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Abstract

Viscous effects on transonic airfoil
stability and response are investigated using an
integral boundary layer model coupled to the
inviscid XTRANZ2L transonic small-disturbance
code. Unsteady transonic airloads required for
stability analyses are computed using a pulse
transfer-function analysis including viscous
effects. The pulse analysis provides unsteady
aerodynamic forces for a wide range of reduced
frequency in a single flowfield computation.
NonTinear time-marching aeroelastic solutions
are presented which show the effects of
viscosity on airfoil response behavior and
flutter. Effects of amplitude on time-marching
responses are demonstrated. A state-space aero-
elastic model employing Padé approximants to
describe the unsteady airloads is used to study
the effects of viscosity on transonic airfoil
stability.  State-space dynamic pressure root-
loci are in good overall agreement with time-
marching damping and frequency estimates.
Parallel sets of results with and without
viscous effects reveal the effects of viscosity
on transonic unsteady airloads and aeroelastic
characteristics of airfoils.

Nomenclature

ap = nondimensional distance from
midchord to elastic axis

b = airfoil semi-chord

c = airfoil chord

Che = control surface moment
coefficient about hinge axis due to
control surface rotation

cy = lift coefficient

2y = 1ift coefficient due to plunge

Ciy = lift coefficient due to pitch

Ceg = lift coefficient due to control
surface rotation

Cm = moment coefficient about pitching
axis

Cmp, = moment coefficient about pitching
axis due to plunge

Cina = moment coefficient about pitching
axis due to pitch

Cmgy = moment coefficient about pitching

axis due to control surface rotation
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pressure coefficient

critical pressure coefficient
nondimensional plunge displacement,
positive downward from elastic axis
dynamic plunge amplitude

wb/U, reduced frequency

structural stiffness matrix

airfoil mass per unit span
freestream Mach number

structural mass matrix

%-(U/bua)z, nondimensional
dynamic pressure
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flutter dynamic pressure

airfoil radius of gyration about
elastic axis

Uc/v, Reynolds number

o + jw, Laplace transform variable
time, sec.
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wat, nondimensional time
freestream velocity

flutter speed

distance aft of leading edge
nondimensional distance from
elastic axis to mass center
airfoil angle of attack, positive
leading edge up

airfoil mean angle of attack
airfoil dynamic pitch amplitude
control surface deflection angle,
positive trailing edge down
control surface mean deflection
angle

control surface dynamic deflection
amplitude

m/mpb?, airfoil mass ratio
kinematic viscosity

freestream air density

Ut/b, nondimensional time
angular frequency

flutter frequency

uncoupled natural frequency of
plunging

uncoupled natural frequency of
pitching about elastic axis
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Introduction

Research directed at better understanding
of aerodynamic and aeroelastic phenomena at
transonic speeds has increased greatly in recent
years. These developments have been made
possible by the advances made in computer power
and numerical solution techniques.' Much effort
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has been put into the development of accurate
yet cost efficient methods of calculating
unsteady transonic airloads as well as the pre-
diction of aeroelastic characteristics such as
flutter and divergence.

Solutions for inviscid unsteady transonic
flowfields about oscillating airfoils have been
made possible using computer codes such as
LTRAN2.? While the inviscid flowfields predict-
ed by LTRANZ give valid results for many cases,
these solutions are not adequate when viscous
effects are important. Rizzetta® incorporated a
viscous boundary layer model into the LTRAN2
code using a viscous ramp model and Green's lag-
entrainment equations, an integral boundary
layer model. A non-iterative implicit technique
was used to couple the quasi-steady viscous
equations with the inviscid potentia] flow equa-
tions. Guruswamy and Goorjian' applied this
modified version of LTRAN2 to investigate the
effects of viscosity on transonic aerodynamic
and aeroelastic characteristics of oscillating
airfoils. Two degree-of-freedom (plunge and
pitch) typical section flutter speeds were
presented for the conventional NACA 64A010 Ames
airfoil (herein referred to as NACA 64A010A) and
the supercritical MBB-A3 airfoil. As many as
8000 time steps per cycle of oscillatory motion
were required in the viscous lag-entrainment
calculations to obtain reasonably converged
results. Steady and unsteady viscous results
agreed better with experiment than did compar-
able inviscid solutions.

Houwink developed a procedure for an
explicit coupling of the unsteady transonic flow
and turbulent boundary layer computations, and
incorporated them into the LTRAN2-NLR® code.
Satisfactorily converged results were obtained
in as few as 120 time steps per cycle using the
resulting LTRANV® code. More recently, Howlett’
has modified the viscous coupling procedure of
Rizzetta for application to the XTRAN2L® general
frequency transonic small-disturbance code. An
integration of Green's lag-entrainment equations
is performed from a specified transition point
on the airfoil to the downstream boundary. The
viscous ramp model is discarded and boundary
layer smoothing is used to reduce flow instabi-
lities. [Iteration of an explicitly coupled vis-
cous boundary layer solution with the inviscid
outer flow at each time step provides converged
flowfield solutions in as few as one or two
iterations. In general, converged oscillatory
solutions 1ncluding viscous effects may be
obtained in three cycles of motion with 360 time
steps per cycle. Viscous solutions are obtained
in computer times approximately twice that of
the comparable inviscid solutfon. Therefore, a
more practical and affordable assessment of the
effects of viscosity on transonic unsteady
aerodynamic forces and aeroelastic characteris-
tics of oscillating airfoils is now possible.
The explicitly coupled viscous-inviscid proce-
dure of Ref. 7 is used in the present study to
calculate time-marching flutter solutions and
transonic unsteady airloads required for aero-
elastic stability analyses.

