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A METHODFOE ESTIMATINGTHE ROLLINGMOMENT.DUE
TO SPINRATEFOE ARBITRARYPIANFORMWINGS

WilliamA. Poppen,Jr.

ABSTRACT

The application of aerodynamic theory for estimating the force and moments

acting upon spinning airplanes is of interest. For example, strip theory has been

used to generate estimates of the aerodynamic characteristics as a function of spin
rate for wlng-domlnated configurations for angles of attack up to 90 degrees. This

work, which had been limited to constant chord wings, is extended here to wings

comprised of tapered segments. Comparison of the analytical predictions with rotary
balance wind tunnel results shows that large discrepancies remain, particularly for

those angles'of-attack greater than 40 degrees.

NOMENCLATURE

b wing span

c wing chord

c wing segment chord at the in-board edge
O

CL lift coefficient
L

C£ rolling moment coefficient = qb area of segment
C normal force coefficient
N

CN constant term in normal force coefficient equation
O

C coefficient in normal force coefficient equation
N
sins

h slope of linear taper equation
L rolling moment

p roll rate, _ cos

q dynamic pressure

q£ local dynamicpressure
r yaw rate, _ sin

V velocity
V local velocity£
u,v,w velocity components,center of wing
x,y,z coordinates
u angle of attack

u local angle of attack
£

p air density
rotation rate

I
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The use of parameter estimation in modeling aircraft dynamics has been quite
successful for many mathematical models of flight. Parameter estimation is most

readily applied when linear models representing small perturbations from straight

equilibrium paths are appropriate. Flight data is most accurate in this regime and

the mathematical model is the slmplest. 1

Parameter estimation becomes more complex in application to spinning aircraft.
Modeling nonlinear aerodynamics, including rotational flow effects, is much more

difficult and many more unknown parameters are introduced. 2 In order to reduce the

large number of unknowns it is helpful to apply strip theory of reference 3. Strip

theory "links the wing airfoil section characteristics to the rolling and yawing

moment of the wing in spinning flight. ''I

In reference I, strip theory provided a mathematical model that was used to
determine the rolling moment of a wing in spinning flight. Calculated rolling moment

forces due to the wing were about 50 percent larger than the experimental rotary

balance spln-tunnel measurements of a wing-domlnated aircraft. It is the purpose of

this paper to expand the existing mathematical model of a spinning wing in order to

more closely represent an aircraft in spinning flight, and to further explore the

limitations and possibilities of the more general model. Specifically, the strip

theory technique of reference I will be extended to wings comprised of tapered

segments. The same limitation of reference 1 will be used in that the flow angle at

each strip location is independent of the incremental lift at other locations.

DISCUSSION

In order to decrease the complexity of estimating the rolling moment due to

spinning, the authors in reference 1 restricted their analysis to the rolling moment

produced by an untapered wing of a wlng-domlnated aircraft. In this paper the

approach is extended to wings of arbitrary planform hy considerelng a wing to be made
up of sections of differing taper.

Let us first consider the local flow characteristics for the general spanwise

location y, shown in figure I.

2
= (u - ry) 2V£ + (w + py)2

_ = arctan(_ + PY_=arcslnI_-ry/ (u - ry.2w+p_)+ (w + wy)21

and

q_ = _ u - ry) 2 + (w + py)2

For wings having a constant taper, the wing chord can be represented by a linear
equation:

c = c - hy for y > 0
o

c = c + hy for y < 0
o
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The equation for rolling moment for a single strip would be:

dE = - _ u - ry)2 + (w + py)2 + hy y my

For the entire wing the rolling moment becomes:a

b

L = 0 CN(Y) o-_ u - ry)2 + (w + + hy y dy

2

In order to easily represent aerodynamic data at high angles of attacks, the normal
force coefficient (fig. 2) is given the form:

