@ https://ntrs.nasa.gov/search.jsp?R=19850012379 2020-03-20T18:47:04+00:00Z

’FCW\P:U? GSQD\‘

NASA Conference Publication 2361

STAR1OMAR 141385 Space
‘Station

Software

Issues

{MAS3-CP-23¢€1) SEACE STATICM SOFTWAF® NES-2(6ES

ISSUBS (NASA) €€ p BC ACU,/KE ad1 CSC1 0O3E TEFU
Net=-2C0€¢s
Unclas

G3/61 13592

Report of a workshop held at
NASA Langley Research Center
Hampton, Virginia

August 20-21, 1984

NASA

NASA Conference Publication 2361

Space
Station
Software
Issues

Edited by
Susan Voigt
NASA Langley Research Center

Sharon Beskenis
Kentron International, Inc.
Hampton, Virginia

Report of a workshop held at
NASA Langley Research Center
Hampton, Virginia

August 20-21, 1984

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1985

PREFACE

The Space Station Software Working Group, an ad hoc NASA committee,
sponsored a workshop for NASA software persons at the Langley Research
Center, August 20-21, 1984, to discuss a software development environ-
ment and other software issues needing attention during the planning and
definition stages of the Space Station Program.

During the workshop, the twenty participants formed three working groups
to deliberate on management and acquisition of software, software
development environments, and software methodology and technology. Con-
sensus was reached on seven major recommendations relative to software,
and these were subsequently made to the Space Station Program. Im addi-

tion, 21 issues were raised at the workshop and later refined by the
participants.

These proceedings present these issues as well as recommendations on how
to address them. The issues fall into the following five categories:
sof tware management, software development environment, software stan-
dards, information systems support for space station software develop-
ers, and a future software advisory board for the Space Station Program.

Also included, as background information, are presentations which were
given on the Shuttle Software Production Facility and on Software Tech-
nology within NASA.

PRECEDING PAGE BLANK NOT FEMED

iidi

CONTENTS
PREFACE . . . ¢ ¢ ¢ ¢ v ¢ e v e v v o s s s o s o o
ATTENDEES ¢ . & ¢ ¢ ¢ o v ¢ ¢ v o o o o o o s o s o &
INTRODUCTION . . ¢ ¢ v v ¢ v s v o o s o o o s o s &
OPENING SESSION & ¢ ¢ v ¢t 4 o o ¢ o o o o &

Plans for Space Station Information System

Lessons Learned From the Shuttle Software Development

Elements of a Software Development Environment . .
Software Technology Within NASA

WORKING GROUPS & . &« « ¢ o o & o « o o « o o o o o«

Management and Acquisition of Software
Software Development Environment
Methodology and Technology

SOFTWARE MANAGEMENT ISSUES « « « &« ¢ « & &« &
Software Management Planning

Independent Verification and Validation
Quality Assurance and Configuration Management .

Avoiding Major Software Problems on the Space Station

SOFTWARE DEVELOPMENT ENVIRONMENT ISSUES
SOFTWARE STANDARDS ISSUES . . . ¢ ¢ « o ¢ « o o o« o &
Need for Common Terminology
Project Directives ¢« ¢« v ¢« ¢ ¢ o o . . .
Software Technology and Portability
Languages « « ¢« ¢ ¢ ¢ ¢ . e 4 e e et e e s s
Documentation . . . ¢ « ¢ ¢ 4 4 ¢ ¢ ¢ o s o o s o @
INFORMATION SYSTEMS ISSUES . . & « &« o o o o o & o &
FUTURE OF THE SWWG ISSUE . . . ¢ ¢ &+ & ¢ ¢ o« « o & «
APPENDIX A: SHUTTLE SOT'TWARE PRODUCTION FACILITY . .

APPENDIX B: SOFTIWARE TECHNOLOGY WITHIN NASA

RRECEDING PAGE BPLANK NOT

iii

vii

[«)) BB - - &~

(= 0« 0.)]

11
15

16
24
24
25
26
29
36
37
40
43

47

ATTENDEES

Center Workshop Participants and Mail Code

LaRC Susan Voigt (MS i25) - workshop leader
Shaton Beskenis (Kentron) - scribe
ARC Bob Carlson (233-10)
GSFC Joe Hennessy (510.1)
Frank McGarry (582)
Bob Nelson (522.1)
Dolly Perkins (522.1)
JPL Dave Callender (506-328)
John McLeod (506-328)

Art Zygielbaum (171-209)

JsC Jim Raney (FD)

KS<C Tom Purer (CS-SED-22)
MSFC John Wolfsberger (EB42)
NSTL Joel Wakeland

HQ Joe Bishop (TS)

Ai Fang (EI)

Dana Hall (DE)
Rhoda Hornstefn (TX)
Ken Wallgren (RC)
Bill Wilson (DR)

A position statement was also contributed by Ed Senn, LaRC.

Vil LeRCEDING PAGE BLANK NOT FILMED

1. INTRODUCTION

This report summarizes the results of a workshop held at the NASA Lang-
ley Research Center on August 20-21, 1984, on the topic "Space Station
Software Development Environment." This workshop was sponsored by the
Space Station Software Working Group (SWWG) for NASA software special-
ists to consider what 1is needed to support space station software
development. The SWWG is an ad hoc committee under the Data Management
Working Group of the NASA Headquarters Space Station Technology Steering
Committee. The SWWG was formed to focus on software issues of impor-

tance to the space station, especially during the early planning and
development phases.

The workshop had four objectives:

To consider the state of technology of software development
environments appropriate to the space station

To deliberate on issues of standards, deliverables, integration,
and control of contracted software

To learn from past NASA experience

To recommend software research directions and specific actions for
space station decision makers.

The call for participation in the workshop went to all members of the
SWWG and to the directors of all the NASA Centers. Attendees were
requested to submit one page position statements on "lessons learned"
from previous NASA software projects and on one of the following topics:

Software Technology

- Available or required for s, -ce station

— Space station requirements versus
sof tware technology available

- Technology options expected in 1987

Sof tware Standards to impose or to provide
= Environment for development of software
- Common tools and program libraries

-+ Methodology
= Documentation

Contracting Issues

- What should the Government provide (GFE)?
- What deliverables should be required?

NASA Management of Software Acquisition

Control of contracted development
Integration and testing fissues

Database/data capture related to software development
Management and decision support systems

Software maintenance strategy

Twenty participants came from eight NASA centers and fcur Headquarters
of fices. Position statements were submitted by 19 people on lessons
learned from past NASA projects and on software development issues.
These position statements were used during the workshop to stimulate
discussion and focus on issues. Some of these statements will be incor-
porated into the experimental NASA Software Information System being
developed by the NASA Office of the Chief Engineer and accessible
through RECON.

During the opening session, James Raney reported on the JSC Space Sta-
tion Information System (SSIS) concept, Susan Voigt presented a list of
sof tware development environment (SDE) elements, and Frank McGarry dis-

cussed software technology within NASA and the state of practice versus
the state of the art.

Three working groups were formed to identify issues and to develop
recommendations:

Management and Acquisition of Software (John McLeod, chair)
Sof tware Development Environment (Frank McGarry, chair)
Methodology and Technology (Dana Hall, chair)

Twenty-one issues and associated recommendations were identified by
these 3 groups. These are included in the five sections of these
proceedings under the topics: Software Management, Software Development

Environment, Software Standards, Information Systems, and the Future
Role of the SWWG.

The final session of the workshop was a plenary session where the work-
ing groups reported on their results. Several issues raised were con-
sldered very important by the participants and there was consensus that
these should be brought to the attention of the Space Station Program
Office (Code S in NASA Headquarters) as soon as possible.

MAJOR PROGRAMMATIC RECOMMENDATIONS :

Pl There should be a person in level A (the headquarters Space Station
Office), cognizant of software requirements and developments for
the space station, who can provide programmatic guidance, budget
formulation, and policy on all space station software matters, as

well as to assure that a software management plan is developed and
impiemented.

P2

P3

P4

he Software Working Group (SWWG) should be given official status

as an 1intercenter advisory group to the space station software
manager.

A space station software management plan should be developed as
soon as possible. A special interest group has been established
within the SWWG that wili create a recommended draft of the needed
software management plan.

The relationship of the Technical and Management Information System
(TMIS) (also known as the Management Communication and Data System)
to the space station software development environment should be

determined, including the correlation between the two and how they
are to interact.

MAJOR TECHNICAL RECOMMENDATIONS:

Tl

T2

T3

A space station Software Development Environment (SDE) is needed
very soon to support both Phase B and Phase C/D contracting activi-
ties. (The SDE would consist of computer-aided tools for develop-
ing compatible software for the space station project.) It should
be defined and modeled as soon as possible.

A strategy for selecting the space station software language(s)
should be determined, including evaluacion and selection criteria,

study of the relevance of Ada, and identification of other candi-
date languages.

Requirements defirition and analysis should be under way for the
SDE, the TMIS, and the Space Station Information System. These
systems are interrelated, and it is imperative that there be regu-
lar communication among the various system planners and developers
to assure that good software engineering practices are used and
duplication efforts are minimized or eliminated.

2. OPENING SESSION

Following the introduction of all the participants and a brief discus~-
sion of the objectives and format of the workshop, several presentations
were made to provide background for the workshop deliberations.

2.1. Plans for Space Station Information System

James L. Raney, Johnson Space Center, discussed the current concept of
the Space Station Information System (SSIS), see Figure 1. The SSIS
consists of a network with a variety of processor nodes attached. Each
node has one or more standard processing units (SPU), one or more
universal workstations (UWS), and application subsystems. The core SSIS
software includes the network operating system, the user interface, and
common support software. He displayed a schedule for the software
development environment (SDE) which shows the SDE being developed in

parallel with the definition study contracts and available prior to
application software development.

2.2. Lessons Learned From the Shuttle Software Development

Over the las: decade, much experience has been gained with the Shuttle
software at JSC, and Jim Raney offered to describe some lessons learned.
He described the current Shuttle Software Production Facility (SPF).
His slides are included in Appendix A.

2.3. Elements of a Software Development Environment

Susan Volgt, LaRC, led a discussion on the contents of a software
management plan, the generic elements of a software development environ-
ment, and tool characteristics and considerations. The National Bureau
of Standards Special Publication 500-78: NBS Programming Environment
Workshop Report, June 1981, was cited as a good reference. The NBS
workshop report defines several levels of tool environments from "Fig
Leaf"” to "Spacesuit”, and these were used to stimulate discussions.
Several modifications to the list of elements of a software development
environment were made by participants and these are reflected in the
section of this document on Software Development Environment Issues.