In the present study, airfoil stability
analyses are performed using state-space aero-
elastic modeling such as that reported in Refs.
9-12. Edwards, et al.? used a state-space model

employing Padé approximants to model the
unsteady airloads and demonstrated good agree-
ment with a time-marching technique for a
linearized case. Bland and Edwards!®
demonstrated that such locally linear procedures
may be used with airloads derived from a tran-
soni¢c  small-disturbance code. Batina and
Yang!!s12 ysed a similar procedure to study
the transonic aeroelastic stability and response
behavior of airfoils with active controls.

The purpose of this paper is to further
investigate the effects of viscosity on tran-
sonic airfoil stability and response. The
objectives of the study were: (1) to investigate
application of the pulse transfer-function
analysis of Seidel, Bennett, and Whitlow!3 to
treat airloads including viscous effects; (2) to
investigate application of the nonlinear time-
marching flutter solution procedure of Edwards,
et al.® to transonic airfoil response including
viscous effects; (3) to determine the effects of
amplitude on inviscid and viscous time-marching
flutter solutions; (4) to assess the accuracy of
state-space aeroelastic modeling to predict air-
foil stability including viscous effects by com-
parison with time-marching analyses; and (5) to
apply state-space modeling to study the effects
of viscosity on transonic airfoil stability.
Results are presented for the NACA 64A010A,
MBB-A3, and NACA 64A006 airfoils. Time-marching
response and state-space stability analyses are
performed for the NACA 64A010A and MBB-A3
airfoils. Parallel sets of results are present-
ed with and without viscous effects to determine
the effects of viscosity on transonic airfoil
stability and response.

Computational Procedures

XTRAN2L Transonic Code

The finite-difference code XTRAN2L solves
the transonic small-disturbance potential equa-
tion and thus provides predictions of unsteady
transonic flowfields about oscillating airfoils.
The inviscid algorithm, however, tends to over-
predict the shock strength and locates the shock
too far aft for cases where viscous effects are
important. In order to predict both shock
strength and location more accurately, viscous
corrections are needed. The effects of
viscosity are accounted for by an integration of
Green's lag-entrainment equations along the air-
foil from a transition point selected at 10%
chord to the downstream boundary. Iteration of
the viscous-inviscid solution may be performed,
ensuring converged flowfield results at each
time step. ,

Pulse Transfer-Function Analysis

Unsteady aerodynamic forces required for
stability calculations are computed using the
pulse transfer-function analysis available in
XTRAN2L. This analysis is based on the assump-
tion that the unsteady forces are locally linear
about the nonlinear transonic mean flow. In the
pulse analysis, the airfoil is given a small
prescribed pulse in a given mode of motfon and
the aerodynamic transients are calculated. For
pitch motion the pulse is given by
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a=a+ aoe-(t-17.5At) (1)

where At is the nondimensional time step.
Similar expressions describe the pulses for
plunge and control surface motions. The
unsteady aerodynamic transfer-function 1is then
determined by dividing a fast Fourier transform
(FFT) of the output force time history by the
FFT of the input pulse motion. 'The pulse analy-
sis provides unsteady aerodynamic forces for a
wide range of reduced frequency in a single
flowfield computation. This is in contrast to
multiple flowfield computations required for
calculating oscillatory forces for discrete fre-
quencies. Both inviscid and viscous pulse
transfer-function analyses are performed. A
typical inviscid pulse analysis was computed
with At = 51/32 and 1024 time steps while a
typical viscous pulse analysis was computed with
At = 2n/27 and 2160 time steps.

To assess the accuracy of the pulse
transfer-function analysis including viscous
effects, wunsteady aerodynamic forces were
calculated for simple harmonic motion at several
discrete values of reduced frequency k. Three
cycles of oscillatory motion with 360 time steps
per cycle and one viscous iteration per time
step were used for most cases. For k = 0.05,
720 time steps per cycle and two iterations per
time step were required.