+ CN sin=
CN(_) = CNo sin=

It follows then that a single wing section over which the normal force equation

is applicable will have the following contribution to rolling moment:

pc C fYupper [ ry)2 py)2] --
o No (u - + (w + y dy +

AL = _JYlower

hpCN fYupper [( ]
o u - ry)2 + (w + py)2 y2dy _

JYlower

PCoCN fYuppersin_ 4(_.U- ry)2 + (w + py)2 (w + py)y dy
¥

J Ylower

upper
hpCNsin= q(u - ry)2 + (w + py)2 (w + py)y2dy

Ylower

After integrating,

pC°CN r)• o ," ,' AL = 2 4 upper - Ylowe _ upper - Ylowe

(5 ,,owe1 (vk_2 2 ¥-- A -
: + C - Ylowe 2 upper: _ upper
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_)"_. (_ - Ylowe
C _pper

(_' - ¢lowe 3B uppe_

- -"-"-'2 J ¥1owel:

¥upperPPhC'Nsi_ 4_ Y38Y
_ J_lower

2 =_P"
where: A = P

B = - 2ur + ZwP= 0
2

2 ?-_V
C= u +W

2 + BYupper

./_'lower

\ ?. ?- u -

8A _ _2AYlower

_Ay Z + BYupper
uppe r

YuPper /_ ydy = 3A
JYlower

_Ay - . BYlower

- lower
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Yupper •'
B ¢_" dy-2"A

J Ylower

• fYupper V_ y2dy = 6AYupper- 5B (Ay2 C)3/2, J Ylower 24A2 upper + BYupper +

6AYlower - 5B (A2 + + C)3/2
- Ylower BYlower

24A2

Yupper4AC - 5B2 V_-dy

16A2 J Ylower

cYupper _€___y3dy = Yupper - 7BYupper + 7B2 2C 2 + + C
JYlower \ 5A 40A2 48A3 I_A2 Yupper BYupper

c )- lower - 7BYlower 7B2 2C A 2 3/2
5A 40A2 + Ylower + + C48A3 1 BYl°wer

(_ _ /_u_e_32A38A2/( _dy)J Ylower

The terms in the normal force equatlon, CNo and CNsina, correspond to
the local angle-of-attack ranges (see fig. 2) listed in Table 1 from reference I:

Angle-of-Attack CN° CNSina "

-164° to -16° -.5 1.0

-16 ° to -10.5 ° -1.6 -3.0

" -10.5 ° to 10.5° 0 5.8

10.5 ° to 16° 1.6 -3.0

16° to 164 ° .5 1.0

Table 1
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The wing span locations having local angles of attack of -16, -10.5, 10.5 and
16 degrees are determined by:

w - u tan(c boundary)
Yboundary = - p - r tan(c boundary)

These will serve as limits of integration in the above equations if they fall in the

confines of the panel being considered. If they do not, the boundaries of the panel
will be used as limits.

The program used to calculate the rolling moment of the wing using the above
equations is listed in the appendix. It is a series of subroutines that will calcu-

late the rolling moment coefficient of any tapered section of a flat wing given the

following data: the two boundary chord lengths of each panel; the distance of these

chords from the origin; the air density; the velocity of the aircraft; the wingspan;
and the area of the wing. There is an option to calculate the rolling moment coeffi-

cient of a single panel, or both symmetrical panels having the given dimensions.

The spin subroutine accepts the dimensions of the panel and calculates the slope
Of the linear equation describing wing taper (h). It then computes the limits of

integration along the panel. These limits are sent to the intermediate tests

subroutine. Tests classifies the limits and sends only those that are within the

bounds of the desired panel(s) to the panel subroutine. The panel subroutine does

the actual rolling moment calculation of the panel between the limits using the above

equations. The split subroutine is an optional subroutine which, given the

dimensions of the wing, will split a wing into its component panels and send each
panel in successionto the spin subroutine.

With this program, a wing comprisedof taperedpanels can be modeled, panel by
panel. Through a simple modification,the program can accumulate the total rolling
moment of an aircraftwing due to each panel at a selectedangle-of-attack. For the
airplane shown in figure 3, this was done at an angle-of-attackof 14 degrees in
order to obtain figure4. Figure 4 is a plot of the total rollingmoment coefficient
of the wing of the aircraft,as well as the rollingmoment coefficientof each of the
wing's componentpanels as a function of nondlmensionalspin rate. The bottom curve
of figure 4 represents the total rolling moment coefficient for the airplane of
figure 3 at 14 degrees angle-of-attack.
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The following flowchart is a diagram of the program:

MAIN MAIN

(WING (PANEL

, DIMENSIONS) DIMENSIONS)

I OR

_SPLIT

SPLITS!

