Operational Fitness of Box Truss Antennas in Response to Dynamic Slewing

E. Bachtell, S. S. Bettadapur, W. A. Schartel, L. A. Karanian

Martin Marietta Aerospace Denver Aerospace
P.O. Box 179
Denver, CO 80201

Contract NAS1-17551 January 1985

LLETMEV COPY

N/ SN
LANGLEY RESEARCH CENTER
LIBRARY, NASA
Ha::RTON, VIRGINIA

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

Operational Fitness of Box Truss Antennas in Response to Dynamic Slewing

E. Bachtell, S. S. Bettadapur, W. A. Schartel, L. A. Karanian

Martin Marietta Aerospace
Denver Aerospace
P.O. Box 179
Denver, CO 80201
Contract NAS1-17551 January 1985

N/Sn

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23665

This report was prepared by Martin Marietta Denver Aerospace under Contract NAS $1-17551$. This report covers the results of Task 2. The contract was administered by the Langley Research Center of the National Aeronautics and Space Administration. The Task 2 study was performed from February 1984 to October 1984 and the NASA-LaRC Project Manager was Mr. U. M. Lovelace.

a	Angular Acceleration
β	Antenna Surface Pitch
θ	Antenna Surface Roll
ψ	Antenna Surface Yaw
B	Bandwidth
BDF	Beam Deviation factor
BE	Beam Efficiency
BWFN	Beam Width First Null
\triangle BWFN	Change from BWFN
CM	Center of Mass
D	Antenna Diameter
	Dissipation Function
EOS	Earth Orbiting Spacecraft
dB	Decibles
F	Focal Length
$\Delta \mathrm{F}$	Combined Change in Focal Length of Surface and Feed
FEER	Fast Eigenvalve Extraction Routine
F (r)	Aperture Illumination Function
g	Acceleration Due to Gravity
G	Antenna Gain
$\Delta \mathrm{G}$	Change in Gain
GHz	Gigahertz
Hz	Hertz
ϕ	Instantenous Slew Angle
$\mathrm{I}_{\mathbf{s p}}$	Specific Impulse
I_{t}	Total Mass Impulse
I_{xp}	Mass Moment of Inertial About Principal X-Axis
I_{yp}	Mass moment of inertia about principal y-axis.
I_{p}	Mass moment of inertia about principal z-axis.
$\mathrm{J}_{0}(\mathrm{ur})$	Bessel function of the first kind of order zero.
J_{1} (ur)	Bessel function of the first kind of order one.
K	Degrees Kelvin
kg	Kilograms
km	Kilometers
L	Moment Arm
m	Maximum Phase Deviation Meters Mass of Fuel

Page
1.0 INTRODUCTION 1
1.1 SLEWING AS A SOLUTION 1
1.2 EOS BACKGROUND 2
1.3 EOS ENHANCEMENTS BY SLEWING 3
1.4 TASK 2 RESULTS SUMMȦRY 4
2.0 ANALYSIS METHODOLOGY 7
2.1 SYSTEM OPERATIONAL REQUIREMENTS ANALYSIS 8
2.1.1 Radiometric Resolution 8
2.1.2 Beam Efficiency 10
2.1.3 Resolution 10
2.1.4 Image Tolerance 11
2.2 RIGID BODY ANALYSIS 11
2.2.1 Rigid Body NASTRAN Model 12
2.2.2 Determination of Slew Times, Thruster Levels, and Maneuver Frequency 16
2.2.3 Attitude Hold Requirements 18
2.3 DYNAMIC TRANSIENT RESPONSE ANALYSIS 20
2.3.1 Linear Model Method of Analysis 21
2.4 SYSTEM ERROR ANALYSIS 24
2.4.1 Determination of System Errors 24
2.4.2 Creation of Best-Fit Surface 28
2.4.3 Use of Best-Fit Analysis 30
2.4.4 The Effect of System Errors 31
3.0 ANALYSIS RESULTS 32
3.1 RIGID BODY ANALYSIS 32
3.1.1 Slew Times, Thruster Levels, and Maneuver Frequency 34
3.1.2 Attitude Hold Requirements 36
3.2 TRANSIENT ANALYSIS RESULTS 36
3.2.1 Impact of Analytically Determined Slew Times 46
3.3 SYSTEM ERROR AND OPERATIONAL FITNESS ANALYSIS 51
3.3.1 Example Calculations 55
3.3.2. Extrapolation of Settling Time 58
3.4 SYSTEM IMPACTS 59
3.4.1 Thruster Systems for Slewing 59
3.4.2 Structural Impacts 62
3.4.3 Weight and Complexity Impacts 62
APPENDIX A 63
Page 3
1
1 Deployed EOS Deployed EOS
2 Ground track 43
Sequence of analysis to determine EOS slew capability 7
EOS finite-element model 12
EOS finite-element node numbers 14
EOS finite-element node numbers 15
Flight orientation with respect to principal axis 16
Torque, rate, and angle profiles 17
In and out of orbit plane pointing requirement 20
Forcing function profile 21
Case 1 , simple feed scanning 26
Case 2, compound motion (additive) 26
Case 3, compound motion (subtractive). 27
Examples of axial defocusing 28
Creation of best-fit surface 29
Critical nodes on EOS structure 30
Typical time history curve 31
First node with slewing and without orbit transfer (freq of 0.911 Hz) 32
Second node with slewing and without orbit transfer (freq of 0.963 Hz) 33
Thruster system locations for slew maneuvers 34
Slew time and number of slew maneuvers per lifetime 35
Typical displacement curves $37 \& 38$
Forcing functions for analysis and thrust conditions 39 39
Case 5, EOS deformed shape at $60 \mathrm{~N} / 1 \%$ damping 41
Case 5, node 4, X-displacement 42
Case 5, node 4, Y-displacement 43 43
Case 5, node 6, X-displacement 43
Case 5, node 6, Y-displacement 44
Case 5, node 98, z-displacement 44
Case 5, node 106, 2-displacement 45
Case 5, node 136, 2-displacement 45
Case 4, node 106, Z-displacement 46
Case 6, node 106, Z-displacement 47 47
EOS deformed shape at $45 \mathrm{~N} / 0.2 \%$ damping, 14.665° slew, case 1^{\prime} 48
EOS deformed shape at $45 \mathrm{~N} / 0.2 \%$ damping,
15° slew, case 1 49
Case 1', node 106, Z-displacement, 14.665° slew 50
Case 1, node 106, Z-displacement, 15° slew 50
Variance of settling time with respect to thrust levels and damping 54
Extrapolation of settling time, case 7 59
Integrated hydrazine tanks 61
Page
1 Spacecraft Summary 2
2 2
Ground Geometry 2
Summary of Slew Times, Thrust Levels and Settling Time Results 5
5 Summary of Maneuver Frequency Results 5
Summary of Attitude Hold Requirements 5
Random Surface Error 25
Center of Mass Location and Principal Mass Moments of Inertia as Determined by NASTRAN Grid Point
Weight Generator 33
Matrix of Analysis Conditions 38 9
System Error Results of Case 7 51
10
Operational Fitness Results of Case 7 51
System Error Results 52
Operational Fitness Results 52
Variance of Settling Time with Respect to Thrust Levels and Damping 53
EOS Mass Summary 62
15
Design Changes 62

The Box Truss Analysis and Technology Development task contract was commissioned by NASA to further the understanding and technical definition of the box truss concept and its application to antenna missions. As part of the contract, Task 2--Dynamic Analysis, was selected to conduct a parametric analysis of the Earth Observations Spacecraft (EOS), as defined in NASA CR-3689, slewing capability along with associated system changes or subsystem weight, and complexity impacts. Many missions are enhanced by the capability to slew the antenna spacecraft to point toward targets not located at the spacecraft nadir. Varying slew rates, settling times, maneuver frequencies, and attitude hold times provide the data required to establish applicability to a wide range of potential missions.

1.1 SLEWING AS A SOLUTION

A slewing capability for a large radiometer satellite offer a variety of advantages and will increase the capability of the system. Although certain antennas, such as an array, can electronically shift the direction of the main beam, a push-broom system, e.g., EOS, must mechanically slew the entire antenna. A satellite with slewing capability increases capability with the potential for improved surface coverage and increased radiometric resolution due to increased dwell time.

A satellite that does not have pointable instruments must wait until the object of interest is at the spacecraft nadir for observation. Repeated observations are governed by orbit parameters. Slewing allows objects to be observed that are not in the current ground swath, but in adjacent areas. The revisit time can, therefore, be reduced for those objects. Slewing also permits the option of a targeting capability to be included in the operating mode of the mission profile.

An important characteristic of a radiometer system is the ability to discern small changes in the microwave signal. This ability can be improved if the system has a long time to "dwell" on the object. Slewing could also be used to compensate for the forward spacecraft motion, dwell on an object for a longer period of time, and improve the radiometric sensitivity.

The EOS study, NASA Contract NAS1-16756, emphasized the selection and analysis of complementary sets of sensors for Earth, oceanic, and atmospheric observation, and the development of the EOS spacecraft design in some detail. EOS was to operate in low-Earth orbit, be deployable as a fully operational satellite from the Shuttle orbiter, and be capable of a l0-year lifetime, including two- to three-year revisit periods for resupply, maintenance, and sensor changeout. For this study, the EOS baseline configuration was used. The salient characteristics of the EOS system are summarized in mable 1 through 3.

TABLE 1 - SPACECRAFT SUMMARY

Reflector dimensions	$58 \times 116 \mathrm{~m}$
Focal length	116.1 m
Spherical radius	234.8 m
Total system weight	7635 kg
Fundamental dynamic mode	1.09 Hz
Stowed envelope	4.25 m Diameter by 17.8 m Length

TABLE 2 - ORBIT PARAMETERS

. Mission	Inclination, deg	Equatorial altitude, km	Crossing	Synchronous
I. Baseline	98	705	Noon	Yes
II. Land	98	705	$9: 30$	Yes
III. Ocean	98	705	Noon or $9: 30$	Yes
IV. Atmospheric	60	705	None	No

TABLE 3 - GROUND GEOMETRY

Frequency, GHz	Ground re Optimistic	olution, km Conservative	Max No. horns	Swathwidth, km	Revisit intervals, days (w/o slew)
1.4	2.95	14.75	58	173	16
5.5	0.88	4.5	90	350	16
10.68	0.41	2.06	88	18	16

EOS represents a major advancement in the capability, completeness and approach to Earth orbiting remote sensing platforms that use a large microwave radiometer as the "core" instrument. Figure 1 is an artist's concept of the resulting EOS.

