
NASA ContractorReport 172281 NASA-CR-172281
19850012417

PASLIBPROGRAMMER'SGUIDEFORTHE FINITE

ELEMENTMACHINE

REVISION2.1-A

Thomas W. Crockett _OR _EFERENCE

KENTRON INTERNATIONAL,INC.
AerospaceTechnologiesDivision
Hampton,Virginia23666

ContractNAS1-16000
April 1984

LIBRARVCOPY
r._AY:1"I 1984

'- LANGLEYRESEARCHCENTER

NAI_A LIBRARY, NASA
P.'_.%:."-TON, VIRGINIA

National Aeronautics and
Space Administration

LangleyResearchCenter
Hampton,Virginia23665

https://ntrs.nasa.gov/search.jsp?R=19850012417 2020-03-20T18:47:08+00:00Z

8

PASLIB Programmer's Guide

Contents

SUMMARY v

i. INTRODUCTION 1

2. PROGRAM CONSIDERATIONS 3

2.1 Writing TI Pascal Programs for Nodal Exec 3

2.2 Floating-point Operations 5
2.3 Linking for Execution on FEM 6

3. SUBROUTINE DESCRIPTIONS 9

3.1 Text Output 11

3.1.1 MSG 12

3.1.2 MSGLN 13
3.1.3 ENDLN 14

3.1.4 NXTLN 15

3.1.5 MSGCH 16

3.1.6 MSGI 17
3.1.7 MSGL 18

3.1.8 MSGR 19

3.1.9 MSGD 20

3.1.10 MSGIH 21

3.1.11 MSGRH 22

3.1.12 MSGDH 23
3.1.13 CWAIT 24

3.2 Interactive Input 25

3.2.1 QUERY 26
3.2.2 RDCH 27

3.2.3 RDH 28

3.2.4 RDI 29

3.2.5 RDR 30

3.3 Data Areas 31

3.3.1 DAPTR 32

3.4 Flags 33

3.4.1 FLGEN 34
3.4.2 FLGDIS 35

3.4.3 FLGRES 36

3.4.4 FLGSET 37

3.4.5 ANY 38
3.4.6 ALL 39

3.4.7 SYNC 40

3.4.8 FIRST 42

3.4.9 BAR 43

i

PASLIB Programmer's Guide

3.5 Am9512 Floating-point Operations 45

3.5 .I ADD 46

3.5.2 SUB 47
3.5.3 MULT 48

3.5.4 DIVD 49

3.5.5 NEG 50
3.5.6 ABS95 51

3.5.7 CMP 52

3.5.8 DADD 53

3.5.9 DSUB 54

3.5.10 DMULT 55

3.5.11 DDIVD 56

3.5.12 DNEG 57
3.5.13 DABS95 58

3.5.14 DCMP 59

3.6 Am9512 Floating-point Constants 60

3.6.1 MAX95 61
3.6.2 MIN95 62

3•6•3 DMAX95 63
3.6.4 DMIN95 64

3.7 Am9512 Floating-point Conversions 65

3.7 .i CV9512 66

3.7.2 CV990 67

3.7.3 FLOATI 68

3.7.4 FLOATL 69
3.7.5 IFIX 70

3.7.6 LFIX 71
3.7.7 SINGLE 72

3.7.8 DV9512 73

3.7.9 DV990 74
3.7 .I0 DFLOTI 75

3.7.11 DFLOTL 76
3.7.12 IFIXD 77

3.7.13 LFIXD 78

3.7.14 DOUBLE 79

3.8 Am9512 Mathematical Subroutines 80

3.8.1 SQRT95 82

3.8.2 DSQRT95 83
3.8.3 VDP 84
3.8.4 DVDP 86

3.8.5 URAN 87

3.8.6 DURAN 89

3.8.7 RANSEED 90

3.8.8 SINE 91

3.8.9 DSINE 92

3.9 Sum/Maximum 93

ii

PASLIB Programmer's Guide

3.10 Neighbor Communications 94

3.10.1 SEND 97

3.10.2 SEND2 99

3.10.3 SENDALL I01
3.10.4 SEND2ALL 102

3.10.5 RECV 104

3.10.6 RECV2 106
3.10.7 IOSMODE 108

3.10.8 GBUSY 109

3.11 Timing II0

3.11.1 XTIME Iii
3.11.2 XTIMEI 112

3.11.3 DLY 114

3.11.4 TSTART 115

3.11.5 TSTOP 116

3.11.6 TREAD 117

3.11.7 TREADI 119

3.12 Processor Identification 121

3.12.1 PSELF 122

3.12.2 LSELF 123

- 4. EFFICIENCY CONSIDERATIONS 125

4.1 Compiler Options 125

4.2 Algorithms and Overhead 126
4.2.1 Workload 126

4.2.2 Problem Partitioning 126

4.2.3 Synchronization 127
4.2.4 Communication 127

5. EXECUTION_ ANALYSIS_ AND DEBUGGING " " 129

5.1 Problem Setup 129

5.2 Execution Control 129

5.3 Debugging 130
5.4 Analysis 130

Append ices

A. EXAMPLE PROGRAM 133
B. EPROM-RESIDENT SUBROUTINES 145

C. SUBROUTINE REFERENCE SHEET 147

iii

PASLIB Programmer's Guide

Figures

2-1 Program Structure for FEM _ 4

2-2 Comparison of TI 990 and Am9512 Floating-point Formats 7
2-3 Link Edit Control File for FEM Execution 8

3-I Constant and Type Declarations for PASLIB Routines 10
3-2 PASLIB Mathematical Subroutines 81

3-3 Sizes of Commonly Used Pascal Data Types 96

