^{-1}$ grating in first order at wavelengths near $600 \AA, \alpha=11.98^{\circ}$ and $\beta=0^{\circ}$. Thus γ for zeroin order image tests $=8.49^{\circ}$. Measurements of the aspect ratio of the first toroidal grating by the two methods gave results which were in excellent agreement but which showed that the grating had been fabricated with an aspect ratio which was ico large for stigmatic imaging near 500 月. Huber's report of these tests is attacher to this progress report. From discussions with B. Bach at Hyperfine, Inc., it became clear that the incorrect aspect ratio was the result of an improper setup at Hyperfine and not the result of a failure of the deformation and replication process.

During the past few weeks, a second replica grating has been fabricated by Hyperfine, Inc., and recent measurements by Huber in Zurich have shown tiat the aspect ratio of this grating is now within a few percent of the desired value. The initial measurements give an aspect ratio oi 0.9909 as compared with the goal of 0.9782 . Calculations show that the grating should have the desired imaging properties over the wavelength range from 462 to 609 A. Additional measurements at visible wavelengths will be undertaken during the next few weeks, and the grating will then be sent to the University of Padua for the initial EUV tests. These will be carried out in the vacuum spectrograph which was designed to accommodate the toroidal grating and which is now set up in a
laboratory at the University of Padua. It is now our expectation that the initial EUV tests will be undertaken no later than the end of October of this year.

In parallel with these activities, an open-structure (256×1024)-pixel, Multi-Anode Microchannel Array (MAMA) detector system has been assembled. This detector has an active area of $6.5 \times 26 \mathrm{~mm}^{2}$ and pixel dimensions of 25×25 microns 2 (see Figure 2). A number of sealed ultraviolet and visible light MAMA detector tubes have also been fabricated and are being used to verify the imaging properties of this detector system. Distortion-free imaging with single-pixel resolution has been verified for the two-dimensional detector system as shown in Figure 3. Following the initial photographic tests of the toroidal grating, detailed measurements of the imaging properties will be undertaken using both visible-light and open-structure versions of the MAMA detector system. It is now expected that these tests will be undertaken in November and December of this year.

The toroidal diffraction grating and the open-structure imaging detector system now provide the means to verify the proof-of-concept of the spectroheliometer design. A proposal has accurdingly been submitted to NASA for the continuation of this program through 1985 with th soal of completing the detailed definition of the EUV spectroheliometer configuration that is compatible with flight on the SPARTAN carrier.

ORIGINAL PAGE

BLACK AID WHITE PHOTOGRAPH

Figure 2. Readout array of (2515×1024)-pixel MAMA detector with pixel dimensions of 25×25 microns ${ }^{2}$.

Figure 3. Ultraviolet image recorded with (256 x 1024) -pixel, pulse-counting MAMA detector system. Bar group 4-1 is 1-2 pixels wide.

Report on prellminary teats of Hyperfine grating No. 010 ($8000 \mathrm{l} / \mathrm{mm}$, "bent torold", 1 m average radiua of curvature, ruled aurface $70 \mathrm{~mm} \times 70 \mathrm{~mm}, \mathrm{Os}$ coated)

Summary

MCEH AND JGT have made a first measurement of the aspect ratio of grating number 616 on May 19, 1984 at ETH Zurich. An interferometric test, which indicated an aspect ratio of 0.9892 , was confirmed by a determination of the stigmatic focus in zero order. It was concluded that the deviation of the toroid from a sphere is about half of what it should be.

1. Determining the wavefront in a Twyman-Green interferometer

By use of the setup shown in Fig. 1, we compared the wavefront reflected $b ;$ the toroidal grating with a spherical wavefront. The fringes trace contour lines, i.e. lines of equal height above or below a spherical surface. Going from one fringe to the next corresponds increasing (or decreasing) the height by $\lambda / 2$ (with $\lambda=0.8328 \mu \mathrm{~m}$).

