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TECHNICAL PAPER

THREE-DIMENSIONAL BAROCLINIC INSTABILITY OF A HADLEY CELL
FOR SMALL RICHARDSON NUMBER

I. INTRODUCTION

Stably-stratified baroclinic flow can be destabilized by several different mechanisms. The most
extensively studied of these instabilities is usually referred to simply as baroclinic instability. For this
type of instability the Richardson number, Ri, is much greater than unity, and the quasigeostrophic
equations [1] are valid. The perturbations of maximum growth rate have a wavelength in the zonal
(azimuthal) direction and, in the absence of horizontal shear, the gravest possible structure in the
meridional direction [2,3]. This instability has been observed in the laboratory and is the cause of mid-
latitude wave cyclones [4,5].

A second type of instability, known as symmetric baroclinic instability, occurs for Ri of order
unity and requires a more general set of equations than the quasigeostrophic set. In this case, the per-
turbations of maximum growth rate have meridional structure but no, or only weak, zonal structure.
The study presented in this paper is concerned with this type of instability. Since this instability occurs
in only a small range of Ri, there would appear to be few geophysical applications. However, Stone [6]
conjectured that the banded structure of Jupiter’s atmosphere is caused by this instability, ar.d Bennets
and Hoskins [7] and Emanuel [8] suggested that rain bands and squall lines may be due to this
instability. Two of the earliest analyses of symmetric baroclinic instability are those of Solberg [9] and
Kuo [10]. In these papers purely two-dimensional perturbations with no zonal structure were considered.

Stone [11,12,13] was the first to examine the stability of baroclinic flow for small Ri with
respect to three-dimensional perturbations. For the basic state Stone took a plane parallel baroclinic flow
with constant temperature gradients and a constant vertical shear consistent with the thermal wind
balance. Horizontal shear was excluded. Viscous and thermal diffusion effects were neglected in both the
basic state and perturbation analyses. In this paper such a basic state will be referred to as the Eady
basic state. Stone found that conventional baroclinic instability dominates if Ri > 0.95; symmetric
baroclinic instability dominates if 0.25 < Ri < 0.95; and Kelvin-Helmholtz instability dominates if Ri <
0.25. For symmetric instability, Stone found that the wavelength of maximum growth rate is zero.
Stone’s results motivated a search for symmetric baroclinic instability in the laboratory [14,15], and
some evidence of the predicted meridional structure was observed. However, Stone’s theoretical model
was substantially different from the experimental reality, and it cannot be concluded that the existence
of symmetric baroclinic instability in the laboratory has been established.

In the theoretical studies on symmetric baroclinic instability which followed Stone’s analyses,
workers added viscous and thermal effects to make the models more realistic. However, in all but one of
these studies [16], attention was restricted to two-dimensional perturbations with no zonal structure.
McIntyre [17] considered an Eady basic state with viscosity and thermal diffusivity included in the
perturbation analysis. He chose an unbounded model. McIntyre found, in the absence of horizontal shear,
that for the Prandtl number, o, equal to unity, the critical Richardson number, Ri,, is also equal to

unity, and for 0 S 1, Ric increases above unity. These results are shown in Figure la. Thus, diffusive

effects further destabilize the flow. Mclntyre’s choice of a length scale and unbounded model were such
that the Ekman number, E, disappears formally from his problem. Emanuel [8] considered the same
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model as Mcintyre but for a vertically-bounded flow. Emanual studied (1) hydrostatic disturbances and
(2) nonhydrostatic disturbances in a neutrally-stratified fluid. He investigated only neutral modes by
invoking the principle of exchange of stabilities. For both of the above cases Emanuel found that Ri_

depends on both o and E. He also established that the wavelength of the most unstable normal mode is
determined primarily by the depth of the fluid and the slopes of the isentropic surfaces rather than by
the diffusive properties of the fluid.