iv

PASLIB Programmer's Guide

SUMMARY

The Finite Element Machine (FEM) is an experimental parallel computer

being built at NASA's Langley Research Center to study the application of
concurrent processing to structural engineering analysis. Physically_ FEM is

composed of two major units_ the Array and the Controller. The Array contains

up to 36 autonomous microcomputers_ each capable of executing its own program
on its own data. An elaborate network of special purpose circuitry provides

for communication and synchronization among all of these processors. The
Controller is an off-the-shelf minicomputer augmented with a special interface

to serve as a front-end to the parallel Array.

Three major system software components have been developed for the Finite
Element Machine. A package of user-interface and control software known as

FACS (FEM Array Control Software) resides on the Controller. A specialized
operating system called Nodal Exec is stored in read-only-memory on each of

the processors in the Array. A subroutine library named PASLIB allows users"

programs running on processors in the Array to access the communication and

synchronization hardware_ to perform arithmetic using the floating-point unit
available on each processor, and to obtain services from Nodal Exec.

This report serves two purposes: (i) to document the PASLIB subroutines
and describe their use within the environment provided by Nodal Exec and FACS,

and (2) to outline the procedures necessary for developing efficient programs

for execution on the Array.

r

PASI. IB Pro_;rannmer °s Cui¢le

I. INTRODUCTION

PASLIB is a library of subroutines which facilitate the use of the

special architectural features of the Finite Element Machine. PASLIB
subroutines are invoked by standard procedure and function calls from TI

Pascal programs. Most PASLIB routines are written in assembly language for

efficiency and compactness, although a few are written in Pascal. Some of the

most frequently used PASLIB routines are stored in EPROM on the nodal

processors. (See Appendix B.) This technique reduces the size of the object
code which must be downloaded from the Controller to the Array 9 and allows

more space for the user's programs and data.

This manual describes how to construct TI PaGcal (TIP) programs for

parallel execution on the Finite Element Machine using the PASLIB subroutines.
It assumes that the reader is familiar with TI Pascal, the FEM architecture,

concepts of data and program management on FEM, SCI commands for FEM, and use
of the DXIO operating system. The following references contain most of the

necessary information.

THE FINITE ELEMENT MACHINE PROGRAMMER'S REFERENCE MANUAL

FEM ARRAY CONTROL SOFTWARE (FACS) USER°S GUIDE

FINITE ELEMENT MACHINE PROGRAMMING MEMORANDA

MODEL 990 COMPUTER TI PASCAL REFERENCE MANUAL

MODEL 990 COMPUTER DXI0 TI PASCAL PROGRAMMER'S GUIDE

MODEL 990 COMPUTER DX10 OPERATING SYSTEM, Vols. I - Vl

MODEL 990 COMPUTER LINK EDITOR REFERENCE MANUAL

r

PASLIB Programmer's Guide

2. PROGRAM CONSIDERATIONS

Several considerations are important when writing TI Pascal programs for

execution by processors in the FEM Array. These arise because of hardware and
software differences between the TI 990 minicomputer and the FEM processors.