_WING)

SPIN TAPER, LIMITS, RESULTS PRINTED

TESTS CLASSIFIES LIMITS

I PANEL CALCULATIONS

In a typical light, wlng-dominated aircraft such as the one illustrated in
figure 3, the panels that cause the greatest moment are the outer panels as is shown

in figure 4 and in table 2. The upper curve in figure 4 represents the rolling

moment contribution of the inner panels, the next curve represents the contribution

of the middle panels and the third curve from the top is the contribution of the
outer panels. This figure is for a fixed angle-of-attack while the rotation

rate varies. On the other hand, table I shows the relationship between the panels

when the rotation rate is fixed and the angle-of-attack is varied. The data of table

I and Figure 4 clearly show that the outer panels contribute from 78% to 97% of the

total rolling moment. Of course, this is expected since these panels are larger than

the others, have the longest moment arm, and experience the greatest variation in

dynamic pressure.

Figure 5 shows the improvement caused by taking into account wing taper as
compared to the values obtained with a constant chord. There is significant

improvement in the data, particularly at higher rates of rotation. The upper curves

are the spin-tunnel test data. Obviously, improvements in the model must be made

before the method can be considered acceptable. It is interesting to note (see

figures 5 and 6) that there is little difference when the wing of the aircraft in

figure 3 is simplified in the calculations to two large trapezoidal panels instead of

six smaller ones. However, the multl-panel approach is more accurate and is

applicable to the more general case.
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In reference I, it was noted that at angles-of-attack around 50 degrees the
experimental rolling moments were autorotative at low rotation rates. The calculated

data of reference I did not represent this phenomenon. The plot of 30 and 50 degrees
angle-of-attack in figure 7 shows that the new calculated data does not show auto-

rotative moments either. With the theory being used here, it would be impossible to
obtain autorotative moments except over an angle-of-attack range of 10.5 to 16

degrees since the slope of the line of normal force coefficient vs. angle-of-attack
(fig. 2) is always positive except over this range. Note that figures 5 and 6 show
an autorotative moment at low rates of rotation both in the test data and in the

calculated data for 14 degrees angle-of-attack. However, an extension must be made
to this simplified aerodynamic theory for higher angles-of-attack.l

The amount of error in the mathematical representation of a spinning wing has

been decreased by describing the wing as a set of tapered panels. However, the
errors are still large. The next step might be to consider the contribution of the

tail section to the rolling moment. Since the program calculates the rolling moment
of any tapered panel, the three tail panels could be input in order to determine the

tail effects. The present method will compute the rolling moment for swept-wing
configurations since rolling moment is independent of sweep. However, an extension

of the model should also incorporate pitching moment. Of course, this method will
not hold for aircraft where body effects cannot be neglected. The effects of the

body would have to be considered by some other method such as the strip theory of
reference 5. Improved estimates of aerodynamic moments would be expected if the
induced flow effects on the flow angles were included in the formulation. Past

results and future extentions promise further improvements in predicting the
aerodynamic forces and moments of spinning airplanes.

CONCLUDINGREMARKS

Mathematical representations of nonlinear phenomena such as the aerodynamics of
a spinning aircraft are characterized by having large numbers of unknown parameters.
Analytical methods such as strip theory can be used to reduce the number of unknown

parameters. In this paper, strip theory is applied to compute aerodynamic forces for
a wing composed of several variable taper trapezoidal panels in order to obtain a

model structure which requires only the unknowns of the normal force equations.
Although the error is decreased significantly by using strip theory in this manner as

compared to approximating the wing as untapered, there is still much more to be done

in order to analytically predict aerodynamic force of spinning aircraft. In order to

extend the model further, many new parameters would have to be added. Also, it is

clear that aerodynamic theory for angles-of-attack greater than 40 degrees must be

improved since it is impossible to predict the results of spin-tunnel rotary balance
tests with strip theory methods.

