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THECRACKPROBLEMFORBONDEDNONHOMOGENEOUS

MATERIALSUNDERANTIPLANESHEARLOADING

F. Erdogan
Lehigh University, Bethlehem, PA 18015

ABSTRACT

The main objective of this paper is the investigation of the singular
nature of the crack tip stress field in a nonhomogeneousmedium having a shear
modulus with a discontinuous derivative. The problem is considered for the
simplest possible loading and geometry, namely the antiplane shear loading of
two bonded half spaces in which the crack is perpendicular to the interface.
It is shown that the square-root singularity of the crack tip stress field is
unaffected by the discontinuity in the derivative of the shear modulus. The
problem is solved for a finite crack and extensive results are given for the
stress intensity factors.

I. Introduction

In a nonhomogeneousmedium if the elastic moduli are piecewise constant,

it is known that the stress field around a crack tip terminating at the inter-

face has a behavior of the form r_ where r is the distance from the crack tip

and -I<_<0 (see, for example, [I] and [2]). It is also known that if the

nonhomogeneousmediumhas elastic moduli which are continuous with continuous

derivatives the stress state around the crack tips has the standard square-

root singularity [3], [4]. What has not been studied so far is the effect of

the discontinuity of the derivatives of elastic moduli on the crack tip stress

singularity for a crack terminating at the plane of discontinuity. In this

paper the problem is studied for the simple case of antiplane shear loading

of an infinite medium in which the shear modulus _ is a function of x only,

" d_/dx is discontinuous along the x:O plane, and the crack lies in the xz plane

(Fig. I). The main objective of the paper is to investigate the effect of

du/dx on the stress singularity. Hence, it is further assumedthat _ is an

exponential function in x, which appears to lead to a relatively simple for-

mulation of the problem.
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2. Formulation of the Problem

The antiplane shear problem for the nonhomogeneousmediumshown in Fig.
1 having the elastic properties

_(x) = _oeBx x>O; _(x) : _o eYx
x<O (1)

may be formulated as fol Iows:

BWl

V2Wl + _ _x - 0 , O<x<_ , O<_y<= , (2)

Bw2
v2w2 + Y _x - 0 , -=<x<O , O<_y<= (3)

Wl(O,Y) : w2(O,Y) , (4)

alxz(O,Y) = O2xz(O,y) , (5)

Wl(X,O) : 0 , O<__x<a,b<x<_ , (6)

_lyz(X,+O) : p(x) , a<x<b , (7)

where it is assumed that the crack surface traction p(x) is the only nonzero
external load and that because of symmetry it is sufficient to consider the

problem for y>O only. Expressing the solution of (2) and (3) as

fwI (x,y) 27 fl (Y'6)e-1_Xda + 2- _ gl (x,6)sinyad_ , (8) -

w2(x,Y) = _ g2(x,a)siny_da , (9)
0 .

we obtain

fl : A(m)emY' gl : B(m)enX ' g2 = C(6)e_X '

B _ .....
m : -_z+iB_ , n : -_I - 2 ' _ : 62 - 2 '

_I = J_z+Bz/4 ' 62 = _z+Yz/4 " _(I0)-
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The stress components are given by

_oe_X _Wl _oe_X _Wl_Ixz = Bx ' _lyz = _y , (O<x<=, O<y<_) , (II)

_w2 _w2
_2xz : _oeYx _-# ' _2yz : _oeYX-_ ' (-_<x<O, O<y<_) . (12)

Substituting from (8)-(12) into the continuity conditions (4) and (5) it

may easily be shown that

nB(_)-xC(_)- 1 f i_pa{p)dD (14)- 2-_ _Z+pZ+iBp "

Defining now

g(x) : ! Wl(X,O) (15)BX

from (8), (I0) and (6) we find
b

i_A(_) =-I g(t)ei_t dt , (16)
a

b

I g(t)dt : 0 . (17)
a

By substitutingfrom (16)into (13) and (14)and by usingthe residuetheorem

to evaluatethe improperintegralsand the condition(17),theunknownfunctions

B and C may be obtainedas follows:

IbB(_) = 2_l(__n)(ml_B/2) g(t)e dt , (18)
a
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: _ I b -t(_l-B/2)C(m) (_,_n)(=l_B/2) g(t)e dt . (19)a