TI Pascal is intended primarily for use under the DXIO operating system

running on a TI 990 minicomputer. By contrast, processors in the Array are
based on the TMS9900 microprocessor, augmented with an Am9512 floating-polnt

chip and many special hardware features, all under control of the Nodal Exec

operating system. The two main problems which must be addressed are (I)
elimination of any dependencies on DXI0, and (2) conversion of all

floating-point operations from TI 990 software to Am9512 hardware.

2.1 Writing TI Pascal Programs for Nodal Exec

To eliminate any dependencies on the DXI0 operating system9 Pascal

programs must conform to the requirements for stand-alone execution as
described in Chapter 7 of the DX10 TI PASCAL PROGRAMMER'S GUIDE. The most

significant restriction is that none of the standard I/O routines such as READ
and WRITE are available to stand-alone programs. These are partially

compensated for by PASLIB routines which can perform I/O to the Controller
(Sections 3.1 and 3.2), and by data areas which can be used to move

information between the Controller and processors in the Array (Section 3.3).

Another important requirement is on the structure of the program. A dummy

main program is required, and the actual body of the program begins in a

procedure called PSCL$$. Figure 2-1 illustrates the structure of TI Pascal

programs for FEM. The compiler options NO TRACEBACK and NO ASSERTS will
slightly reduce the size of the object code generated for each subroutine,

with no loss of capabilities, since TRACEBACK and ASSERT are not supported

anyway in stand-alone TIP programs. Many other compiler options could be

specified at this point, including WIDELIST, MAP, GLOBALOPT, CKINDEX, etc. The
?COPY statement after the PROGRAM declaration includes constant and type

declarations used by PASLIB routines. These declarations may also be

referenced by user-written code at lower nesting levels. EXTERNAL declarations

for any PASLIB routines referenced by the program must come next.

NOTE

PASLIB routines must be declared at this level to prevent improper

nesting of workspaces on the PASCAL stack. They should not be
declared inside PSCL$$ or at lower levels.

Procedure PSCL$$ is defined next. This is the routine in which execution

begins, and is effectively the main program from the programmer's standpoint.
Declarations and procedures may be nested inside PSCL$$ according to the usual

rules for Pascal. Following PSCL$$, the NO OBJECT option is used to suppress

generation of the empty main program. A complete sample program is shown in
Appendix A.

PASLIB Programmer's Guide

(*$NO TRACEBACK,NO ASSERTS *)

PROGRAM EXAMPLE I;

?COPY SYS1.FEM.PASLIB.UTIL$.TYPDCL

(* external declarations for PASLIB routines go here *)

PROCEDURE PSCL$$;

(* constant, type, variable, procedure, and function *)
(* declarations go here *)

BEGIN

(* actual main program *)

END; (* PSCL$$ *)

BEGIN (* dummy main program *)

(*$NO OBJECT *)
END.

Figure 2-1. Program Structure for FEM

4

PASI. IB Programmer','_ (;u[de

Execution of the program on FEM is not truly stand-alone, since the Nodal

- Exec operating system provides control and many support capabilities. To take
advantage of this, a special runtime system (called N$MAIN) has been developed
to replace the standard P$MAINSA stand-alone runtime system of TI Pascal.

N$MAIN includes the ability to report Pascal errors, to record stack and heap
information in the execution statistics, and to return control to the Nodal

Exec program termination routine (STOP). NSMAIN is included in the link edit
control file in place of P$MAINSA (see Section 2.3).