In all of the theoretical studies cited above, the Eady basic state was used. In an experimental
apparatus whose upper and lower boundaries are stationary, such a basic state is a good approximation
in the interior of the fluid only; it is not a good approximation near the boundaries especially when E
is not vanishingly small. Antar and Fowlis [18] (hereinafter referred to as AF) presented a two-
dimensional theoretical study of symmetric baroclinic instability for a fluid contained between two
horizontal plates of infinite extent. The analysis used a realistic basic state which was obtained as an
exact analytical solution of the full set of governing nonlinear equations. This solution included both the
Ekman and thermal layers adjacent to the bourndaries. The stability analysis also included viscous and
thermal diffusion effects and was performed numerically. Antar and Fowlis found that the instability
sets in when Ri is close to unity and that Ri is a strong function of t-.th ¢ and E. Figure 1a shows these
results for Ric as a function of o for fixed E and compares their results with those found by Mcintyre

[17]). For fixed o, Antar and Fowlis found that Ric decreases with increasing E until a critical value of

E is reached beyond which the flow is stable. These results are shown in Figure 1b. The analysis was not
restricted to critical values, and the influence of o and E on the growth rate was also determined. For
the range of parameter values considered, the most unstable wavelength was about half the depth. The
nonlinear basic state was also used by Antar and Fowlis [19] in a study of the conventional baroclinic
instability. More complete discussions of the previous theoretical work dealing with two-dimensional
studies of symmetric baroclinic instability have been given by Emanuel [8] and AF.

Recently Busse and Chen [16] extended Stone’s studies by including thermal and viscous diffu-
sion effects in a three-dimensional analysis of symmetric baroclinic instability. The basic state was an
Eady basic state in which the horizontal boundaries moved consistent with the thermal wind to eliminate
Ekman layers on the boundaries. They showed in the limit of small E, that the mode of symmetric
instability at maximum Ri_ exhibits an angle of inclination with the direction of the basic state flow.

Busse and Chen remarked that owing to this effect the range of Ri for which the instability occurs may
be increased significantly beyond the limits derived by Mclntyre [17]. Busse and Chen obtained their
solution through an expansion in the zonal wavenumber; and, thus, their solution is restricted to small
values of this wavenumber. Also, their analysis was confined to critical values; and, hence, growth rates
were not discussed.

The objectives of the present study were to extend the previous work on three-dimensional
baroclinic instability for Ri ~ 0(1). The work of Stone [11,12,13] is extended to a more realistic
model involving viscous and thermal dissipation and the work of Busse and Chen [16] to finite growth
rates and a wider range of the zonal wavenumber, The basic state chosen was that used previously by
Antar and Fowlis [19] and AF. The stability analysis was performed through numerical integration of
the full perturbation equations. Critical values and growth rates are presented.

In Section II the equations and methods of solution for both the basic state and the stability
analysis are presented. Section IIl deals with the results of the stability analysis, and the conclusions
are given in Section IV,



il. THE EQUATIONS AND THEIR SOLUTION

A. The Basic State

A Boussinesq fluid, confined between two horizontal plates which are set a distance, d, apart,
is considered. The coordinate system used is rectangular Cartesian with axes (x, y, z) corresponding to
the eastward, northward, and vertical directions, respectively, with the origin set midway between the
plates. The plates and the fluid are assumed to extend to infinity in the x-direction and to a distance
L (L >> d) in tiae y-direction. Also, the plates and the fluid are taken to rotate as a whole about the
vertical axis with a constant angular velocity, £2. To maintain baroclinicity, a temperature distribution
is imposed on both plates in which the temperature is made to decrease in the y-direction. Also, to
assure that the vertical stratification, and hence the Richardson number, can be arbitrarily and externally
fixed, the temperature of both the upper and lower plates are set to differ uniformly by a constant
amount, AT, for all y. A sketch of the model considered is shown in Figure 2.