Thus, g(t) is the only unknown in the problem which may be determined from

the remaining boundary condition (7). From (7), (8), (I0), (II), (16) and

(18) it then follows that

b

_oeBx T11 [kl(X't) + k2(x't)]g(t)dt ' a<x<b , (20)_lyz(X,O) : p(x) :
a

i I _ emy eim(t-x)d_ ' (21)kl(X,t) : lim _ a
y-_FO -_

k2(x,t) : lime (t-x)B/2 S m2(_I-_2 +3-_) -(t+x)_1
y-_+O o _II_-_(ZI -_e "cos_ydx . (22)

Referring to (I0) and the regularity conditions at infinity it may be noted

that Re(m)<O, Re(n)<O and Re(x)>O. The singular behavior of the kernels k1

and k2 may be obtained from the asymptotic analysis of the integrals in (21)
and (22). By observing that for large values of _jm(_)-_-I_ I, from (21) we
find

kl(X,t) : lim ½ I _ e-I_lY ei_(t-X)d_
y++O _

i I m __L)^i_(t-x)+ 2 (_ + c_-_ d(_ (23)

where because of uniform convergence, in the second integral the limit has - - .....

been put under the integral. By evaluating the first integral kl_i s obtained
as follows:

kl(X,t ) : It_x + hl(X't) ' (24) --
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hl(X,t ) : Im{I (I+_- l)ei_(t-x)d_} . (25)
0

where the function hI is bounded for all values of x and t in the closed
interval [a,b], a>O.

Similar asymptotic analysis would show that the kernel k2 is bounded
for a>O (for which t+x>O), and has only a logarithmic end point singularity
for a:O (i.e., for x+t-_). Wefirst write

k2(x't) = e(t-x)_/2 I K2(x't'a)c°s_Y do , (26)
0

_2(_l-a 2+_) - (t+x)_ 1
K2(x,t,_) = _l(x_n)(_l__/2 ) e . (27)

The limiting behavior of the integrand K2 for _0 and for _-_ is

K2 . K2o(X,t,_) : 2(y-B) _2e-(t+x)B/2 for _-_] (28)y_z , ,

K2 _ K2_(x,t,_) : y-B ! e-_(t+x) for _-_ (29)4 _

Wenow express k2 as
€ N

k2(x,t): lim e(t-x)B/2[IK2o(X,t,_)cos_yd_+ I K2(x't'_)c°sayd_y_+O
o

+ I K2_(x't'_)c°s_yd_ +_] (30)
N

where € is a very smalland N is a very largeconstantand the constanta may

be made as smallas we pleaseby selecting€ sufficientlysmalland N suffi-

cientlylarge, Note that in _<__<_NK2 is boundedand hence,the secondintegral

in (30)is finitefor all x>_O,t>_O.Equation(28)showsthat the same is true

also for the firstintegralin (30). The thirdintegralis the exponential

integralwhichmay be expandedas
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i e-_(t+x)lim cos_yd_: lim Re{Ei[(t+x-iy)N]}=-log(t+x)-logN-Yo
y-,+O N _ y_O+

N2 N3 3
2"2-5.(t+x)2 + 3"-T3T.(t+x) - ... (31)

where Yo is the Euler's constant. One may note that if N is nonzero and finite

then the exponential integral in (31) and consequently the kernel k2 is bounded
for all x and t in O<(x,t)<b and has only a logarithmic singularity at x=O=t.

Since the kernel log(t+x) is square integrable, it may thus be concluded that

the dominant part of the integral equation (20) has only a simple Cauchy ker-

nel for a=O as well as a>O, and the solution isof the form [5]

, g(t) - G(t) , (0 < a < t < b) . (32)
_(t-a)(b-t)

3. Stress Intensity Factors

For a>Owe observe that (20) gives Olyz(X,O ) for O<x<_and the function
F defined by

b

I [hl(X't) + k2(x't)]g(t)dt (33)
F(x)

a

is bounded in the closed interval a<_x<b. Thus (20) may be expressed as

1 b

l e-BX = _i I G(t)dt + F(x) , (O<x<_) -
_o _lyz(X'O) _ (t-x)X+(t)

(34)
a

where

.... X(z) = ¢(z-a)(z-b) , X+(t) :-X-(t) : ¢(t-a)(t-b), (z:x+iy) . (35)-i.........