Figure 1 - Deployed EOS.

1.3
 EOS ENHANCEMENTS BY SLEWING

EOS provides global resources monitoring with a microwave radiometer and ancillary sensors to augment and complement the microwave observations. These additional sensors have specific requirements for surface lighting and observation conditions. These requirements, when combined with the swath width, resolution, and packaging constraints of EOS, drove the baseline orbits to be sun synchronous. Sun-synchronous orbits restrict both operating altitude and inclination and cannot provide the two or three day revisit time desirable for global monitoring.

The baseline orbit had a 705-km altitude, 98-degree inclination, and a normal revisit time of 16 days. This orbit has an alternating or interstital ground track pattern such that adjacent swaths would be imaged with a two-day interval, (Fig. 2). A partial solution, one that improves the revisit time for selected objects to two days, can be accomplished taking advantage of the alternate pattern and a 15-degree off-nadir slew. The slew angle is determined by the $175-\mathrm{km}$ swath width and $705-\mathrm{km}$ orbit.

For example, a selected object is imaged on "Day 1." The adjacent swath is imaged on "Day 3," and the selected object can be reviewed with a slew maneuver. Additionally, objects in swath C can be revisited with a 1-day interval if a slew is effected to the right on "Day 1 " and to the left on "Day 2".

Figure 2 - Ground track.

TASK 2 RESULTS SUMMARY

Task 2, Dynamic Analysis, resulted in showing the EOS slew capability. This section is intended to highlight and summarize the data obtained on slew rates, setting times, maneuver frequency, and attitude hold requirements for a 15-degree slew.

Tables 4 through 6 summarize the parametric data.
table 4 - SUMMARY OF SLEW TIMES, thruSt levels and SEttling time results

Case	Slew time, \mathbf{s}	Thrust level/ thruster, N	Damping ratio	Settling time, \mathbf{s}
1	41.7	45	0.2	0.0
1^{-}	41.2^{a}	45	0.2	82.0^{b}
2	41.7	45	1.0	0.0
2^{-}	41.2^{a}	45	1.0	32.3
3	39.5	50	1.0	0.0
4	36.1	60	0.2	250.0^{b}
5	36.1	60	1.0	55.1^{b}
6	36.1	60	5.0	7.7
7	25.5	120	1.0	75.6^{b}
8	25.5	120	5.0	13.6

${ }^{\text {a Resulted }}$ in a 14.665 degree slew angle.
$b_{\text {Extrapolated results. }}$
TABLE 5 - SUMMARY OF MANEUVER FREQUENCY RESULTS

Case	Total fuel per maneuver, kg	No. of maneuvers ${ }^{\text {a }}$
1	6.80	186
1	6.72	188
2	6.80	186
2	6.72	188
3	7.16	176
4	7.85	161
5	7.85	161
6	7.85	161
7	11.09	114
8	11.09	114

${ }^{\text {a }}$ Assumes 1265 kg of propellant available for slewing.

TABLE 6 - SUMMARY OF ATTITUDE HOLD REQUIREMENTS

Slew hold time without stationkeeping	90.2 s
Thrust required for stationkeeping	0.02 N
Fuel required per minute	0.005 kg

Slew Rates - The slew rates investigated ranged from a maximum of 41.7 seconds slew time to a minimum of 25.5 seconds. To achieve these slew rates, the thruster levels ranged from 45 N per thruster to 120 N per thruster, respectively, using a four-thruster slewing system.

These thruster levels represent the appropriate range that could easily be incorporated into EOS. Any less thrust and the slew time becomes excessive. Any more thrust and the fuel requirements and settling time become excessive while the incorporation of the thrusters onto the EOS structure becomes difficult.

Setting Times - The settling rates resulting from the various thrust level and damping ratio combinations ranged from 0.0 second for the 45 N per thruster and 1% damping case to an estimated 250.0 seconds for the 60 N per thruster and 0.2% damping case.

Note that for the 45 - and $50-\mathrm{N}$ cases, the slew period for a 15 -degree slew resulted in the removal of the thrust force at a time when the elastic displacement of the structure was close to zero. Therefore, the deformation of the structure at the start of settling time was small enough to produce an operational environment immediately. This occurred for all $45-\mathrm{N}$ cases regardless of damping.

This means the initial conditions at the beginning of settling time are strictly a function of the response frequency and the slewing period; a slewing period can be determined that will reduce the settling time to a minimum for any thrust level chosen. This also allows the structure to be built without requiring additional damping, i.e., 5% damping to reduce settling time, thus keeping the cost, weight, and complexity of the system to a minimum. The only adverse effect in choosing the proper slewing period is that the period will dictate the slew angle achieved, and, in the case of the EOS, the 15 -degree slew is required to obtain a two-day revisit interval of ground targets.

Maneuver Frequency - Using a chemical thruster system to slew the EOS resulted in fuel requirements ranging from 6.8 kg of propellant to 11.1 kg of propellant for a complete maneuver. A complete maneuver is slewing EOS out 15 degrees and back again. This calculates to a total of 186 and 114 slew maneuvers, respectively, assuming 1265 kg of slew propellant is available, before resupply is required.

Attitude Hold Requirements - Because the EOS spacecraft is gravity gradient stabilized, thrust is required to hold EOS at a 15-degree slew angle if the stationing hold requirements exceeds 90.2 seconds. The length of time the EOS can remain in the out-of-plane position and still meet the pointing requirements of +0.08 degrees is 90.2 seconds. If station holding is required, the thrust and fuel per minute required is 0.02 N and 0.005 kg , respectively.

To conduct a parametric analysis of the EOS slewing capability, the sequence and methodology of the analysis was first determined. The sequence of analysis used to perform the parametric study is shown in Figure 3. The following sections describe the methodology of the four types of analyses used--system operational requirements analysis, rigid body analysis, dynamic transient response analysis, and system error analysis.

Figure 3 - Sequence of analysis to determine EOS slew capability.

Additionally, the structural damping ratios to be used in the parametrics had to be determined. The values of damping chosen where 0.2, 1 and 5%. The 0.2 and 1% damping values are the two extremes inherent in large deployable space structures. The 5% damping value is an enhanced structural damping technology development being investigated under the Passive and Active Control of Space Structures (PACOSS) program sponsored by the Air Force.

2.1 SYSTEM OPERATIONAL REQUIREMENTS ANALYSIS

The four system parameters governing operational fitness of the EOS are (1) radiometric resolution; (2) beam efficiency; (3) resolutions; and (4) image tolerance. For each parameter, the three error mechanisms that can degrade the system parameters are beam scanning, axial defocus, and surface errors.

2.1.1 Radiometric Resolution

The radiometric resolution characterizes the sensitivity of the antenna/receiver'system. In such a system, the antenna collects microwave energy from the Earth's surface. This signal is amplified by a receiver to produce an output voltage V_{R}. A quantity known as the antenna temperature, T_{A}, can be recovered from V_{R}. The antenna temperature is the temperature that a resistor would have to be at to produce the same receiver output voltage. Thus, ΔT is the minimum detectable change in the radiometric antenna temperature T_{A}. For the EOS, this value, ΔT, equals 5 K . Generally, the radiometric resolution requirement, $\Delta \mathrm{T}$, is 1 K , the EOS uses six microwave frequencies at two polarization, enabling multiple regression analysis to reduce the final (derived) temperature determination to approximately 1 K .

The three system errors (error mechanisms) that affect this requirement are beam scanning, axial defocusing, and rms surface error. Through each of these, a ratio of difference in gain (ΔG) to the original gain is found, the sum total of which must not exceed the limit of 0.05 . From the systems errors analysis, the following are obtained: (1) combined change on focal length of the feed and surface; (2) the scan angles of both the surface and feed and their combination, in both E and H planes; and (3) average rms surface error.

Axial Defocusing -
$\frac{\Delta G}{G}=(2 \pi \Delta F / \lambda)^{2} / 12$
where
$\lambda=$ wavelength $=0.028 \mathrm{~m}$
$\Delta F=$ combined change in focal length of the surface and feed, m

Beam Scanning* -

$$
\begin{equation*}
4.75(\Delta G)^{4}-26.75(\Delta G)^{2}+\operatorname{BDF} /(1.22(\lambda / D)) * \theta_{T} /\left(\lambda F^{2}\right) /\left(1+72 / F^{2}\right)=0 \tag{2}
\end{equation*}
$$

[^0]Solve for ΔG, taking the lowest positive root.

Surface Error: -
$\frac{\Delta G}{G}=1-e$
where
$\lambda=$ wavelength $=0.028 \mathrm{~m}$
$r m s_{d y n}=$ rms surface error due to dynamics, m

Equations [1] thru [4] are used to calculate $\Delta G / G$ due to axial fefocusing, beam scanning and surface errors. The three individual values are then summed. The effect on the radiometric resolution ($\Delta \mathrm{T}$) is given by equation [5] **.
$\Delta T=T_{\text {sys }}\left[\frac{1}{B t}+\left(\frac{\Delta G}{G}\right)^{2}\right]^{1 / 2}$
where
$T_{\text {sys }}=$ electrical noise temperature of the receivers $=100 \mathrm{~K}$
$\mathrm{B} \quad=$ bandwidth $=10 \%$ of operating frequency
$\mathrm{t}=$ integration time (0.33 s)
$\Delta G / G=$ sum of three individual errors

[^1]The main beam efficiency (BE) is defined as the integral of power over the main beam by the integral over the complete antenna pattern. It is a measure of hors much energy is collected by the main heam and the entire pattern. Generally, BE must be greater than 0.90 otherwise it becomes difficult to separate, during data reduction, power that was received from the side lobes versus power received from the main beam.

The beam efficiency test assumes both beam scanning and axial defocusing to be negligible effects. The rms surface error that is considered is a total one, i.e., it takes into account dynamics, thermal distortions, and manufacturing error. This differs from radiometric resolution in that the concern is now with total distortion rather than change in distortion. The calculated system beam efficiency must exceed 90%. The system beam efficiency is calculated through the following équation*:
$[1] \quad B E_{\text {sys }}=0.97 \mathrm{e}\left(\frac{\lambda}{}\right)$
where rms $_{\text {sys }}=$ average total rms surface error

$$
\lambda=\text { wavelength }=0.028 \mathrm{~m}
$$

2.1.3 Resolution

The resolution element for the radiometer system is determined by the main beam width of the antenna pattern. A related image-quality requirement stipulates that variations in the resolution element size for a multiple beam system shall not exceed 10% of the initial (errorfree) system. The resolution requirement, as used in this study, was concerned with variations in the width of the main beam.