Since the program that calculates the data is general enough to accept any wing
panel of an aircraft, the revised model is currently useful in comparing the effects

on a panel of changing parameters such as rotation rate, angle-of-attack, velocity,
taper, etc. It is also useful for comparing aircraft components. However, the error

between anlytical predictions and the experimental data is still too large to

consider the strip theory representation to be an effective model of a spinning
aircraft.
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APPENDIX

Listed in the following pages is the program used to calculate the rolling
moment due to spin rate for an arbitrary planform wing. Inputs to the program are

set in a short main program which calls the subroutines necessary for the
calculations.

The first page shows an example of the simplest case where a single panel is
input to the program. Variable CHORD is the inboard chord length and CHTIP is the

outboard chord length. D1 and D2 are spanwise distances from the center line of the

fuselage to CHORD and CHTIP respectively. AREA refers to the area of the entire wing
containing the panel, and SPAN is the wing span. RHO is air density and VEL is the

velocity of the aircraft. The last integer tells the program whether to compute the

rolling moment for panel with the given dimensions on the positive side of the

aircraft (0), the negative side of the aircraft (I) or both (2). Normally, this
value will be 2, except when isolation a single wing panel is desired.

The second page shows a case where the panels of an entire wing will be input to

the program. In this case, variable CHORD is the root chord, CHI and CH2 are the

chord lengths at the point of wing taper change, and CHTIP is the chord length at
the wing tip. D! and D2 are the spanwise distances from the center line to CHI and

CH2 respectively. FUSE is the width of the fuselage.

As was mentioned in the text, the program can be modified to accumulate the

total rolling moment of a multi-paneled wing. To do this, a one-dimenslonal array
can be defined and placed inside the main loop of the spin subroutine such that each

time spin is called with a new panel's dimensions, the nine values of the panel's

rolling moment coefficient array (CLW) are added to the new array for a selected

angle-of-attack (corresponding to an iteration of the main loop). For more than one

angle-of-attack, a two-dimensional array would be necessary.

-9-
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lOS LOOP MHII| TH| AMGLI OF ATTACK l) |NCtEASEO IV Z O|lt||)*

CL¥IJIe|LVlIGU|OAtEAISAAM|
Z CONE|MU|

810 PK|NTING IHE ANGLE OF AllACK AkO IN| N_-_lfltNSSONlLIl|O tOLLING NOR|AT

SUEtOUTTIW SPIN T4174 OPTel Pl_l 4,leSS2 ta101141, Oq,

€
PtZNT TOOeaLPHOotCLViJ)*Jel*•)

I €ONTIMU|
€

Zig € TH| TUOtOUTIN| mill |NO AT ANKLE C_ ATTACK ENUAL TO •0 OEStE|S
€

tEVUtM
|NO

SYNJOLJ¢ t|F|A|NC8 RAP |tel)

|MTtY POINTS
! SPiN

Vit|alL|T $N TYPE RELOCATiOH
0 a tEAL I I EO? ALPHA t|aL

411 ALPHO t|&L 0 itTa tEAL PoP°
404 tl tEAL 40S AE tEAL

| 8 tEAL I t E C tEAL f I
IJ CXOtO teal I I 0 C#i teal A,P,

0 EME teal FePo 4)0 CLV teal stray
11 CNTA AEAL I I 10 CNO tEaL I I

0 01 t|aL PeP* 0 OE tEAL FJP*
TE ELi tEAL I I S H teal I I

6 MFUSE tEAL I I 4LO I INT|CEt
0 |TOE |NTEE|N Fep, 414 J |NY|K|t

t?? LA tEAL 400 LE teal
401 LC tEAL 40t LO teal
403 L| tEAL 415 ONEGA tEAL

4 • mEAL I I tOt QU_ IE&L
K)K fl tEAL 14 BHO tTtL I l

0 in01 tEAL FoP* ? SPAN tEAL I f
0 TAint tEAL FePo q)Z U meal

&_J UA t|aL 4E_ UO AFAL
tES UC teal tEE UO KEaL
42? UE tFAL 0 EEL tFaL rot*

] V teal f I ElK USEr tEAL
4EO YN1 teal 41? VNZ teal
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_UINOU_ T|S?S 7Al?A OPT+I PTN **A,IS! li/OJr01, _10.