Consider now the function

l _ G(s)ds: (s-z)X(s) (36). -4-
C
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where the contour C encircles the crack and z is outside C. By shrinking

the contour to the cut, from (34)-(36) it may be shown that

1 e-_X (x,O) : -_(x) + F(x) (O<x<a b<x<_) (37)
_0 °lYz ' '

On the other hand, from (36) it follows that [5]

_p(z) : _- P(z) (38)

where P(z) is the principal part of G/X at Izl = _. From (37) and (38) we
8

find

I_o e-Bx _lyz(X'O) : - X_ + P(x) +. F(x), (O<x<a, b<x<_) . (39)

By observing that

X(x) : _(x-b)(x-a) , (x>b); X(x):-V(a-x)(b-x), (x<a) , (40)

the Mode III stress intensity factors at the crack tips may now be defined

and expressed as follows :

: lim _2(x-b) _lyz(X,O) = -_oebb G(b)k3(b)
x+b J(b-a)/2

: -lim_(x)v'2(b-x)g(x), (41)
x-+b

G(a)
k3(a): x.alim_/2(a-x)_lyz(X,O)= _oeBa v'(b-a)/2

: lim w(x)V2(x-a)g(x). (42)
x.a

. For a=Owe define the stress intensity factor at the crack tip x=O as
fo I 1ows:

k3(O) : lim _O2yz(X,O) . (43) ..x-_-O

-7-



To calculate k3(O) the asymptotic analysis of _2yz around the crack tip

x=O is needed. From (9), (12) and (19) _2yz may be expressed as

2 I C(_)eXX_c°s_yd__2yz(X,y): _oe¥x --
o

b

: _°eYX_ I h3(x't)g(t)e(Bt-yx)/2dt (44)
0

where

I _2e _ ' cos_yh3(x't) = y_+olim2 (_-n)(_l-Si2) do. (45)
0

By observing that _i-_, _2-_, _-_ and n+-_ for _-_, from (45) we obtain
(:

h3(x,t) : lim I e-_(t-X)c°s_yd_
y++O o

_2x-_it

f r2_2e -_(t-x)]d_ (46)+ .(__n) (_I_B/2) e
0

where the second integral is uniformly convergent. Note that in (46) t>O, x<O
and t-x>O. Thus, from

I t-x l
lim e-_(t-X)cos_yd_= lim - (47)(t-x)Z+yz t-x
y++O o y++O

and (46), _2yz may be obtained as follows:
b

_2yz(X,O): _oeYX/211T [l+ H3(x,t)]g(t)eBt/2dt, (48) -
o

where the boundedkernelH3 is givenby the secondintegralin (46)-.- -_ . ._ ---_=
If we now substitutefrom (32)into (48)and followan analysissimilar ....

to (33)-(40), the asymptotic expression for _2yz may be written as

O2yz(X,O) _oeYx/2G(x)eBx/2: + K(x) (49)
V(-x)(b-x)
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where K is a bounded function. Thus, from (49) and the definition of the

stress intensity factor at x=O as given by (43) it follows that

k3(O) : Uo G(O): lim u(x) 2¢_ g(x) (50)vS7_ x+0

The results obtained in this section clearly show that the square-root

character of the crack tip singularity is unaffected by the discontinuity in
the derivative of the shear modulus.

• From (I0) and (22) it may be seen that for y:B (i.e., for the case of

single nonhomogeneousplane) the kernel k2 is identically zero and the expres-

• sions (24) and (25) defining kI remain unchanged. Thus, with k2=O, (20),
(24) and (25) give the density function g(x) as defined by (32) and the stress

intensity factors are then obtained from (41) and (42).