Resolution concerns itself with all three distortive aspects, rms surface error, axial defocusing, and beam scanning. The interest here is to obtain $\triangle B W F N$ (delta beam width first null). Once again, since this is a delta that is being obtained, dynamic distortion is the only concern. \triangle BIVFN is found through the integration of Bessel functions of the first kind and of order zero and order one. \triangle BWFN cannot exceed 10% of BWFN, where BHFN equals 0.00114 radian. The $\triangle B W F N$ is given by equation [1] **

$$
\triangle B W F N=\frac{\mathrm{m}^{2} / 2 \int_{0}^{1} F(r) J_{0}(u r) r d r}{\frac{\pi D}{\lambda} \int_{0}^{1} F(r) J_{1}(u r) r^{2} d r}
$$

[^2]Equation [1] is approximated to be equation [2], which is reduced to equation [3].

$$
\Delta B W F N=\frac{m^{2} / 2 \sum_{0}^{1} F(r) J_{0}(u r) r \Delta r}{\frac{\pi D}{\lambda} \sum_{0.1}^{1} F(r) J_{1}(u r) r^{2} \Delta r}
$$

where

$$
\begin{aligned}
& F(r)=\text { aperture illumination function for step size } \Delta r=0.1 . \\
& m \quad=\text { maximum phase deviation, rad } \\
& \left.\left(\frac{2 \pi}{\lambda}\right) \text { (rms + axial defocus }+ \text { (beam scan } \times 116.1\right) \text {) }
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{BWFN}=\frac{0.825114 * \mathrm{~m}^{2}}{\frac{\pi D}{\lambda}} \tag{3}
\end{equation*}
$$

2.1.4 Image Tolerance

The EOS spacecraft operates in the push-broom mode. In this configuration, a linear feed array produces individual contiguous spots that provide the cross-track imaging, while the orbit velocity provides the along-track motion. Allowable deviations from perfect contiguity restrict gaps between individual resolution elements to the width of 1 resolution element of 0.0014 radian for EOS.

Image tolerance is the easiest of the four categories to verify. The total beam scan, θ_{T}, is obtained from the system errors analysis and, after being multiplied by a beam deviation factor of 0.992 , must be less than 0.0014 radian.

2.2 RIGID RODY ANALYSIS

A rigid-body analysis was conducted to determine slew times, attitude hold requirements, and system thrust levels and thruster angles. This analysis included the use of the rigid-body dynamic analysis conducted under the EOS study. The dynamic analysis identified the frequencies, mode shapes, principal inertias, and center-of-gravity location for the EOS baseline structure with slew propellant. The mass moments of inertia were used in the determination of slew time, thrust levels, and attitude hold requirements. The center-of-gravity location for the structure was necessary in the determination of the thruster angles.

2.2.1 Rigid Body NASTRAN Model

A NASTRAN finite-element technique was used to determine these modal characteristics. A total of 720 structural finite elements were used to model the spacecraft as shown in Figure 4. The surface members and the vertical members were modeled with beam elements, while the interior and exterior diagonals were represented by rod elements. Because the surface members are pinned at either end, this degree of freedom was released in the rotational direction along the axis of these pins to rigorously model the structure. The diagonal members were modeled with rod elements that have no bending stiffness, which is representative of their operational behavior. The diagonal members are pretensioned to a level high enough that they never go slack under all operating conditions. This eliminates any nonlinearities in the structure caused by slackening of the diagonal members. For this reason, the diagonal members in this analysis were allowed to take a compressive load, which represents the mathematical behavior of the stiffness of tensioned members.

Figure 4 - EOS finite-element model.

A lumped mass was placed at all the nodal locations to simulate the cube-corner fittings, the mesh standoffs, and the RF mesh system. The model's nodal locations are shown in Figure 5 and 6. The midlink hinge's mass was distributed along the length of the surface member because no node existed at that point. The masses of the power system, scientific platform, fuel, electronic housekeeping, and feed beam system were distributed as nonstructural mass.

The modal extraction was performed using the Fast Eigenvalue Extraction Routine (FEER) in COSMIC NASTRAN. The boundary conditions were free, and the model contained 834 degrees of freedom. Mass moments of inertia and the mass center of gravity were calculated by the NASTRAN Grid Point Weight Generator.

Back Side

Figure 5 - EOS Finite-Element Node Numbers.

Figure 6 - EOS Finite-Element Node Numbers.

2.2.2 Determination of Slew Times, Thruster Levels, and Maneuver Frequency

This section presents the methodology used to determine the slew times, thruster levels, and fuel requirements per maneuver required to slew the EOS about the Xp-axis, Figure 7. The previous EOS study showed a chemical thruster system was necessary to achieve a reasonable low slew time. Therefore, the specific impulse used for the thruster system equals 225 seconds. Additionally, the thruster system was considered to be a constant thrust step system. Figure 8 shows the torque, rate, and angle profiles assumed for the thruster system.

Figure 7 - Flight orientation with respect to principal axis.

Figure 8 - Torque, rate, and angle profiles.

The total time required for the maneuver is given by

$$
T=\frac{2 \phi_{T} I_{x p}}{t_{T}{ }^{2}}
$$

where

```
\mp@subsup{T}{T}{}}=2\mp@subsup{\phi}{1}{}=0.2618 radians slew angle (15 degrees
```

$I_{x p}=\underset{(K g-m) \text {, and }}{ } \quad$ of inertia about the principal X-axis
$T=$ thruster level (N) x number of thrusters x moment arm (m)

Therefore, the time required to complete the slew maneuver is determined by solving equation [2] for the total time, t.

The mass of fuel required is determined from the following equation:
[4]
$m=\frac{I_{t}}{I_{s p} g}$
where

```
I
g = acceleration of gravity, 9.81 m/s}\mp@subsup{}{}{2}\mathrm{ ,
It = total mass impulse, Ns,
m = mass of fuel, kg.
```

Knowing the mass of fuel required to slew and the total mass of fuel available, i.e., 1265 kg for the baseline EOS, the number of complete maneuvers before resupply is calculated by:
[5]

$$
N=\frac{m_{T}}{2 * m}
$$

where

$$
\begin{aligned}
& \mathrm{N}=\text { number of complete maneuvers, } \\
& \mathrm{m}_{\mathrm{T}}=\text { total fuel available, } 1265 \mathrm{~kg}, \\
& \mathrm{~m}
\end{aligned}=\text { mass of fuel to slew } 15 \text { degrees (from equation } 4 \text {). }
$$

(This equation assumes slew thrusters will be used to return EOS to nadir pointing rather than relying on the gravity gradient torque.)

2.2.3 Attitude Hold Requirements

The pointing requirement for $E O S$ about the x-axis is ± 0.08 degree whether in or out of the orbit plane as shown in Figure 9. If no sta-tion-keeping thrust is applied to the spacecraft, the length of time the EOS can remain in the out-of-plane position is calculated as follows:
$t=\sqrt{\frac{2 \theta}{\alpha}}$
where
$\theta=$ the angle the spacecraft rotates toward the orbit plane, ± 0.08 degrees $=1.396 \times 10^{-3} \mathrm{rad}$
$\alpha \equiv$ angular acceleration determined from the gravity gradient torque

The gravity gradient torque can be determined from the following equation:

where
$\omega_{0}=$ radial frequency
$I_{z p}=$ mass moment of inertia about the principal z-axis
$I_{y p}=$ mass moment of inertia about the principal y-axis
$\phi \quad=$ instantaneous slew angle

Therefore, the angular acceleration can be determined from the gravity gradient torque and the length of time the EOS remains in the out-ofplane position if no station keeping thrust is applied. This is determined from equation [6].

If station-keeping thrusters are used to maintain attitude, the total mass of fuel required can be calculated from equation [4]. The thrust level is calculated from the gravity gradient torque as follows:

$$
T_{H}=\frac{T_{g g \times p}}{L}
$$

where
$L=$ moment arm

Therefore, for a specified impulse, the fuel mass necessary to provide the thrust level determined from equation [8] can be calculated using equation [4].

Figure 9 - In and out of orbit plane pointing requirement.

2.3 DYNAMIC TRANSIENT RESPONSE ANALYSIS

A modal transient response analysis was conducted using COSMIC NASTRAN to determine structural deformations of the EOS during the settling time immediately following a 15-degree slew. The finite-element model implemented for the transient analysis was identical to that used for the previously discussed rigid-body analysis. The appendix to this report contains a copy of the COSMIC NASTRAN transient response input deck. The finite-element model was the operational mass case with slewing propellant only. Again, as in the rigid-body analysis, the FEER method was used to accomplish modal extraction in COSMIC NASTRAN.

A realistic range of force amplitudes and time histories necessary to achieve a 15 -degree slew angle was applied to the model to identify the sensitivity of EOS performance. Modal damping ($0.2,1$, and 5%) was also a parameter considered. A constant thrust was applied for half of the slew time in the positive $\mathrm{X}-\mathrm{Z}$ direction for two thrusters and in the negative $\mathrm{X}-2$ direction for the two thrusters on the opposite end of the structure. At the halfway point in the slew time, the thrusters were reversed to slow and finally stop the slewing. The amount of thrust applied in the X and Z directions to obtain a desired resultant thrust was geometrically calculated using the principal axis locations calculated in the rigid-body analysis. The thrust levels applied in the transient analysis were so chosen because the resultant slew times are acceptable for projected EOS applications. Figure 10 shows the forcing function profile used in the transient response analysis.

Figure 10 - Forcing function profile.