The basic state velocity and temperature fields are governed by the Navier-Stokes, energy, and
mass conservation equations, These equations, in dimensionless form, for the configuration described

abeve, and for a two-dimensional, steady state in a rotating reference frame can be reduced to the
following:

-2V = E 32ujaz?2 )
2U = E 82V/3z2 - ap/dy Q)
VOT/dy = (Ejoe) 8°T/3z% (3)
T=dp/oz , 4)

where X is the velocity vector (U,V), p the pressure, T the temperature and

€= ozgy/SZ2 ,
E = v/Qd? :
0=l

are a thermal Rossby number, the Ekman number, and the Prandtl number, respectively. In equations (1)

through (4), length, time, velocity, and temperature were made dimensionless using d, Q‘l, and o gdy/Q,
and vd, respectively, a is the coefficient of thermal expansion, v is the imposed horizontal boundary
temperature gradient, and g is gravity. A further assumption used in deriving equations (1) through (4)
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< is that throughout the region of interest in the fluid away from the channel walls, y < L, the vertical
. velocity component, W, is negligible,

The solution to equations (1) through (4) which is consistent with the no-slip and the perfectly
conducting boundary conditions at the solid boundaries; i.e.,

U=V=0
} atz=11/2 (5)
' T=1(AT/2)~y
is given by
U(z) = -f(z)/8 + 2/2 (6a)
X V() = -2(2)/8 (6b)
T(y,z) = -y + (AT+oe/4)z - 0ef(z)/16 (6¢)

where
f(z) = [coshR (z+1/2)cosR(z-1/2) - coshR(z-1/2)cosR(z+1/2)] /a(R) ,
g(z) = [sinhR (z+1/2)sinR(z-1/2) - sinhR(z-1/2)sinR(z+1/2)] /a(R)
h(R) = sinh2(R/2) + sin (R/2) ,
R=E1/2

An assumption made in obtaining the above solutions is that the dimensionless horizontal temperature
gradient, 0T/dy, is constant and equal to -1 throughout the fluid. The assumptions and limitations of
this model are discussed more fully in Antar and Fowlis [19].

The velocity and temperature profiles given by equation (6) are shown in Figure 3 for repre-
sentative values of E, €, 0, and AT.
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B. The Perturbation Equations

To study the stability of the stationary basic state, the dependent variables (temperature, velocity,
and pressure) are first decomposed into basic state and perturbation components. The equations governing
the perturbation components are obtained by substituting the variables into the Navier-Stokes and energy
equations, subtracting the basic state, and linearizing. Since the resulting equations are linear, with
coefficients depending on z alone, they admit of separable solutions of the form:

[u',V,w'8'p'] = [u(z), v(2), 8(2), p(z)) exp [i(kx+Ry-wt)]

where y'(u’,7,w'), p’ and 8’ are the perturbation velocity vector, pressure, and temperature, respectively.

This solution represents a traveling oblique wave with frequency w and wavenumber components
k and % in the zonal and the meridional directions, respectively. After substituting the above solution
into the governing perturbation equations and eliminating the pressure, the linearized momentum and

energy equations can be written as

i[w-e(kKU+V)] 7 2w+ie(kD2V+2D2U)w=2i (kDv-2Du) = -EV2 V2 w + m20 N
i[w-e(kKU+2V)] [m2v-iDw] ~ekw(kDV-RDU)-2ikDw = -EV2 (mZv-iDw) (8)
io[w-e(KU+2V)]6 + €0 (v- w DT) = -EV2 6 9)

where

Dw +iku +ifv =0

and D = d/dz is a differential operator. In the above U, V, and T are the basic state velocity and tem-
perature fields which are non-simple functions of z, The perturbation velocity and temperature vanish
on the plates implying that

w=Dw=v=0=0 atz=11/2 (10)

The problem defined by equations (7) through (9) with the boundary conditions (10) define an
eigenvalue problem of the form

gy
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F(E,e 0, AT, k, 8, w)=0 (11)

where the frequency w is in general complex for the temporal stability problem. The basic state is stable
or unstable depending on whether Im (w) = w; < 0 or w; > 0, respectively. For marginal stability for

which w; = 0, Re (w) = wy, and either E or € are chosen as the eigenvalues. In most of th~ - -

described in the next section, the growth rate, w;, was used as a function of any of the par: meters to
determine the most unstable mode,

As indicated in the introduction, previous studies of symmetric baroclinic instability have selected
the Richardson number as a parameter. However, due to the specific non-dimensionalization chosen {or
this study, Ri does not appear as an explicit parameter in equation (11). Ri is defined as the ratio of
the vertical stratification to the square of the shear; i.e.,