4. The Rigid Half Space

In the special case of an elastic half space bonded to a rigid half

space, w2:0 , (8) is still valid and A and B are given by (16) and (13) (with
C=O), respectively. Following an analysis similar to that of Section 2 (equa-

tions (20)-(31)), it may easily be shown that in this case the integral equa-
tion (20) becomes

b

I t____ 1 eB(t-x)/21 [ + hI (x) t+xp(x) : _oeBx T
a

- h2(x,t)eB(t-x)/2]g(t)dt , (a<x<b) (51)

where hI is given by (25) and
oo

h2(x,t ) = fo[ 1 ___2 e-_l(t+x)- e-_(t+x)]d_ . (52)" -
i

Wenote that for B=OhI and h2 vanish and (51) would reduce to the following
known integral equation for the homogeneoushalf plane x>O for which w(O,y):O:

b

1 p(x) l I l_o = _ (I tYx-)g(t)dt , (a<x<b) . (53)
a

-9-



For a>O, clearly the solution of (51) is of the form (32) and the solu-

tion may easily be obtained by following the technique described in, for example,

[6]. In the limiting case of a=O, by expressing the solution of (51) as

e_tg(t) = G(t)(b-t)_It _2 , (-l<Re(_l,_2)<O) (54)

and by following the function theoretic method, it may easily be shown that
(see, for example, [5] or [6])

G(b)cotx_ 1 : 0 , (55)

l .) 0 . (56) .
G(O)(c°t_m2 slnx_2

Equations (55) and (56) are identical to the characteristic equations which

would result from (53) and give _l = -I/2 and _2 : 0 as the acceptable roots.
It is, therefore, seen that at t=O g(t) is bounded. Physically, this result

is indeed expected, as the half plane problem with Wl(O,y) = 0 corresponds to

plane for which _(x) = .oeBlxland
the antisymmetri c problem for the infinite

which has a crack on the x axis along -b<x<b subjected to antisyn=netric shear

tractions _yz(X,O) : p(x) : -p(-x), (-b<x<b).

5. Results and Discussion

The calculated results are shown in Figures 2-4 and Tables 1 and 2.

Figure 2 shows the stress intensity factors for an infinite plane with a

shear modulus _(x) = _oeBx subjected to uniform shear tractions _lyz(X,O) :
-Po" These results are analogous to those given in [4] for the pressurized

. crack. As in [4], the normalized stress intensity factors are independent - _
of the crack location d (see Fig. I) and are functions of the dimensionless ....

parameter Bc only. At first sight the result given in Fig. 2 to the=effect

that _he stress intensity factor k3(a ) on the stiffer side of the medium is_ - _

greater than k3(b ) may appear to be somewhatparadoxical. However, this result- .
:. " may easily be explained by considering the corresponding crack surface dis-: : -_

placements given in Fig, 3 and obtained from
X

Wl(X'+O) : I g(t)dt , (O<x<b) . (57)
0

-I0-



The figure shows the normalized crack surface displacement Wl(X,+O) for the

nonhomogeneousinfinite mediumwith _(x) : _oeXp(_x), Bc=-2, and for the

homogeneousplanes with shear moduli _=u(O)=uo, _=u(c)=uoeXp(-2 ) and _=_(b)=

UoeXp(-4). In the homogeneousplanes the stress intensity factors are indepen-
dent of _ and are given by

k3(O) : k3(b) : po_ , (58)

whereas the crack surface displacement is inversely proportional to _, i.e.
o

w(x,+O) -- --P°#x(b-x) , (O<x<b) . (59)

From Fig. 3 it is seen that near the crack tip x:O the crack surface displace-

ment w(x,O) for the nonhomogeneousmedium is greater than that for the homo-

geneous mediumhaving the modulus _(0) : Uo" Since the stress intensity fac-

tor k3 is related to the magnitude of the crack surface displacement derivative
(see (41), (42) and (50)), it would, therefore, be expected that (for B<O) at

x=O k3 for the nonhomogeneousmediumwould be greater than po_, the value
for the corresponding homogeneousmedium. Even though near x:b w(x,O) is

considerably greater than that near x=O, it is still smaller than the displace-

ment for the homogeneousmediumhaving_=_(b)which also has k3(b): portE.
With (41),this wouldthen explainthe trendfor the stressintensityfactor

at x=b shownin Fig. 2, namelythat k3(b)<PoVrC.
Some sampleresultsfor the cracksurfacedisplacementin bondednonhomo-

geneoushalf planeswith a crackalongO<x<bare shownin Fig.4.