2.3.1 Linear Model Method of Analysis

Because NASTRAN is strictly a small-displacement analysis and the $15-$ degree slew maneuver introduces nonlinear rigid-body motion, the rigid-body modes were ignored in analyzing the elastic response of the spacecraft during settling time. This is a valid approach within the linear model assumptions because the rigid-body and elastic effects are uncoupled; i.e., the rigid-body motion has no effect on the elastic response of the system. This approach is proven as follows:

Lagrange's equation of motion is
[1]

$$
\frac{d}{d t} \frac{\partial T}{\partial q_{i}}-\frac{\partial T}{\partial q_{i}}+\frac{\partial D}{\partial q_{i}}+\frac{\partial U}{\partial q_{i}}=X(t)
$$

where

```
T = system kinetic energy
D = dissipation function (e.g., structural damping)
U = system potential energy
q}\mp@subsup{i}{i}{= generalized displacements in independent coordinates
X(t) = generalized external force
```

In order to simplify the analysis, assume $D=0$. If $L=T-U$, then equation [1] becomes
[2]

$$
\frac{d}{d t} \frac{\partial L}{\partial q_{i}}-\frac{\partial L}{\partial q_{i}}=X(t)
$$

If $\{x\}$ represents discrete displacements; then
[3] $\{x\}=[\phi]\{q\}$
where

```
[\phi] = matrix of mode shapes (size of [ }\phi\mathrm{ ] is number of DOFs x number
of modes)
```

[4] $\quad T=1 / 2\{\dot{x}\}[m]\{\dot{x}\}$
and
[5]

$$
U=1 / 2\{x\}[k]\{x\}
$$

where
[m] = discrete mass matrix
$[k]=$ discrete stiffness matrix
Substituting equation [3] into equations [4] and [5]
[6]

$$
T=1 / 2\{\dot{q}\}[\phi]^{T}[\mathrm{~m}][\phi]\{\dot{q}\}
$$

[7]

$$
\mathrm{U}=1 / 2\{\mathrm{q}\}[\phi]^{\mathrm{T}}[\mathrm{k}][\phi]\{\mathrm{q}\}
$$

Thus, since $L=T-U$, then

Thus, since $L=T-U$, then
[8]

$$
\frac{\partial L}{\partial q_{i}}=\left(-[\phi]^{T}[k][\phi]\right)\{q\}
$$

and
[9]

$$
\frac{d}{d t} \frac{\partial L}{\partial q_{i}}=\left([\phi]^{T}[m][\phi]\right)\{\ddot{q}\}
$$

Therefore, equation [2] becomes
[10]

Normalizing the generalized mass matrix, then Lagrange's equation of motion can be written in modal coordinates as
$\left.\{\ddot{q}\}+\Gamma \omega^{2}\right]\{q\}=[\phi]^{T}[F]$
where
[ب] $\quad=$ diagonal matrix of circular frequencies
$\{\ddot{q}\}$ and $\{q\}=$ vectors of modal accelerations and displacements, respectively
[ϕ] = matrix of mode shapes
[F] $=$ vector of applied discrete forces

Partitioning the rigid body and elastic contribution factors in equation [3], then

Rewriting equation [11]

$$
\{x\}=[\phi]\{q\}=\left[\phi_{R} \mid \phi_{E}\right]\left\{\begin{array}{l}
q_{R} \tag{12}\\
q_{E}
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
\ddot{\mathrm{q}}_{\mathrm{R}} \\
\ddot{\mathrm{q}}_{\mathrm{E}}
\end{array}\right\}+\left[\begin{array}{c|c}
0 & 0 \\
\hline 0 & \omega_{E}^{2}
\end{array}\right]\left\{\begin{array}{c}
\mathrm{q}_{R} \\
\mathrm{q}_{\mathrm{E}}
\end{array}\right\}=\left\{\begin{array}{c}
\phi_{R}{ }^{T_{F}} \\
\phi_{E}{ }^{T_{F}}
\end{array}\right\}
$$

Therefore, it follows that

$$
\ddot{\mathrm{q}}_{R}=\phi_{R} \mathrm{~T}_{\mathrm{F}}
$$

$$
\ddot{q}_{E}+\omega_{E}^{2} q_{E}=\phi_{E}^{T}
$$

Thus, it is shown that elastic and rigid-body effects are totally independent of each other and

$$
\begin{equation*}
\{x\}=\left[\phi_{R}\right]\left\{q_{R}\right\}+\left[\phi_{E}\right]\left\{q_{E}\right\} \tag{16}
\end{equation*}
$$

Therefore, the elastic response of the system as determined by COSMIC NASTRAN is the same regardless of whether rigid-body effects are considered.

It should be emphasized the total system energy has been accounted for in equation [1] and therefore it follows the strain energy is considered in the elastic response of the system when the rigid-body effects are ignored. It is also important to note that $\left[\phi_{R}\right]$ represents rigidbody motion for small angular displacements and becomes inaccurate for large angles.

2.4 SYSTEM ERROR ANALYSIS

To determine the settling time for the EOS after slewing had taken place, a system error analysis was performed. The analysis consisted of two sections: (1) determine what errors were present at specific time points after slew using the displacements from the EOS transient response NASTRAN model; and (2) determine the extent these errors effect the system requirements, i.e., resolution, beam efficiency, radiometric resolution, and imaging tolerance.

2.4.1 Determination of System Errors

System errors are defined in three categories: (1) surface roughness, (2) beam scanning, and (3) axial defocusing. Each of these errors is dealt with in accordance to its requirements separately.
2.4.1.1 Surface Roughness - Surface roughness is a random error on the surface. It has contributions from dynamics, pillowing, manufacturing errors, and thermal distortion. The breakdown of this random error is shown in Table 7. Recalling equation [1] from Section 2.1.2 for the determination of beam efficiency, the worst-case random surface error for the system can be determined. Based on the beam efficiency requirement of 90%, the maximum rms of the random surface error is 0.061 cm , for which the proper breakdown is accorded.

The root-sum-squared (rss) requirement of the random surface error is less severe. By again using the $0.061-\mathrm{cm}$ requirement for the rms with the proper percentage breakdowns, the following equation is derived:
[1]
rss of the rms $=0.061$

$$
=\sqrt{(0.28 x)^{2}+(0.04 x)^{2}+(0.28 x)^{2}+(0.40 x)^{2}}
$$

Solving this produces an x of 0.108 cm , to which the percentages are again applied.

TABLE 7 - RANDOM SURFACE ERROR

Surface roughness	$\%$	Worst-case, rms	RSS of RMS
Total $^{\text {a }}$	\ddots	100	0.061
Dynamics	28	0.0171	0.061
Pillowing	4	0.0024	0.030
Manufacturing	28	0.0171	0.005
Thermal	40	0.0244	0.030

a Total is defined as the sum for the worst case rms column, and as the rss for the"RSS of RMS" column.

The random surface error rms used in the analysis is an average of the worst case and the rss, resulting in the following equation, with the error due to dynamics being the sole variable:
[2]

$$
\mathrm{rms}=\frac{\left(0.0024+0.0171+0.0244+\mathrm{rms}_{\mathrm{dyn}}\right)+\sqrt{(0.005)^{2}+(0.030)^{2}+(0.043)^{2}+\left(\mathrm{rms}_{\mathrm{dyn}}\right)^{2}}}{2}
$$

2.4.1.2 Beam Scanning - Motion of the feed and/or the reflector surface will shift the direction of the main beam. This shift can cause the antenna system to scan and look at a wrong target. For this study, three cases were considered. Additional abbrevations such as coma, which accompany these displacements, were not included.

Case 1 - Simple Feed Scanning - A shift in the feed location will displace the main heam in the opposite direction. Figure 11 illustrates the geometry. The ratio between angle θ_{1} and θ_{2} is known as the beam deviation factor and is approximately 0.992 for the EOS F / D ratio of 2.0 .

The equation that describes the case 1 total scan angle is:

$$
\begin{equation*}
\theta_{T}=\theta_{I} \tag{1}
\end{equation*}
$$

Case 2 - Compound Motion (Additive) - This case includes motion of both feed and reflector as shown in Figure 12. A simple feed displacement with no reflector rotation results in a beam shift as indicated by the arrow. The additional angular displacement caused by rotation of the reflector surface, θ_{s}, produces a resultant beam shift of $2 \theta_{\mathrm{s}}$. The expression that relates the motion of reflector and feed to the total scan angle requirement is given by:

$$
\begin{equation*}
\theta_{T}=2 \theta_{S}+\theta_{1} \tag{2}
\end{equation*}
$$

Figure 11 - C̣ase 1 , simple feed scanning.

Figure 12- Case 2, compound motion (additive).

The additive effect of these two motions causes the greatest scanning error.

Case 3 - Compound Motion (Subtractive) - This case also includes motion of both feed and reflector as shown in Figure 13. Consider the simple feed displacement first, with no reflector rotation. The beam shift is the same as case 1 and indicated by the arrow labeled "A." The 2θ s beam scanning caused by a rotation of $\theta \mathrm{s}$ is in the opposite direction to that of arrow "A." It is similar to case 2 , and is marked "B."

Figure 13 - Case 3, compound motion (subtractive).

The expression that relates the motion of reflector and feed to the total scan angle requirement is given in equation [3].

$$
\begin{equation*}
\theta_{T}=2 \theta_{S}-\theta_{1} \tag{3}
\end{equation*}
$$

The effects on heam scanning from these two motions are subtractive. Beam scanning may be reduced to zero when the reflector rotates twice as far and in the opposite direction of the feed.
2.4.1.3 Axial Defocusing - Axial defocusing is brought on by the surface focal point moving off of the feed point. The error is defined as the distance of the new surface focal point location from the distorted feed point location. It can be brought about in any combination of the following three ways:

1) Vertical movement of the feed point;
2) Change in the surface focal length;
3) Vertical movement of the surface.

In Figure 14 the surface opens while the feed point is stationary. The defocusing is shown as $\Delta \mathrm{F}$. In Figure 14 b , the surface opens while the feed point is also moving up. The upward movement of this feed point negates the effect of the opening to the surface.

(a)

(b)

Legend:

———	Original configuration
o	New configuration
Original feed point location	
\mathbf{x}	New feed point location

Figure 14 - Examples of axial defocusing.

2.4.2 Creation of Best-Fit Surface

There are 21 standoff points on either side of the EOS surface representing the outer most two contiguous spots. Both during and after slewing, these points will translate in X, Y, and Z directions.

The creation of the best-fit surface involves four variables--three rotations and a change in curvature. The surface rotations are defined as follows: Psi (ψ) is the yaw, theta (θ) is the roll, and beta (β) is the pitch. These are illustrated in Figure 15. The change in curvature is a change in focal length of the surface. Once ψ, θ, β, and F have been established, a new paraboloid surface is generated through equation [1].
[1] \quad Zgen $=\left(X^{2}+Y^{2}\right) / 4 F$

The surface roughness is found through an rms technique, using the differences of the Z coordinates between the perfect surface and the actual surface, as shown in equation [2].

The curvature of the surface is unchanged.
(a) Yaw movement of the surface.

(b) Roll movement of the surface.

Figure 15 - Creation of the Best-Fit Surface.

By adjusting these four variables, through orderly iteration, the minimum rms is obtained. Each side of the reflector surface is adjusted separately.

There are two additional node points of interest--the feed points. On the EOS structure, there is actually a line of feeds. However, the outermost two feed points, Figure 16 represent the location of the feeds for the reflector surface areas used in the best-fit surface analysis.

Figure 16 - Critical nodes on EOS structure.