Time-Marching Analysis

The aeroelastic system considered consists
of plunge and pitch degrees-of-freedom. The
equations of motion may be written in matrix
- form as

i o

where the dot denotes differentiation with
respect to nondimensional time t. Time-marching
aeroelastic solutions of Eq. (2) are obtained
both with and without viscous effects. In the
time-marching analysis, the equations of motion
are coupled with the aerodynamic solution
procedure of XTRAN2L for  simultaneous
time-integration. Equation (2) s numerically
integrated in time using the modified state-
transition matrix integrator of Edwards, et al.
Details of the solution procedure may be found
in Ref. 9. A typical inviscid analysis was
performed with At = 0.0004; a typical viscous
solution was obtafned with at = 0.0003. In
general, several aercelastic transients were
calculated for a range of nondimensional dynamic
pressure Q. Values of Q were selected which
resulted in subcritical damped responses and
supercritical diverging responses. The non-
dimensional flutter dynamic pressure, Qf, was
calculated by interpolation and then confirmed
by obtaining neutrally stable responses.

Damping and frequency of the aeroelastic
modes are estimated from the transient response
curves using the method of Bennett and
Desmarais.!* ~ These modal estimates are deter-
mined by a least squares curve-fit of the aero-

elastic transients using complex exponential
functions of the form

_ m(3)%
X(E) = a  + Ze"’m‘][a‘j cos (-z—).'t'
3=t a? (3)

w —
+ b:j sin (“’a)j t]

Damping and frequency estimates from the time-
marching analysis are plotted in the complex
s-plane.

Padé Model

Aeroelastic stability analyses are
performed using a state-space aeroelastic model,
termed the Padé model, similar to that of
Refs. 11 and 12. The locally linear Padé model
provides a relatively inexpensive determination
of airfoil stability while retaining the non-
1inear properties of the mean flow. Transonic
unsteady airloads required by this analysis are

determined by inviscid and viscous pulse

analyses. The Padé model is derived by assuming
linear superposition of airloads due to airfoil
plunge and pitch motions. The required airloads
are approximated by curve-fitting the XTRANZL
unsteady aerodynanlic forces with a Padé approxi-
mating function.!! The function may then be
rewritten as a set of ordinary differential
equations, which when coupled to the equations
of motion, Eq. (2), and Laplace transformed
leads to a linear first-order matrix equation

2 {2} = (A2} (4)

" where {z]} contains the displacements, veloci-

ties, and augmented states, and [A] is a real
matrix of constant elements. Equation (4) is
solved using linear eigenvalue solution techni-
ques for specified values of Q. The resulting
eigenvalues are plotted in a dynamic pressure
“root-locus" type format and are compared with
time-marching damping and frequency estimates in
the complex s-plane.

Results and Discussion

Calculations were performed for the NACA
64A010A, MBB-A3, and NACA 64A006 airfoils.
Airfoll coordinates required for aerodynamic
computations were taken from Ref. 15. Computa-
tional conditions were selected to match the
experimental conditions reported in
Refs. 16-18. Transonic steady pressure
distributions and unsteady aerodynamic forces
were studied for all three airfoils for the
computational conditions 1listed in Table 1.
Time-marching response and Padé model stability
analyses were performed for the NACA 64A010A and
MBB-A3 airfoils.

Aeroelastic results are presented for two
example sets of structural 1parameter values.
Example 1 is Case A of Isogail® which has bend-
ing and torsion modes similar to those of a
streamwise section near the tip of a sweptback



Table 1  Airfoils and computational conditions for
transonic aerodynamic and aeroelastic analyses.

Airfoil Computational M an Sm Re
Condition
NACA 64A010A 1 0.796 | -0.21° 12.56 x 106
MBB-A3 2 0.765 1.50° 6.0 x 106
MBB-A3 3 0.7557 | 1.30°
NACA 64A006 4 0.85 0° 0° 2.41 x 106

wing. Example 2 is the structural configuration
used by Edwards, et al.? (also termed Example 2
in Ref. 9) which has bending and torsion fre-
quencies that are close together. Values for
the structural parameters for the two examples
are listed in Table 2.

Transonic Steady Aerodynamic Results

Steady flowfields were computed for use as
initial conditions for unsteady aerodynamic
calculations. Steady pressure distributions for
the lower surface of the NACA 64A010A airfoil
are shown in Fig. 1 along with a plot of the
atrfoil contour. Both inviscid and viscous
XTRAN2L pressure distributions are presented and
compared with the experimental data of Davis.
Calculations were performed at the experimental
conditions'® of M = 0.796, oy = -0.21°, and
Re = 12.56 x 10° which are herein termed Compu-
tational Condition 1, as listed in Table 1.
All three sets of results are in reasonable
agreement. In the region of the shock, the
viscous computations are in better agreement
with the experimental data than the d{nviscid
computations. The calculated viscous shock is
slightly weaker in strength and 1s located
slightly upstream from the inviscid shock loca-
tion. Viscous effects are relatively mild for
this case.