2.2 Floating-point Operations

Floating-point operations in TI Pascal use 32- and 64-bit numbers in TI

990 format. On the 990/10, these operations are performed by a software

interpreter. The internal representation uses a sign bit, a 7-bit hexadecimal

exponent, and a 24- or 56-bit hexadecimal mantissa. On the FEM processors,

floating-point arithmetic is performed by an Am9512 floating-point chip, which
also accepts 32- and 64-bit operands. However, the Am9512 format is

substantially different from the TI 990 format. For 32-bit numbers, a sign

bit, 8-bit binary exponent, and 24-bit binary mantissa (with the most
significant bit implied) are used; for 64-bit numbers, a sign bit, ll-bit

binary exponent, and 53-bit binary mantissa (MSB implied) are used. Figure 2-2
summarizes the 990 and 9512 floating-point formats.

In order for TI Pascal programs to use the 9512, provisions must be made

to (I) access the 9512 chip rather than the TIP floating-point interpreter,

_ and (2) convert all operands to their 9512 representations. The first

requirement is met somewhat clumsily and inefficiently by using PASLIB
functions for all floating-point operations (Section 3.5). For example, the
Pascal statement

IF (X*Y+Z) <= A THEN

becomes

IF CMP(ADD(MULT(X,Y),Z),A) <= 0 THEN

for execution on the Array. To satisfy the second requirement, conversion

routines are provided for switching between 9512-format numbers and the scalar

types INTEGER, LONGINT, REAL, and REAL(16) (Section 3.7). The programmer must
convert all program constants and data which originated on the TI 990 to 9512
format before using them. For example,

VAR X:REAL(16);

X:=2.0*I7.5QI0;

becomes

VAR R2:REAL;

X,DI7_5QI0:REAL(16);

PASLIB Programmer's Guide

R2 :=cv9512(2.0) ;

DI7_5QIO :=DV9512(17.5QIO) ;

x :=MULT(DOUBLE(R2),D17_5QI0) ;

when using 9512 arithmetic•

NOTE

Since there appears to be no satisfactory technique in TI Pascal for

declaring Am9512 numbers to be distinct from type REAL, it is the

programmer's responsibility to ensure that floating-point numbers

are in the correct format for the operation to be performed•

2.3 Linking for Execution on FEM

A sample llnk edit control file for Pascal programs to be run on FEM is

shown in Figure 2-3• This file is available online as

SYS1.FEM.PASLIB.UTIL$.LINKCTRL. The Nodal Exec loader will accept compressed

format object code only. The use of compressed object code saves disk space on
the Controller and significantly reduces the time required to download

programs• Failure to use compressed format object code will cause the loader

to generate an error message_ and the load will be aborted• The program must
be linked to PASLIB as well as to the standard TIP libraries• Note that the

LIBRARY statements must be specified in the order shown so that the proper

routines are included• INCLUDE statements are necessary for the Pascal runtime
system (NSMAIN) and the program object code file from the TIP compiler• Stack

and heap space are specified by including modules called STK$n and HP$n, where

"n" is the number of 1024-byte blocks of memory to be allocated• If no heap is
required, use HP$0.

PASLIB Programmer's Cuide

TI 990 Am9512

SINGLE PRECISION

+--+ 4 F +--+ 4 .

!s! exp ! mantissa ! !s! exp ! mantissa !
+_+ _ + +--+ 4 +

0 1 7 8 31 0 1 8 9 31

Hexadecimal exponent Binary exponent
Bias: 64 Bias: 127
Max: 10"'75 Max: 10"'38

Min: 10"*(-78) Min: 10"*(-38)

Hexadecimal mantissa Binary mantissa with
Precision: 21-24 bits implied MSB

Normalization: 0.x (hex) Precision: 24 bits
Normalization: l.x (bin)

DOUBLE PRECISION

, + +-+ +.......... +

!s! exp ! mantissa ! !s! exp ! mantissa !
+--+..... 4 . +--+..... + +

0 1 7 8 63 0 1 11 12 63

llexadecimal exponent Binary exponent
Bias: 64 Bias: 1023

Max: 10"'75 Max: 10"'307

Min: 10"*(-78) Min: 10"*(-308)

Hexadecimal mantissa Binary mantissa with

Precision: 53-56 bits implied MSB

Normalization: 0.x (hex) Precision: 53 bits
Normalization: l.x (bin)