. [aT* au*\ 2
Ri=oz\ o az* 12

where th¢ asterisk denotes a dimensional quantity. Since in the present problem this definition implies
a variable Ri as a function of height, a more convenient definition of Ri is its value at mid-depth in the
channel. Substituting the values of the temperature and velocity gradients of the basic state [equation
(6)] at z = 0 into the above definition we obtain

Ri, = 4¢’! (AT + 0e/4) + OReR/2) (13)

which is a constant defined exclusively by the basic state. Note, that for E < 102 {i.e., R > 10), which
is the range of E for all the calculations presented in Section III, the last term in equation (13) is neg-
ligible. Since Ri, is a complicated function of the basic state, care is required in selecting values of the

basic state parameters to achieve desired values of Rij. (From this point on the suffix is dropped from
Rij.) Examination of equation {13) reveals that to obtain values of Ri close to unit-, AT must be greater

or less than zero depending on whether 0 < | or o > 1, respectively. Note that for some values of
AT < 0, there does exist a large region in the interior of the fluid with stable stratification, This is shown
in Figure 4 which is based on parameter values for the computations whose results are discussed in
Section III. This problem of the selection of the basic state parameters to achieve specific values of Ri
is discussed more fully in AF,

Note that setting k = 0 in the perturbation equations allows for only axisymmetric waves propa-
gating in the meridional direction, and setting 2 = 0 allows for only waves propagating in the zonal
direction.

C. Method of Solution

The governing differential equations (7) through (9) with boundary conditions [equation (10))
form an eigenvalue problem for which a nontrivial solution should be available. Due to the complexity
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of the coefficients of these equations (a consequence of the non-simple basic state), a closed form solu-
tion cannot be found. The only way to solve this problem for the ranges of all the parameters involved
is by numerical means. There are basically two direct methods for the numerical s ‘ution of differential
eigenvalue problems. These are the matrix and the shooting methods. Due to the complexity of this
system (viz, a system of coupled, eight ordinary differential equations), the shooting technique is the
most straightforward to implement. For small values of the Ekman numb.r, the shooting procedure can
be successful only if it is used in conjunction with a filtering or orthonormalization scheme (see for
instance, Conte [20]). Otherwise, the inevitable presence of the rapidly growing solution of the differ-
ential system can quickly render the linearly independent solution numerical’’ depcendent.

For the solution of the present eigenvalue problem, a computer code was developed with an
eighth-order, variable step, Runge-Kutta-Fehlberg initial value integrator. For the iteration procedure a
Newton-Raphson method was used, and the orthonormalization process was implemented at each inte-
gration step. All of the eigenvalues which are presented in the next section were produccd with a rela-

tive tolerance of 107 in the iteration process (i.e., all of the eigenvalues presented are correct up to
four significant figures). For small enough Ekman numbers, the Ekman and the thermal layers along the
plates are very thin, and the code was made to take at least 10 steps within each layer to assure adequate
representation of these layers. Normally, this method requires an initial guess for the eigenvalue, and the
whole process for obtaining the results is started by first trying several guesses. Once a convergence on an
eigenvalue was obtained, that eigenvalue was used as the initial estimate for obtaining a neighboring one,
and the process was repeated. Typically, if an eigenvalue existed, a convergence was achieved in under
10 iterations.

Il. RESULTS AND DISCUSSION

In this section the results of a three-dimensional study of baroclinic instability for Ri ~ 0(*"
are prescnted. All of the results were obtained using the basic state defined by equation (6) anc
means of the solution for the complete eigenvalue problem described by equations (7) through
and represented functionally by expression (11). We begin by presenting plots of the growth rate, wj,

as a function of the zonal wavenumber, k, for selected values of the meridional wavenumber, £, and for
a range of values of Ri and g. We chose to vary o since previous work on two-dimensional instability
(e.g., McIntyre [17]; AF; see Section I) had shown that both Ri, and the growth rates vary with o.

