-

-
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

NASA Contractor Report 172532

NASA-CR-172532
19850011128

CRACK PROBLEMS FGR BONDED NONHOMOCGENEOUS
MATERIALS UNDER ANTIPLANE SHEAR LOADING

et ) "T“;f‘l"
O PIFRRER

-ty ¥

F. Erdogan

L L2 TT o et o

1107 TO BE TAXIH FROM THI3 ROOM

LEHIGH UNIVERSITY
Bethlehem, Pennsylvania

Grant NGR 39-007-011
February 1985

ARCH CENTER

LANGEEY RESEA

| SRTAN "‘l" VIRGINIA

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665


https://core.ac.uk/display/42846266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




THE CRACK PROBLEM FOR BONDED NONHOMOGENEOUS
MATERIALS UNDER ANTIPLANE SHEAR LOADING

F. Erdogan
Lehigh University, Bethlehem, PA 18015

ABSTRACT

The main objective of this paper is the investigation of the singular
nature of the crack tip stress field in a nonhomogeneous medium having a shear
modulus with a discontinuous derivative. The problem is considered for the
simplest possible loading and geometry, namely the antiplane shear loading of
two bonded half spaces in which the crack is perpendicular to the interface.
It is shown that the square-root singularity of the crack tip stress field is
unaffected by the discontinuity in the derivative of the shear modulus. The
problem is solved for a finite crack and extensive results are given for the
stress intensity factors.

1. Introduction

In a nonhomogeneous medium if the elastic moduli are piecewise constant,
it is known that the stress field around a crack tip terminating at the inter-
face has a behavior of the form r® where r is the distance from the crack tip
and -1<a<0 (see, for example, [1] and [2]). It is also known that if the
nonhomogeneous medium has elastic moduli which are continuous with continuous
derivatives the stress state around the crack tips has the standard square-
root singularity [3], [4]. What has not been studied so far is the effect of
the discontinuity of the derivatives of elastic moduli on the crack tip stress
singularity for a crack terminating at the plane of discontinuity. In this
paper the problem is studied for the simple case of antiplane shear Tloading
of an infinite medium in which the shear modulus ¢ is a function of x only,
du/dx 1s discontinuous along the x=0 plane, and the crack 1ies in the xz plane
(Fig. 1). The main objective of the paper is to investigate the effect of
du/dx on the stress singularity. Hence, it is further assumed that u is an
exponential function in x, which appears to lead to a relatively simple for-
mulation of the problem.
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2. Formulation of the Problem

The antiplane shear problem for the nonhomogeneous medium shown in Fig.
1 having the elastic properties

BX YX

U(X) = er » x>0 3 u(X) = uoe > x<0 > (])
may be formulated as follows:

5 3W1
v W-l + B 37 =0, O<x<o , Oi_y<°° N (2)

oW
V2W2 + v % =0, -o<x<0 , 0iy<°° (3)
W1(0,y) = wy(0,y) , (4)
O]XZ(O"Y) = szz(os)') ’ ' (5)
w](x,O) =0 , O<x<a, b<x<= , (6)
(x,40) = p(x) , a<x<b , (7)

Nyz

where it is assumed that the crack surface traction p(x) is the only nonzero
external load and that because of symmetry it is sufficient to consider the
problem for y>0 only. Expressing the solution of (2) and (3) as

© o

W (x,y) = é%-f f1(y,a)e"axda + %-f g1(x;a)sinyada , (8) -
-0 (e}
W, (x,y) = 2 (x,a)sinyad (9)
AR T go\ Xs yoda .

(o]

we obtain

f1 = Alw)e™ , gy = B(a)e™ , g, = Cla)e? ,

m=-man=-a]-%$>\=a2‘%, - T
oy = T, op = SIHIE 10y

-2-



The stress components are given by

BX aw] BX aw]

1%z ~ Ho®  Tax * %lyz T Yot oy (O<x<ey Ocy<=) (1)
oW W
=, oYX 2 =y o™ 2 | (ww o
9oxz = Mo®  Tx * %2yz T Mo By ° (-o<x<0, D<y<e) . (12)

Substituting from (8)-(12) into the continuity conditions (4) and (5) it
may easily be shown that

aA(p)dp
ek (13)

o

@

cmam=%f

-0

nB(a)-AC(a) = o J

iapA(p)do
—zgggxggg - (14)
Defining now

g(x) = = wy(x,0) (15)

from (8), (10) and (6) we find

b
jaA(e) = -j a(t)el®t dt | (16)
a -
b
[atree =0 . (17)
a

By substituting from (16) into (13) and (14) and by using the residue theorem
to evaluate the improper integrals and the condition (17),the unknown functions
B and C may be obtained as follows:

B(a) =

a(aq-a, + 58 b -t(a,-8/2)
12 2 J gltle ' dt, (18)

204 (x-n)(a;-8/2)
d



’ b -tleg-s/2)
() = (K_n)(a1_8/27f a(t)e at . (19)

a

Thus, g(t) is the only unknown in the problem which may be determined from
the remaining boundary condition (7). From (7), (8), (10), (11), (16) and
(18) it then follows that

b
12 (x:0) = B(x) = 5™ T [ [y (x,) + kylxt)Ig(t)et + aex<d . (20)
a
ky(x,t) = Tim %J me) Jmy gia(t-x)g, (21)
y=0 7/ ¢
- ® a2(agma, +58)  -(t4x)a;
kz(x,t) = 1im e(t x)8/2 j 1272 e ]c05aydx . (22)

y+0 o a1(A=n)(aq - 5)
Referring to (10) and the regularity conditions at infinity it may be noted
that Re(m)<0, Re(n)<0 and Re(r)>0. The singular behavior of the kernels k-l
and k2 may be obtained from the asymptotic analysis of the integrals in (21)
and (22). By observing that for large values of a,m(a)»j[al, from (21) we
find

-

o]

ki(x,t) = Tim ?.J “lal mlefy gia(t-x)y,

y++0 ¢

<o

+ 1? J (T + J%L)eia(t-x)da (23)

-C0

where because of uniform convergence, in the second integral the limit has -

been put under the integral. By evaluating the first integral k1:15 obtained .

as follows:

ky(x,t) = ] =+ hy(x,t) ‘ (24)



hy(x,t) = Im{f ( 1-+{§-- netelt=x)gy (25)
o
where the function h] is bounded for all values of x and t in the closed
interval [a,b], a>0.
Similar asymptotic analysis would show that the kernel k2 is bounded
for a>0 (for which t+x>0), and has only a Tlogarithmic end point singularity
for a=0 (i.e., for x+t=0). We first write

<]

ky(x,t) = elt-%)8/2 j Ky(x,t,0)cosay do (26)
(e]
0.2(0. - +li)
_ 172 2 -(t+x)a
Ky (xta) = ORI aar2y © 1. (27)

The 1imiting behavior of the integrand Ko for o«+0 and for o> is

K2 - KZO(X’taa) = z_igi_sl O‘ze-(t+X)B/2 ] for o0 s (28)
Ky > Ky (x5t5a) = lig-g-e'a(t+x) , for ase . (29)

We now express k2 as

€ N
kz(x,t) = 1im e(t'X)B/Z[J K20(x,t,a)c05ayda + J Kz(x,t,a)COSayda
T a0
o] €
+ | Kpu(x,tue)cosayde +6] | (30)

N

where € is a very small and N is a very large constant and the constant § may
be made as small as we please by selecting e sufficiently small and N suffi-
ciently Targe. Note that in e<o<N K, is bounded and hence, the second integral
in (30) is finite for all x>0, t>0. Equation (28) shows that the same is true
also for the first integral in (30). The third integral is the exponential
integral which may be expanded as



fm e-a(t+x)

Tim cosayda = 1im Re{Ei[{t+x-iy)N]} = -1og(t+x)-logN-yo
y=+0 7/ o y-~0+
2 2 3 3
- i () + e (t4x)7 - L (31)

where Yo is the Euler's constant. One may note that if N is nonzero and finite
then the exponential integral in (31) and consequently the kernel k2 is bounded

for a1l x and t in 0<(x,t)<b and has only a logarithmic singularity at x=0=t.
Since the kernel log(t+x) is square integrable, it may thus be concluded that
the dominant part of the integral equation (20) has only a simple Cauchy ker-
nel for a=0 as well as a>0, and the solution isof the form [5]

o(t) = —8LEL__

, (0<a<t<b) . (32)
Y{t-a)(b-t)

3. Stress Intensity Factors

For a>0 we observe that (20) gives °1yz(x’0) for O<x<= and the function .