Steady pressure distributions for the
MBB-A3 airfoil are shown in Fig. 2 along with a
plot of the airfoil contour. Computational
results are obtained at two different sets of
conditions for comparison with the experimental

Table 2  Structural parameter values
for aeroelastic analyses

Structural Example

Parameter n >
ap -2.0 -0.042
Xq 1.8 -0.036
To 1.865 1.368
u 60.0 60.0
wh 100.0 23.5
Wy 100.0 35.0

data of Bucciantini, et al.!” The first set
corresponds to the uncorrected tunnel
conditions!? of M = 0.765, o = 1.5°, and Re
= 6.0 x 10° which are herein termed Computa-
tional Condition 2, as listed in Table 1. The
second set corresponds to the design condition!?
of M. = 0.7557 and ap = 1.3° which is herein
termed Computational Condition 3, as listed in
Table 1. Computational Condition 3 allows
inviscid computations to match the experimental
pressure data and hence viscous calculations are
not presented at this condition. Both inviscid
and viscous solutions are presented at
Computational Condition 2. As shown in Fig. 2,
all four sets of results agree well along the
lower surface of the airfoil except near the
leading edge. For the upper surface, the
XTRANZL pressure distributions at Computational
Condftion 2 indicate an overprediction of the
shock strength and location, although the vis-
cous computation is in slightly better agreement
with experimental data than the inviscid compu-
tation. ' Differences between the viscous results
and experiment may be attributed to the fact

- that the boundary layer model does not account

for strong interaction between the shock wave
and the boundary layer. Invisicid calculations
performed at Computational Condition 3, however,
show much better agreement with experiment than
either of the calculations performed at Computa-
tional Condition 2.

Similar comparisons of steady pressure
distributions for the MBB-A3 airfoil at Computa-
tional Condition 3 have been reported by
Guruswamy and Goorjian.* Similar to the invis-
cid XTRANZL results at Computational Condition 3
shown in Fig. 2, the viscous LTRAN2 results of
Ref. 4 are in good agreement with the experimen-
tal data of Ref. 17. Differences between
XTRAN2L and LTRAN2 steady pressure distributfions
are attributed to the different grids and tran-
sonic scaling used in the two codes.

Steady pressure distributions for the lower
surface of the NACA 64A006 airfoil are shown in
Fig. 3 along with a plot of the airfoil contour.
Both inviscid and viscous XTRAN2L pressure dis-
tributions are presented for comparison with the
steady experimental data of Zwaan.!® Computa-
tions were performed at the experimental
conditions'® of M = 0.85, oy = 0°, &5 = 0°,
and Re = 2.41 x 10, which are herein termed
Computational Condition 4, as listed in Table
1. All three sets of results agree well except
in the region of the shock. Here, the viscous
computations are 1in better agreement with
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Fi‘g. 1 Steady pressure distributions for the
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'Fig. 3 Steady pressure distributions for the

‘Jower surface of the NACA 64A006 airfoil
at M = 0.85, ap = 0° and &p = 0°.

experimental pressures than the inviscid

computatfons. In the viscous solution, the
shock is weaker and is located slightly upstream
from the inviscid calculation. Viscous effects
are relatively mild for this case. -

Transonic Unsteady Aerodynamic Results

Unsteady aerodynamic forces required for
Padé model stability calculations were computed
using the pulse transfer-function " analysis.
Representative results for the 1ift coefficient
due to pitch, cy , are plotted in Fig. 4 as
a function of r3duced frequency K. These
results were obtained using the pulse analysis
with viscous effects for the NACA 64A010A air-
foil at Computatfonal Condition 1 and a small
pulse amplitude of o5 = 0.1°. To assess the
accuracy of the pulse analysis, oscillatory
calculations including the effects of viscosity
were performed for comparison. Results were
obtatned using an amplitude of o = 0.1° at
eight values of reduced frequency k = 0.05, 0.1,
0.2, 0.4, 0.8, 1.2, 1.6, and 2.0. As shown in
Fig. 4, the pulse transfer-function is in
excellent agreement with the oscillatory air-
loads. © The excellent agreement between the
two sets of results for this representative case
clearly demonstrates the applicability of the
pulse transfer-function analysis to include vis-
cous effects.

To investigate the effects of viscosity on
transonic unsteady airloads, inviscid and vis-

"~ cous pulse analyses are performed. A represent-

ative comparison between pulse results for
cy. is given in Fig. 5 for the NACA 64A010A
aiffoil (at Computational Condition 1). Both
sets of results were computed using a pulse
amplitude of 0.1°. The inviscid and viscous
pulse results show the same trends with respect
to reduced frequency. Differences between the
inviscid and viscous ¢y results are largest
for low values of k. °In the low k range,
viscosity decreased the magnitude of both the
real and imaginary parts. At high values of
reduced frequency, the two sets of results are
nearly the same.

- The effects of pulse amplitude on transonic
unsteady airloads were investigated by obtaining
unsteady forces for successively increased pulse
amplitudes. Calculations were performed using
both inviscid and viscous pulse analyses. The
inviscid pulse amplitude computations (not shown
here) 1indicate that the unsteady forces are
relatively independent of amplitude. Viscous
pulse amplitude computations showing effects of
amplitude for ¢ are presented in Fig. 6
for the NACA 64ASTOA airfoil (at Computational
Condition 1). Comparison between viscous pulse
computations at oy = 0.1° with the computa-
tions at ag = 1.0° shows some differences over
the range of k plotted. With increased pulse

_ amplitude, the magnitudes of the real and imagi-

nary parts of €, aT€ increased.