For uniformcracksurfacetractionOlyz(X,O)=-po Tablesl and 2 show
the calculatedstressintensityfactorsnormalizedas

k3(a)- k(a) , k3(b)- k(b) . (60)

poV_C PoVrC

Asidefrom the validityof the generaltrendsgivenin Fig. 2 for the infinite

medium,theseresultsalso conformto the broadprinciplethat in bondednon-

homogeneoussolidsas the cracktip approachesthe interfacethe corresponding

stressintensityfactortendsto decreaseif the cracklies in the medium

with the smallershearmodulusand increaseif the cracklies in the stiffer

medium.
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It should perhaps be pointed out that even though the main result of

this study namely, that the square-root nature of the stress singularity is

unaffected by the "kink" in _(x), is based on a specific choice of the shear

(poe_x for x>O, _oe_x for x<O, B#y), clearly the conclusion should be
modulus

valid for any continuous function _(x). One may, therefore, also conclude

that the expression

k3(O) : lim p(x) 2{'2-x_-_w(x,O)x-K)

for the stress intensity factor at a crack tip x=O is valid for any u(x) which
is continuous at x:Oo .
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TableI. Stressintensityfactorratiok3/PoV_-inbonded
nonhomogeneoushalf planes.

d/c l.O l.l 1.25 1.5 2. 5.

Bc k(a) k(b) k(a) k(b) k(a) k(b) k(a) k(b) k(a) k(b) k(a) k(b)

-2.0 2.197 0.576 1.813 0.571 1.576 0.566 1.401 0.561 1.284 0.558 1.238 0.556

-I.5 1.943 0.666 1.684 0.657 1.514 0.649 1.377 0.641 1.270 0.633 1.211 0.629

-l.O 1.635 0.783 1.494 0.772 1.395 0.762 1.309 0.750 1.231 0.738 1.165 0.727

-0.5 1.303 0.909 1.252 0.902 1.216 0.894 1.183 0.885 1.149 0.874 1.104 0.857

-0.25 1.143 0.961 1.122 0.958 1.108 0.954 1.096 0.949 1.082 0.943 1.062 0.932

-O.l 1.054 0.986 1.047 0.984 1.042 0.983 1.038 0.981 1.034 0.979 1.028 0.975

O. I. I. I. I. I. I. I. I. I. I. I. I.

O.l 0.952 l.Ol5 0.958 l.Ol6 0.962 l.Ol8 0.965 l.Ol9 0.968 1.020 0.971 1.023

0.25 0.889 1.038 0.901 1.041 0.909 1.043 0.915 1.046 0.921 1.049 0.927 1.054

, 0.5 0.799 1.074 0.820 1.078 0.831 1.083 0.841 1.087 0.848 1.092 0.854 1.098

l.O 0.664 1.136 0.693 1.142 0.707 1.149 0.717 1.155 0.723 1.160 0.726 1.163

1.5 0.570 1.185 0.601 1.192 0.615 1.199 0.623 1.204 0.627 1.208 0.629 1.210

2.0 0.503 1.218 0.535 1.224 0.546 1.230 0.553 1.234 0.556 1.237 0.556 1.238



i. , !iJ

i
Table 2, Stressintensityfactorratiok3/PoV_Cin

, i _ bonded_nonhomogeneoushalf planes.

i , I

•d/c I 1.0 j_ I.I 1.25 1.5 2 5I I

yc Bc k(a) 'k(b) k(a) _k(b) k(a) k(b) k(a) k(b) k(a) k(b) k(a) k(b)

-0.I _I.0340.977 1.032 0.976 1.030 0.976 1.029 0.975 1.027 0.974 1.025 0.973
-0.25 1.082 0.937 1.075 0.936 1.071 0.935 1.066 0.933 1.062 0.932 1.056 0.929
-0.5 1.155 0.867 1.139 0.865 i.128 0.863 l.ll8 0.861 1.109 0.858 1.099 0.855

Bc/4 -1.0 ].273 0.737 1.237 0.735 ].213 0.733 1.192 0.730 1.175 0.728 1.163 0.726
-I.5 :I.3630.635 1.305 0.633 1.268 0.632 1.240 0.631 1.220 0.629 1.210 I0.629
-2.0 1.423 0.559 1.345 0.558 1.298 0.558 1.265 0.557 1.245 0.556 1.238 0.556
-0.25 0.975 0.906 0.999 0.909 l.Ol5 0.912 1.028 0.916 1.040 0.920 1.053 0.927