F defined by
b

Fx) = [ Dget) + kylx,0)Tg(t)at (33)
a

is bounded in the closed interval a<x<b. Thus (20) may be expressed as

b
O g8x _i G(t)dt rem _
e oy 0,0) = 1 ja S ) (oo (34)

where

X(z) = /{z-a)(z-b) , X+(t)

Consider now the function

-1 G(s)ds )
o(2) = o 4 (Eleles (36)
C

=X (t) = /{a)(t-b), (z=x+iy) . - (35)



where the contour C encircles the crack and z is outside C. By shrinking
the contour to the cut, from (34)-(36) it may be shown that

1 B
u

- 1yz(x,0) = -¢(x) + F(x), (0<x<a, b<x<=) . (37)

On the other hand, from (36) it follows that [5]

¢(z) = X(z) ~ P(z) (38)

where P(z) is the principal part of G/X at |[z| = ». From (37) and (38) we
find

o & 0y, (0,0) = = FEF+ P(O) + F), (0cx<a, bexce) (39)

By observing that

X(x) = /{x-b)(x-a) , (x>b); X(x) = -Y{a-x){b-x), (x<a) , (40)

the Mode III stress intensity factors at the crack tips may now be defined
and expressed as follows: '

ko(b) = 1im vZ(XB) oq._(x,0) = -p eBP —G(b)
3(b) x+§ Tyz\ X Yo 52) /2
= -Tim u(x)v2(b-xJg(x) , (41)
x-b
ko(a) = 1im v2(a-x) (x,0) = eB2 —G(a)
3 X->a c]yz Yo Y(b-a)/2
= Tim u(x)v2{x-ajg(x). (42)
X2

For a=0 we define the stress intensity factor at the crack tip x=0 as
follows:

ko(0) = Tim v=2x (x,0) . (43)
3 o S2yz



To calculate k3(0) the asymptotic analysis of °2yz around the crack tip
x=0 is needed. From (9), (12) and (19) vz may be expressed as

(==}
.

- X 2 AX
czyz(x,y) Hee' " = J C{a)e""acosayda
o}
rb
= ™ L[ ho(t)g(e)el Bt/ 2 (44)
o
where - azx-a1
= 74 cosay
hy(x.t) i 2[ £ n)(dl_mr do. (45)
0

By observing that AP G0, A and n+-a for osw, from (45) we obtain

©

h3(x,t) = Tim J e'a(t'x)cosdyda
y~+0

o azx-a-lt

20.%e
+ | Byt -

o]

(t-x)]da (46)

where the second integral is uniformly convergent. Note that in (46) t>0, x<0
and t-x>0. Thus, from

;120 J e-a(t-X)COSuyda = ]1m0 (t-§)§+y4 = tlx , (47)

and (46),02yz may be obtained as follows:

b
(x,0) = 5e™2 L[ [ede + Hy(x,t)To(e)eP 2t . (49)
0

c2yz

where the bounded kernel Ha is given by the second integral in (46).
If we now substitute from (32) into (48) and follow an analysis similar
to (33)-(40), the asymptotic expression for Ipyz MaY be written as

BX/2
09y, (X:0) = Mo erX/2 G(x)e™77 K(x) (49) -
Y Y(-x)(b-x)



where K is a bounded function. Thus, from (49) and the definition of the
stress intensity factor at x=0 as given by (43) it follows that

k3(0) = 1, §(0) . Tim u(x)v2x g(x) . (50)
/2 x>0

The results obtained in this section clearly show that the square-root
character of the crack tip singularity is unaffected by the discontinuity in
the derivative of the shear modulus.

From (10) and (22) it may be seen that for y=g (i.e., for the case of
single nonhomogeneous plane) the kernel k2 is identically zero and the expres-
sions (24) and (25) defining k] remain unchanged. Thus, with k2=0, (20),

(24) and (25) give the density function g(x) as defined by (32) and the stress
intensity factors are then obtained from (41) and (42).

4. The Rigid Half Space

In the special case of an elastic half space bonded to a rigid half
space, W,=0, (8) is still valid and A and B are given by (16) and (13) (with
C=0), respectively. Following an analysis similar to that of Section 2 (equa-
tions (20)-(31)), it may easily be shown that in this case the integral equa-
tion (20) becomes

b
p(x) = uge™ 1 [ Ll + g (x) - gl e8(E7K)/2
d
= hy(x,t)e® X 2g(t)at , (acxeb) (51)
where h] is given by (25) and
z -aq (t+
npxit) = [ =S e 1) ralemqg, (52)

o @1(ag-9)