Unsteady experimental data from Davis,!®
and the computational results of Houwink?® and
Guruswamy and Goorjian* are also plotted in
Fig. 6 for further comparison. The experimental
data of Ref. 16 was obtained using a harmonic

pitch amplitude of a5 ~ 1,0°. The unsteady
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Fig. 5 Comparison of inviscid and viscous pulse
results for the 1ift coefficient due to
pitch about the quarter chord, cg_»
for the NACA 64A010A airfoil at
M = 0.796, oy = -0.21°, and
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Fig. 6 Comparison of pulse results with
experimental data, LTRANV and
LTRAN2-Viscous results for the 1ift
coefficient due to pitch about the
quarter chord, cg; , for the NACA
68A010A airfoil af M = 0.796 and
Q‘n = '0021°o

forces of Ref. 20 were calculated with the
LTRANV code using «¢o = 1.0°, M = 0.8, and
anp = 0°  The unsteady forces of Ref. 4 were
calculated with the viscous version of LTRAN2 at
Computational Condition 1 using harmonic pitch
amplitudes selected to match the experiment. As
shown in Fig. 6, the viscous pulse computations
performed using oy = 0.1° show good overall
agreement with the experimental forces except
for the imaginary values of Cyy At k = 0.1
and k = 0.2. Comparison of the viscous pulse
computations with the LTRANV airloads shows good
overall agreement. The imaginary part of the
LTRANV results compares well with the imaginary
part of the viscous XTRANZL results for pulse
amplitude oy = 0.1°, whereas the real part of
the LTRANV results are in better agreement with
the real part of the viscous XTRAN2L results for
pulse amplitude a5 = 1.0°  Comparison of the
viscous LTRANZ results for cg with all of
the other unsteady forces presefited in Fig. 6
shows good general agreement in the real part
although the imaginary part 1is consistently
overpredicted. '

Comparisons between inviscid and viscous
pulse results for the unsteady aerodynamic
coefficients due to control surface motion,
Cgery Cmer aNd  Che, are presented in
Fias. 7(af, 7(b), and'yﬁc), respectively. These
results were obtained for the NACA 64A006 air-
foil with a trailing edge control surface of 25%
chord (at Computational Condition 4). The
inviscid and viscous- pulse results were
computed using pulse amplitude 65 = 0.1°. The
differences between inviscid and viscous results
for ¢ and ¢ are generally largest
for low values of k. In the low k range, the
inclusion of viscosity decreased the magnitude
of both the real and imaginary parts of ¢,
and Cp.. At higher reduced frequency, thg
two sets of results are nearly the same. In the
pulse results for cp,. shown in Fig. 7(c),
viscosity decreased the value of both the real
and imaginary parts throughout the range of k
plotted. Effects of pulse amplitude on
Ceg . and cpe are similar to those shown
in Fig. 6. %o amplitude effect was noted for

Chge

Unsteady experimental data of,Zwaan18 and
the computational results of Houwink2? (calcula-
ted using the LTRANV code) are also presented
for further comparison (the harmonic control
surface amplitude used in Refs. 18 and 20 was
8g = 1.0°). The viscous XTRAN2L pulse solu-
t?on is in better agreement with experiment than
the inviscid solution. Viscous pulse computa-
tions show good agreement with LTRANV results
for the real and 1{imaginary components of
Cyg and the imaginary component of cp .

Time-Marching Response Results

Time-marching calculations were first
performed using a small {nitial plunge displace-
ment of h(0) = 0.001 to determine the value of Q
which results 1in neutrally stable aeroelastic
transients. The effects of amplitude on flutter
were then investigated by obtaining time-
marching responses for successively increased
initial plunge displacement h(0). In these cal-
culations, the dynamic pressure Q was set equal
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Fig. 7 Comparison of control surface pulse
results with experimental data and
LTRANV results for the NACA 64A006
airfoil at M = 0.85, oy = 0°, and
6m = 0°;

to the flutter dynamic pressure Qf previously
determined using h{0) = 0.001. Only representa-
tive responses for the NACA 64A010A airfoil (at
Computational Condition 1) are shown in this
section for the:two example sets of structural
parameter values listed in Table 2.

Example 1. - Neutrally stable plunge ahd
pitch time-marching response histories are

presented in Fig. 8. The responses have been
normalized by the initial plunge displacement
h{(0) = 0.001. Inviscid and viscous flutter
dynamic pressure values used to calculate the
aeroelastic transients are Qf = 0.60 and
Qf = 0.97, respectively. The responses are
bending dominated and are of constant amplitude
after the higher frequency torsion mode tran-
sfents, visible in the first 2-3 cycles of
motion, have damped out. As shown in Fig. 8,
the viscous responses have the same characteris-
tics as the inviscid responses including nearly
identical amplitudes. Accurate modal curve-fits
of the viscous response histories were obtained
using the method of Ref. 14. Damping and fre-
quency estimates of the aeroelastic transients
are plotted in the complex s-plane and are
discussed in the following section.