These two points will translate X and Y directions and combining these with the surface rotations, beta and theta, the total scan can be calculated. The Z movement of each of these feed points is used to determine axial defocusing, as described in Section 2.4.1.3.

2.4.3 Use of Best-Fit Analysis

For all slewing cases, the dynamic transient response analysis outputs each of the node points with the corresponding time points and respective translations. Selection of the time points for operational fitness testing now becomes all important. Operational fitness is a function of the deflections of the surface and of the feed points. To choose eligible time points, it is best to look at the critical surface nodes 90, 106, and 132, as well as nodes 4 and 6, shown in Figure 17. The three surface nodes are perimeter nodes and are subject to extreme deflections in the Z direction. It is desirable to choose time points so that their deflections are not exceeded at later times.

These can be chosen from the individual time history curves of each critical node point. These time points will almost always occur at relative peak deflections in the curve, shown in Figure 17.

Figure 17 - Typical time history curve.

2.4.4 The Effect of System Errors

Once the error analysis has been concluded, the new best-fit surface must be tested for operational fitness in accordance with the requirements given in Section 2.1.

For each side of the surface, four requirements must be met separately. The time point at which all requirements are first met is the time point at which operation of the radiometer may begin.

If, however, the system does not settle in the time allotted in the transient analysis, the settling time must be estimated. The premise for this estimation is that because displacements decay logarithmically with time, all related parameters must decay in the same fashion. That is, $\triangle G / G$ found in radiometric resolution and $\triangle B W F N$ found in resolution must decay logarithmically with respect to time. By plotting either of these two parameters for several time points on semi-log graph paper, a logarithmic decrement can be established, and, with that, an estimate of settling time can be determined. An example of this procedure is shown in Section 3.3.2.

The following sections present the results of the various analyses performed and the system impacts caused by adiling slew capability to EOS.

3.1 RIGID-BODY ANAIYSIS

The mission situation evaluated in the dynamic analysis was a $705-\mathrm{km}$ orbit without orbit transfer fuel but with 1265 kg of slewing propellant. The total mass of the model was 6812 kg . NASTRAN plots of the elastic mode shapes were obtained, and Figures 18 and 19 show the first two elastic modes. Mass moments of inertia and mass center of gravity were calculated by the NASTRAN Grid Point Weight Generator and are listed in Table 8. Using the Grid Point Weight Generator results, the thrust angle, slew time, and attitude hold requirements for the EOS baseline structure being slewed 15 degrees were determined. Figure 20 shows the center-of-gravity thruster locations and thrust angles.

Figure 18 First mode with slewing and without orbit transfer (freq of 0.911 Hz).

Figure 19 - Second mode with slewing and without orbit transfer (freq of 0.963 Hz).

TABLE 8 - CENTER OF MASS LOCATION AND PRINCIPAL MASS MOMENTS OF INERTIA AS DETERMINED BY NASTRAN GRID POINT WEIGHT GENERATOR

Center of mass location, m^{a}		
	X_{cg}	17.13
	Y_{cg}	0.0
	Z_{cg}	31.95
Mass moments of inertia about		
principal axes, $\mathrm{kg}-\mathrm{m}^{2} \times 10^{7}$	I_{xp}	2.699
	I_{yp}	2.208
	I_{zp}	1.110

${ }^{\text {a }}$ Model origin and coordinate system are shown in Figure 20

Figure 20 - Thruster system location for slew maneuvers.

3.1.1 Slew Times, Thruster Levels, and Maneuver Frequency

The length of time required for the slew maneuver was calculated using equation [3] in Section 2.2.2. Figure 21 shows the resulting slew time as a function of thrust level using the following:
$I_{\mathrm{xp}}=2.69887 \times 10^{7} \mathrm{~kg}-\mathrm{m}^{2}$ (as determined by the NASTRAN Grid Point Weight Generator)
$\mathrm{T}_{\mathrm{H}}=$ Thrust level $\times 4$ thrusters $\times 45.214 \mathrm{~m}$
Also shown in Figure 21 is the number of slew maneuvers possible before resupply as a function of thruster level. This curve was determined using equations [4] and [5] in Section 2.2.2.

Figure 21 - Slew time and number of slew maneuvers per lifetime.

3.1.2 Attitude Hold Requirements

Because the pointing requirement for EOS about the x-axis is ± 0.08 degrees in or out of the orbit plane, it was possible to determine the length of time the EOS can remain in the out-of-plane position from equations [6] and [7] in Section 2.2.3. The gravity gradient torque was determined from equation [7] in Section 2.2.3 assuming the following:

Therefore,
$\mathrm{T}_{\text {ggyp }}=.-9.254 \mathrm{~N}-\mathrm{m}$
resulting in an angular acceleration of

$$
\alpha=\frac{0.254 \mathrm{~N}-\mathrm{m}}{}=3.43 \times 10^{-7} \mathrm{rad} / \mathrm{sec}^{2}
$$

$$
2.699 \times 10^{7} \mathrm{~kg}-\mathrm{m} 2
$$

Thus, the length of time the EOS remains in the out-of-plane position was calculated from equation [6] in Section 2.2 .3 to be 90.2 seconds if no station-keeping thrust was applied.

The thrust level necessary to maintain attitude was calculated using equation [8] in Section 2.2.3, using a moment arm length, L, of 45.214 m and the above gravity gradient torque the necessary thrust level was calculated to be 0.20 N . For a 60-second impulse, the fuel mass necessary to provide 0.20 N of thrust is 0.005 kg , from equation [4] Section 2.2.2.

3.2 TRANSIENT ANALYSIS RESULTS

A total of 42 elastic modes were extracted using the FEER method, the highest frequency being 1.94 Hz . It became evident after the first few thrust level-structural damping combinations were investigated, that only the first few structural modes were significantly contributing to the response of the spacecraft. To illustrate, Figure 22a through 22c shows typical displacement curves for each of three thrust levels. As is show, the highest occurring frequency is 1.1 Hz , indicating that no modes with frequencies greater than 1.1 Hz are significantly contributing to the response of the system. Therefore, only the modes between 0.9 and 1.14 Hz were used to determine the transient response during settling time.

TIME (SEC)
DISPL. VS. TIME
EOS CONFIB 3 12OMXGOMX115M
FREE-FREE TRANSIENT ANALYSIS W/SLEWING FUEL ONLY
MODEL O - ISN PER THRUGTER - I DAMPING
(a) Case 2: node 128, Z-displacement.

Figure 22a - Typical displacement curves.

(b) Case 5, node 128, Z-displacement.

Figure 22b - Typical displacement curves.

Time (SEC)
DISPL. VS. TIME
EOS CONF 1 IG 3 120MX6OMX116M
FREE-FREE TRANSIENT ANALYSIS W/SLEWING FUEL ONLY
MODFI θ - 120 N PER THRUGTER - DAMPING
(c) Case 7, node 128, Z-displacement.

Figure 22c - Typical displacement curves.
Table 9 shows the matrix of conditions considered in the transient response analysis. Figure 23 shows the force/time functions for each thrust condition.

TABLE 9 - MATRIX OF ANALYSIS CONDITIONS

Analysis case	Thrust leve1, N	Structural damping, \%	Slew time, s
1	45	0.2	41.7
1^{\prime}	45	0.2	41.2^{a}
2	45	1.0	41.7
2^{-}	45	1.0	$41.2^{\text {a }}$
3	50	39.5	
4	60	36.1	
5	60	1.0	36.1
6	60	5.0	36.1
7	120	1.0	25.5
8	120	5.0	25.5

${ }^{\text {a }}$ The slew angle achieved for cases 1^{\prime} and 2^{\prime} is 14.665 deg as opposed to 15 deg for the remaining cases.

The ten thrust/damping conditions shown in Table 9 were input to the COSMIC NASTRAN model transient response analysis, and resulting displacements were tabulated and plotted for use in the system errors analysis to determine at what point in the settling time the system becomes operational.

Figure 23 - Forcing functions for analysis thrust conditions.

Figure 24 is a NASTRAN plot of the deformed structure at the beginning of settling time for the $60-\mathrm{N}-1 \%$ structural damping case. It should be noted that the deformations are not drawn to scale. Because the displacements are very small relative to the size of the structure, they would not be seen in the structural deformation plots if they were drawn to scale. Comparing the deformation plots to the first mode shape shown in Figure 19, it becomes evident that the first mode is primarily contributing to the deformation of the structure. This deformation plot is typical for all thrust level/structural damping conditions investigated that yield a 15-degree slew.

Figure 24 - Case 5, EOS deformed shape at 60N/1\% damping.

Displacements were obtained at the node points located on the top surface of the antenna and at two feed points. Figures 25 through 28 show the X and Y -displacement time histories for the two feed points for the $60-\mathrm{N}-1 \%$ structural damping case. Note that the point numbers on the Y-axis of the curves correspond to the grid points in Figure 6. The displacement axes are the same as those shown in Figure 4. Figures 29 through 31 show the displacements of the reflector surface points 98 , 106, and 136 in the Z direction. In general, the plots show the displacements oscillating at the fundamental frequency of approximately 0.9 Hz . However, the plots showing the displacements at the interior points on the surface (e.g., point 98) where the displacements are relative small, display a secondary frequency of approximately 0.05 Hz . This indicates that higher frequency modes are contributing to the deformation of the structure, but to a relatively small degree because this secondary frequency is only apparent when the magnitude of the displacements is small.

Figure 25 - Case 5, node 4, X-displacement.

Figure 26 - Case 5, node 4, Y-displacement.

Figure 27 - Case 5, node 6, X-displacement.

Figure 28 - Case 5, node 6, Y-displacement.

Figure 29 - Case 5, node 98, Z-displacement.

Figure 30 - Case 5, node 106, Z-displacement.
 TIME (SEC)
ISPL. VS. TIME
EOS CONF1O 3 120M×60M×115M
FREE-FREE TRANSIENT ANALYSIS W/SLEWING FUEL ONLY
MODEL θ - GON PER THRUETER - 1 EAMPING
Figure 31 - Case 5, node 136, Z-displacement.

The structural damping effects on the decay rate of the displacements are clearly seen in the plots of the displacement time histories. For the purpose of comparison, Figures 32 and 33 show the Z-displacements of point 106 at $60 \mathrm{~N}-0.2 \%$ structural damping and $60 \mathrm{~N}-5 \%$ structural damping, respectively. As expected, the maximum nodal deflections at the end of slew decreased with increased damping ratios and the decay rate of the displacements followed a logarithmic function.