2.4. Software Technology Within NASA

Frank McGarry, Goddard Space Flight Center, discussed software technol-
ogy within NASA, contrasting the state of the practice with the state of
the art. His slides are included in Appendix B. His point was thar 1t
takes a long time to move technology from the idea stage to real prac-
tice and one must be gelective in choosing the right practices for the
right problems.

o 210D, uowwod - walsAg uoflewiojul uorlels adeds 1 2andry

S31LIMOV4
H3sN AvOTAvd 73A34/140ddNS NOILV1S 30VdS H3aA4-3344d

h’h— — » Y
A
AL IIVIYILN IIVIYILNY FIVIHILNG
wasn | snOLLvDIeaY w3sn | 3NOLVIINdav wasn | SNOILYIIIadY w3sn | SNOIVINdav
wiisas 222 \& WILSAS T iFzZ waLsas Zx g warsas 2
\ ONILYU24C 150M 27 77%Z om1vu340 150K \ 727 oNILvYI40 1SOM 7 \ \W\\“ DMILYYIHO 1SOM T2 777
{SON) m318aS (SON) WILSAS ISON) WILSAS _ {SON) W3154S :n&w
DNILAYHINO DNILYHEILO DNILYYEIIO aNILYYILO
NUOMLIN _ { NHOMLIN J NYOMLIN ! _ NHOMLIN

(44)
-ZzZ -Z-z MHOMLIN

N85-20690

3. WORKING GROUPS

The workshop participants divided into three working groups to deli-
berate on specific topics.

3.1. Management and Acquisition of Software

Group One was called Management and Acquisition of Software. John
McLeod, JPL, was the leader and members were Joe Hennessy, John Wolfs-
berger, Ken Wallgren, Bill Wilson, Joe Bishop, and Bob Carlson. They
were tasked to consider issues related to a software management plan,
contract requirements, NASA control, integration and testing, government
staffing, and the role of the SWWG.

3.2. Software Development Fnvironment

Group Two was called the Software Development Environment Group. Frank
McGarry, GSFC, was the 1leader and members were Bob Nelson, Dave Cal-
lender, Rhoda Hornstein, Tom Purer, Art 2Zygielbaum, and Susan Voigt.
They were tasked to consider issues related to the definition and provi-
sion of a standard environment for space station software development,
the appropriate language(s), and what (or how much) the government
should provide to the contractors.

3.3. Methodology and Technology

Group Three was called the Methodology and Technology Group. Dana Hall,
Headquarters Code D, was the leader and members were Dolly Perkins, Jim
Raney, At Fang, Joel Wakeland, and Sharon Beskenis. They were tasked tc
consider the 1ssues related to standards, new technology, quality
assurance, verification and validation, configuration management, termi-
nology, training, and methods.

The deliberations of the three working groups resulted in the major
recommendations given in the Introduction as well as 1in some more
specific issves and recommendations which have been subsequently refined
by workshop participants and comprise the remainder of these proceed-

ings. Associated with each igsue statement is the name of the indivi-
dual who was responsible for the text expl..ning the i1ssue and the
recommendations.

4. SOFTWARE MANAGEMENT ISSUES

4.1. Software Management Planning

BACKGROUND :

NMI 2410.6, which establishes software management policy for NASA flight
prvjects, 18 currently inapprorriate for an undertaking of the Space
Station's scope and duration. Revisions to make NMI 2410.6 more

comprehensive and provide planning policy appropriate to Headquarters
programs ~s well as Center projects are beiag performed by the NASA
Sof tware Management and Assurance Program. Jnfortunately, this revised
policy will not be approved early enough to offic’ally impa:t space sta-
tion activities in FY85. JPL has been devel-ping a space station
sof tware management plan, but that plan has no official status.

The recommended Space Station Software Management Plan will have to
guide and control a wide variety of activities involving organizations
at various levels of management hierarchy. Many of the management
issues addressed by the plan and many of the mechanisms and procedures
that will have to be implemented to execute the plan will be difficult
to resolve and will require lengthy coordination ard trial periods.

ISSUE: (Bill Wilson)

HOW IS THE SPACE STATION SOFTWARE MANAGEMELT PLAN TO BE DEVELOPED?

ESSENTIAL CONSTDERATIONS:

The scope, duration, and number of organizations thst will be involved
in space stat’on software activities necessitate the early availability

of policy, standards, and management procedures to ensure acquisition of
compatible and maintainable software.

There now is no individual or organization with the direct resporsibil-
ity to produce the needed plan.

RECOMMENDATIONS:

(1) An individual within the Space Station Program Office should be
appointed to be responsible for ensuring that a software acquisi-

tion management plan is deveioped to provide guidance to all par-
ticipating organizations.

(2) An intercenter working group shrald be established immediately to

develop the needed plan in iime for it to be implemerted in con-
junction with phase B contracts.

(3) The planning activity should use existing NASA software management
and acquisition guidance and the products of related ongoing
activities as a basis for developing the needed plan.

(4) The plan and associated planning materials should ve captured and
maintained within an automated information management capability.

ISSUE: (Bill Wilson)

HOW IS THE SPACE STATION SOFT'ARE MANAGEMENT PLAN TO BE TMPLEMENTED AT
EACH MANAGEMENT LEVEL AND BY CONTK.CTORS?

ESSENTIAL CONSIDERATIONS:

Software management planning must begin immediately so that the needed
management capability will be in place to affect the initial software

acquisition activities. Procrast®nation will result in a situation
extremely difficult to reconcile.

RECOMMENDATIONS :

The following software management considerations should be immediately

addressed by one or more working groups in parallel and in close coordi-
nation with the recommended planning group:

International and DoD participation

Definition/identification of center SMP controls/contact points
Definition of TMIS/MCDS capabilities and schedules

Hierarchy of configuration management and controls

Software safety, reliability and quality management & assurance
Total system integration planning, management and control
Definition of the role and function of the software development
environment

* N N N ¥ B ¥

ISSUE: (James L. Raney)

ROW CAN THE WHOLE NASA STAFF BE BROUGHT UP TO DATE ON THE STATE COF TECH-
NOLOGY OF SOFTWARE AND SOFTWARE MANAGEMENT PRACTICES? MORE SPECIFI-
CALLY, HOW CAN THE FOLLOWING BE ACCOMPLISHED:

(1) EDUCATING UPPER MANAGEMENT?

(2) TIDENTIFICATION OF MINIMAL CURRICULUM FOR TRAINING AT ALL LEVELS,
FROM THME WORKING LEVEL TO HIGHEST NASA MANAGEMENT?

(3) TRAINING FOR THE SDE (SOFTWARE DEVELOPMENT ENVIRONMENT)?

ESSENTIAL CONSIDERATIONS:

The NASA staff must realize the importance of embhedded software in
future programs and develop an understanding of software management and
acquisition. NASA must establish an environment for software develop-
ment and stick with it, improving it universally as the state of the art
permits. Recognizing the importance of documenting software projects
from their inception to their retirement will enable active projects to
identify and satisfy real requirements and allow following projects to
profit from past "lessons learned”.

NASA, as a whole, must adopt improved practices for identifying and
tracking the state of the art in software and sof tware management., NASA
management must be educated and persuaded by an aggressive training and
advocacy program to adopt this position, Efforts currently in progress
in the Chief Engineer's Office and other areas of NASA will contribute
to solving this problem.

RECOMMENDATIONS :

(1) A NASA-sponsored software management tools and practices database
and information retrieval system is being designed and constructed
under the auspices of the Chief Engineer's Office, namely the NSIS
(NASA Software Information System). There should be established
within the charter of that system the responsibility to provide
NASA-wide training and advocacy programs for software and manage-
ment of software. There should be a NASA-wide mandate to support
and participate in the NSIS, particularly in its role in providing
a means of keeping NASA managemcnt and staff up to date on the
state of the art in software technology and management practices.
Each Center should establish a function to specifically interface
with the NSIS both for receipt of current software-related informa-
tion and for input of "lessons learned” into the NSIS. This same
function can interact with the NSIS training program and local

Center employee development functions to make the necessary train-
ing available and useful.

(2) The Space Station Program should establish procedures and identify
key points (such as formal reviews) for capturing appropriate "les-
sons learned” data for inclusion in the NSIS database.

4.2. Independent Verification and Validation (IV&V)

BACKGROUND:

Experience bas proven that an IV&V team, appropriately supported with
standards, guidelines, and tools, can perform valuabhle services during
the requirenents, design, and testing phases, ensuring that the as-built
software satisfies the requirements. This second engincering staff, an
entity separate frum the main development staff, is almost a necessity
given situations of new technology, high risk, and engineering not done
before. Each of these criteria fits the Space Station.

ISSUE: (Dana Hall)

USES OF INDEPENDENT VERIFICATION AND VALTDATION (IV&V) IN SPACE STATION
SOFTWARE ACQUISITION

(1) WHAT ELEMENTS OF SPACE STATION SOFTWARE WILL BENEFIT FROM AN
INDEPENDENT SECOND ENGINEERING OPINION?

(2) HOW SHOULD THAT 1IV&V SUPPORT BE MECHANIZED, I.E., CONTRACTING
METHOD, TOOL SUPPORT, NASA ROLE, ETC.?

(3) WHAT SHOULD BE THE RELATIONSHIP OF THE IV&V SUPPORT EFFORT TO THE
CREATION AND THEN USE OF THE SOFTWARE DEVELOPMENT ENVIRONMENT?

10

ESSENTIAL CONSIDERATIONS:

During the requirements process, the IV&V team can reevaluate require-
ments for completeness and clarity before ? relopment involving those
requirements proceeds. Changing requirements, anifested during 1later
stages of the 1life cycle, are one of the m. nr drivers that increase
development cos. and delay completion. The IV&V team can demonstrate
traceability of each software requirement back to a system and user
requirement. Another important early life cycle task 1is to closely
examine test plans to ensure that a practical way has been identified
for testing every requirement.

During the design phase, the IV&V team can use the results of prototypes
and simulations to help identify sound design approaches and verify that
the evolving design satisfies the requirements. Prototypes of the GSFC
Transportable Applications Executive, for example, enabled resolution of
user interface and portability issues which yielded a cleaner implemen-
tation. Each design document should be subjected to independent review
prior to release for coding.

Prior to and during testing, the IV&V team, as an independent group, can
validate the system via test plan development, test designs, conduct of
tests, and evaluation of test results. The IV&V staff can participate
in requirements, design, and code reviews and inspections. These pro-~
cedures have been found to be very effective and inexpensive in early
detection of errors. The inspectior. process used on several ARC pro-
jects, for example, has increased productivity 2.5 times, decreased
testing time 607, and reduced maintenance problems 40 per cent. Perhaps

most importantly, experience shows that acceptance tests should be per-
formed by an independent dedicated test group.

RECOMMENDATIONS:

(1) The space station definition efforts should address the role and
means for independent verification and validation in the software
acquisition process. That support should be planned to build up in
parallel with the development team.

(2) The Software Development Environment must provide the standards,
guidance, and tools needed to support the IV&V functions. These
include inspection procedures, requirements analysis alds, require-
ments traceability tonls, prototyping and simulation capabilities,
data input generators, and automatic test data reduction tools,

Note that aids such as these are identical to those needed by the
main software development team.