The effects of amplitude on the inviscid
and viscous time-marching flutter solutions of
Fig. 8 are shown in Fig. 9. Plunge and pitch
degrees-of-freedom exhibit similar characteris-
tics and hence only the pitch responses are
shown.  Furthermore, the pitch responses have
been normalized by h(0) to allow for direct
comparison between amplitude results. The pitch
results for h(0) = 0.001 in Fig. 9 are identical
to the pitch results of Fig. 8. As shown in the
top part of Fig. 9, the inviscid pitch responses
become slightly divergent when the 1{nitial
plunge displacement is increased by a factor of
100. The amplitude effect is consistent with
similar results reported in Ref. 9, where
increased amplitude had a small destabilizing
effect on the flutter responses of the NACA
64A010A and MBB-A3 airfoils for the structural
parameter values of Example 1. As shown in the
bottom part of Fig. 9, the viscous pitch
responses show a similar but larger diverging
trend for h(0) = 0.05. At h{0) = 0.1, viscous
responses diverged rapidly and led to program
failure. The inviscid pitch responses of Fig. 9
show a weak dependence on amplitude
while the responses for the viscous case show a
strong amplitude dependence.

Example 2. - Neutrally stable time-response
histories for the structural parameter values of
Example 2 are presented in Fig. 10. These
responses are of constant amplitude and
oscillate about an exponentially decaying mean.
In contrast with Example 1, the inviscid and
viscous flutter dynamic pressures are very
close, Qf = 0.88 and Qf = 0.86, respective-
ly. The inviscid and viscous plunge response
historfes have approximately the same amplitude
and frequency although the viscous
response oscillates about a slightly different.
mean than the inviscid response. Similar trends
are visible in the pitch responses of Fig. 10
(which are of smaller amplitude in comparison
with the pitch responses of Example 1 (Fig. 8)).
In contrast with the responses of Example 1, the
higher frequency transient is not present in the
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responses of Example 2. The higher frequency
mode is highly damped and thus has a negligible
contribution to the total response.

The effects of amplitude on the NACA
64A010A time-marching flutter solutions (at
Computational Condition 1) are shown in Fig.
11.  Inviscid pitch time-responses which are
neutrally stable at h(0) = 0.001 remain neutral-
ly stable at h(0) = O.l. Viscous pitch
responses are also neutrally stable when the
initial plunge displacement is increased by a
factor of 100. In contrast with the Example 1
responses of Fig. 9, the Example 2 responses of
Fig. 11 indicate that the flutter solution is
relatively independent of amplitude.

Padé Model Stability Results

Padé model stability calculations were
performed using transonic unsteady airloads
determined by both inviscid and viscous pulse
analyses. Pulse amplitudes were hg = 0.001

and ag = 0.1°. Results for the NACA 64A010A
and MBB-A3 airfoils are presented in this sec-
tion for the two example sets of aeroelastic
parameter values listed in Table 2. Comparisons
between time-marching and Padé model flutter
solutions for Example 1 and Example 2 are
presented in Tables 3 and 4, respectively.

Example 1. - Padé model dynamic pressure
root-Toci for the NACA 64A010A airfoil (at
Computational Condition 1) are shown in Fig.
12(a). Inviscid and viscous root-loci are
plotted. With increasing dynamic pressure the
torsion dominated mode moves directly left in
the stable left-half plane while the bending
dominated root becomes the flutter mode. The
inclusion of viscous effects increased damping
in the bending mode and slightly lowered the
torsion mode .frequency. Time-marching damping
and frequency estimates are plotted in Fig.
12(a} for Q = 0.4, 0.8, and 1.2. As shown in
the figure, the Padé model root-loci are in good
agreement with the time-marching modal estimates
in both the inviscid and viscous cases. The
value of dynamic pressure at flutter is given by
the ¢ = 0 crossing. The Padé model flutter
dynamic pressure values 0.62 and
Qr = 1.00 for the viscous

are Qf =
inviscid and

calculations, respectively. Thus, viscous
effects increased Qf by approximately 61%.
The Padé model Qf values are within 3% of the
small amplitude time-marching values presented
in the previous section.

Padé model dynamic pressure root-loci for
the MBB-A3 airfoil at Computational Condition 2
are shown in Fig. 12(b). Both inviscid and
viscous root-loci for the bending and torsion
modes are plotted. Time-marching modal esti-
mates are also plotted in Fig. 12(b) for
q = 0.2, 0.4, 0.6, and 0.8. Padé model results
are in good overall agreement with time-marching
damping and frequency values. Padé model
dynamic pressures at flutter are Q¢ = 0.25 and
QF = 0.55 for the inviscid and viscous MBB-A3
calculations, respectively. The inclusion of
viscous effects increased the flutter dynamic
pressure by approximately 124% in comparison
with the inviscid calculation. Padé model Qf
values differ from the small amplitude time-
marching QfF values 1listed in Table 3 by
7% and 22% for the inviscid and viscous cases,
respectively. These differences may be attri-
buted to the pulse amplitude effects on viscous
transonic unsteady airloads similar to that
shown in Fig. 6 and to the amplitude dependence
of the flutter responses of Example 1 shown for
the NACA 64A010A airfoil in Fig. 9. The larger
differences between Padé model and time-marching
QF values in the viscous case may also be
attributed to the more computationally sensitive
nature of the viscous XTRANZL calculations in
contrast with the relatively routine inviscid
calculations.