Figure 2-2. Comparison of TI 990 and Am9512
Floating-point Formats

PASLIB Programmer's Guide

NOSYMT
FORMAT COMPRESSED

LIBRARY SYSI .TIP.MINOBJ

LIBRARY SYSI.TIP.LUNOBJ

LIBRARY SYSI .TIP.OBJ

LIBRARY SYSI •FEM.PASLIB

PIIASE O,<program name>
INCLUDE (N$MAIN)

INCLUDE <program object code file from compiler>
INCLUDE (STK$n)

INCLUDE (HP$n)
END

Figure 2-3. Link Edit Control File for FEM Execution

PASLIB Programmer's Guide

3. SUBROUTINE DESCRIPTIONS

The following information is given for each of the PASLIB subroutines:

Purpose: Why the routine exists.

Declaration: The EXTERNAL declaration which must be used to reference
the subroutine.

Description: What the routine does and how it does it.

Arguments: A description of each of the arguments.

Warnings/Limltations: Ways to get into trouble with this routine.

Application notes: Typical ways to use the routine.

Usage example: A program fragment demonstrating how the routine is
invoked.

For functions_ an additional item is given:

Function result: A description of the value returned by the function.

The declarations for PASLIB routines use several data types which are shown in
Figure 3-1. These constant and type declarations are available online in
SYSloFEMoPASLIB.UTIL$.TYPDCLo The subroutine declarations are summarized for

quick reference in Appendix C, and are also available online in
SYSI.FEM.PASLIB.UTIL$.PASDCL.

9

PASLIB Programmer's Guide

{ Type Declarations for PASLIB V2.1 }

{ OCT 12, 1983 TWC }

CONST MAXIDX=255; { maximum neighbor I/0 index tag }

MAXREC=255; { maximum record length for nbr I/O }
MAXNODE=36; { maximum node number }

MAXDA=31; { maximum data area number }

MAXINT=32767; { maximum integer }
SYSFLAG=I; { system flag }

TYPE NODE = I..MAXNODE; { neighbors }

IDX = I..MAXIDX; { index tags }

RECLEN = I..MAXREC; { neighbor I/O record length }
DANUM = 0..MAXDA; { data area numbers }

FLAG = 0..7; { signal flags }

ADDR = INTEGER; { integer used as an address }

POSINT = I..MAXINT; { positive integer }

Figure 3-1. Constant and Type Declarations for PASLIB Routines.

i0

PASLIB Programmer °s Guide

3.1 Text Output

Programs on FEM may produce output to the Controller in two ways, (i)
ASCII text which {s transmitted to the Controller during program execution,

and (2) b{nary data which {s stored in a data area for subsequent uploading by
the Controller. Text output is most useful for debug messages, prompts, and

printed results, while data areas should be used for larger blocks of binary
data (Section 3.3).

Lines of text are built up by making successive calls to the text output

routines, analogous to the way lines are extended by the Pascal WRITE

procedure. A line Js terminated by a call to an end-of-line routine (ENDLN,

NXTLN, MSGLN, or QUERY), which sends a signal to the Controller to close out
the current line and begin a new one. The maximum line length is defined by
the Controller software to be 80 characters, although automat{c wrap-around is

performed for lines which exceed that length. Refer to the FEM ARRAY CONTROL
SOFTWARE USER'S GUIDE for more information about processing of text from the

Array.

II

PASLIB Programmer's Guide

3.1.1 MSG

Purpose:

Write an ASCII character string to the Controller.

Declaration:

PROCEDURE MSG(STRING:PACKED ARRAY [i..?] OF CHAR);EXTERNAL;

Description:

The contents of STRING are moved to an output buffer which is placed on

the global send queue with the Controller specified as the destination.

Arguments:

STRING - Either a character string enclosed in quotes or a variable
defined to be PACKED ARRAY OF CIIAR.

Warnings/Limitations:

STRING must be at least 2 characters in length and must not exceed 255
characters in length.

Application notes:

Use this routine to write character data to the Controller whenever an

immediate end-of-line is not desired (see MSGLN). MSG should also be used

to prompt for interactive input (Section 3.2).

Usage example:

MSG('TIIE VALUE OF X = "); MSCR(X); NXTLN;

12

PASLIB Programmer's Guide

3.1.2 MSGLN

Purpose:

Write an ASCII character string to the Controller and terminate the
current line of text.