4.3. Quality Assurance and Configuration Management

BACKGROUND:

NASA Quality Assurance organization's participation in software systems
on previous space programs has been very minimal due to lack of role
definition and allocation of experienced manpower resources. To provide
effective organization participation, role definition must be estab-
lished early in the Space Station Program with prime consideration to
establishing responsibilities and tasks that do not duplicate other NASA
organizations or contractor participation. Manpower with software sys-

tem experience must be made av ‘lable and training programs instituted
at each NASA Center.

In space station software development, many people will be developing a
series of products, each of which builds on previous products, and all
of which are constantly undergoing change. A change to any one product
must be evaluated for its impact on the software developed thus far.
Multiple versions of these products must be maintained. The configura-
tion management discipline must be rigorous in order to keep constant
track of all the software products being developed and to ensure that
all personnel are wcrking towards the same goal. All of the associated
documentation, test plans, and test suites should also be controlled as

they change and grow with the individual products and the system as a
whole.

ISSUES: (Kent Castle = JLR)

(1) WHAT IS THE ROLE OF NASA QUALITY ASSURANCE ORGANIZATIONS IN S™ACE
STATION SOFTWARE ACQUISITION MANAGEMENT?

(2) 1IF SKILLS DO NOT EXIST AT ALL LOCATIONS, WHAT IS THE TRAINING AND
PREPARATION TASK?

ESSENTIAL CONSIDERATIONS:

NASA Quality Assurance organizations must provide product assurance
tasks for software systems as integral parts of software requirements,
design, implementation, test and operational phases. Activities and
ragsks are to ensure the safety, reliability and quality of the software
through the establishment of requirements and criteria, analysis,
reviews, audits, inspections and assessments. Organization personnel
must be intimately knowledgeable of both the software and total system
design and operations.

The Space Station Work Package structure has established software defin-
ition for each NASA Center and the product assurance requirement docu-
ment defines related organizational software requirements. Specific
software activities and tasks should be documented in NASA Center organ-
ization plans and exchanged for inter-Center review. Software system

training programs must be made available for organizational personnel at
each Center.

11

RECOMMENDATIONS :

(1) The role of each NASA Center Quality Assurance organi.zation rela-
tive to software should be documented in organizational plans and
subnitted to the Center Space Station Project Office for approval.

The plan should include the following activities and tasks as a
mip- mum:

(a) requirements development participation
(b) development plan evaluation

(¢) requirements/change rcguest evaluation
(d) preliminary hazards analyses

(e) hardware/software hazards analyses

(f) hardware/ software interaction analyses
(g) requirements traceability

(h) independent code assurance analyses

(1) milestone review support

(j) test program evaluation/test witnessing
(k) code evaluation/walk-throughs

(1) discrepancy reports/waivers/user note assessment
(m) end item delivery coverage

(2) Each Center Quality Assurance organization should acquire manpower
with required software skills and institute software systems train-
ing programs. The training courses under development by the NASA
Office of the Chief Engineer should be given serious consideration
as aids in proper staff preparation.

ISSU'.S: (Sharon Beskenis)

WHAT LEVEL OF CONr [GURATION CONTROL IS NEEDED? HOW DO WE GUARANTEE WE
HAVE CONFIGURATION CONTROL AND TO WHAT LEVEL IS NASA INVOLVED?

ESSENTIAL CONSIDERATIONS:

Since the space station software suppliers will be spread across the
country, a very stringent configuration control methodology will need to
be enforcec so tha* configuration control 1is guaranteed. The system
must be flexible :nough, however, to permit developers to correct and
modify their pr-~rams in~house until they are satisfied that the pro-
grams work ac .rding to design specifications using their own test data.
At the point when the module first enters a system build, it should be
baselined for control. When a problem is found in a module included in
a system puild, the programmer should be given the flexibility to
correct and test the code informally until the problem is solved. At

th* o»o0int, the software configuration should be updated for the next
Laild.,

Several questions arise such as who is responsible for providing and
maintaining the configuration control system. Where will the configura-
tion control system reside and how will suppliers access 1it? What
mechanism will be used to enter or update code and documents into the
system? How will management monitor what is going on? These important
questions must be answered IMMEDIATELY.

RECOMMENDATIONS :

(1) The core space station data system and SDE should utilize the most
stringent configuration control discipline, and the automated con-
figuration control system should reside in TMIS/SDE under the con-
trol of a single Configuration Control manager. All developers
should have access via networks to the configuration controlled
code, documentation, and test suites impacting their tasks.

(2) The JSC Space Station Program Office should generate the configura-
tion control plan before the work of the separate contractors or
producers is begun. All of the products to be controlled should be
identified at this point, i.e., major subsystem names, and provi-
sions for unique identification and control of each source module
and each system created for test and integration must be made. The
products that will serve as a baseline for the next phase of
development must be determined.

(3) Configuration control training must be provided to managers and
developers so that everyone will understand the mechanisms for
admitting, accessing and modifying the documents and code that will

be administered by the configuration control system. The training
time must be included in the scheduling.

(4) A proposed mechanism for initially entering documentation or code
into the configuration control (CC) system would be the following:

- Documentation should follow the format guide specified for all
document s, A review of the document to be submitted to the
configuration control system must be held with the NASA tech-
nical monitor and representatives of all products affected by
the product whose documentation is being reviewed. Once the
document is approved by the review committee and signed off by
the appropriate technical task or test leader, the configura-
tion control manager can approve inclusion of the document in
the CC system.

- The developer must have a requirements document for his sub-
system resident in the CC library before the interface docu-
ment can he written. The interface document must reside in
the CC 1library before a design document can be written,
reviewed and included in the 1library. The interface and
design documents should be living documents that become more
detailed with the functional decomposition of the product into
modules.

13

(5

(6)

(N

14

- Once a developer's design document has been approved and
included in the CC library, the source code for the product is
eligible for admission in the library. Once the developer has
performed in-house testing and has had code walkthroughs that
have been signed off by the technical task leader, the CC

manager can place the code under the configuration control
system.

The bottom line is that good software engineering practices should
be a vital part of the configuration control process.

A Configuration Control Board (CCB) composed of the software pro-
ject manager, the configuration control manager, software technical
task leaders, software test leaders, and QA representatives should
control how changes to products are handled. The software project
manager as chairman of the CCB has the final approval authority. A
typical scenario might be the following:

A Modification Request (MR) is filled out by a developer or
tester., The affected subsystem/document is identified, the
nature of the problem is detailed, the priority 1is assigned,
and the 1impact of the problem and the consequence if not
corrected are determined. The CCB reviews the MR to concur
with or adjust the priority, etc., and select the due date for
resolution of the MR. These decisions are based on feedback
from the affected CCB members who may have had to check with
the actual developers and/nr testers to determine the scope of
the problem. Next the MR 1is assigned to the appropriate
developer or tester for a proposed solution. I1If the solution
is approved by the CCB, the affected code or document can be
checked out by the assigned developer or tester for modifica-
tion and checked back into the configuration control system
when the necessary changes are complete. If the change is not
complete a week before the due date, a warning flag should be
issued by the configuration control system and a notice should
be sent to the CCB members and the person assigned to fix the
problem so that an alternate strategy can be chosen, if the
deadline won't be met. A red flag should be raised if the MR
is unresolved by the due date.

The configuration control system should provide planning and con-
tingency options. What happens 1if a plece of software is not
delivered to the CC library in time for the next phase or build ...
what alternate strategy can be used, if any? Flags and scheduling
outputs should be provided to indicate the project status.

The builds or makes should be designed so that system dependencies
can be indicated. In this manner, all modules affected by a change
in a particular piece of snftware will automaticaliy be rebuilt.
Builds for different versisns or test cases can also be specified.
This eliminates human errors such as not recompiling a module using
the changed code or forgett:ng tu include the appropriate data in a
test suite. Recompilation o the é¢ntire system is also prevented

with proper build capabilities such as the UNIX makes and builds.

4.4. Avoiding Major Software Problems on the Space Station

BACKGROUND :

A classical software disaster is one where the time to develop the
sof tware was &t least twice what was originally estimated and the cost
at least a factor of three over the original estimate. The term
"at least" 1is stressed.

Software is more important to Space Station than to any previous,
major NASA project. As Jack Garman (JSC) stated, "software is the glue
that holds Space Station together." There are many factors in the
embryonic Space Station Project that indicate that the current Space

Statfion Project mode will lead to a classical software disaster in the
next five to ten y=ars.

ISSUE: (E. D. Callender)

SPACE STATION SOFTWARE - A CLASSICAL DISASTER IN THE MAKING

ESSENTIAL CONSIDERATIONS:

The primary technical indicator of a classical software disaster is
the attempt to use new technology to do new things. For Space Station
INASA is proposing to:

(1) Do the SE&I. NASA did not do that on Shuttle.

(2) Define and enforce use of a Software Development Environment.

(3) Use a new language - Ada. There is no backup language defined.

(4) Create a long-term commercially viable environment for industry.

Space Station is not just a "put it together and fly it once pro-
ject."

(5) Develop software for use/evolution over a projected 30 year 1life

span. This 1s longer than any existing software product has ever
operated!

The technical indicators are compounded by the following classical
sof tware management errors:

(1) Lack of software requirements,

(2) No software management plan,

15

(3) Little project management attention to sof tware,

(4) An imposed project schedule and budget based upon no firm software
require.:nts,

Following the current NASA approach to software for Space Station, the
only question is the extent of the disaster. Will the schedule over-

run bhe a factor of 2 or 3 or ? Will the cost overrun be a factor of 3
or 4 or ?

RECOMMENDATIONS :

Formulate a software management plan immediately and establish software
management responsibility in the level A program office.

5. SOFTWARE DEVELOPMENT ENVIRONMENT ISSUES

BACKGROUND: N 85-20691

Good software engineering practicz includes the use of support tools and
a methodology that together form the essence of a software development
environment (SDE). Although the generation of a SDE for space station
software seems like a logical step to take, there may be many logical,
valid reasons for not having NASA itself attempt to define such a func-
tional entity. There may also be valid reasons for not defining a single

(or small set) SDE at all, even by major vendors supplying space station
sof tware to NASA,

ISSUE: (Frank McGarry)

SHOULD A UNIFORM NASA SDE FOR SPACE STATION BE DEFINED AND DEVELOPED?

ESSENTTIAL CONSIDERATIONS:

(1) The development of space station software will be highly distri-
buted. There will not be a localized, single contractor or group
responsible for the complete set of required software. Major por-

tions of the software will be managed by various centers as opposed
to being locaiized at a single NASA center.

(2) There will be major functional differences between major components
of the software which may call for completely separate types of
support development environments. The types of software to be
developed include:

1. real-time flight software

2. ground data processing software (non real-time)
3. ground command and control software

4, 1integration and test software

5. simulation/modeling sof tware

16

6. customer (user) application (data reduction) software

(3) Classically, NASA has told contractors what software products are
needed, not how to develop them. NASA normally does not supply
tools or define components of development environments. Pos3ibly

a NASA defined software environment should be designed to support
NASA managers/developers only--not contractors. Vendors may do a
much more effective job of defining their own software development

environments optimally tuned to support their own specific efforts.