The MBB-A3 root-loci of Fig. 12(b) are very
similar to the NACA 64A010A root-loci of Fig.
12(a). The inviscid flutter characteristics of
these two airfoils were shown by Bland and
Edwards!® to be nearly identical when the steady
shock strengths and locations were matched. The
large differences in Qf between the two air-
foils presented here may therefore be attributed
to differences in steady shock strength and
locatfon as shown by comparison of Figs. 1 and
2. Also, since the shock on the MBB-A3 airfoil
(Computational Condition 2, Fig. 2) 1is stronger
in comparison with the shock on the NACA 64A010A
airfoil (Fig. 1), viscosity has more influence

Table 3 Comparisons between inviscid and viscous time-marching and
Padé model flutter solutions for Example 1.

Airfoils and INVISCID VISCOuS
Computational Conditions Time-marching Padé Model | Time-marching Padé Model
U uopluy | 9 e O Jupleg | Q] up/uy

NACA 64A010A

M = 0.796, op = -0.21° 0.60 0.96 | 0.62 | 0.96 0.97 1.06 | 1.00 | 1.06
Re = 12.56 x 10°

MBB-A3

M = 0.765, ap = 1.5° 0.27 0.82 § 0.25 | 0.81 0.46 0.89 | 0.55 | 0.92
Re = 6.0 x 10°

MBB-A3
M = 0.7557, o = 1.3° 0.65 0.97 | 0.74 § 1.00
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Table 4 Comparisons between inviscid and viscous time-marching and
Padé model flutter solutions for Example 2.

INVISCID VISCOUS
Airfoils and

Time-marching Padé Model | Time-marching Padé Model
Computational Conditions

U oo | % |orfey| %[99 %
NACA 64A010A
M = 0.796, ap = -0.21° 0.88 0.84 | 0.97 { 0.83 | 0.86 0.84 0.92 | 0.83
Re = 12.56 x 10°
MBB-A3
M = 0.765, ag = 1.5° 0.61 0.94 { 0.58 § 0.95 | 0.86 0.89 0.96 | 0.80
Re = 6.0 x 10°
MBB-A3
M = 0.7557, ap = 1.3° 0.76 0.83 | 0.76 | 0.83

on the steady pressures and hence Targer changes
in Qr result. :

Inviscid dynamic pressure root-loci for the '

MBB-A3 airfoil at Computational Conditions 2 and
3 are shown in Fig. 12{c). The Padé model
flutter dynamic pressure values are Qf = 0.25
at Computational Condition 2 and Qf = 0.74 at
Computational Condition 3. The small decreases
in Mach number and mean angle of attack in the
inviscid calculations result in similar changes
in the aerocelastic root-loci (Fig. 12(c)) as
occurred with the inclusion of viscous effects
at Computational Condition 2 (Fig. 12(b)). The
three sets of computations performed for the
MBB-A3 airfoil resulted in steady shock loca-
tions of 63%, 61%, and 51% chord and monotoni-
cally decreased shock strength as shown in the
steady pressure distributions of Fig. 2. The
corresponding Padé model flutter dynamic pres-
sure values are Qf = 0.25, 0.55, and 0.74,
respectively. The corresponding time-marching
flutter dynamic pressure values are Qf = 0.27,
0.46, and 0.65, respectively. With successively
decreased shock strength and forward shock dis-
placement, there is a wmonotonic increase in
Qr. Padé model Qf values for the MBB-A3
airfoil were typically nonconservative for
Example 1 which may be attributed to the ampli-
tude effects discussed earlier.

Example 2. - Inviscid and viscous Padée
model” dynamic pressure root-loci for the NACA
64A010A airfoil (at Computational Condition 1)
are shown in Fig. 13{a). In general, the inclu-
sion of viscous effects increased damping in the
lower frequency mode and decreased damping in
the higher frequency mode. A switch in modal
origin of the flutter mode occurs for this case
with the addition of viscosity. The viscous
computations give a flutter dynamic pressure
value of Qf = 0.92 which is slightly less than
the value of Qf = 0.97 given by the inviscid
computations. The inviscid Padé model flutter
dynamic pressure is within 10% of the time-
marching flutter dynamic pressure, Qf = 0.88.
Viscous Padé model and time-marching flutter
dynamic pressures differ by only 7%, as listed
in Table 4. The Padé model root-locus results
were in qualitative agreement with the time-
marching results. Damping and frequency
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estimates from the time-marching transients were
not obtained, though, because of the closeness

_in frequency of the two aeroelastic modes.