The actual values of o were chosen to be close to unity and in a range for real fluids. For all the results

presented, E = 10'3; this choice was based on the previous work (AF) which showed that for two-
dimensional instability, Ric is close to its asymptotic limit for this value. A smaller value would have

substantially increased the computing time (see Section II). Further, E = 103 is a realistic value for
laboratory experimental studies. The values of AT were selected so that Ri ~ 0(1) (see Section II).

Figures 5 through 8 show w; versus k for four values of Ri, ¢ = 2 and AT = -1.5. Figure 5 for

Ri = 0.93 shows that pure symmetric waves (k = 0) do grow and that their growth rates increase with
increasing £ reaching a maximum at about £ = 8 and then decrease for a further increase in 2 However,
the overall maximum growth rate is associated with the conventional baroclinic instability mechanism
(2 = 0). The mode (k = 0.88, 2 = 0) has the maximum growth rate, Figure 6a shows that for Ri = 0.80,
the growth rates for the symmetric modes have increased substantially and zre comparable to the growth
rates of the purely zonal waves (£ = 0). The maximum value of wj shown in the figure is w; = 0.399 for

k = 0.25, 2 = 8 which is to be compared with w; = 0.394 for k = 1.0, and 2= 0.
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Figure 6a shows only the curves for £ up to £ = 10. This is because it is known, for the parameter
values of Figure 6a, that the maximum w; for the pure symmetric modes occurs at £ = 8.8, This result is

shown in Figure 6b. It was anticipated that the values of w; will decrease further as £ increases beyond

10 making additional curves unnecessary. As pointed out above, for Ri = 0.80 the maximum growth
rates of the symmetric and conventiona: baroclinic modes are about the same, Stone [12] found for
his inviscid analysis, that the maximum growth rates are equal for Ri = 0.95. The reduction in this
value of Ri must be due to the inclusion of viscous and thermal effects in our model. Also all of the
unstable modes were found to propagate with the mid-channel speed, U = 0 (i.e., for all w; >0, w =
0). This result was found to hold for all the unstable modes presented in this study.

Note that in Figure 6a the growth rate maximum does not occur for a pure symmetric wave;
k at the maximum value is small but not zero, This * 7int will be elaborated upon further in the follow-
ing discussion. To avoid confusion, symmetric instability is defined to include unstable modes for which
k is small as well as zero. Further, for simplicity, conventional baroclinic instability (R = Q) is referred to
as zonal instability. In addition the term preferred mode will be used to mean the mode of maximum
growth rate.

Figure 7a for Ri = 0.50 shows the effect on w; of a further decrease in Ri. The growth rates for

the symmetric modes have continued to increase and are now considerably greater than those for the
pure zonal modes. This figure shows only the curves for  up to = 10. Again this is because, for the
values of the parameters of this figure, the maximum of w; for the pure symmetric modes occurs at

£ = 10.2, This result is shown in Figure 7b. For the data in Figure 7a the maximum growth rate « ccurs
for k = 0.05 and 2 = 1C. Note again that the maximum does not occur for k = 0. This is clearly shown
in Figure 7¢ which is a replot of the growth rate for the £ = 10 wave with a stretched coordinate. This
means that the preferred mode of symmetric baroclinic instability exhibits a slight angle of inclination
with the direction of the basic state flow, This angle is given approximately by k/f2. An analogous result
was found earlier by Busse and Chen [16] (see Section I) for the waves at marginal stability.

Figure 3a for Ri = 0.286 shows the effect on w; of decreasing Ri still furthzr, This reduction
leads to an increase in w; for both k and £, but the overall functional dependence of wj on k and £ has

not changed much from the results for Ri = 0.50. Again the preferred wave shows a slight inclination
with respect to the basic state flow (k = 0.07, £ = 10) as is shown in Figure 8b. The magnitude of the
inclination is a'most the same as that of Figure 7c.