(4) The lifetime of the space station support will potentially exceed
30 years. If a single NASA SDE is defined, there would be a possi-
bility of stifling the infusion c¢f new technology to address
specific concerns in the later years of support. (I.e., a standard

environment would have the potential of growing stagnant.)

RECOMMENDATIONS:

Although there are potentially many difficulties with defining a stan-
dard NASA software environment, the working group feels the potential
advantages far outweigh the difficulties.

NASA should define, design, and generate two well-defined software
development environments:

(1) A SDE ccensisting of the tools, languages, data bases, etc., to sup-
port the software developers and their managers; subsets of the

environment could be used to address the specific functional
sof tware being developed (i.e., flight vs. ground, etc.)

(2) A SDE management environment that will support the NASA software
managers who are responsible primarily for acquiring software from
vendors

The first environment would consist of the following functional capabil-
ities:

1. Mail, telecommunications support
(e.g., editors, file systems, communications aids,...)

2. Technical management/control aids
(e.g., cost models, project management systems, build plans)

3. Data base support
(file management, retrieval, control, etc.)

4, Modeling/simulator aids
(architecture models, testing aids)

5. Prototyping aids
(for requirements, specs, man/machine interface studies)

17

6. Documentation preparation aids

7. Requirements specification validation and analysis aid

8. Design specifications aids
(PDL analyzers, data dictionary, etc.)

9, Code construction and control aids
(compilers, cross compilers, link editors, change control, ...)

10. Program analysis/testing and integration
(path coverage/test generators, etc.)

11, Metrics

(quality measures, complexity measures, cost and reliability
measures)

12, Man-machine interface support
(interface and use of the environment, help, tutorial, etc.)

The second environment would contain those aids required only by the

NASA manager responsible for requirements/acquisition/acceptance. The
capabilities would include such functional areas as outlined above:

1. Same

2. More heavily directed toward schedules/planning/pms/pert
3. Same

4, Minimal or none

5. Minimal or none

6. Same

7. Same

8. Minimal or none

9, Minimal or none

10. Minimal or none

11. Same

12. Same functional need

ISSUE: (Susan Voigt)

HOW MUCH OF THE SPACE STATION SOFTWARE DEVELOPMENT ENVIRONMENT SHOULD BE
FURNISHED B NASA?

ESSEN'TIAL CONSIDERATIONS:

Many (if not all) major aerospace companies and software houses have
developed one or more SDEs for use in-house. Recent reviews of IR&D
activities in several companies certainly bear this ont. There are some
sof tware engineering workstation products now on the market which can be
considered to be turn-key software development environments.

18

Within NASA, no SDE has evolved, although elements exist at several NASA
Centers. No system has been identified as appropriate for NASA or Space
Station use. Howe' 'r, given the premise that a space station SDE is
desirable, the question is, how much of it should NASA provide.

The benefits of a single SDE for Space Station include savings in time
and money during the development phase, as well as commonality of the
software which greatlv enhances the ability to maintain the system over
a long 1lifetime., The SDE would provide common editors, compilers. and
utilities. The format of the software could be standard, making reviews

and integration much easier. For example, test repeatability would
enhance sy 3tem integration activities. A NASA-furnished language pro-

cessor, for use by all software developers, increases the probability of
having a common language used at manufacturing, experiment and paylo:
facilities as well as at the launch site and on orbit. The transfer «
application programs and SDE tools from one location to another wil
greatly reduce the overall cost of development.

A major drawback to requiring the use of the NASA official SDE is that
comp mies have invested much in their own environments, they have their
peop.e trained to use them (not the NASA SDE), and they have tools that
fit their methodology and way of creating software. Permitting com-—
panies to uce their own development environment would provide the best
schedule/cost (e.g., planning cycles would be shorter, training mini-
mized, and the risk for integration and test schedules would be reduced
within the specific subsystem involved).

A NASA SDE would probably include vendor proprietary products, since it
would be costly and time-consuming to develop an entire SDE for space
station. This implies legal arrangements to permit citation of vendor
products in specifications and provision of software to contractors for
use under the space st:tion development contracts. Arrangements would
need to be made with the vendors (or suppliers) of SDE software to
establish who has responsibility for support and maintenance. If

changes ar. necessary, who is responsible? If delivery of a space sta-
tion software product is late, can the blame be placed on the poor per-
formance of the SDE supplied by the government?

RECOMMENDATIONS:

(1) NASA should perform SDE requirements analysis, design, and develop-
ment, and make these requirements and the SDE software available to
contractors and NASA managers.

(2) Negotiations with software tool vendors should begin soon after the
NASA space station SDE is specified, so that development nead only

proceed on the elements of the environment that do not exist,
These negotiations should clarify the responsibilities for software

correction, maintenance and enhancement, and also establish provi-
sion for distribution of the SDE with these vendor-supplied ele-
ments to NASA sites and space station contractor sites as well.

19

(3) The use of the official NASA SDE by contractors is optional at

their own sites, but mandatory at NASA installations (for software
acceptance and for integration and test).

(4) Space station contractor-developed software products must be compa-
tible with and reside within the NASA SDPE. This requirement should
be included in each contract for space station software, and demon-

strated upon delivery of the software as part of the acceptance
criteria.

(5) The NASA SDE should be provided to every NASA Center with space
station software management responsibility and should be used by

the NASA managers in support of the software development, 1integre-
tion, test, and control.

ISSUE: (E. D, Callen”er)
THE IMPACT OF -DE ON CONTRACTORS

ESSENTIAL CONSIDFRATIONS:

Given that the Space Station Project mandates that all contractor-
developed software either shall be developed within the software
develcpment environment (SDE) or shall, as a first step in integra-
tion and sof tware acceptance, execute and be documented within the
SDE, there will clearly be an impact upon space station contractors.
Ultimately the impact will be assessed by those contrsctors who wish to
bid on space station software. In the materizl below, a fes of the
obvious 1issues relative to this topic are outlined. It is assumed
that the SDE has a very positive impact upon software development and

test,

The potential positive impacts are:

(1) The time and costs for development and subsequent maintenance
of a particular piece o. software will be reduced when compared to

a nonsupportive contractor environment.

(2) The contractor will have a good set of requirements for the format
and content of the dncumentation for the software.

The potential negative impacts are:

(1) Contractor training costs.

{2) Problems with acceptance of the SDE by contractor personnel.

(3) Lack of ability to use contractor unique methods and tools.

(4) Possibility of contractor blaming integration or acceptance test

problems on SDE, particularly if configuration control of SDE is
lax, causing potential legal and contracting problems.

RECOMMENDATION:

This is an issue on which we should request major feedback from the
industry representatives. We should also ask for industry experience on
the wuse of particular SDEs.

ISSUE: (R. W. Nelson)

WHAT IS THE DEVELOPMENT APPROACH TO THE SOFTWARE DEVELOPMENT ENVIRON-
MENT?

ESSENTIAL CONSIDERATIONS:

Software Development Environments for major software development efforts
such as the Space Shuttle on-board software system have taken many years
to develop in order to provide fully functional support. SDEs for pos-
sible space stition languages such as Ada are currently in their
infancy. Many technologically advanced tools using graphical user
interfaces and decision support systems are being developed especially
in prototype form. These tools ure generally addressing portions of the
sof tware development environment rather than total life-cycle support.
Totally integrated software development environments will be necessary
to realize the highest productivity goals of the Space Station Program.

RECOMMENDATIONS :

The inception of the design and development of the Software Development

Environment for Space Station must begin as soon as possible in order to
achieve a totally integrated environment. Since all functions probably

will not be required to the same degree of urgency, it is recommended
that a list of desired { inctional capabilities be generated and priori-
tized. In order to quickly demonstrate the concept of a totally
integrated software development environment and to evaluate alternative

technologies, a prototype (or model) should be developed. The prototype
system will insure that only proven and fully evaluated support tools

will be made available in the space station Software Development

Environment. Based upon experience with the prototype, the Software
Development Environment can be fully specified. The full environment

can be developed incrementally according to the 1list of prioritized
functional capabilities.

ISSUE: (Tom Purer)

HOW SHOULD THE MAINTENANCE AND EVCLUTION OF THE SOFTWARE DEVELOPMENT
ENVIRONMENT BE CONTROLLED OVER THE 30 YEAR LIFETIME?

ESSENTIAL CONSIDERATIONS:

Maintenance is one of the major software costs, and as such, it should
be a prime design driver for the Space Station Information System
(SSIS). The ability to upgrade hard. technology without a major

21

impact to existing software systems is referred to as technology trans~
parency. Software maintenance i{s directly related to technology trans-
parency, since the software organization or structure that promotes
easy maintenance also enhances the degree of software independence from
the hardware. With the magnitude of the Space Station Program and its
expected long life, it is hard to visualize the start of this program

without having technology transparency as a major design goal for SSIS
sof tware.

Technology transparency as it relates to maintenance is found in the
overall software structure. The ease of software maintenance is related
to the type of structure used to develop the system. If the development
approach is one that includes both layers and small modules with clearly
defined interfaces, the problems associated with maintenance are kept to
a wminimum. A layer approach is not new; it was born with the first gen-
eration of machines. However, these early machines generally had only
one layer, and we referred to that layer as the machine language level.
Modern computers usually have 5 layers or levels. The five layers are:

First layer Microprogramming layer
Second layer...... Machine language

Third layer Operating system level
Fourth layer...... Higher Order Languages

Fifth layer User Interface Languages

The selection of the five levels ¥s somewhat arbitrary, but it serves a
purpose in preseating the concept of technology transparency and its
relationship to software. The first 1level consists of microprograms
that are executed directly by the hardware. The microprograms in the
first level are used to decode the machine language instructions in the
second level. The third level, the operating system, is generally writ-
ten in an assembly language and translated by an assembler to a set of
machine lenguage instructions. The operating system is a collection of
program modules that cecntrol the resources of the machine. These
resources include main storage, secondary storage, I/0 devices, and
files. The fourth level consists of programs written 1n languages
designed to be used by application programmers. Such languages are
called by many names including high level languages and problem-oriented
languages. Literally hundreds of different ones exist. A few of the
better known ones are: FORTRAN, COBOL, PASCAL, BASIC, HAL/S, and ADA.
The fifth level, the user interface level, is oriented to the user and
defines how the user interfaces with the machine. This may be done with
a set of cryptic codes, commands, menus, prompts, or a mouse-type de-
vice. The user interface could also include a very high level language
and even a voice recognition device to control the lower levels within
the machine. With a clearly defined interface between the layers, it is
possible to replace layers when the technology of those layers becomes
obsolete. In other words, the user interface programs, operating

22

systems, or the microprocessor could be replaced with minimal impact on
the rest of the system.