We note that for 8=0 h] and h2 vanish and (51) would reduce to the following

known integral equation for the homogeneous half plane x>0 for which w(0,y)=0:
b

2o PO = 1 [ ey - gt , (aaxsd) (53)
a

-9-



For a>0, clearly the solution of (51) is of the form (32) and the solu-
tion may easily be obtainad by following the technique described in, for example,
[6]. In the limiting case of a=0, by expressing the solution of (51) as
We W
]t 2

eftq(t) = 6(t)(b-t) , (~1<Re(wy5u,)<0) (54)

and by following the function theoretic method, it may easily be shown that
(see, for example, [5] or [6])

G(b)cotmw; = 0 (55)
6(0) (cotru, - 557%;;;) =0 . (56)

Equations (55) and (56) are identical to the characteristic equations which
would result from (53) and give wy = -1/2 and wy = 0 as the acceptable roots.
It is, therefore, seen that at t=0 g(t) is bounded. Physically, this result
is indeed expected, as the half plane problem with w](O,y) = 0 corresponds to
the antisymmetric problem for the infinite plane for which u(x) = uoeslxl and
which has a crack on the x axis along -b<x<b subjected to antisymmetric shear
tractions cyz(x,o) = p(x) = -p(-x), (-b<x<b).

5. Results and Discussion

The calculated results are shown in Figures 2-4 and Tables 1 and 2.
Figure 2 shows the stress intensity factors for an infinite plane with a
shear modulus u(x) = uoesx subjected to uniform shear tractions o1yz(x,0) =
Py These results are analogous to those given in [4] for the pressurized
crack. As in [4], the normalized stress intensity factors are independent
of the crack Tlocation d (see Fig. 1) and are functions of the dimensionless
parameter gc only. - At first sight the result given in Fig. 2 to the-effect
- that the stress intensity factor k3(a) on the stiffer side of the medium is: -
greater than k3(b) may appear to be somewhat paradoxical. However, this result:
~may easily be explained by considering the corresponding crack surface dis-- - -

placements given in Fig, 3 and obtained from
X

wy(x,40) = [ glt)at , (0xeb) . (57) -
(0]

-10-



The figure shows the normalized crack surface displacement w](x,+0) for the
nonhomogeneous infinite medium with u(x) = uoexp(Bx), gc=-2, and for the
homogeneous planes with shear moduli u=u(0)=uo, u=u(c)=uoexp(-2) and p=u(b)=
uoexp(-4). In the homogeneous planes the stress intensity factors are indepen-
dent of u and are given by

3(0) = kq(b) = p & (58)

whereas the crack surface displacement is inversely proportional to u, i.e.

w(x,+0) = %?-/xib—x) » (O<x<b) . (59)

From Fig. 3 it is seen that near the crack tip x=0 the crack surface displace-
ment w(x,0) for the nonhomogeneous medium is greater than that for the homo-
geneous medium having the modulus u(0) = Mo Since the stress intensity fac-
tor k3 is related to the magnitude of the crack surface displacement derivative
(see (41), (42) and (50)), it would, therefore, be expected that (for 8<0) at
x=0 k3 for the nonhomogeneous medium would be greater than po/E, the value
for the corresponding homogeneous medium. Even though near x=b w(x,0) is
considerably greater than that near x=0, it is still smaller than the displace-
ment for the homogeneous medium having p=u(b) which also has k3(b) = po/E.
With (41), this would then explain the trend for the stress intensity factor
at x=b shown in Fig. 2, namely that k3(b)<p0/E. -

Some sample results for the crack surface displacement in bonded nonhomo-
geneous half planes with a crack along O<x<b are shown in Fig. 4.

For uniform crack surface traction c]yz(x,0)=—p0 Tables 1 and 2 show
the calculated stress intensity factors normalized as

k3(a) _ k3(b) _

k(a) , = k(b) . - (60
o e (a) e (b) )

Aside from the validity of the general trends given in Fig. 2 for the infinite
medium, these results also conform to the broad principle that in bonded non-
homogeneous solids as the crack tip approaches the interface the corresponding
stress intensity factor tends to decrease if the crack lies in the medium
with the smaller shear modulus and increase if the crack lies in the stiffer
medium.

-11-
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It should perhaps be pointed out that even though the main result of

this study namely, that the square-root nature of the stress singularity is
unaffected by the "kink" in u(x), is based on a specific choice of the shear

modulus (poe

Bx for x>0, quYX for x<0, g#vy), clearly the conclusion should be

valid for any continuous function u(x). One may, therefore, also conclude
that the expression

k.(0) = 1im u(x)v2x = w(x,0)
3 %50 BX

for the stress intensity factor at a crack tip x=0 is valid for any u(x) which
is continuous at x=0.
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Table 1. Stress intensity factor ratio k3/p,v/c in bonded
nonhomogeneous half planes.

d/c 1.0 1.1 1.25 1.5 5.