The results for another value of o are now presented, Figures 9 through 11 show w; versus k for

three values of Ri, ¢ = 5 and AT = -4.5. Figure 9, for Ri = 1.0, shows results that are qualitatively
similar to those for o0 = 2, Ri = 0,93 (Fig. 5). Again pure syni:netric modes possess some growth rate,
but the dominant growth rate is found associated with the zonal modes. Figure 10a, for Ri = 0.50, shows
results similar to those in Figure 7a. For this value of Ri, the symmetric modes are the preferred modes
and the zonal modes have the lowest growth rates. Figure 10b, which is a stretched plot of the 2 = 10
curve in Figure 10a, shows that again the preferred mode is not purely symmetric but occurs for k ==
0.10. Figure 11a, for Ri = 0.135, shows results qualitatively similar to those in Figure 8a. These results
are also similar to Figure 10a but show a discernible increase in the growth rate values. Figure 11b,
which is a stretched plot of the £ = 10 curve in Figure 11a, shows that again the preferred mode is not
purely symmetric but occurs for k = 0.10. Stone [12] (see Section I) found, for his inviscid analysis,
that the preferred mode of instability changed at Ri = 0.25 from symmetric instability to Kelvin-
Helmholtz instability. The results in Figure 11a, for Ri <0.25, show that symmetric waves are preferred.
However, Stone’s conciusion was based on growth rate behavior for asymptotically large k; and, since



growth rates for large k for this model were not computed, nothing definite can be said about such a
transition for this analysis. It is possible, since viscous effects have been included, that this transition
may occur only for very small E or not at all. Note that the earlier investigation of this model for pure
symmetric modes (AF) revealed that the growth rates continue to increase as Ri is decreased through
Ri 0.

Results for ¢ < 1 are now presented. Figure 12a shows w; versus k for Ri = 0.30, 0 = 0.20 and

AT = 0.50. Clearly, Ri = 0.50 is below the threshold value at which symmetric modes become the pre-
ferred modes. A comparison of Figure 12a with Figures 7a and 10a shows that symmetric baroclinic
instability is dominant at Ri=0.50 for both ¢ = 1. A differeice, however, in the sign of the angle of
inclination of the symmetric waves with respect to the basic state flow occurs depending on whether
o s 1. Figure 12b, which is again a replot of the £ = 8 curve in Figure 12a with a stretched coordinate,
shows that the growth rate maximum occurs at k == -0.11. A negative val.z of k implies a change in
direction of the x-component of the wavenumber vector. Thus, the angle of inclination of the symmetric
waves with respect to the basic state flow has changed sign. This result, for the modes of maximum
growth rate, is analogous to that found by Busse and Chen [16] for marginally stable waves.

Attention is now turned to the results for 0 = 1, which were totally unexpected. Figures 13
through 15 show w; versus k for three values of Ri, ¢ = 1.0 and AT = -0.20. Figure 13 for Ri=0.80

shows ihat the pure zonal waves are the preferred modes but that the symmetric modes also have sig-
nificant growth rates. These results are qualitatively similar to the results for different values of ¢ and
similar values of Ri (Figs. 5 and 9). However, as Ri is reduced, the opposite general trend is found.
Figure 14 for Ri = 0.50 shows that the growth rates of the symmetric modes have decreased significantly
with respect to the zonal modes. Figure 15 for Ri=0.30 shows that these relative growth rates have
decreased still further. In fact they have vanished altogether. Busse and Chen [16] predicted, for mar-
ginally stable waves for small k and ¢ = 1, that the first-order correction to the value of Ri, is zero,

indicating that the angle of inclination of the waves with respect to the basic state flow is also zero.
This result does not agree with that found for the unstable waves for small k in this study. Examination
of Figures 13 and 14 shows that the symmetric growth rate curves approach the ordinate with negative
gradients implying a nonzero angle of inclination with the same sign as that for o < | results.