Declaration:

PROCEDURE MSGLN(STRING:PACKED ARRAY [I..?] OF CHAR);

EXTERNAL;

Description:

The contents of STRING are queued for output followed by an EOL

(end-of-line) indicator. The destination is the Controller. MSGLN is

equivalent to MSG followed by ENDLN(1).

Arguments:

STRING - Either a character string enclosed in quotes or a variable

defined to be PACKED ARRAY OF CHAR.

Warnings/Limitations:

STRING must be at least 2 characters in length and must not exceed 255

- characters in length.

Application notes:

Use MSGLN to write character data to the Controller and close out the
current line.

Usage example:

MSGLN('This is a complete line of text.');

13

PASLIB Programmer's Guide

3 • I .3 I':NI)I,N

l'urpos e :

Terminate the current line of text and advance one or more lines.

Declaration:

PROCEDURE ENDLN(N:POSINT) ;EXTERNAL;

Description:

N end-of-line (EOL) indicators are queued for output to the Controller.
Each EOL terminates the current line of text and advances to the next

line. ENDLN can be used to control line spacing; ENDLN(1) is single
spacing, ENDLN(2) is double spacing 9 etc.

Argument s :

N - A positive integer specifying the line spacing following the
current line.

Warnings/Limi tat ions :

Large values of N are not recommended.

Application notes:

Use ENDLN to terminate a line of text and control spacing to the next
line of text.

Usage example:

MSG('DOUBLE SPACING EXAMPLE'); ENDLN(2);

MSGLN('TIIIS LINE IS PRECEDED BY A BLANK LINE');

14

PASLIB Programmer's Guide

_-. 3.1.4 NXTLN

Purpose:

Terminate the current llne of text and advance to the next line.

Declaration:

PROCEDURE NXTLN;EXTERNAL;

Description:

An EOL indicator is queued for output to the Controller. NXTLN is

equivalent to ENDLN(1).

Arguments:

None.

Warnings/Limitations:

None.

Application notes:

Use NXTLN to terminate the current line of text when single spacing is

- desired.

Usage example:

MSG('I = "); MSGI(1); MSG(', J = '); MSGI(J); NXTLN;

15

PASLIB Programmer's Guide

3.1.5 MSGCH

Purpose:

Write a single ASCII character to the current line of output text.

Declaration:

PROCEDURE MSGCII(CH:CIIAR);EXTERNAL;

Description:

CH is queued for output to the Controller.

Arguments:

CH - A constant, variable, or expression of type CHAR.

Warnings/Limitations:

Repeated calls to MSGCH are less efficient than a single call to MSG or
MSGLN.

Application notes:

Use MSGCII whenever a single character must be written to the current line

of output text. If several consecutive characters must be written_ use

one of the character string routines, MSG or MSGLN.

Usage example:

BUF EFFICIENCY:=SUCCESS DIV ATTEMPT;
MSG_'Buffer allocation efficiency = ");

MSGI(BUF EFFICIENCY) ; MSGCII('%'); ENDLN(2) ;

16

PASLIB Programmer's Guide

3 .i.6 MSGI

Purpose :

Write an integer to the current line of output text.

Declaration:

PROCEDURE MSGI(I:INTEGER);EXTERNAL;

Description:

I is converted from a 16-bit binary integer into its decimal ASCII

representation, and the resulting string is queued for output to the
Controller. The numeric characters are right-justified in a 6-character

field with leading blanks•

Argument s:

I - An integer variable, constant, or expression•

Warnings/Limitations :

None.

Application notes:

Use MSGI to write integer values in lines of text.

Usage example:

VAR J:INTEGER;

J:= ... ;

MSG('Result = "); MSGI(5*J); NXTLN;

F

17

PASLIB Programmer's Guide

3•I.7 MSGL

Purpose :

Write a long integer to the current line of output text.

Declaration:

PROCEDURE MSGL(I:LONGINT) ;EXTERNAL;

Description:

I is converted from a 32-bit binary integer into its decimal ASCII

representation_ and the resulting string is queued for output to the
Controller• The numeric characters are right justified in an ll-character
field with leading blanks.