. I € eooeooooeooeoeootoeoeoieoeoeeoooooooeeoooooeeooooooee*oeoooooooooooo
€ • THIS SUIROUT|HE CLASSIFIES LIHITS SE#T FAOA THE SUSEOUTIIE SPl_ •
€ • INTO THmEE ¢AFIGQRIESI •
€ * 11 LIn|TS FHiT AgTN FALL QN TM| H|IATC¥| i|NS •

g € • Z) LIMITS THAT AQTN FALL ON Till POSITIVI M|NS • -
€ • ]1LIHITS THAT FiLL ON ESTHER |SO[ OF THE FUEELA|E
€ • THESE LIN|TS ill SE_T TO SU|AOUTIH_ PANEL TO CONFUTE TM! •
€ • ROLLING HQHENT*
€ •AeeeleeeeeoQeleeeee•eee•eAiee•e•••e•eeee•eeeeeee••e•ee••••e••••e•••

SO €
SUelOUFtNE TESTS|UApLA*tTOG)
AEAL LA
CONNON II A,leCINIPIH, HFUS|*SFANmCNOmCNSAo|LVeCHQROeAHQ

€
S| € IOUTIHE TO CATCH LIn|T5 |HAT AP| LESS THAN TN! OlSTANC| TO T#E PAqEL*.

€
IF|UAeL|*MFUS|,ANO*UAeI|e|_FUS||| UAa-H/US|
|F|LA,LE,HFUSE,ANO,LA,G|e|_44FUS[)) LAeHFUS|
IF|UA,LE*LA) GO TO I|OL

!0
TF GOU|L| PANEL NOT AEGUtSFEOI SO TO ||SO

IFIITOG*LEeS| SO TO llSO

Z_ _l_ OOUSL| PAH|L co<

DOTN LINITS POSITIVE

EF|UA,G[,HF_SE,ANO*LA,SE,HFUSE| SO TO llO0
SO

|QTH LINITS NEGATIVE

SF|UABL|B°HFUSEBANO*LAtL|,*HFUS|) |0 TO lEO0

SS LENITS THAT €ON| THROUGHiRT THOSE THAT AA| NOT ON FH| SAM| PANEL,
THENEFOA|¿ THE tOLL NON[MT NUST 1| CALCULATEO FOR |ACH SIO| SEFANAT|LY,

• ••e NtGATIV| rING •••e

tO Oalgt,ul
elite.L•
UA*-H_USE

"-_UlIU+|_ki tiE?S" ?•IT* OPT*| FTN Q,elSE! O41O|/Og, OEell

...... |EIUA,EQ.L&) SO TO AOO?
CALL PIH|LIUI_LI|

4S €
€ 11•• POSITIVE MING ells
€

|007 UAeOR||A
LAoHFUSE

_ |F(_AiEO*LA| GO TO ||0|
CALL PAN[LIUAILA)
LI'OI|GA
SO TO 5101

€
E5 € _ SINGL| FIN|L €_€

€
llJO OWIGA.Ui

_IGI*LI
IFIITOS,IT, OI I0 tO ll_S

10 I;IUI*GI*HFUSE,INO,LA,6I,HFUSE) 60 tO llO0
IFIUAoLE*'HfUSE*AHO*LJ,LE**HFUSE| GO TO llOl
LAmHFUSE
IFIUA,LI,LAI GO TO SlOi
CALL PANELIUAeLA )

l+ LA*OIISI
GO TO IlOl

liES IFIUi,GE.HFUSI,INO,LI,GI_NFUSI| GO TO llOI
IFIUA*LE*'HFUSI*AHO*LI,L|,-HFUSI) SO TO 1|00
UI'-HFUSI

?0 IFIUA*LI*LAI €0 TO llOl
CALL PIN_LIUA+LII
UI*OIIGI
GO TO IlOl

1100 CALL FANILIUI,LA)
75 SSOl AETUIN ,,

i#O

SYNIOLIC IIFIIIMCI NiP ll-|l
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SUrtOUT|N| PAHfL 74174 0PTo! F1ut.J*_Z 8tl0?l|?.