3.2.1 Impact of Analytically Determined Slew Times

During the transient response analysis, a parallel study was conducted to determine the impact on the settling time when slew times (and, hence, slew angles) were analytically determined. Analysis quickly verified that small variations in the slew angle, at any given thrust level, greatly impact the amount of settling time necessary before the structure again becomes operational.

Figure 32 - Case 4, node 106, Z-displacement

Figure 33 - Case 6, node 106, Z-displacement.

Referring to Table 9, the $45-\mathrm{N}$ thrust with a 0.2 and 1.0% damping cases were each analyzed for two slew times, cases 1, 1', 2, and 2'. Slewing the EOS antenna 15 degrees using $45-\mathrm{N}$ of thrust requires a slew time of 41.7 seconds. However, this slew period resulted in the removal of the thrust force at a time when the elastic displacement of the structure was close to zero. Therefore, the deformation at the start of settling time was very small, and the system error analysis determined the structure to be operational immediately. A transient response analysis was then conducted for the same thrust/ structural damping conditions with the exception that instead of using a slew period of 41.7 seconds, a slew time of 41.2 seconds was implemented. This period was chosen by determining the time nearest 41.7 seconds when the nodal displacements of the structure were at a maximum using the displacement time history curves from the $41.7-s e c o n d$ case. The resulting displacements during the settling time were much greater because of the greater displacement at the end of slew time. As a result of the decreased slewing period, the slew angle was reduced to 14.665 degrees.

Figure 34 shows the NASTRAN plot of the deformed structure at the end of slew for the $45-\mathrm{N}-0.2 \%$ damping case with a slew time of $41.2 \mathrm{sec}-$ odds (14.665-degree slew). Figure 35 is the NASTRAN deformation plot at the end of slew for the $45-\mathrm{N}-0.2 \%$ damping case with a slew time of 41.7 seconds (15-degree slew). From these plots it is evident that higher frequency modes are contributing more to the response of the spacecraft when displacements are small than when displacements are relatively large. Figures 36 and 37 show representative displacement time histories for the $45-\mathrm{N}-0.2 \%$ damping case with a slew period of 41.2 and 41.7 seconds, respectively. Comparing the displacements following the slew maneuver for the 14.665 -degree slew and the 15 -degree
slew, it quickly becomes evident that small adjustments in slew angles result in significant changes in displacements at the end of slew and thus significantly effect settling time.

Figure 34 - EOS deformed shape at 45N/0.2\% damping, 14.665° slew, case 1^{1}.

Figure 35 - EOS deformed shape at $45 \mathrm{~N} / 0.2 \%$ damping, 15° slew, case 1.

Figure 36 - Case 1^{\prime}, node $106, \mathrm{Z}$ displacement, 14.665° slew。

Figure 37 - Case 1, node 106, Z-displacement, 15° slew.

Obviously, the initial conditions at the beginning of settling time are strictly a function of the response frequency and the slewing period. Therefore, at any given thrust level, a slewing period can be determined, which will minimize displacements during settling time, regardless of structural damping considerations.

The following are representative results of the system error analysis as described in Section 2.4. Table 10 shows the system errors for case 7 .

TABLE 10 - SYSTEM ERROR RESULTS OF CASE 7

Case 7 thrust/damping	Time, s	Side	RMS, m	Scan, rad	Defocusing, m
$120 / 1$	49.5	1	2.078×10^{-4}	4.673×10^{-5}	-1.786×10^{-2}
		2	2.455×10^{-4}	5.023×10^{-5}	1.691×10^{-2}
	53.4	1	1.937×10^{-4}	-3.929×10^{-5}	1.569×10^{-2}
		2	2.172×10^{-4}	-4.280×10^{-5}	-1.356×10^{-2}
	62.2	1	1.517×10^{-4}	-2.881×10^{-5}	1.178×10^{-2}
		2	1.805×10^{-4}	-2.883×10^{-5}	1.260×10^{-2}
	69.9	1	1.055×10^{-4}	-2.044×10^{-5}	9.327×10^{-3}
		2	1.214×10^{-4}	-2.395×10^{-5}	-8.243×10^{-3}

As expected, the trend is that all three errors decrease with time. Table 11 shows the results of this case from the testing of operational fitness. Again, all facets are moving toward the required values with time. This trend is in concurrence with the premise of logarithmic decay for errors as well as displacements.
table 11 - OPERATIONAL fitness results of CASE 7

Case 7 thrust/ damping	Time,s	Side	$\begin{gathered} \text { Im tol } \\ \text { rad } \end{gathered}$	$\begin{aligned} & \text { Resolution, } \\ & \text { BWFN } \end{aligned}$	Beam eff'y, \%	Radiometric resolution			
						$\begin{gathered} \text { Bm scan, } \\ \mathrm{g} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ax defoc, } \\ \mathrm{g} / \mathrm{g} \end{gathered}$	$\begin{gathered} \text { RMS error, } \\ \mathrm{g} / \mathrm{g} \\ \hline \end{gathered}$	Total, g / g
120/1	49.5	1	$4.635 \mathrm{E}-05$	$3.385 \mathrm{E}-03$	90.11	$4.730 \mathrm{E}-04$	1.332	8.616E-03	1.341
		2	4.983E-05	$3.240 \mathrm{E}-03$	89.52	$4.730 \mathrm{E}-04$	1.194	1.201E-02	1.206
	53.4	1	3.898E-05	$2.564 \mathrm{E}-03$	90.31	$4.338 \mathrm{E}-04$	1.028	7.493E-03	1.035
		2	$4.246 \mathrm{E}-05$	$2.154 \mathrm{E}-03$	89.96	4.337E-01	7.676E-01	$9.414 \mathrm{E}-03$	7.775E-01
	62.2	1	$2.858 \mathrm{E}-05$	1.432E-03	90.90	$3.714 \mathrm{E}-04$	$5.796 \mathrm{E}-01$	4.600E-03	5.846E-01
		2	2.860E-05	$1.595 \mathrm{E}-03$	90.50	$3.714 \mathrm{E}-04$	$6.624 \mathrm{E}-01$	6.506E-03	6.693E-01
	69.9	1	$2.028 \mathrm{E}-05$	$8.553 \mathrm{E}-04$	91.48	3.128E-04	3.632E-01	2.228E-03	3.658E-01
		2	$2.375 \mathrm{E}-05$	7.615E-04	91.38	3.128E-04	2.837E-01	$2.952 \mathrm{E}-03$	2.869E-01

Table 12 lists results of system errors for all cases and their settling times.

TABLE 12 - SYSTEM ERROR RESULTS

Case	Settling time, s	RMS	Scan	Def
1	0.0	3.269×10^{-5}	$3.653 .10^{-6}$	2.809×10^{-3}
1^{-}	Did not settle in allotted time, settle time was extrapolated			
$2^{\text {a }}$	0.0	$\sim 3.2 \times 10^{-5}$	$\sim 3.6 \times 10^{-6}$	$\sim 2.8 \times 10^{-3}$
2^{-}	32.3	5.130×10^{-5}	1.143×10^{-5}	-2.739×10^{-3}
3	0.0	3.613×10^{-5}	-8.159×10^{-6}	-1.817×10^{-3}

Did not settle in allotted time, settle time was extrapolated

Did not settle in allotted time, settle time was extrapolated | 7.7 | 3.598×10^{-5} | -8.243×10^{-6} | -3.061×10^{-3} |
| :--- | :--- | :--- | :--- |

Did not settle in allotted time, settle time was extrapolated
8
13.6
2.842×10^{-5}

-1.138×10^{-5}	-2.314×10^{-3}

${ }^{\text {a }}$ System error analysis was not performed on Case 2 since Case 1 settles immediately and it is, therefore, obvious that Case 2 would also settle immediately.

Table 13 lists results of operational fitness testing. These results are derived from the equations in Section 2.1 with the use of the results in Table 12.
table 13 - OPERATIONAL FITNESS RESULTS

Case	$\begin{aligned} & \text { Settling } \\ & \text { time, s } \end{aligned}$	Im tolrad	Resolution, BWFN	Beam eff'y, \%	Radiometric Resolution					
					$\begin{gathered} \hline \mathrm{Bm} \text { scan, } \\ \mathrm{g} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ax defoc, } \\ \mathrm{g} / \mathrm{g} \end{gathered}$	$\begin{gathered} \text { RMS error, } \\ \mathrm{g} / \mathrm{g} \end{gathered}$	$\begin{gathered} \text { Total, } \\ \mathrm{g} / \mathrm{g} \end{gathered}$		
1	0.0	$3.624 \mathrm{E}-06$	$6.553 \mathrm{E}-05$ 92.27 $1.324 \mathrm{E}-04$ $3.295 \mathrm{E}-02$ Did not settle in allotted time System error analysis not performed				2.142E-04	3.330E-02		
1 -										
2	0.0									
2^{\prime}	32.3	$1.134 \mathrm{E}-05$	System error analysis not performed$1.038 \mathrm{E}-04\|92.08\| 2.340 \mathrm{E}-04 \mid 3.132 \mathrm{E}-02$				5.272E-04	3.208E-02		
3	0.0	8.094E-06	4.802E-05 $92.23\|1.983 \mathrm{E}-04\| 1.378 \mathrm{E}-02$ Did not settle in allotted time Did not settle in allotted time				2.616E-04	$1.424 \mathrm{E}-02$		
4										
5										
6	7.7	8.177E-06	1.008E-04 \| 92.23	1.987E-04	3.911E-02 Did not settle in allotted time				$2.595 \mathrm{E}-04$	3.957E-02
7										
8	13.6	$1.129 \mathrm{E}-05$	8.217E-05	92.31	2.345E-04	$2.236 \mathrm{E}-02$	$1.619 \mathrm{E}-04$	$2.276 \mathrm{E}-02$		

The following are results in tabular and graphic form of the error and operational fitness analysis, along with example calculations and explanation.

Table 14 displays the settling times of each thrust/damping case undertaken for Task 2.

TABLE 14 - VARIANCE OF SETTLING TIME WITH RESPECT TO THRUST LEVELS AND DAMPING

Case	Thrust, N	Damping, \%	Settling time, s
1^{\prime}	45	0.2 (14.665 deg slew)	$82.0^{\text {a }}$
1	45	0.2	0.0
2^{\prime}	45	1.0 (14.665 deg slew)	32.3
2	45	1.0	0.0
3	50	1.0	0.0
4	60	0.2	$250.0{ }^{\text {a }}$
5	60	1.0	$55.0{ }^{\text {a }}$
6	60	5.0	7.7
7	120	1.0	$75.61{ }^{\text {a }}$
8	120	5.0	13.6

$\mathrm{a}_{\text {Extrapolated }}$ settling times.
Readily obvious is the fact that the settling time decreases as damping increases for a particular thrust, an expected result. This trend is graphically depicted in Figure 38.