Arguments :

I - A variable, constant, or expression of type LONGINT.

Warnings/Limi rations :

None.

Application notes:

Use MSGL to write LONGINT values in lines of text.

Usage example:

CONST MINLINT = -2147483648L;

MSG('Minimum long integer = "); MSGL(MINLINT); NXTLN;

18

PASLIB Programmer's Guide

3 .I.8 MSGR

Purpose:

Write a single precision floating-point number in 9512-format to the
current line of output text.

Declaration:

PROCEDURE MSGR(X:REAL);EXTERNAL;

Description:

X is converted from a 32-bit 9512-format value to a 13-character string
of the form

nd.ddddddEsdd

where n is "-" or blank_ d is a decimal digit, and s is "+" or "-". If X

equals zero_ the output string is "0.0" with one leading and nine
trailing blanks. The string is queued for output to the Controller.

Arguments:

X - A single precision 9512-format variable or expression of type
REAL.

Warnings/Limitations:

X must be in Am9512 format.

Application notes:

Use MSGR to write single precision floating-point values in lines of
text.

Usage example:

VAR PI_TWO:REAL;

.o.

PI:=CV9512(3.141593);

TWO:=CV9512(2.0);

MSG('PI/2 = "); MSGR(DIVD(PI,TWO)); NXTLN;

19

PASLIB Programmer's Guide

3.1.9 MSGD

Purpose:

Write a double precision floating-point number in 9512-format to the
current line of output text.

Declaration:

PROCEDURE MSGD(X:REAL(16));EXTERNAL;

Description:

X is converted from a 64-bit 9512-format value to a 22-character string
of the form

nd.ddddddddddddddDsddd

where n is "-" or blank, d is a decimal digit, and s is "+" or "-". If X

equals zero, the string is "0.0" with one leading and 18 trailing blanks.
The string is queued for output to the Controller.

Arguments:

X - A double precision 9512-format variable or expression of type
REAL(|6).

Warnings/Limitations:

X must be in Am9512 format.

t

Application notes:

Use MSGD to write double precision floating-point values in lines of
text.

Usage example:

VAR BB,A:REAL(16);

MSG('BB = "); MSGD(BB); MSG(" BC = ");
MSGD(DDIVD(BB,A)); NXTLN;

20

PASLIB Programmer's Guide

3.1.10 MSGIH

Purpose:

Write the hexadecimal representation of an integer to the current llne of

output text.

Declaration:

PROCEDURE MSGIH(I:INTEGER);EXTERNAL;

Description:

I is converted to a string of four hexadecimal digits, and the string is

queued for output to the Controller.

Arguments:

I - A variable9 expressio n, or constant of type INTEGER.

Warnings/Limitations:

None.

Application notes:

This routine is primarily useful in diagnostic programming or other

applications where the bit pattern is of interest.

Usage example:

MSG('I = DECIMAL "); MSGI(1) ;

MSG(', HEX "); MSGIH(1); NXTLN;

F

21

PASLIB Programmer's Guide

3.1.11 MSGRH

Purpose:

Write the hexadecimal representation of a single precision floatlng-point
number to the current line of output text.

Declaration:

PROCEDURE MSGRH(X:REAL);EXTERNAL;

Description:

X is converted to an unformatted string of eight hexadecimal digits_ and

the string is queued for output to the Controller. X may be in either 990
or 9512 format.

Arguments:

X - A constant_ var{able, or expression of type REAL.

Warnings/Limitations:

None.

Application notes:

MSGRH is primarily useful in diagnostic and systems programming.

Usage example:

MSG('EXPECTED = "); MSGRII(XI);
MSG('RECEIVED = "); MSGRH(X2); NXTLN;

22

PASLIB Programmer's Guide

3. I .1 2 MSGDtl

Purpose :

Write the hexadecimal representation of a double precision floating-point
number to the current line of output text•

Declaration:

PROCEDURE MSGDH(X:REAL(16));EXTERNAL;

Description:

X is converted to an unformatted string of 16 hexadecimal digits, and the

string is queued for output to the Controller. X may be in either 990 or
9512 format.