Bc | k(a)  k(b) | k(a)  k(b) | k(a) k(b) | k(a)  k(b) "| k(a)  k(b) | k(a)  k(b)
-2.0 | 2.197 | 0.576 | 1.813 | 0.571 | 1.576 | 0.566 | 1.401 | 0.561 | 1.284 | 0.558 | 1.238 | 0.556
-1.5 { 1.943 | 0.666 | 1.684 | 0.657 | 1.514 | 0.649 | 1.377 | 0.641 | 1.270 { 0.633 | 1.211 | 0.629
-1.0 { 1.635 { 0.783 | 1.494 | 0.772 | 1.395 | 0.762 | 1.309 | 0.750 | 1.231 | 0.738 | 1.165 | 0.727
-0.5 | 1.303 | 0.909 | 1.252 | 0.902 | 1.216 | 0.894 ( 1.183 | 0.885 | 1.149 | 0.874 | 1.104 | 0.857
-0.25] 1.143 | 0.961 | 1.122 | 0.958 | 1.108 | 0.954 | 1.096 | 0.949 | 1.082 | 0.943 | 1.062 | 0.932
-0.1 1.054 | 0.986 | 1.047 | 0.984 | 1.042 | 0.983 | 1.038 | 0.981 1.034 | 0.979 | 1.028 | 0.975

0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

0.1 | 0.952 | 1.015 | 0.958 | 1.016 { 0.962 | 1.018 | 0.965 | 1.019 | 0.968 | 1.020 | 0.971 | 1.023

0.25{ 0.889 | 1.038 | 0.901 | 1.041 | 0.909 | 1.043 | 0.915 | 1.046 | 0.921 | 1.049 | 0.927 | 1.054

0.5 | 0.799 | 1.074 | 0.820 | 1.078 | 0.831 | 1.083 | 0.841 | 1.087 | 0.848 | 1.092 | 0.854 | 1.098

1.0 | 0.664 | 1.136 | 0.693 | 1.142 | 0.707 | 1.149 | 0.717 | 1.165 | 0.723 | 1.160 | 0.726 | 1.163

1.5 | 0.570 | 1.185 | 0.601 1.192 | 0.615 | 1.199 | 0.623 | 1.204 | 0.627 | 1.208 | 0.629 | 1.210

2.0 | 0.503 | 1.218 | 0.535 | 1.224 | 0.546 | 1.230 | 0.553 | 1.234 | 0.556 | 1.237 | 0.556 | 1.238




-Vl-

¥Tab1e 2.

B!