RECOMMENDATIONS:

The selection of the microprocessor and operating system is of critical
importance. A microprocessor should not be selected because of unique
requirements, but rather it should be based on a widely used "industrial
standard" microprocessor. When a manufacturer upgrades a widely used
microprocessor, it is far less likely that the next generation will be
incompatible with the old. The interface between the next generation
microprocessors and level one, i.e., the microcode, shoula remain rela-
tively constant. If the next generation microprocessors are not upward

compatible, changes to the microcode could be implemented to maintain
the compatibility with the upper layers.

The selection of the operating system presents different types of prob-
lems. With the selection of an "industrial standard" or one supplied by
the computer wanufacturer, cne generally does not buy the source code or
the right to maintain the operating system. Without the source code or
maintenance agreement, one can be locked into an operating system that
cannot be modified to support unique requirements. Also, the computer
manufacturer may decide to upgrade his system in a manner that is incom-
patible with your existing system, leaving you with an old, outdated,
and non-maintained operating system. The decision to build a unique
operating system 1is also full of problems; for example, the cost of
building and maintaining an operating system over the 1lifetime of the
Space Station will be enormous.

To maintain an operating system or other levels of software for twenty
or more years has never been done. 1If this is to be a goal of the Space
Station Information System, then maintainability must be built into the
system from the start. One way to help insure that the software can be
maintained is to create software using a modular and structured

approach. The modules must be well documented and small, with the
interfaces clearly defined.

Application programs located in the fourth and fifth layers must be
insulated from the effects of changes made to the data, their organiza-
tion, and the physical devices on which they are stored. The term 'data
independence' 1is often used as one of the attributes of a data base.
One must consider the use of a data base and 1its relationship to the
application programs or be faced with numerous changes to the applica-
ticn programs because of changes to the hardware.

23

" N85-20692

24

6. SOFTWARE STANDARDS ISSUES

6.1. Need for Common Terminology

BACKGROUND:

Terminology has always been a problem when discussing software with
people from different work situations and backgrounds. This problem

is very likely due to the relatively young age of the computer/software
industry. People in different parts < the country (and various com-—

panies) began to put "tags" on certain practices that became common
terminology to that group, but certainly not commcn throughout
the software community., As literature about the industrv began to
be sublished, terminology began tc become more common. However,
even :cday there exist considerable differences of opinion as to what
many "common" terms really mean. Working definitions of some c~mmon
terms still mean different things to different software people.

ISSUES: (Joel Wakeland)
NEED FOR COMMON SOFTWARE TERMINOLOGY

(1) DOES THE EXISTING SPACE STATION LEXICON COVER SOFTWARE?

(2) 1I:¢ THE COVERAGE ADEQUATE?
(3) SHOULD THERE BE A SPECIAL SOFTWARE LEXICON?

(4) WHO SHOULD BE RESPONSIBLE FOR A SOFTWARE LEXICON?

ESSENTIAL CONSIDERATIONS:

This phenomenon of common terms having different meanings to different
individuals has been observed numerous times in software meetings
that bhave taken place to date. It is, of course, most prevalent wher
software people from different Centers meet to discuss software 1issues
because of their diverse backgrounds. The only real solutions to
this problem are time and continued communication within the
software community. However, until this happens, a concerted effort
should be made to standardize the key software terminology.

RECOMMENDATIONS :

A concerted effort should be made to standardize key software
terminology as it relates to the Space Station. The document containing
this terminology should be 1included as part of all software RFP
packages. Potential contractors should be required to use this
terminology in thelr proposals as well as in suhgsequent documentation.

The existing Space Station Lexicon (Issue 1, September 14, 1984) does
not address the issue of software terminology. It should! There are
two possible approaches. One is to have a set of software terminology
definitions as a separate section. The other is to have the software
definitions mixed in with the other definitions. The former is con-
sidered to be the preferred method.

The responsibility of developing a space station software lexicon would
best reside with a group of individuals that make up a composite of the
software community within NASA. The obvious candidate with the correct
set of qualifications is the SWWG. However, it is unlikely that those
on the SWWG have the time to take on this task. The most viable
alternative could be a support contractor under the direction of someone

from Headquarters. Here the most likely candidate is probably someone
in the Office of the Chief Engineer.

6.2. Project Directives

BACKGROUND:

In previous NASA space programs, not only have the various NASA Centers
developed their own software project practices/standards, but individual
efforts have also been made at each Center on the same NASA program. To
control cost of ownership for NASA, the Space Station Program must

establish and enforce a single set of software directives across the
project.

Sof tware for the Space Station Program will originate 1in three ways,
namely: (1) from adaptation of existing owned software, (2) from
acquisition of existing commercial software, and (3) from development of
new software. A minimum set of software engineering standards/practices
must be established and enforced across the entire project to ensure
that the end result of integrating all this software is a cost-
effective, easy-to-operate space exploration/utilization system.

ISSUE: (James L. Raney)

WHAT IS THE MINIMUM SET OF SOFTWARE PROJECT PRACTICES/STANDARDS?

ESSENTIAL CONSIDERATIONS:

The joint "lessons learned" of the SWWG must be combined into one common
directive specifying the minimum set of software engineering practices/
standards to be applied to all software, both developed in~house or by
contract and purchased “off-the-shelf” for the Space Station Program.
The complete set of such directives must be applied by each Center in

the preparation and utilization of their Software Management Plan for
the Space Station Program.

25

RECOMMENDATIONS :

The Spa. e Station Program Office must prepare and enforce
management directive,
lowing:

a software
subject to SWWG approval, that provides the fol-

(1) A common software engineering methodology, including:

a. Critical life-cycle events

b. Documentation standards (identity and contents)
c. Structured software only

d. A set of acceptable languages

e. Coding and naming standards

f. Common support software tool set
g. Software development plans

h. Transportable standard format data files

(Note: The Software Management and Assurance effort of the
Chief Engineer's Office is responsible for items a, b & g.

The Space Station Level B Program Office is responsible
for all the others.)

(2) All practices/standards must be in place by end of FY85.

(3) The practices/standards should apply to all test beds.

(4) The practices/standards must address existing hardware/software
systems, such as Space Shuttle and communications satellites that
must interface with the space station.

(5) The practices/standards must address the requirements for security
of data to be handled by the Space Station Information System,

including such various aspects as international, inter-corporate,
political, and defense requirements.

6.3. Software Technology and Portability

BACKGROUND:

The designers of space station software are faced with a plethora of
existing software tools and technologies -- and ideas as yet unrealized
== from which to choose to support an internally compatible, consicstent,
{ntegrated, and maintainanle system. Past development efforts give
recurring lessons: incompatible tools increase the complexity of the
job; tools which work well in prototype (i.e., limited) environments do
not transfer well to operational environments; a useful-looking tool may
not be mature enough for widespread use; a tool may be tightly coupled
with a particular environment and will not easily transfer; wmethodolo-
gles are not chosen early enough, or are not enforced uniformly;
developers do not have adequate experience using chosen technologies.

26

ISSUES: (Dolly Perkins)

(1) WHAT CRITERIA SHOULD BE USED TO SELECT SSIS SOFTWARE TECHNOLOGY
(E.G., SOFTWARE ENGINEERING METHODS AND PRACTICES; STANDARDS FOR
PORTABILITY; PROGRAMMING LANGUAGE; WHETHER TO IMPOSE AN INSTRUCTION
SET ARCHITECTURE; DATA DRIVEN VS. DATA EMBEDDED SOFTWARE)

(2) WHAT CRITERIA SHOULD BE USED FOR TECHNOLOGY CHANGEOVER?
(3) HOW CAN WE MAKE TECHNOLOGY CHANGE TRANSPARENT?
(4) HOW DO WE KEEP CURRENT IN TECHNOLOGY?

ESSENTIAL CONSIDERATIONS:

Experience has shown that upgrades to technology -- both hardware and
software =~ are generally difficult unless the system architecture was
deliberately designed to accommodate them. Typically, the practical
result of not planning for technology change is either high reengineer-

ing cost to upgrade the outdated system components or hard decisions to
keep obsolete parts.

However technologies are chosen, valuable experience can be gained 1if
prototyping of system elements 1is possible. Prototyping can provide
insight into software interface architectures and design, data base
issues, system operation, system performance and human~computer interac-
tions. Rapid and inexpensive experimentation allows concepts and

requirements to be investigated, validated, and reviewed before imple-
mentation.

RECOMMENDATIONS :

(1) The NASA Software Working Group should develop a position paper to

define criteria for choosing appropriate technologies and for
determining when technology change should take place.

(2) The primary means for accomplishing technology transparency should
be through careful layering of system elements. The interfaces
between the layers should be well-defined and rigorously maintained
throughout the system's 1life. With such portable interfaces, the
component parts (the internals of the layers) can be replaced or
modified without affecting any of the surrounding layers.

Choice of breakpoints between layers is critical -- they should be
well-isolated with clean separations. Divisions between portable
(in concept or code) and ron~portable elements are obvious candi-
dates for layer separuations. (In any event, non—portable code
should always be isolated.) Interfaces to operating system ser-

vices are also candidates -~ we should be able to change operating
gystems and machines.

(3) Standards and methodologies for software architecture should
include procedures for creating portable and reusable software.

27

(4) Inputs from experienced and knowledgeable people are critical to
making successful choices. In order to keep current with technol-
ogy, people should be rotated among centers and/or each center
should establish a technology tracking/infusion organization.

ISSUE: (Chuck Lawson - AZ)

APPLICABILITY AND METHODOLOGY OF PORTABILITY AND TRANSFERABILITY FOR THE
SPACE STATION

ESSENTIAL CONSIDERATIONS:

In typical projects with about 10 year durations it is commonly assumed
that software will not be moved across different machines during its
lifetime and thus portability is commonly not considered. When it hap-

pens that software must be moved this is typically very disruptive and
expensive,

With a projected time span of 30 years for the space station it must be
assumed that software developed on one machine will likely be moved to
other machines, with perhaps significantly different architectures, dur-
ing the life of the project. As a result, consideration should be given
to portability and transferability of all software developed as a part
of the Space Station Project.

Portability concerns are not distinct from language and methodology
questions. Portability 1is one 1issue 1in the choice of a programming

language and data file structures. A software development methodology
must take portability into account.

The basic principle of portability is to express the source description
of a computing oprocess at as high a level as possible subject to the
availabiliity of processors that can transform that high level descrip-
tion to executable code on the relevant target machines, some of which
may not be known at the time the source description 1is being written,

Data files must also be designed to facilitate their transfer between
dif ferent systems.

Since transformation processors are complex and expensive, and generally

more so when the source description level is higher, there are trade-
offs that must be faced.

RECOMMENDATIONS :

Tradeof fs should be made on a wide range of options available in choos-

ing (or inventing) the source description language and its associated
transformation processocrs. Some examples are:

(a) Use an ANSI standardized source language such as FORTRAN or Adas.
Then processors (compilers) and programming environments are rela-
tively economically available in the ..arketplace. A drawback is
the fixed domain of expression allowed by an externally

28

standardized language.