The measured height differences going from the center to the edges on the top (or bottom) and on the sides of the $70 \times 70 \mathrm{~mm}^{2}$ aperture - was ca. ± 10.5 fringes. This corresponds to a height difference of

$$
\begin{align*}
\pm \delta= \pm(\text { fringes } \times \lambda / 2) & = \pm(10.5 \times 0.6328 / 2) \tag{1.1}\\
& = \pm 3.32 \mu \mathrm{~m}
\end{align*}
$$

or to a total height difference at the centers of the edges of

$$
\begin{equation*}
\Delta=h_{v}-h_{h}=2 \delta=6.04 \mu \mathrm{~m} \tag{1.2}
\end{equation*}
$$

We use the geometrical relations defined by Fig. 2 and obtain:

$$
\begin{equation*}
\Delta=h_{v}-h_{h}=\frac{a^{2}}{2}\left(\frac{1}{R_{v}}-\frac{1}{R_{h}}\right)=\frac{a^{2}}{2 R^{2}}\left(R_{h}-R_{v}\right)=\frac{a^{2}}{2 R}\left(1-\frac{R_{v}}{R_{h}}\right) \tag{1.3}
\end{equation*}
$$

where R is the (average) radius of the flexible grating in its apherical state. (It was assumed throughout that $h<R$, so that terms of the order of h^{2} could be neglected and $R_{v} \cdot R_{h}=$ $\boldsymbol{R}^{\mathbf{2}}$.) The indices h and \boldsymbol{v} refer to the horizontal and vertical radii of curvature.

From the interferometric measurement we thus obtain the aspect ratio, which is given by equ. (1.3), but is derived differently as a check on the approximations used:

$$
\begin{align*}
\frac{R_{v}}{R_{h}} & =\frac{R-\frac{R_{h}-R_{v}}{R+\frac{R_{h}-R_{v}}{2}}=\frac{R-\frac{R^{2} \Delta}{a^{2}}}{R+\frac{R^{2} \Delta}{a^{2}}} \simeq 1-\frac{2 R \Delta}{a^{2}}}{} \tag{1.4}\\
& =1-\frac{2 \times 10^{3} \mathrm{~mm} \times 6.64 \times 10^{-3} \mathrm{~mm}}{35^{2} \mathrm{~mm}^{2}}=0.9892
\end{align*}
$$

2. Determining the atigmatic condition in zero order.

The condition for atigmatic imaging vith a toroidal grating is

$$
\begin{equation*}
\frac{R_{v}}{R_{h}}=\cos \alpha \cdot \cos \beta_{0}=\cos ^{2} \gamma \tag{2.1}
\end{equation*}
$$

where α and β_{0} are the angles of incidence and diffraction, respectively, that apply for a stigmatic focus. For the special case of zero order, $\alpha=\boldsymbol{\gamma}$ and $\boldsymbol{\beta}_{0}=\boldsymbol{\gamma}$.

To check the interferometric measurement, we determined the lateral distance $b=187$ mm between the (point) light source and the stigmatic focus in zero order. Before this measurement, the grating had been set at an angle of incidence and reflection so that a stigmatic focus indeed occured. The measured angle $\gamma=\arcsin \frac{b}{2 R}=\arcsin \frac{187 \mathrm{~mm}}{2 \times 10^{3} \mathrm{~mm}}=$ $5^{\circ} .4$ then resulted in the aspect ratio

$$
\begin{equation*}
\frac{R_{v}}{R_{h}}=\cos ^{2}\left(5^{\circ} .4\right)=0.091 \tag{2.2}
\end{equation*}
$$

This measurement yields a total height difference at the centers of the edges.

$$
\begin{equation*}
\Delta=\frac{a^{2}}{2 R}\left(1-\frac{R_{v}}{R_{h}}\right)=\frac{35^{2} \mathrm{~mm}^{2}}{2 \times 10^{3} \mathrm{~mm}}(1-0.001)=5.5 \mu \mathrm{~m} . \tag{2.3}
\end{equation*}
$$

It should be atresed however, that this second measarement is not as accurate as the interferometric one. It served only to confirm the order of magnitude of the frat one (to exclude an error by a factor of two in Δ, for example).