Busze and Chen [16] showed that when zonal structure is allowed, Ric increases above the pure

symmetric value. Their analysis was limited to small values of k, but they pointed out that owing to
this effect the range of Ri for which the instability occurs may be increased significantly beyond the
limits observed by McIntyre [17]. Since the numerical procedure is not limited to small k, it was decided
to investigate this suggestion by extending the work of Busse and Chen to larger values of k. Figures
16a and 16b show w;/f as a function of Ri for several values of k for 0 = 2, AT=-1.5,e = 10’3, and
for £ = 4 and 6, respectively. The choice of 2 = 4 and 6 is based on previous work (AF) which showed
maximum values of Ri, close to these values of £. In Figures 16 the value of Ri, for a specific value

of k is the value of Ri at which the growth rate curve intercepts the Ri axis. Figure 17 is based on the
results in Figure 16 and shows Ri, versus k for the two values of €. For both values of £ the quabtative

functional behavior of Ri, with k is similar. At first Ri, increases with increasing k and rises above its
value for k = 0. However, for still relatively small values of k, Ri, reaches a maximum vai ¢ which is
only about 10 percent greater than its value at k = 0, and then Ri, declines monotonically as k increases

further, Thus, it has been shown, for the parameters of this computation, that the range of symmetric
baroclinic instability is increased but not significantly when zonal structure is permij:ted.
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IV. CONCLUSIONS

This work has been concerned with the three-dimensional baroclinic instability problem for Ri ~
0(1). The inviscid analyses of Stone [11,12,13] has been extended by adding viscous and thermal
diffusion effects to the basic state and to the stability analysis and by satisfying realistic boundary condi-
tions, Some pointed to Ri as the significant parameter and calculated the values of Ri at which the transi-
tion between the conventional baroclinic instability, symmetric baroclinic instability, and the Kelvin-
Helmholtz instability occur (see Section 1). Because of computing time limitations, it was not possible
to perform a complete survey of these transitions for the model, but for 0 < Ri < 1.1, 0.2 €0 < §,

E= 10'3, several flows were thoroughly studied. Although the results are not in quantitative agreement
with Stone’s and several significant differences exist, the same general trend of the dominance of
symmetric instability over conventional baroclinic instability as Ri decreases was found, except for o = 1.
For ¢ $ 1 zonal instability dominates for Ri > 0.8, and symmetric instability dominates for Ri < 0.8.
For ¢ =1 in therange 0.3 < Ri < 0.8, symmetric instability never dominates.

It was found for ¢ = 1 that when the symmetric instability dominates, the preferred mode is not
pure symmetric but has weak zonal structure. This means that the wave fronts are .nclined at a small
angle to the basic state castward flow (x-direction) and that the wavenumber vector is inclined at the
same angle to the north (y-direction). For o > 1, the vector has a component towards the east, and for
o <1 a component towards the west. Stone found the preferred mode to be truly symmetric.

Busse and Chen [16] found, in the limit of small E and for small k, that the mode of symmetric
instability at maximum Ri_ has an angle of inclination with the basic state flow direction. This result is

analogous to what was found for the symmetric modes of maximum growth rate. On the basis of their
result, Busse and Chen speculated that the range of Ri for which symmetric instability occurs may be
increased substantially over the range for k = 0. The results of this report, which are valid over a wide
range of k, show that this is not so; only a small increase in Ri, occurs at small k. These results show

that for values of Ri close to the values of Ri, for symmetric instability, the zonal instability has much

larger growth rates and hence will dominate. This result reduces the significance of previous discussions
on the behavior of Ri..

It has been shown that the nearly symmetric modes of maximum growth rate differ very slightly
from the pure symmetric modes. For this reason it is unlikely that they represent a new type of
instability.

It should be recailed that the conclusions of this report are based on calculations for which E
was kept at a constant value of 1073, Some modifications to these conclusions are anticipated if E is

increased above 1073, However, based on our experience in AF, we are confident of no significant
changes in the conclusions as E = 0,

It is of value to ask what the new results obtained in this study tell about the possibility of
realizing symmetric baroclinic instability in the laboratory. The model is physically realistic because the
full set of governing equations, including viscous and thermal diffusion, was used and realistic
boundary conditions on the horizontal surfaces were satisfied. The model departs from laboratory reality
in that a linear stability analysis rather than a nonlinear analysis was purformed. Further, a horizontally-
infinite layer is, of course, unrealizable, but a shallow and wide cylindrical annulus of fluid can be
realized. Although the results of Section III indicate that the preferred mode of symmetric instability
occurs with a large zonal wavelength and is not purely symmetric, this may not be so in finite cylindrical