(b) Use of an extension of an ANSI standardizcd language with a supple-
mentary preprocessor to transform the extended language to the
standard language. The extended language cuuld, for example, be a
design language or a specification language. Some of the exten-
sions could be for the specific purpose of aiding portability.

(¢) Creation and support of a unique NASA language and set of proces—

sors. This approach provides the greatest potential to achieve the

language of one's dreams but is very expensive to support over the
long haui.

Specific support must be provided to programmers who are expected to
compose portable source descriptions of software. This support must
include courses, manuals, software tools for checking portability, etc.
It must be remembered that programmers are not accustomed to being told
that portability is one cf their goals.

6.4. Languages

BACKGROUND :

There are basically 4 groups of languages which the SDE should support.
They are languages for rec 'rements and specification (such as PSL/PSA),
for design (such as PDL), for development (such as HAL/S) and for spe-
cial applications (such as GOAL). Only the languages for development

will be addressed here. On the languages for development, the following
issues need be considered:

1. Requirements

2. Usage

3. Heritage or reusability
4., FEvolution

5. General & special purpose languages
6. Standardization

7. Assembly language

8. Tools

9. Multilingual environments
10. Distributed processing
11. Transportability

12. Lessons learned

ISSUE: (Ed Ng and Irene Falkenstein - AZ)

LANGUAGES FOR SOFTWARE DEVELOPMENT

29

30

ESSENTIAL CONSIDERATIONS:

1. Requirements

The Space Station Operations Working Group sponsored a study on high
order languages for space station and ground support operations. ("High
Order Languages", 2nd Level White Paper, Space Station Operations Work-
ing Group, July 1983. Study leader: Audvrey Dorofee, NASA KSC.) In the
study high-level requirements for the space station operations have been
compiled, comparison criteria have been defined, and candidate languages
have been described. A similar analysis of requirements 1is necessary

for the development side. Some of the findings of the referenced study
are applicable to development.

2. Use of Languages

In 1979 the Software Standardization Subcommittee of the NASA Inter-
center Committee on ADP issued a report which included a survey of
language use within the NASA family. ("Report of the Software Standard-
ization Committee", NASA Intercenter Committee on ADP, June 1979.) The
findings, not surprisingly, indicated that COBOL, FORTRAN and HAL/S were
the three main high-order languages of predominant use within NASA. Dur-
ing the 5 years since, the languages C, PASCAL and PL/! have probably

made some gains in NASA usage, but there is no sign of a significant
gain.

3. Software Heritage and Reusability

Since the Space Station Program anticipates a 3-decade life cycle, with
at least 1 decade of coexistence with the Space Transportation System
(STS), software heritage is required or desired both within Space Sta-
tion and between the two projects. The long life of the Program imposes
significant challenges on the evolution of the software.

4. Evolution of Languages

High-order langrages have been in existence for about 3 decades. During
this period they evolved very slowly, with breakthroughs few and far
between, The well-known breakthroughs include the abstraction of
expressions 1in the 50's (exemplified by FORTRAN), the abstraction of
control structures in the 60's (exemplified by ALGOL), and the abstrac~-
tion of data structures in the 70's (exemplified by PASCAL and Ada).
Languages also take a long time to be standardized (Ada the major excep-
tion) and to mature. Moreover, even after standardization, non-standard
implementations abound in practice. The implication to Space Station 1s
that flexibility 1is an important factor in the planning. This

flexibility includes the construction of a strategy and bridging tech-
nology for linking the past to the future. One immediate example may be
an Ada transition strategy which assumes the present use of FORTRAN and
HAL/S with proper preparation to adopt Ada at the appropriate time.

5. General and Special Purpose Languages

The selection between special purnose languages and general purpose
languages is a very controversial issue as old as computer languages and
will not be addressed in detail here. The relation of this topic to
space station issues on languages is very relevant. The software needs
of the space station cover a broad range of application areas, from
real-time on-board to ground support to simulation modeling to special
applications sucht as GOAL. Each of these applications areas has special
data processing requirements and the need for particular language
features. Can there be one language general enough to meet the require-
ments of not only the ground and on-board systems but also the special
applicat.ons? If so, what inefficiency costs does this incur and how big
and complex is this general purpose language? If not, then where can the
boundary reasonably be drawn and how many special purpose languages
should be supported (as initfal compiler/tool costs and long-term
maintenance costs may increase substantially with multiple languages and
environments)? This 1issue 1interrelates with standardization, support

tools, and multi-languages issues, and should be addressed in that con~
text.

6. Standardization

The advantages of language standardization include transportability,
uniform training, ease of communication, software sharing, and reduction
in redundant effort. On the other hand, language standards tend to sti-
fle growth and versatility, and tend to introduce considerable language

control effort. NASA's HAL/S and DoD Ada efforts are experiencing both
the advantages and disadvantages.

7. Assembly Language

Assembly language is still a necessary evil, but should be kept to an
absolute minimum. For special cases it gives the programmer almost com-
plete control over what instructions the computer will execute, and how
and when the computer will execute an instruction. Disadvantages to
assembly languages are well-known:

- reduced productivity (3 to 5 times less on average)

- many compilers generate more efficient machine language code
than the average assembly language programmer can write

31

especially on large applications

- assembly language is detalled and errors are more Irequent
and harder to find

- assembly language is not self-documenting, and the
documentation is left up to the programmer

assembly language programs are hard to read and comprehend
~ assembly language 1s a non-structured language

- maintenance is difficult

~ “ew tools exist for detecting errors in assembly language
programs

- assembly language programs are difficul. in terms of
attempting to do V & V

-~ assembly language is machine and operating system dependent,
which makes it difficult to transport

- assemvly language is costly to write, debug, and maintain

8. Tools

The use of tools can aid in the development and management of software
for Space Station, by reducing the cost and time to develop and manage
software. The selection of the tools to be used is important, since the

selection of 1incompatible tools can add to the complexity of the
sof tware and the time needed to develop the software. Some tools are

more language and environment independent, while others are dependent on

a specific language and/or software development env!ronment. Some tools
can be used for developing software on the host, while others are

designed primarily for developing software on target machines.

9. Multilingiual Environments

In developing software for Space Station, most likely several program-
ming languages will be used. Realistically, no one language is optimal
for all applications on all machines (host and target). Also, some
machines (and operating systems) are only compatible with certain
languages or a given version of a language. In selecting the Ilanguage
for an applicatiorn (or module) one needs to consider memory (space)
and/or time (efficiency) constraints, maintainability (availabilicy of
programmers with knowledge in a given language and ease of
programming/debugging), as well as which language(s) are compatible with

32

the sof tware/hardware/network architectire to be used.

10. Distributed Processing

At present, four levels of distribution can be perceived, viz., at the
Agency level, at the Ceater level, at the system level, and at the user
level. 1t is anticipated that Space Station Project activities will
involve national and 1local networking, will use distributed system
architectures, both on board and for ground support, and will witness
near-universal user ownership of intelligent workstations. All this has
significant implications to the selection and evolution of programming
languages.

Tor the user level, advantates and di{sadvantages of dis:ributed process-
ing are:

Advantages ~-
- local user has access to own data, and can update data immediately

- better data security because local users do not have immediate
access to data at other locations

- host computer has to do little editing of data which is nostly done
by the local computers

- distributed processing system is often less expensive than a cen-
tralized system of similar power

- the local system can function even if the host machine goes down
- host has little or nn effect on response time and throughput

- local users have more flexibility in using the local computer as
they require

- improved level of service and response to local needs

Disadvantages ~--

- distributed processing is in its infancy, and there are not many
experiences or experts

= higher risk that the data will be defined and used differently at

each 1location, thus making a centralized data base not useful, and
sharing of data meaningless

- local computeres often have to be programmed in a lower-level

language than the host machine because of time, memory, ¢nd perfor-
mance constraints

33

- the local machine often has language constraints, e.g., must be
programmed in a specific language, or the number of levels of sub-
routines (or programs) that can be performed (or called) within a
given module (application) is limited

11. Transportability

This issue, discussed elsewhere in these proceedings, has significant
implications on the choice of languages.

12. Lessons Learned

The NASA Office of Chief Engineer now sponsors an activity to gather and
organize data on lessons learned about software management within the
NASA family. Though the activity initially emphasizes only the manage-
ment aspects, it may either grow to include more engineering informa-
tion, or may catalyze a parallel activity to gather and organize
engineering information, which is also important to managers.

RECOMMENDATIONS :

(1) On requirements, we should revisit the analysis presented by the
Space Station Operations Working Group, and decide if we should
generalize or extend that stnudy. ("High Order Languages", 2nd Level

White Paper, Space Station Operations Working Group, July 1983.
Study leader: Audrey Dorofee, NASA KSC.)

(2) On standardization, NASA should promote the use of ANSI standards,
avoiding dialectal proliferation.

(2) On language use, we should collect data about the development of
STS to determine evolutionary applications At the same time,
analysis should be performed to project revolutionary applications.

(4) On tools, we should establish the generic requirements of tools and
determine availability. 3Suidelines need to be established for the
selection and assessment of tools. Owing to the long life cycle of
Space Station, tools cannot be entirelv left up to the choice of
the contractors because certain tools (such as configuration
management) have impact on the long-term maintenance activity.

(5) NASA cannot a‘ford to leave multi-language issues for contractors'
choice. There 1is also a long-term maintenance implicatjon. ¥or-
tunately here we are starting with a small list well~-known to NASA,
viz., FORTRAN, COBOL, HAL/S, C, PASCAL, PL/1, and ada. Ac for Ada,
it is too big . movement for NASA to ignore. JSC is currently per-
forming an evaluation of Ada for space station applicability. It is
desirable to have another (or more) organization(s) perform an

assurance function and to plan a transition strategy as a comple-
mentary function to JSC.

34

(6)

(7)

Assembly language should only be wused if the application (or
module) cannot be written 1in a recommended high-level language.
Justification must be documented before assembly language can be
used. The justification must contain the software/hardware/network
and/or performance or other technical constraint(s) existing that
warrant the use of assembly language. Such constraints include:

critical time/space constraints

- efficiency constraints within a given module(s)

- disk controller interface

- special 1/0 interfaces

- block search and transfer

- task dispatching

- context switching, etc.
A 1list of languages used on recent NASA space missions needs to be
compiled. Each language listed needs to be evaluated and its
advantages and disadvantages described. Special consideration
should be placed on the following criteria:

- productivity

maintainability (amount of errors, types of errors, time
and cost of maintenance, etc.)

- self-documenting

- use of computer resources (time and cost)
- performance

- transportability

- reliabiiity

- applications used on

- nrardware used on (compatibility)
- problems with the language
- compatibility with a variety of environments

- compatibility with other languages

35

(8) An evaluation of distributed process! i machines should be made.
The evaluation should include the guage and tools that can be
used on that machine to develop software. Limitations of each
language and operating system need to be identified. A list of
computer languages and desirable language characteristics needs to
be made available. The types of computers and operating systems
shoula allow for the use of structured languages, preferably high-
level languages. The types of computers should have minimum space
(memory) and performance constraints. Applications should be

evaluated to determine how many applications would be better per-
formed on a distributed processing system.