Note that in the cases involving 50 - and $45-\mathrm{N}$ thrust at the normal 15degree slew angle, regardless of damping, the settling time drops to zero second, that is, the system is operational immediately. This is due to the fact that the system has reached near zero displacement, a phenomenon that is discussed in Section 3.2.1.

Figure 38 - Variance of settling time with respect to thrust levels and damping

3.3.1 Example Calculations

To illustrate the procedure for the testing of operational fitness, case 8 will be used as an example.

The equations used in operational fitness testing are referenced from Section 2.1. It is important to realize that all four tests on both sides must pass to ensure operational fitness.

Case 8

120 N, 5\% damping
$\lambda=0.02807 \mathrm{~m} \quad B D F=0.992$
$\mathrm{D}=60 \mathrm{~m}$
Time 39.1 The subscripts 1 and 2 represent sides 1 and 2 of EOS, respectively.
Data from best-fit analysis:
$\mathrm{RMS}_{1}=2.45 \times 10^{-5} \mathrm{~m}$
$\mathrm{PMS}_{2}=2.84 \times 10^{-5} \mathrm{~m}$
$\theta_{\mathrm{Tl}}=-1.149 \times 10^{-5^{\circ}} \mathrm{rad}$
$\theta_{\mathrm{T}^{2}}=-1.138 \times 10^{-5} \mathrm{rad}$
$\Delta \mathrm{F}_{1}=2.26 \times 10^{-3} \mathrm{~m}^{\circ}$
$\Delta F_{2}=-2.31 \times 10^{-3} \mathrm{~m}$

Test 1: Radiometric Resolution

Beam Scanning

From Equation [2] of Section 2.1.1
$4.75(\Delta G)^{4}-26.75(\Delta G)^{2}+\frac{0.992}{1.22\left(\frac{0.02807}{60}\right)} \times \frac{\theta_{\mathrm{T}}}{0.02807 * 116.1^{2}} \times \frac{1}{1+\frac{72}{116.1^{2}}}=0$

The quadratic becomes
$\Delta G=\sqrt{\frac{5.63157 \pm \sqrt{5.63157^{2}-4(97.189876) \theta_{T}}}{2}}$
Take the smallest positive root.
$\frac{\Delta G}{G}=\frac{1.4 \times 10^{-2}}{59.8}=2.35 \times 10^{-4}$

Axial Defocusing

From Equation [1] of Section 2.1.1
$\frac{\Delta G_{1}}{G}=\frac{1}{12}\left(\frac{2 \pi * 2.257 \times 10^{-3}}{0.02807}\right)^{2}=2.128 \times 10^{-2}$
$\frac{\Delta G_{2}}{G}=\frac{1}{12}\left(\frac{2 \pi *-2.314 \times 10^{-3}}{0.02807}\right)^{2}=2.236 \times 10^{-2}$

Surface Error

From Equation [4] of Section 2.1.1

$$
\begin{aligned}
& \frac{\Delta G_{1}}{G}=1-e^{-\left(\frac{4 \pi * 2.842 \times 10^{-5}}{0.02807}\right)^{2}}=1.208 \times 10^{-4} \\
& - \\
& \frac{\Delta G_{2}}{G}=1-e^{-\left(\frac{4 \pi * 2.842 \times 10^{-5}}{0.02807}\right)^{2}}=1.619 \times 10^{-4}
\end{aligned}
$$

Now, in summing up $\Delta G / G$ for each side,

$$
\begin{aligned}
& \frac{\Delta G_{1}}{G}=2.35 \times 10^{-4}+2.13 \times 10^{-2}+1.21 \times 10^{-4}=2.17 \times 10^{-2} \\
& \frac{\Delta G_{2}}{G}=2.35 \times 10^{-4}+2.24 \times 10^{-2}+1.62 \times 10^{-4}=2.28 \times 10^{-2}
\end{aligned}
$$

both of which are less than the limit of 5×10^{-2}.

Test 2: Beam Efficiency

From Equation [1] of Section 2.1.2
where, from Eqn 2 of Section 2.4.1.1
$\mathrm{rms}_{\mathrm{sys}}=\frac{\left(\mathrm{rms}_{\mathrm{dyn}}+0.0439\right)+\sqrt{\mathrm{rms}_{\mathrm{dyn}}^{2}+0.002774}}{2}$ with rms in cm.
$\mathrm{rms}_{\text {sys } 1}=\frac{\left(2.455 \times 10^{-3}+0.0439\right)+\sqrt{\left(2.455 \times 10^{-3}\right)^{2}+0.002774}}{2}$
$=0.0495 \mathrm{~cm}$
$\mathrm{rms}_{\text {sys } 2}=\frac{2.842 \times 10^{-3}+0.0439+\sqrt{\left(2.842 \times 10^{-3}\right)^{2}+0.002774}}{2}$
$=0.0497 \mathrm{~cm}$
$B E_{\text {sys1 }}=0.97 e-\left(\frac{4 \pi * 0.0495}{2.807}\right)^{2}=0.923>0.90$
$\mathrm{BE}_{\text {sys2 }}=0.97 \mathrm{e}-\left(\frac{4 \pi * 0.0497}{2.807}\right)^{2}=0.923>0.90$
Both beam efficiencies are above 90%.

Test 3: Resolution: Equations [1], [2], and [3] of Section 2.1.3

From Equations [1], [2], and [3] of Section 2.1.3
$\triangle \mathrm{BWFN}=\frac{1.650229}{\frac{\pi * 60 * 2}{0.02807}} \mathrm{~m}^{2}=0.000122873 \mathrm{~m}^{2}$
$m_{1}=\frac{2 \pi}{0.02807}\left(2.455 \times 10^{-5}+2.257 \times 10^{-3}+1.149 \times 10^{-5} \times 116.1\right)=0.80928$
$\triangle \mathrm{BWFN}_{1}=0.000122873 * 0.80928^{2}=8.000 \times 10^{-5} \mathrm{rad}$
$m_{2}=\frac{2 \pi}{0.02807}\left(2.842 \times 10^{-5}+2.314 \times 10^{-3}+1.138 \times 10^{-5} \times 116.1\right)=0.82007$
$\Delta \mathrm{BWFN}_{1}=0.000122873 \times 0.82007^{2}=8.217 \times 10^{-5} \mathrm{rad}$
Both \triangle BWFNs are less than $1.14 \times 10^{-4} \mathrm{rad}$.

Test 4: Image Tolerance
The image tolerance is the product of the total scan $\left(\theta_{T}\right)$ and the beam deviation factor.

Im $\mathrm{Tol}_{1}=0.992 * 1.149 \times 10^{-5}=1.139 \times 10^{-5} \mathrm{rad}$.
Im $\mathrm{Tol}_{2}=0.992 * 1.138 \times 10^{-5}=1.129 \times 10^{-5} \mathrm{rad}$.
both of which are less than 0.0014 radians.

It is evident that this example case is operational, because all four tests for either side were passed. It is rather simple to declare that the system becomes operationally fit at or before this chosen time. To determine the time at which system is fit, tests must be conducted on previously occurring times, until such a time is found where the system is not operational.

3.3.2 Extrapolation of Settling Time

There are times when the system does not settle in the time allotted by the transient response analysis, a settling time must be extrapolated. An example of this is case 7.

Using the results in Table 11, it is apparent that this case does not settle in its allotted time. The resolution and radiometric resolution fail to meet their requirements. By plotting $\triangle B W F N$ with time as shown in Figure 39, the logarithmic decrement can be found, as can settling time.

3.4 SYSTEM IMPACTS

This section provides the changes to the EOS that would result if slewing capability is incorporated into the design of the spacecraft.

3.4.1 Thruster Systems for Slewing

The present design of the EOS incorporates into the spacecraft two separate thruster systems.

The first system uses monopropellant $\mathrm{N}_{2} \mathrm{H}_{4}$ for orbit transfer and uses an integral tank and fixed nozzle design located on the perimeter of the reflector structure. The second system is used for the attitude control system and consists of 12 pulsed plasma micro-thrusters. Of the two systems, the orbit transfer thruster system is the best candidate for slew maneuvers. In fact, the propellant tanks were designed to carry 1265 kg of propellant for slew, Figure 40. However, the thrusters that were incorporated into the structure have only a thrust range of 3.1 to $44.5-\mathrm{N}$. At these thrust levels, slewing would take a significantly longer time than is anticipated as being acceptable. Therefore, to provide adequate slew capability, the thrusters would
have to increase in size. Also, the thrusters would have to incorporate a gimbaled nozzle system that would allow positioning of the thrust vectors to be parallel to the principal Z axis, thus eliminating any rotation about the pitch axis during slew.

For station-keeping once EOS has been slewed 15 degrees, a new set of thrusters would be required. Because the pulse plasma thrusters do not produce enough torque, only $2 \mathrm{~N}-\mathrm{m}$ versus the $9.25 \mathrm{~N}-\mathrm{m}$ gravity gradient torque, and the orbit transfer thrusters would provide approximately 100 times the torque required. However, this third thruster system could be avoided if the station holding requirement is held under 90 seconds.

Figure 40 - Integrated hydrazine tanks.

3.4.2 Structural Impacts

Assuming that EOS would be slewed at the fastest rate studied, 15-degree slew in 25.5 seconds using four $120-\mathrm{N}$ thrusters, the resulting g loading on the structure would be approximately 0.004 . During the EOS study, orbit transfer requirements produced g loadings of 0.01. Therefore, there would be no significant impacts on a structural basis.

3.4.3 Weight and Complexity Impacts

Assuming the slew requirements would increase the mass of orbit transfer thrusters by approximately 20%. Table 15 shows the subsystem and structural mass summary for the EOS with and without slewing.