o Stress intensity factor ratio k3/pgYc in
RN bondedxnonhomogeneous half p]anes
.d/C. - -Oll‘ 1.1 1.25 1.5
ve | Bc |k(a) | k(b) [k(a) | k(b) | k(a) | k(b) | k(a) | k(b) | k(a) | k(b) | k(a) | k(b)
-0.1 |:1.034 }0.977 11.032 {0.976 {1.030 {0.976 [1.029 [0.975 ]1.027 [0.974 |1.025 }0.973
-0.25 |1.082 10.937 {1.075 0.936 [1.071 [0.935 |1.066 {0.933 |1.062 |0.932 |1.056 |0.929
8c/4 -0.5 |1.155 10.867 {1.139 {0.865 |1.128 {0.863 [1.118 |0.861 [1.109 |0.858 [1.099 |0.855
-1.0 {1.273 [0.737 |1.237 (0.735 |1.213 {0.733 |1.192 {0.730 {1.175 |0.728 |1.163 [0.726
-1.5 |1.363 {0.635 {1.305 {0.633 {1.268 |0.632 |1.240 {0.631 |1.220 ]0.629 |1.210 |0.629
-2.0 ]1.423 [0.559 [1.345 |0.558 [1.298 |0.558 [1.265 |0.557 |1.245 |0.556 |1.238 |0.556
-0.25 10.975 [0.906 {0.999 [0.909 [1.015 ]0.912 |[1.028 [0.916 |1.040 |0.920 |1.053 |0.927
4gc |-1.0 10.950 |0.713 {1.036 {0.716 |{1.087 |0.719 |1.124 |0.722 |1.150 |0.724 |{1.163 |0.726
-2.0 10.947 |0.553 |1.094 {0.554 |1.167 [0.555 |1.211 |0.556 |1.233 [0.556 |1.238 |0.556
-0.25 |1.093 (0.941 |1.084 |0.940 {1.077 [0.938 [1.072 [0.936 [1.066 |0.934 [1.057 |0.929
0 -1.0 {1.329 10.743 |1.276 |0.740 |1.241 |0.737 {1.210 [0.733 [1.184 |0.730 {1.164 |0.726
-2.0 11.530 [0.561 |1.411 |0.560 [1.338 [0.559 [1.284 ]0.557 [1.250 |0.557 {1.238 |0.556
-0.25 1.261 [0.999 |1.207 [0.990 |1.171 {0.9871 [1.740 |0.971 [1.109 |0.958 |1.067 |0.535
-4gc |-1.0 ]2.317 |0.848 [1.881 (0.820 {1.630 {0.794 |1.437 |0.770 |1.283 {0.747 |1.166 |0.727
-2.0 13.665 [0.600 |2.440 [0.584 {1.879 [0.573 {1.527 |0.565 |[1.316 |0.559 |1.238 |0.556
1 0 1.106 {1.038 ]1.072 [1.033 |1.052 |1.027 [1.035 [1.021 [1.020 [1.014 {1.004 |1.003
-1 0 0.907 {0.966 {0.935 {0.970 [0.952 {0.975 (0.967 |0.980 |0.980 {0.987 ]0.996 [0.997
5 0 1.383 (1.097 |1.213 |1.076 [1.132 {1.057 [1.077 {1.040 }1.038 {1.023 {1.005 |1.004
-5 0 0.737 {0.929 ]0.834 |0.940 [0.888 |0.952 [0.931 {0.964 {0.965 [0.978 {0.995 [0.996
0.25 [0.9T3|T.049 |0.918 |T1.050 |0.92T [T1.051 [0.923 [T.05Z [0.925 [T1.053 |0.927 |T1.055
gc/4 | 1.0 10.704 }1.154 10.715 {1.157 |0.720 [1.159 [0.723 |1.161 {0.725 {1.162 {0.726 [1.163
2.0 10.537 {1.232 10.549 |1.234 [0.553 [1.236 [0.555 !1.237 [0.556 [1.238 [0.556 [1.238
0.25 {0.839 |1.019 |0.868 [1.024 [0.886 [1.030 |0.907 [1.036 |0.913 [1.044 [0.926 |1.053
-4gc | 1.0 ]0.595 11.111 [0.657 |1.123 [0.687 [1.135 |0.707 |1.147 |0.720 |1.157 |0.726 |1.163
2.0 10.446 {1.201 {0.513 |1.213 [0.537 |1.223 [0.550 |1.231 |0.555 [1.237 |0.556 |1.238
0.25 (0.981 |1.074 [0.961 |1.070 [0.950 {1.067 [0.941 [1.063 [0.934 [1.059 |0.928 |1.055
4pc 1.0 10.802 |1.184 {0.758::11.177 {0.742 |1.172 {0.733 |1.168 [0.728 {1.165 {0.726 |1.163
2.0 10.618 [1.250 |0.573 [1.245 [0.562 {1.241 {0.558 |1.239 |0.556 |1.238 |0.556 |1.238
0 0.25 10.908 |1.047 [0.915 |1.048 [0.919 |[1.049 |0.922 |1.051 [0.925 |1.052 |0.927 |1.054
| 1.0 10.696'{1.151 [0.710'{1.154 [0.717 {1.157 [0.722 [1.159 |0.725 |1.162 |0.726 [1.163
2.0 10.530 [1,229 ]0.546 |1.232 }0.552 [1.235 |0.555 {1.237 |0.556 {1.238 |0.556 {1.238
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Geometry for bonded nonhomogeneous half planes.



Fig. 2 - Stress intensity factors for an infinite nonhomogeneous plane
subjected to uniform crack surface traction oyz(x,o) = =Py
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Fig. 3

Crack surface displacement in an infinite nonhomogeneous p]ane
under uniform crack surface shear loading oy (x 0) = Py
shear modulus u(x)=pyefX, ge=-2.
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Fig. 4 Crack surface displacement in bonded nonhomogeneous half
planes under uniform antiplane shear loading c1y2(x,0) =
=Pos u(x)=usexp(sx), x>0; u(x)=ugexp(yx), x<0, g=-1.
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