l € 4eeeeeeeeeeeoeeeeeeeeeeeeeeeeeeTeooeoeoeeeeoooeoooeeeoeoeeeoeoeoeooe
€ • THiS 5UAtOUTZ_( P[IF00_5 IH[ |UT|GD&?/O_ FOB Tu$ triLLING aO_FNr •
€ • OF THy PiffLe TV_ L|elV$ Im_ $fN! U_ll FtgP SUBNQUT|e[ **
€ • TESTS THIr lq_ mflTH fIT_|e _M * PflSITlV| POk|L ne 6 _|$iVlVl *

5 € • PAN|L. THF SUSe_UIINf 15 ¢&LL(0 _JCU VIM_ i NYU 5FV Or LInErS *
€ • ON TH( PAH(L 15 CnqPQT(D* •
€ ••,••••eeeeeeeoeee,eee*eJe•*eeeeeeeeeeeeeeeeeeeeeee*eoeeeeeeeeoeee•
€
C 0EFIUIYInM n_ VleII*Lr_

tO €
• ¢ N * THE SL_P_ Or FJ¢5 LIN_Ae [CLI&TI_N 0|3CelNI_G VlMC _JJ_d

€
C P_| - IklEGe*L Nf T_t 5QUAP_ J_F I_ &YoeZ • qY • €
€ e_lv - Y Y|qF_ T_ |_F_PAL _F Y_r SAwY

I_ € P_[YZ - IkF[G_&L _lr v 50Liie(_ |lets I_r Si4Y
€ P_iY3 - I_T|GtAL 0, Y cuq[D iig_5 Y_ 5J_G
C
¢ tIDL * SguIR_ eU_Y _; IYeeZ • _ * C I Y F_ LO_E_ L|a/F
€ P&0U - _OUlec _y _F 6YiOZ • qY • _ | • FHi UPPit LI_IT

?0 €
SU_t_UT|H_ BANELII'**LII
m_AL L|

¢
_ tAOU*SORT|AeUOelJ&•_etI_*¢!

PADLeS0_F|_OLieL_*_eL_*¢I
C

P_|o(Uie,_*te,Z_/AIeJ_DU-|LAee_•_eeZSliIe_L
PHE*P_I•i(4,eAoC-qeBII(tee_eSOIT|A)IIe_&L_i_*U_eZ,*0*Z,*S0JlIJ|eu

|0 I_OU)oALOG(_eLAeZ**0•Z,eSORFI_Ie|_0L))
€

PH|Ye,]33333•(tAOUeeJ-_a0Leo3)li°,SeB•_|_4
€

PH_YZe((6eeAe¢i4 -5,e_)*_IOUee3-(Tee_eL_-See_J*g_OLee)JI_ZSee_eJ)

€
¢

T(_P_(U&_e_|/($e&)*(Te_eUSII|EO•_O&|•|?O_eB)#|Et$1••_|
P_IY3*(TE_P-|_eCII(ISeleAlIetAouee]

EO Tf_PIelLAeeZII|_e&)-|TeNeLiIIIS0eAeS|e|_e_e#JlIE_eAee_|
P_EY3eP_IY$-(FF_I-|ZOCJ/(I_O_OA)|•_&OL_•I

SUBtl_lTl_( PJN[L 74_74 fie[*| FTN 4*q*_ 04101117* 1'

C
C LIMIT$ T_T Ae_ Qq TME POS|VIV[ SF0| OF •_F VI_G _UST _0 I_eOUGN ?_F

E5 C |OUt•IONS _? 2000 IN$T_Ap OF _0S_ _OLLOVtUG _E¢_U3_ T_E _F_a;tVf VI_
€ IS 0rSCele(n _v _ _|FF[qY_Y _OUATION TN_N T_E fQ$ITIVF $10_°
€