4Bc -1.0 0.950 0.713 1.036 0.716 1.087 0.719 1.124 0.722 1.150 0.724 1.163 0.726
-2.0 0.947 0.553 1.094 0.554 1.167 0.555 1.211 0.556 1.233 0.556 1.238 0.556
-0.25 1.093 0.941 1.084 0.940 1.077 0.938 1.072 0.936 1.066 0.934 l 057 0.929

0 -l.O 1.329 0.743 1.276 0.740 1.241 0.737 1.210 0.733 1.184 0.730 1.164 0.726
-2.0 1.530 0.561 1.411 0.560 1.338 0.559 1.284 0.557 1.250 0.557 .238 0.556
-0.25 1.261 I0.999 1.207 0.990 1.171 0.981 1.140 0.971 1.109 0.958 1.067 0.535

-4Bc l_l.O 2.317 0.848 1.881 0.820 1.630 0.794 1.437 0.770 1.283 0.747 1.166 0.727
-2.0 3.665 0.600 2.440 0.584 1.879 0.573 1.527 0.565 1.316 0.559 1.238 0.556

, l 0 1.106 1.038 1.072 1.033 1.052 1.027 1.035 1.021 1.020 l.Ol4 1.004 1.003
-l 0 0.907 0.966 0.935 0.970 0.952 0.975 0.967 0.980 0.980 0.987 0.996 0.997
5 0 1.383 1.097 1.213 1.076 1.132 1.057 1.077 1.040 1.038 1.023 1.005 1.004
-5 0 0.737 0.929 0.834 0.940 0.888 0.952 0.931 10.964 0.965 0.978 0.995 0.996

0.25 0.913 1.049 0.918 1.050 0.921 ii.051 0.923 1.052 0.925 1.053 0.927 1.055
Bc/4 l.O 0.704 1.154 !0.715 1.157 0.720 1.159 0.723 1.161 0.725 1.162 0.726 1.163

2.0 0.537 1.232 0.549 1.234 0.553 1.236 0.555 1.237 0.556 1.238 0.556 1.238
0.25 0.839 1.019 0.868 1.024 0.886 1.030 I0.901 1.036 0.913 1.044 0.926 1.053

-4Bc l.O 0.595 l.lll 0.657 1.123 0.687 1.135 0.707 1.147 0.720 1.157 0.726 1.163
2.0 0.446 1.201 0.513 1.213 0.537 1.223 0.550 1.231 0.555 1.237 0.556 1.238
0.25 0.981 1.074 0.961 1.070 0.950 1.067 0.941 1.063 0.934 1.059 0.928 1.055

4Bc l.O 0.802 1.184 0.758 11._1770.742 1.172 0.733 1.168 0.728 1.165 0.726 1.163
2.0 0.618 1.250 0.573 1.245 0.562 1.241 0.558 1.239 0.556 1.238 0.556 1.238

0 0.25 0.908 1.047 0.915 1.048 0.919 1.049 0.922 1.051 0.925 1.052 0.927 1.054
1.0 0.696J1.151 0.710'1.154 0.717 1.157 0.722 1.159 0.725 1.162 0.726 1.163
2.0 0_530 I_229 0.546 1.232 0.552 .235 0.555 1.237 0.556 1.238 0.556 1.238
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Fig. l Geometryfor bondednonhomogeneoushalf planes. " -
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Fig. 2 Stressintensityfactorsfor an infinitenonhomogeneousplane

subjectedto uniformcracksurfacetraction Oyz(x'O)= -Po"



° Fig. 3 Cracksurfacedisplacementin an infinitenonhomogeneousplane

• underuniformcracksurfaceshearloading_yz(X,O)= -Po;
shearmodulusp(x)=_oeBX,Bc=-2.



Fig. 4 Crack surface displacement in bonded nonhomogeneoushalf
planes under uniform antiplane shear loading _lyz(x,O) :
-Po; _(x)=_oeXp(Bx), x>O; _(x):_oeXp(yx), x<O, _i:-.
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