Padé model dynamic pressure root-loci for
the MBB-A3 airfoil at Computational Condition 2
are shown in Fig. 13(b). The inclusion of vis-
cous effects increased damping and decreased
frequency in the higher frequency mode. The
lower frequency mode shows only small changes as
a result of including viscosity. Dynamic pres-
sures at flutter are Q = 0.58 and
QF = 0.96 for the inviscid and viscous cases,
respectively. Padé model Qf values differ
from the small amplitude time-marching Qf
values listed in Table 4 by 5% and 12% for the
inviscid and viscous calculations, respectively.

* The inclusion of viscous effects resulted in a

66% increase in flutter dynamic pressure, which
is in contrast with the small changes in Qf
found for the NACA 64ACLO0A airfoil (Fig. 13(a)).
The large increase in Qf between inviscid and
viscous MBB-A3 cases at Computational Condition
2 is due to the stronger steady shock in compar-
ison with that of the NACA 64A010A airfoil (at
Computational Condition 1).

Inviscid Padé model dynamic pressure root-
loci for the MBB-A3 airfoil at Computational
Conditions 2 and 3 are presented in Fig. 13{c).
The flutter dynamic pressure at Computational
Condition 3 is Qf = 0.76 which is the same as
the time-marching Qf value listed in Table 4.
The small decreases in Mach number and mean
angle of attack’ in the inviscid calculations
result in decreased damping in the lower
frequency mode and increased damping in the
higher frequency mode. A change in the modal
origin of the flutter mode (Fig. 13(c)) also
occurs which is opposite to that for the NACA
64A010A airfoil of Example 2 with the inclusion
of viscous effects (Fig. 13(a)). Padé model
flutter dynamic pressure values for Example 2
were typically nonconservative which was similar
to that found for Example 1.

Concluding Remarks

Viscous effects on transonic airfoil
stability and response have been investigated



based on the use of the XTRAN2L transonic small-
disturbance code. Aeroelastic results were
presented for the NACA 64A010A and MBB-A3 air-

foils. Aerodynamic calculations including vis-
cous effects were performed using an
integral boundary layer model coupled to the

inviscid potential outer flow in a quasi-steady
fashion.

Transonic unsteady aerodynamic coefficients
required for stability calculations were
computed using a pulse transfer-function analy-
sis. Excellent agreement was found between the
pulse transfer-function and oscillatory airloads
thus demonstrating the ability of the pulse
analysis to include viscous effects. Inviscid
and viscous pulse results showed the same trends
with respect to reduced frequency although
differences occur for low values of k. Viscous
pulse computations showed better overall agree-
ment with experimental data than the inviscid
pulse computations.

Nonlinear time-marching flutter solutions
were obtained which showed the effects of vis-
cosity and amplitude on airfoil response
behavior and flutter. A two degree-of-freedom
{(plunge and pitch) aeroelastic system was con-
sidered. Representative responses for the
NACA 64A0l10A airfoil were presented for two
different example sets of aeroelastic parameter
values. In both examples, the viscous responses
at flutter had the same characteristics as the
inviscid responses including very similar ampli-
tudes. In the first example, which had bending
and torsion modes similar to those of a stream-
wise section near the tip of a sweptback wing,
large increases in flutter dynamic pressure Qf
resulted with the inclusion of viscous effects.
Also, the inviscid flutter responses showed a
weak dependence on amplitude while the viscous
flutter responses .showed a strong amplitude
dependence. In the second example, which had
bending and torsion frequencies that were close
together, viscosity had little effect on flutter
dynamic pressure. Also in the second example,
the time-marching flutter responses were rela-
tively independent of amplitude.

- Aeroelastic stability analyses - were
performed using a Padé state-space aeroelastic
model. " Dynamic pressure root-loci were present-
ed for the NACA 64A010A and MBB-A3 airfoils for
the two example sets of aerocelastic parameter
values. Padé model root-loci for the
first example considered, showed that viscous
effects lowered the torsion mode frequency and
increased damping in the bending mode thus
delaying the onset of flutter. Changes in
flutter dynamic pressure were correlated with
changes in steady shock strength and location.
Inclusion of viscous effects weakened the shock
on the MBB-A3 airfoil more than that of the NACA
64A010A airfoil and consequently caused larger
increases in Qf. For the three sets of compu-
tations performed for the MBB-A3 airfoil,
decreased shock strength and forward shock dis-
placement produced increased Qf values. In
general, the Padé model root-loci were in good
overall agreement with time-marching damping and
frequency estimates in both the inviscid and
viscous cases. In the second example, viscosity

.caused an insignificant change 1in the NACA
64A010A flutter dynamic pressure. For the
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MBB-A3 airfoil, a 66% increase in Qf resulted
with the inclusion of viscous effects which was
attributed to a stronger steady shock in compar-
ison with the NACA 64A010A airfoil. Padé model
flutter dynamic pressure values for both example
sets of aeroelastic parameter values were typi-
cally nonconservative. Differences between Pade
model and time-marching values for Qf are
attributed to pulse amplitude effects on viscous
transonic unsteady airloads and to the amplitude
dependence of the flutter responses in the first
example considered.
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