IfI_I_,_,_FU$T,_n,LA,GF,_U5_) GO TO 2000
C

FLVolLVoeHn•_I3R_*,5*¢h©*(,2_*J*|U4*e_-LA••4i*°))_ll*#•fQ_**qoL& *
_•))•C**_*fUA•UJ*L_*L&)) o

_5 $(IJA*el-L_**_II

FL_*FLV°eHO•¢_I_•,5*C_e(,_5•I•IUAe•_-L_tes)•,33_])l•_•IUI*•)*La*
60 Ie3|_e,_*IU_*U_°LS*L&I) •

$_*U_tl*_N_e,_*(._tl*(Ul**5°L_•eS|_,_SePeftlAe*4-L_*•41•,|_3)l*€*
$(tlA•*)°L_••311

_0_0 e[VUNq

SYqtQLJC e_F[etN¢! _Af le*_)

E_T_Y POIUTS
| P&N_l

V_tIAQL|S S_ TYfl f_LDClVInq
O i t(AL I ! | t eFaL I I
Z € N_AL ! / 1) €_fl•_ tf_L I I

11 CN$_ tE_L I I 10 CUO eFAL # I
l_ [LV till ! I 5 _ _FAL I l

% 4 t ttiLI I 334 P_I t[JL
3]_ PHI• tF&L 336 P_|YZ tEaL
34_ P_lT3 NfJL 333 li_L I[iL
33Z t&oq/ P[l| )e e_ll PT_L I I
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1 €"_ 4ooo0ooeoeeooe*oooeoeeeeee*eeeooe,o,eeoeeeeooeoeoeeeeeooeooeoee
€ $ THIS SUBROUTINE SPIELS A WING INTO ITS IN01V|OUAL EAN|LS •

• . . € . . • AnD SENOS THE DzHsqSIONS TO SUON_T|NS SPINe THE USEI
€ • HOST SUPPLY IN THE RAIN PPQGAAHVJL_E FOE THE CONNON •

S € • CHOROwTHE TIP ¢HORO_ ANO TUN CHOPOS IN'SETVEEN iY THE •
€ * POINTS OF TAPER CHINES, THE DISPLACES TO THESE CHOR0$ FROG
€ N THE 0A|GINJ THE PlEA OF THE VERSt THE ¥1NSSPAHt AIR OEN- *
€ • SITTB THE VELOCITY OF THE AIRCRAFT AGO THE HIOTN OF THE
€ • FUSELIG|*

10 € ••eeeeeeeeeeee•eee*eeee*eeelAoeeoeeeee•eeeeee*oeeeeeoeoeeeeee•_
€

SUOPOUTINE SPLIT|CHQRO*CHlJCNZpCHTIPJ01J0EeSPANpFUSEttNOJAR|LJVEL|
€

HFUS|BesePusE
IS HSPANeeSeSPAH

CALL SPINICHOROwCHIoNFUSEJOIoAIIAwSPPNfPHOpVILtl|
CILL SPIHICNlJCHE_0L*OE_ItEAoSPAHpAHOpVSL,_I
CALL SPIH(CHZ_CHTIP*OZpHSPANJAP|AWIPiNpPNOJVELel|
R|TURN

ZO J#O

SVniOLIC PEFERINCE nAP (teL|

EMPTY POINTS
S SPLIT

VIt|llI|S SN TYPE RELOCATION

O AREA RIlL FeP* 0 CHORO REAL PeP*
0 CHTSP REAL FeP* 0 CHS REAL F,P*
0 CHE REAL F*Pe O 05 JAiL p,f,
O O_ n|lL FePe 0 FUSE IRAL PoPe

116 HFUSE tEAL Ll? HSPIN ARPL
0 RNO REAL F*Pe 0 SPAN REPL PePo
O V|L tEAL F,P.

SIT|INGLE TYP| ARES
SPIH 9
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