TABLE 15 - EOS MASS SUMMARY

Subsystem	Total w/slewing	Total w/o slewing
Feed boom system	717	717
Electronics	110	110
Atmospheric sounding radar	70	70
Mesh and tie system	297	297
Science pallet (SAR \& structure)	169	169
Twin PPTs	336	336
Single PPT	176	176
Power		
- Solar panels	300	300
- Battery packs	540	540
Orbit transfer system		
- Inboard propulsion system	660	650
- Outboard propulsion system	256	236
Slewing propulsion system	1265	--
Structural system.	$\underline{2769}$	2769
Total spacecraft mass	7665	6370

TABLE 16 shows the design changes and complexity impacts on the EOS.
table 16 - design changes

Orbit transfer/slew thrusters	w/slewing	w/o slewing
	45N to 120N gimbaled $\pm 180^{\circ}$ thrust direction	3N to 40N nongimbaled single thrust direction
	Existing PPTs plus additional pair for gravity gradient torque	Existing PPTs

APPENDIX A
NASTRAN TRANSIENT RESPONSE INPUT DECK

EOS CONFIG 3 120MX6OMX116M

FREE-FREE TRANSIENT ANALYSIS W/SLEWING FUEL ONLY
60N PER THRUSTER - 1% DAMPING

ID EOS MODEL8
CHKPNT YES
APP
TIME 500
DIAG 8,9.13,14.21.22
SOL
CEND
12.0

CARD
 COUNT

TITLE = EOS CONFIG 3 120MX60MX116M
SUBTITLE= FREE-FREE TRANSIENT ANALYSIS W/SLEWING FUEL ONLY
LABEL= MODEL 8 - $60 N$ PFR THRUSTER - 1% DAMPING
METHOD= 6
SET $1=4,6,58,60,62,64,66,68,70,72,74,76,78,80,82,84$
$86,88,90,92,94,96,98,100,102,104,106,108,110,112$.
$86,88,90,92,94,96,98,100,126,128,130,132,134,136,138$

DLOAD $=1$

DISPLACEMENT = 1
TSTEP $=1$
SDAMPING $=1$
MAXLINES $=100000$
BEGIN BULK

COUNT	- 1	\cdots	2	-	3	.	4	.	5	.	$\dot{6}$	7	-	8		9	10
201-	CBAR	201		1		59		61		. 0		1.0	1.0		1		0 C 201
202-	+C201	6		6													
203-	CBAR	202		1		61		63°		. 0		1.0	1.0		1		$0 C 202$
204 -	+C202	6		6													
205-	CBAR	203		1		63		65		. 0		1.0	1.0		1		QC203
206-	+C203	6		6													
207-	CBAR	204		1		65		67		. 0		1.0	1.0		1		QC204
208-	+C204	6		6													
209-	CBAR	205		1		67		69		. 0		1.0	1.0		1		0 C 205
$210-$	+C205	6		6													
211 -	CBAR	206		1		69		71		. 0		1.0	1.0		1		QC206
212-	+C206	6		6													
213 -	CBAR	207		1		127		129		. 0		1.0	1.0		1		QC207
214-	+C207	6		6													
215-	CBAR	208		1		129		131		. 0		1.0	1.0		1		0 C 208
216-	+C208	6		6													
217-	CBAR	209		1		131		133		. 0		1.0	1.0		1		QC209
218-	+C209	6		6													
219-	CBAR	210		1		133		135		. 0		1.0	1.0		1		OC2 10
220-	+C2 10	6		6													
221 -	CBAR	211		1		135		137		. 0		1.0	1.0		1		QC211
222-	+C211	6		6													
223-	CBAR	212		1		137		139		. 0		1.0	1.0		1		Qc2 12
224-	+C2 12	6		6													
225-	CBAR	213		1		75		77		. 0		1.0	1.0		1		QC2 13
226-	+C2 13	6		6													
227 -	CBAR	214		1		77		79		. 0		1.0	1.0		1		QC2 14
228-	+C2 14	6		6													
229-	CBAR	215		1		79		81		. 0		1.0	1.0		1		OC2 15
230-	+C215	6		6													
231-	CBAR	216		1		81		83		. 0		1.0	1.0		1		QC2 16
232-	+C2 16	6		6													
233-	CBAR	217		1		83		85		. 0		1.0	1.0		1		QC2 17
234 -	+C217	6		6													
235-	CBAR	218		1		85		87		. 0		1.0	1.0		1		QC2 18
236-	+C218	6		6													
237 -	CBAR	219		1		93		95		. 0		1.0	1.0		1		OC2 19
238-	+C2 19	6		6													
239-	CBAR	220		1		95		97		. 0		1.0	1.0		1		QC220
240-	+C220	6		6													
241-	CBAR	221		1		97		99		. 0		1.0	1.0		1		Qc22 1
242-	+C22 1	6		6													
243-	CBAR	222		1		99		101		. 0		1.0	1.0		1		QC222
244 -	+C222	6		6													
245-	CBAR	223		1		101		103		. 0		1.0	1.0		1		QC223
246-	+C223	6		6													
247-	CBAR	224		1		103		105		. 0		1.0	1.0		1		QC224
248-	+C224	6		6													
249-	CBAR	225		1		111		113		. 0		1.0	1.0		1		QC225
250-	+C225	6		6													

CARD COUNT	- 1		2		3		4		5	6		7		8		9	10
351 -	CBAR	276		1		23		17		-1.0	. 0		1.0		1		QC276
352-	+C276	6		6													
353-	CBAR	277		1		24	-	18		-1.0	. 0	-	1.0		1		QC277
354-	+C277	6		6													
355-	CBAR	278		1		19		13		-1.0	. 0		1.0		1		QC278
356-	+C278	6		6													
357 -	CBAR	279		1		20		14		-1.0	. 0		1.0		1		QC279
358-	+C279	6		6													
359-	CBAR	280		1		21		15		-1.0	. 0		1.0		1		QC280
360-	+C280	6		6													
361 -	CBAR	281		1		16		10		-1.0	. 0		1.0		1		QC28 1
362-	+C28 1	6		6													
363-	CBAR	282		1		17		11		-1.0	. 0		1.0		1		QC282
364 -	+C282	6		6													
365-	CBAR	283		1		18		12		-1.0	. 0		1.0		1		QC283
366-	+C283	6		. 6													
367 -	CBAR	284		1		13		7		-1.0	. 0		1.0		1:		OC284
368-	+C284	6		6													
369-	CBAR	285		1		14		8		-1.0	. 0		1.0		1		OC285
370-	+C285	6		6													
371 -	CBAR	286		1		15		9		-1.0	. 0		1.0		1		OC286
372-	+C286	6		6													
373-	CBAR	287		1		52		53		1.0	1.0		. 0		1		QC287
374 -	+C287.	6		6													
375-	CBAR	288		1		53		54		1.0	1.0		. 0		1		QC288
376-	+C288	6		6													
377 -	CBAR	289		1		49		50		1.0	1.0		. 0		1		QC289
378-	+C289	6		6													
379-	CBAR	290		1		50		51		1.0	1.0		. 0		1		QC290
380-	+C290	6		6													
381-	CBAR	291		1		46		47		1.0	1.0		. 0		1		QC29 1
382-	+C291	6		6													
383-	CBAR	292		1		47		48		1.0	1.0		. 0		1		QC292
384-	+C292	6		6													
385-	CBAR	293		1		43		44		1.0	1.0		. 0		1		QC293
386-	+C293	6		6													
387-	CBAR	294		1		44		45		1.0	1.0		. 0		1		QC294
388-	+C294	6		6													
389-	CBAR	295		1		40		41		1.0	1.0		. 0		1		QC295
390-	+C295	6		6													
391 -	CBAR	296		1		41		42		1.0	1.0		. 0		1		QC296
392-	+C296	6		6													
393 -	CBAR	297		1		37		38		1.0	1.0		. 0		1		QC297
394-	+C297	6		6													
395-	CBAR	298		1		38		39		1.0	1.0		. 0		1		OC298
396-	+C298	6		6													
397-	CBAR	299		1		34		35		1. 0	1.0		. 0		1		QC299
398-	+C299	6		6													
399-	CBAR	300		1		35		36		1.0	1.0		. 0		1		0 C 300
400-	+C300	6		6													

	SORTED BULK DATA ECHO									
CARD	1	2	.	3 .. 4	. 5	6	7	. 8	9	10
1251-	PBAR	1	1	$1.715 \mathrm{E}-$	41.47	1.471E	. 941 E	. 03		
1252-	PBAR	2	2	3.806E	42.75	2.753 E	.506E			
1253-	PbAR	20	2	7.000E-	42.08	22.08 1E	. 506E	9.333		
1254-	PBAR	21	1	7.000 E	22.08	2.081 E	. 941 E	11.492		
1255-	PBAR	22	2	7.000 E	42.08	2.081 E	. 506E	7.333		
1256-	PbAR	25	2	$7.000 \mathrm{E}-$	42.08	2.081 E	. 506E	21.306		
1257-	Pbar	29	2	$7.000 \mathrm{E}-$	42.08	2.081 E	. 506E	22.96 U		
1258-	PBAR	51	51	3.271 E	42.75	2.755 E	. 509 E			
1259-	PBAR	53	53	1.35.3E-	34.880	1.120E	. 568 E			
1260-	Pbar	54	54	4.238 E -	42.230	2.528 E	. OOE -			
1261-	PBAR	58	58	5.340 E	42.06	2.060 E	. 080 E			
1262-	PROD	5	11	3.486E	50.0	0.0				
1263-	PROD	6	11	5.230 E -	50.0	0.0				
1264-	SPC	1	58	123	0.0					
1265-	SPC	1	70	123	0.0					
1266-	SPC	1	126	123	0.0					
1267-	SPC	1	138	123	0.0					
1268-	TABDMP 1	1								+TD 1
1269-	+TD1	. 9	. 010	1.14	. 010	ENDT				
1270-	TABLED 1	1								+TFI
1271-	+TFi	0.0	1.0	18.049	1.0	18.051	-1.0	36.099	-1.0	+TFi1
1272-	+TFit	36.1	0.0	40.0	0.0	ENDT				
1273-	tload 1	1	1			1				
1274-	TSTEP ENDDATA	1	1400	. 05	2					

$$
\therefore
$$

[^0]: *J. Ruze: "Lateral Feed Displacement in a Parabolic." IEEE Trans Antennas Prop. Vol AP-13 No. 5, Sept. 1965, pp. 660-665.

[^1]: *J. Ruze: "The Effect of Aperture Errors on the Antenna Radiation Pattern." Supplemento al Nuovo Cimento, Vol 9, No. 3, 1952, pp. 364-380.
 ** R. H. Dicke: "The Measurement of Thermal Radiation at Microwave Frequencies." Rev Sci Instr, Vol 17, pp 268-275.

[^2]: *R. C. Johnson and H. Jasik: Antenna Engineering Handhook. McGrawHill Book Company, New York, 1984, Chapter 31.
 ** D. K. Cheng: "Fffect of Arbitrary Phase Errors on the Gain and Ream Width Characteristics of Radiation Pattern." IRE Translations Ant. Prop., 1955, p 145.