(9) Three other papers are needed to address the other types of
languages: {.e., the languages for requirements and specification,
for design, and for special applications.

6.5. Documentation

BACKGROUND :

Software is defined as documentation plus code. In line with this
definition, experience shows that a minimum set of documentation should
be required for each piece of software to be developed in space station
related projects. The level of detail for each required document may be
based on project needs, project size, project cost, extent of effort,
future wusase and application, or other factors. Documentation require-
ments should be specified in the software management plan and in the
statements of work signed by the contractor.

ISSUVES: (A1 Fang)
(1) WHAT IS THE CRITICAL, MINIMAL SET OF DOCUMENTATION AND WHAT LEVEL
OF DETAIL SHOULD BE SPECIFIED?

(2) DO THE CRITICAL SET OF DOCUMENTS AND LEVEL OF DETAIL VARY WITH
SOFTWARE CATEGORY?

(3) WHAT ACCEPTANCE CRITERIA ARE NEEDED?

ESSENTIAL CONSIDERATIONS:

The number of required documents varies with the category (i.e., criti~
cality) of the software. An excess will raise cost and may not be
necessary. However, to prevent the occurrence of missing or inadequate
documentation, the project manager should identify, by title and func~
tion, basic documents in the software management plan to govern the
software specification including requirements, design, development,
testing (methods, test data, test cases, test results), interface, vali~
dation, integration, verification, maintenance, operation, etc.

36

Emphasis must be placed on keeping documentation current with the code.
Documents generated should be easy to read, understandable, and con-
venient to use. Major acceptance criteria may be:

a) Accuracy: The generated documents must contain no significant
error and must meet the requirements and

b) Adequacy: The generated documents must present adequate
description of the needed information.

Both accuracy and adequacy should be checked and confirmed. Any modifi-
cation of documentation must be approvad. It is convenient to generate
documents on electronic media, and it is easier to maintain ccatrol and
to update if all significant documentation data are stored in a data
base.

RECOMMENDATIONS:

The minimum set of documentation for each major component of software
is:

Operations Concept Document

Software Acquisition Management Plan

Sof tware Requirements Spec

General Design Specs (includes architecture and high
level interfaces)

Requirements Traceability Matrices

Test Plans

Test Specs (includes procedures, data, and analysis)

Data Structure Specs

User's Manual

Interface Specs

Detailed Component Specs

Test Results

7. INFORMATION SYSTEMS ISSUES

N85-20693

A Space Station Project-wide mechanism to document, control, and dissem=
inate program design data required by subsystem implementation efforts
is needed. In evaluating software requirements at the subgsystem imple-
mentation level, each software effort should be required to develop and
maintain a 1ist and schedule of sup :ing data needs to be provided by
other elements in the Space Station Project. A project~level scheme to
coordinate and track these needs is essential to the success of these
contributing subsystems. A project-wide information system should pro-
vide the response information via a computerized mechanism, providing a
single controlled source for all such data. Such information may range
in content from documentation to actual data base sets used directly as

BACKGROUND:

37

an input to the subsystem software (i.e., from design documentation to
telemetry definition files, etc.) This information system will 1likely

consist of a large body of general use space station design data as well

as a range of specific data developed in direct response to {identified
subsystem needs.

ISSUE: (Joe Hennessy)

HOW IS SOFTWARE INFORMATION FLOW TO BE SUPPORTED, CONTROLLED, AND
MANAGED?

RECOMMENDATION:

A centralized computer data base should be established to log
implementation-level data needs and the formal response data to those
needs. The centralized data base should include the following features
and capabilities:

--what information is needed, and when, to implement each
subsystem element
~-automated index and information library
~-accessibility to permit technology transfer to industry
-~capability to’'integrate and incorporate related
data bases and service

ISSUE: (Susan Voigt)

WHAT 1S THE RELATIONSHIP BETWEEN THE SDE AND THE MANAGEMENT AND COMMUNI-
CATION DATA SYSTEM?

BACKGROUND:

The Technical and Management Information System (TMIS), formerly known

as the Management and Communication Data System (MCDS), will be imple-
mented by NASA to support its Space Station Program. TMIS will be a

program-wide electronic information system for SSP management and sys-—
tems engineering, serving both NASA organizations and contractors.

TMIS will be dimplemented primarily with off-the-gshelf thardware and
software, as a distributed network of data processing nodes and intelli-
gent work stations scattered throughout NASA. The first phase will pro-
vide an early basic operational capability; phase 2, ready for use in
mid-1986, will increase the functionality and integration.

The objectives of TMIS are:

a) Provide an electronic means of data communications (project manage-
ment data, engineering data, CAD drawings, text, engineering and
business graphics, presentations, conferencing, wmail, etc) between
all elements of the Space Station Program (SSP).

38

b) Implement controlled data bases and data interchange mechanisms
which will establish an effective/reduced paper environment for the
management and integration of the program.

c) Provide program management, configuration control, security and

other management/analysis and support tools required by the pro-
gram.

d) Provide these services during all phases of the SSP so that they

support the system design, integration, test, and operations, and
so that duplication of capability between technical and management
activities is minimized.

The major functions of TMIS will be:

a) Management of Program Information (budgets, schedules, resource

tracking, configuration control, documentation, problem and
action-item management)

b) Communications (documentation dissemination and interchange, elec-
tronic mail, office automation, interchange of engineering drawings
and data, conference support and presentation interchange)

¢) Engineering Data and Technical Computation Support (SEs&I,

CAD/CAM/CAE, engineering databases, engineering drawings library,
engineering analysis tools)

ESSENTIAL CONSIDERATIONS:

The TMIS is intended to support the engineering and management of the
Space Station Program. TMIS requirements are being developed by the
Level B Space Station Office and they will sponsor its implementation.
The software development environment (SDE), described elsewhere in this
document, will support the specific needs of the software developers.
Many of the facilities to be in the TMIS will be required by the
software development teams, and wherever possible, the SDE users should
use the TMIS for communication and sof tware project management. Details
of the interface and cooperation between the TMIS and the SDE should be

determined and documented prior to selection of an SDE development con-
tractor.

RECOMMENDATION:

Once the SDE has been better defined, it should be discussed with the
Level B TMIS developers to establish the interface between SDE and TMIS
and the support facilities to be provided by TMIS.

Some of the TMIS facilities are also called for in the SDE (and hence

shonld be provided by the TMIS to avoid duplication of effort). These
include

Data Management of software information, documentation, code, test
data, etc.

39

Document Management and Distribution
Management Analysis

Teleconferencing

Technical Workstations

Communications

8. FUTURE OF THE SWWG ISSUE

ISSUE: (John McLeod) N85-20694

WHAT SHOULD BE THE FUTUFE ROLE OF THE SPACE STATION SOFTWARE WORKING
GRouP?

BACKGROUND :

The Space Station Software Working Group (SWWG) was begun in 1983 as a
subcommittee of the Data Management Working Group. Its purpose has been
to identify software issues related to Space Station and provide advice
to the Space Station Technology Steering Committee on software technical
and management concerns. Now that the Space Station Program has been
formally started, many of the other advisory committees that were simi-
lar in function to the SWWG have phased down their activities or have
been absorbed into the formal program structure. The SWWG, in contrast,
has become more active and has served to highlight software issues such

as software management, programming languages, development environments,
user control languages, etc.

The SWWG is the only group specifically addressing software 1issues
related to the Space Station. It brings together software expertise and
experience from all NASA centers. The members presently serve on an

informal basis; their SWWG activities are not part of their job respon-
sibilities. As the Space Station Program develops, it will take more
and more effort on the part of the SWWG members to adequately evaluate
software issues and make recommendations to Program management. The
time has come to evaluate what role the SWWG should have in the Space
Station Program, what resources will be required to fulfill the role,
and how these resources can be supplied.

RECOMMENDATIONS :

(1) The SWWG should have a formal role in the Space Station Program.
Software 1s so critical to the success of the Program that we can-
not afford to ignore software issues until we have problems.

(2) The SWWG could serve as the primary technical resource for the
Level A and B software managers.

40

(3)

(4)

The membership in the SWWG should be stabilized so that long-term
sof tware 1issues can be considered in light of a shared experience
base and to avoid having to constantly familiarize new members with
past history before issues can be addressed.

Adequate funding should be provided so that members of the SWWG can
spend the time required to evaluate the software issuee that arise
without compromising their normal job functions.

41

APPENDIX A

SHUTTLE SOFTWARE PRODUCTION FACILITY

PRECEDING PAGE BEANK NOT FIEMED

43

44

Appendix A

R
gﬁ gl
»ﬁ
\ =
=B
] INTERFACE
Q?- HOST I DEVICE -l—tw‘r %lu
4 i S -
SPF HARDWARE OVERVIEW
‘MANAGE\ENT
SURPORT
TOOLS
CHANGE l SCHEDULES
AUTHORIZATION STATUS
oLANS
CONFIGURATION
MANAGEMENT
DATA
/ r \\
SYSTEM 7 |
SOF TWARE BUILD SYSTEM MISSION MISSION
DEVELOPMENT AND VERIFICATION CONFIGURAT VERFICATION
INTEGRATION

SPF PROCESS OVERVIEW

Appendix A

SPF HARDWARE

(] SUMMARY

- CPU: 28 MIPS, 64 MB

- DASD: 152 GB

- TAPE DRiVES: 43

- PRINTERS: 47,000 LPM (+REMOTE)
TERMINALS: 58 LOCAL, 369 REMOTE

o TERMINALS
- 54 LOCAL TERMINALS
° “RED" ROOM (21)
° “BLACK" ROOM (33)
- 309 REMOTE TEKMINALS
o JSC (74)
184 (139)
FORD AEROSPACE AND COMMUNICATIONS CORP. (62)
COMPUTER SCIENCE COPR. (15)
INTERMETRICS INCORPORATED (2)
KSC (13)
CODDARD (2)
MARSHALL (2)
BARRIOS (6)
MACDAC (11)
HUNTINGTON BFACH (4)
ROCKWELL INTERNATIONAL/DOWNEY (32)
MITRE (7)

T O8O0 cCco00

[- - I -]

° HOST PROCESSORS

- 3033-U16 (1 RED ROOM, 1 BL2AK 100M)
o 16 CHANNELS
o 16 MEGABYTES
[6 MIPS

- 1081-K32 (1 HBLACK ROOM)
o 16 CHANNLLS
0 32 MEGABYTES
[14 HIPS

SPF SOFTWARE

SOFTWARE PRODUCTION FACILIT: CONSISTS OF A NUMBER OF TOOLS
(COMMERCIAL AND CUSTOMIZED)