8. Silgmatic wavelengths of present grating

The wavelengths for stigmatic conditions that are available with the present grating can be calculated from equ. (2.1) and the grating equation.

$$
\begin{equation*}
n \lambda=d\left(\sin \alpha+\sin \beta_{0}\right) \tag{3.1}
\end{equation*}
$$

where the order is assumed to be $n=1$ and the grating constant is $d=2777.8 \AA$.
With the vacuum spectrograph in Padova, whic n has been prepared for the grating tests, the angle $\boldsymbol{v}=\alpha+\beta_{0}$ between incident and diffracted beam should probably be 12° as a minimum. The maximum angle ϑ that can be reached with the present aspect ratio is about $11^{\circ} .9$, and th: corresponding maximum atigmatic wavelength is then $\lambda\left(\alpha=5^{\circ} .9, \beta_{0}=0^{\circ}\right) \simeq$ 577 \&. Maybe this can still be reached with photographic tests.

If the blur at the central wavelength $\lambda\left(\beta=0^{\circ}\right)$ should not exceed $25 \mu \mathrm{~m}$ (i.e. one pixel of the present MAMA detector) we must chose $\left|\beta_{0}\right| \leq!^{\circ} .52$. This results in a $\boldsymbol{v}_{\text {max }} \leq \alpha+\beta_{0}=$ $8^{\circ} .29+1^{\circ} .52 \leq 9^{\circ} .81$. The wavelengths at the upper limit of $\left|\beta_{0}\right|$ are

$$
\begin{align*}
\lambda\left(\beta_{0}=-1^{\circ} .52\right) & =327 \AA \\
\lambda\left(\beta=+0^{\circ} .00\right) & =401 \AA \tag{3.2}\\
\lambda\left(s_{0}=+1^{\circ} .52\right) & =474 \AA
\end{align*}
$$

For $\beta_{0}=0$ we obtain $t^{\circ}=8^{\circ} .43$ and

$$
\begin{equation*}
\lambda\left(\beta_{0}=+0^{\circ} .00\right)=407 \AA \tag{3.3}
\end{equation*}
$$

4. Setting for sero order for the apecliled apect ratio $R_{v} / R_{h}=0.9782$.

The apecified aspect ratio $R_{v} / R_{h}=0.9782$ resulta in an angle of Incidence and of reflection of $\boldsymbol{\gamma}=\mathbf{8}^{\circ} .4907$ for sero order condition and thas in a lateral distance between light snurce and atigmatic image of

$$
\begin{equation*}
b=2 R_{h} \sin \gamma=2 \times 1011.1 \mathrm{~mm} \times \sin \gamma=298.6 \mathrm{~mm} \tag{4.1}
\end{equation*}
$$

Such a setup and angle $\boldsymbol{\gamma}$ could in principle be used for setting the distortion of the flexible blanic. (When the present grating (No. 610) is used in zero order at this angle, a marked astigmatism is observed, as expected with the present value for the aspect ratio.)

Ins. 2 Calculating h

$$
\begin{aligned}
(R-h)^{2} & =R^{2}-a^{2} \\
-2 R h & =-a^{2} \\
h & =\frac{a^{2}}{2 R}
\end{aligned}
$$

(enlarged grating

Pis. 3 Stigmatic four
in zero order.

$$
\begin{aligned}
\frac{R_{\rho}}{R_{l}} & =\cos \gamma \cdot \cos (-\gamma)= \\
& =\cos ^{2} \gamma \\
b & =2 R_{h} \sin \gamma
\end{aligned}
$$

point