10
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geometry when the azimuthal wavelength exceeds the circumference. An apparatus has been constructed
in which a shallow layer of liquid is held between two horizontally-mounted discs. Radial temperature
gradients with different imposed vertical temperature differences can be maintained on the discs. The
discs are made of sapphire material, so they are transparent allowing observation of the liquid. Sapphire
is also a good thermal conductor allowing for an accurate temperature boundary condition. The total
apparatus is rotated on a turntable. We have started a systematic search with 0 < Ri < 1 and are looking
for convective rolls with radial sti..-ture and weak or no azimuthal structure.
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Figure 1a. The critical Richardson number as a function of the Prandtl number, according to
Mclntyre [17] and according to Antar and Fowlis [18].
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Figure 1b. Marginal stability curves as functions of E and Ri for three values of ¢ and
for £ = 4. The dashed curves are McIntyre’s results.
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Figure 2. A sketch of the model.
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Figure 3a. The basic state zonal velocity profile as a function of height according
to equation (6) for three values of the Ekman number.
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Figure 3b. The meridional velocity profile.
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Figure 3c. The temperature profile fory =0,0=1,€=1,and AT =0.
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o=5, AT = 4.5, and € = 4.0.
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Figure 5. The growth rates as a function of k for Ri=0.93,0=2, AT=-15,E= 103
and selected values of £,
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Figure 6a. The growth rates as a function of k for Ri = 0.80, o = 2, AT = -1.5,

E = 10-3 and selected values of £.
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Figure 6b. The growth rates as a function of £ at k = 0 for Ri = 0.80,

a =2, AT = -1,5 and three values of E.
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Figure 7a. The growth rates as a function of k for Ri = 0.50, 0 = 2, AT = -1.5,
E = 10-3 and selected values of £.

Figure 7b. The growth rates as a function of £ at k = 0 for Ri = 0.50,

o =2, AT = -1.5 and three values of E.
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Figure 8a. The growth rates .. a function of k forRi = 0.286, ¢ = 2, AT = -1.5,
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Figure 8b. The growth rate as a function of k for £ = 10 and Ri = 0.286,
0 =2,AT = -1.5, and E = 103,
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Figure 9. The growth rates as a function of k for Ri = 1.0, 0 = §, AT = -4.5,
E = 10-3 and selected values of £.
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Figure 10a. The growth rates as a function of k for Ri = 0.50, 0 = 5, AT = -4.5,
E = 103 and selected values of £.
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Figure 10b. The growth rates as a function of k for £ = 10, Ri = 0.50, 0 = §,
AT = 4.5 and E = 10-3.
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Figure 11a. The growth rates as a function of k for Ri = 0.135, 0 = 5,
AT =45 E= 103 and selected values of £
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Figure 11b, The growth rates as a functic .f k for £ = 10, Ri = 0.135, 0 = §,
AT = 4.5, and E = 10-3.
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Figure 12a. The growth rates as a function of k for Ri = 0.50, ¢ = 0.2, AT = 0.5,
E = 103 and selected values of £
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Figure 12b. The growth rates for ¢ =8, Ri = 0.50, 0 = 0.2, AT = 0.5, and E = 10-3,
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Figure 13. The growth rates as a function of k for Ri = 0.80, 0 = 1.0, AT = -0.2,
E = 103 and selected values of 2.
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Figure 14. The growth rates as a function of k for Ri = 0.50, ¢ = 1.0, AT = -0.2,
E = 103 and selected values of £.
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Figure 15. The growth rates as a function of k for Ri =0.30, 6 = 1.0, AT = -0.2,
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Figure 16a. The normalized growth rates as a function of Rifor {=4,0 = 2,
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E = 10-3 and selected values of €.
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AT=-45E= 10-3 and selected values of k.
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Figure 16b. The normalized growth rates as a function of Ri for £ = 6, ¢ = 2,
AT=-45E= 10-3 and selected values of k.
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Figure 17. The critical Richardson number, Ri; as a function of k for £ = 4 and 6,
0 =2,AT = ~1.5,and E = 10-3.
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