THESE TOOLS SUPPORT A NUMBER OF FUNCTIONS

- SOFTWARE DEVELOPMENT

- INTEGRATION

- SIMULATION

- ANALYSIS

- OPERATING SYSTEM

- DATA BASE

- MISSION RECONFIGURATION

- OPS PLANNING

- MANAGEMENT

DETAILED PRESENTATION WILL DISCUSS THESE SETS OF TOOLS EXCEPT FOR

THOSE WHICH PERVADE ALL FUNCTIONS (OPERATING SYSTEM, DATA BASE, AND
MANAGEMENT)

46

Appendix A

ANALYSIS

INTECRATION SIMULATION

SOFTWARE
» TEST LANGUAGE DEVELOPMENT .
* AUTOMATED SYSTEM BUILD . MOCELS : ?sstt m%s‘g'«‘ss

© PROGRAM MAMAGTMENT

.
FACILITY DOCUMENTATION,

ANALVSIS AND
STATISTICS SYSTEM
(DASS)

® MASS MEMORY BUILD/
INTEGRATION

~ VEMICLE
- COMMUNICATIONS
~ ENVIRONMENT

OPERATING DATA BACE
SYSTEM
oW SOFTWARE PRODUCTION
o MVS .
FACILITY ConriGuRATION
* Feos o PAYLOADS
4 MISSION _ IPS PLAN
.cxg:":ﬁgsmm RECONFIGURATION |
:gg!lfs:uﬂatr:us .ge{’t’g%li‘[c"ou / o MISSION RECONFIGURATION
« IMPLEMENTATION STATUS TIC SOFT MANAGEMENT SYSTEM
o TEST STATUS
*DATA SECURTY VTt BUIs MR

SOFTWARE OVERVIEW

PMF
I XTI IT [+« 3
MEPECTION
4
2 C D1 -
I CEVELOPENT I
AN ;_‘ mm‘
/ LBRARY
FEQUIREANBNTS 1 R ms
PECF CATIONS ’
S’ 4 ‘ " pridvrerid
- 1 Y RS 1 oo r
W‘, e / ‘ | \mus
‘?' 7 /)
/ aESRTION
l LINAGE
STADADS E _.4 TR
Y CURBNT
DRREMACY / g"“'ﬂ l' J‘
[y 4 sy |
/ TesY
TRy ke
VSRR TMOBEINOINIG S Y x
NT IESTs .
Y
SUALATOR wsT
TEsT o Ay
AN 8T REQIA T
FROCEGSOR

SOFTWARE DEVELOPMENT (FSW/SPF)

N85-20695

APPENDIX B

SOFTWARE TECHNOLOGY WITHIN NASA

47

48

CRICHSL ¢+

OF C S ’
Appendix B POCR Quriei ¥

SUTWARE TECHNOLOGY
WITHIN NAny

o state Of Practice (S0P)
Vs,

o State Of Art (S04A)

NASA SOFTWARE TECHNOLOGY
B SOA vs SOP

SOA

Technology Level

time
time lag for technology transfer
Gap between SOP and SOA

Variance in Practice of Software Technology

>
T e
n oun

ORIGINAL F.. | .

Appendix B OF POOR QUAL:T

POINTS TO BE ADDRESSED

(o

F‘ . ®

o

How big is At (and G - \p) ?
For NASA whati s SOP

What currently 1s 503

Why is (S0A - SOP # 0)
What 1s the o

UNIX Technology Maturation Time

(See ref. 1)

further dissemination
and use

e::lploratory use
and enhancement

transfer to
other hosts

development &
prototyping

>3 years§

8 years

=

years
'

4 years

basic research

>5
years
|

| | 7

1965 1970 1975 1980 1985

49

50

Appendix B

SREM Technology Maturation Time

(See ref. 1)

commercialization y:a:z‘s §
implementation of] 1
ear

belter versn | A

enhancement & r;;

exploratory use years
developmental research I 4 years

& protolyping Y

basic research 3 years

% w0 S s

Smalltalk-80 Technology Maturation Time

(See ref. 1)
marketin >1 §
and saleg] year
preparalion)
for release | years
further development R}
and proloty[l))ing 5 years
development &
prototyping 4 years
basic research > 5 years
I l l |
1965 1970 1975 1980 1985

ORIGINAL Bl
OF POOR QUALITY

Appendix B

What is ap ?

-
m?
p—
o N
e 23
f}ﬁ
2 =
o
<@L
.fLml
!

1Ca

*®

Some Ind
Major Softw

%

. Currently Used *

&

Practice

E

suotjeatjaads Jo
sjusutalinbal [eulloyg

UOTIRIJII3L [RWIO]

ures
rwuesdoad Janyy

siojipne 3apo)

$[00] 189

£doropoyyemr
[elLI0g

sedenduel

usdisep werdor

M%%w%%m

$sd9008 aUI[UY

mummmwmﬁ
[Pas1-qdy

Data from ref, 2,

Appendix B

; immn&s g : ﬁ?mi mf;ﬂ - cofe il = ‘?;mm veri. o W&d - ggwaﬁé e
| e | e s D reay | e e oing
netyis m&ﬁ - mm et anfziﬁ; 1 ‘ﬁ‘m“:‘“‘"‘
pratatyping senerators modding ﬁm*@‘mﬂ;t
it geneeators m

State Of Art

sratured Lode
iy Ceviews

sonti dontral

iy

<

Larriug

mthudilogms

~dpberiytive

it e ahors

- e ~ rinbig - sonied i

- ; = foreng nchioned o factas teehn
fareniam Eegtitg

LR

State 0f Practice

Requirements Design Test & Maintepance Management Support
Spevifications Certification & Operation Acquisilion Eanvirconments

Software Development Data Collection *

HiGH

Type of { [1Resource
Data (Ml Error

Level of Bata Colleried

wlhiln

AVG SPEC. DESIGN CODE TEST MAINT

‘41l installations collect some date

Little data becomes part of corporate memory
Data is ravely evaluated

Canvel use dala accross installabions {terminslogy)

*
Data from ref. 2. ;
ORIGHGAL B0 L

CF POOR QUALITY

(

1

Appendix B

Measuring Impact Of Software Technology

Some Experiences

at

NASA/GSFC

PRODUCTIVITY VARIATION (SLOC/HOUR)!

8 8
L o L o MAX
3 - [f o
BY PROJECT 5k MAX 5~
(ALL CHARGES) i AVG i AVG| 63
2 KX 2 MINT 24
1= 2.1 1= 1.9
() 0
LARGE PROJECY SMALL PROJECT
12~ 12
nk 1l MAX
W= 10}
9} sl
sl MAX gl
BY PERSON 7 7=
PROGRAMMER ONLY) 6| AVG 6l- AVG 10.8
Z B 7.9 : B
3 . 5-4 3 - 5.2
2t 2t
1 | MmN 1| "6“;“
o I 0'9 o PV

LARGE F QJECT

A LARGE PROJECT IS GREATER THAN 20K SLOC.

SMALL PROJECT
PEOPLE ARE THE MOST iIMPORTANT METHODOLOGY

53

NUMBER OF FAILURES PREDICTED

100 =~

Appendix B

COMPARISON OF COST MODELS

ACTUAL PERCENTAGE OF ERROR IN PREDICTION

PROJECT E(anT DOTY PRICES3 TECOLOTE
1 79 +65 +8 -4
2 96 +30 +6 -25
3 40 +65 +6 -8
5 98 +74 0 +3
6 116 +123 +36 +35%
7 9 +52 +14 ~-12
8 99 +127 +7 +36
9 106 - - -

SEL cocomo

-6 -
-22 +1
+93 -

-2 +2
-3 -
-14 -
+14 +853
~-24 +16

SOMETIMES, SOME MODELS WORK WELL

PREDICTING RELIABILITY
(MUSA MAXIMUM LIKELIHOOD METHOD)

PROJECT A

ACTUAL

A 1 i 1

54

0 10 "0 90

100
NUMBER OF FAILURES OBSENVED

120

NUMBER OF FAILURES PREDICTED

PROJECT B

ACTUAL

[l ' 'y i [A A L 1 I 1 Ld

141
0 50 & 7

0 90 100 110 120 120 140 150 V0 170 100 10 200 210 I

NUMBER OF FAILURES OBSERVED

WE DON'T KNOW ENOUGH ABOUT RELIABILITY MODELS

MAN-MONTHS/K SLOC

ERRORS/K ExLOC

! F 14

A LOOK AT IVv&V METHODOLOGY
(BASED ON RESULTS FROM 3 EXPERIMENTS)

MIN

e e vav
44“2]5
2 TS MAX = ==
AVG
MIN 22
1 2.0
16
1.2
0
e COST INCREASED
4 -
MAX
3r
i wav
2}
Avg | 33
23

o RELIABILITY NOT IMPROVED

18

w
o= MAX
es vev
[
2h i
39 0 AVG|76.3
“Ls 68} 74.5
Nu
i~ 66} 68.4
own min | *
w> 64} §2.7
[:
w 62 f
o MORE ERRORS FOUND EARLY
1.2 MAX
on I AVG eV
e 1.0p~===-- mo -—
he
0.8}
ok MIN
| =
38 0 100 | 110 1.02
2 04)
g x 0.68
HO 0.2
0.0

e ERROR CORRECTION COST NOT DIFFERENT

e IF YOU MULTIPLY ERRORS FOUND EARLY BY A LATENCY
FACTOR, IV&V LOOKS GOOD

e IF YOU EXAMINE ALL MEASURES, IV&V LOOKS BAD

55

Appendix B

WHAT HAS BEEN SUCCESSFUL IN ONE ENVIROI\IMENT?

LARGE
PROBLEM mucwaeo
AXIOMATIC STATEMENY ANALYSIS
DESIGN LANGUAGE
CODE
WALK-
THROUGH

AUTOMATED

—_

FLOW

CHARTERS Jf /
U4
U4
FORMAL
% ONFIGURA
(=] DIACAAMS TION MAN-
o DESIGn]| PROGRAMMER AGEMENT
= TEAM
ws
x uNIT
3 DEVELOP-
g MENTY

IIESOIIHCE FOLDER
ESTIMATION

smuuutn mnms
cousmucts
r.uns
mmzms ' &;ﬁc
smucwnso
cune
nssmu
cons rnnmusms
Aunnuns
’l

il

BENEFIY

What's the ©

1. At is BIG !
2. Define where we are (SOP) before going someplace new !
J. Not all 'New Technology' is 'SOA" !

4. Define issues/problems before choosing 'SOA" !
(Right practices for right problems)

56

1'

2.

Aprendix B

REFERENCES

Riddle, William E., The Magic Number Eighteen Plus or Minus Three: A Study
of Software Technology Maturation. ACM SIGSOFT Software Engineering Notes,
vol. 9, no. 2, Apr. 1984, pp. 21-37.

Zelkowitz, V. M., R. T. Yeh, R. G. Hamlet, J. D. Gannon, V.R. Basili, Software

Engineering Practices in the US and Japan. Computer, vol. 17, no. 6, June
1984, pp. 57-66.

57