Arguments :

X - A constant, variable, or expression of type REAL(16).

Wa rnings/Limi tations :

None.

Application notes:

MSGDH is primarily useful in diagnostic and systems programming.

Usage example:

VAR QI_O:REAL(16) ;

Q1 0:=DV9512(I.0Q0);
MSGLN('Internal Representation of 1.0Q0");

MSC(" 990 FORMAT: "); MSGDII(I.0Q0);

MSG(" 9512 FORMAT: ") ; MSGDII(QI_0) ; ENDLN(2) ;

F

23

I'ASI_IB Programmer's Guide

3.1.13 CWAIT

Purpose:

Following a text output operation to the Controller, delay the program
until the Controller has had a chance to receive and process the text.

Declaration:

PROCEDURE CWAIT;EXTERNAL;

Description:

CWAIT waits until all of the buffers on the global output list have been

put into the hardware output FIFO. It then executes a delay which is long

enough for the Controller to receive and process all of the data. The

delay time is based on a conservative estimate of the time required for
the Controller to receive and process 64 words of text when a single

processor is transmitting to the Controller. At the end of the delay,

control is returned to the calling program.

Arguments:

None.

Warnings/Limitations:

The delay time assumes that only a single processor is transmitting to

the Controller. If more than one processor is transmitting, the delay

could be too short, thereby allowing the calling program to proceed

prematurely.

Application notes:

Use CWAIT for cooperative messages generated by multiple processors. This

technique can be used to order the arrival of messages on the Controller

so that post-sorting of the text is not necessary.

Usage example:

FOR I:=FIRST NODE TO LAST NODE DO

BEGIN

BAR(REPORT FLAG);
IF I = LSELF THEN

BEGIN

MSG('Node "); MSGI(1); NXTLN;

MSG('Displacement = "); MSGR(DSPL); ENDLN(2);
CWAIT

END

END;

24

PASLII_ Programmer °s Guide

3.2 Interactive Input

Pascal programs running on FEM may be written to interact with a user,

subject to certain restrictions. The program must first signal the Controller
that it wants input from the terminal; this is called a "query" operation, and

is supported by the QUERY subroutine. A query operation must take place
- simultaneously on all active processors in the Array, and all processors must

expect the same input. This restriction is necessary to prevent a user from
having to respond to many (potentially 36) requests_ each expecting possibly

different input. To ensure that a query is performed cooperatively, the QUERY

routine internally performs a barrier operation using the system flag (flag

i). This implies that the program must be written so that all active

processors will perform each query operation.

Upon reception of a query, the Controller terminates the current line of

output text for each processor, and prompts the user for input at the terminal

by displaying a "?" at the beginning of the next line. The user must enter the

appropriate response, followed by a carriage return. The line of input text
(excluding the leading "?") is then broadcast to all active processors for
evaluation. The numeric input routines RDIIy RDI9 and RDR include error

recovery procedures which will re-prompt the user for input in the event of an

illegal or missing value. Only one call to RDH_ RDI, or RDR should be issued

for each call to QUERY.

Interactive input is primarily useful for entering parameter values which

are the same on all processors and vary from run to run. Data areas (Section

3.3) should be used instead for input which (i) differs from processor to

processor_ (2) is stored on Controller files, (3) is constant from run to run,
or (4) consists of more than a few values.

IF

25

PASI, IB Programmer's Cuide

3.2.1 QUERY

Purpose:

Signals the Controller that the program running on the Array desires

input from the terminal.

Declaration:

PROCEDURE QUERY;EXTERNAL;

Description:

All active processors are synchronized by a barrier operation on SYSFLAG

(flag I). A query request is then queued for output to the Controller. A

query implies an end-of-line (EOL).

Arguments:

None.

Warnings/Limitations:

All active processors must participate in every query operation.

Application notes:

Use QUERY to request interactive input in those situations in which all

processors wish to receive the same value.

Usage example:

MSG('Enter the initial guess:'); QUERY;

INITIAL:=RDR;

26

PASLIB Programmer's Cuide

3.2.2 RDCH

Purpose:

Read a character from the terminal.

" Declaration:

FUNCTION RDCH:CHAR;EXTERNAL;

Description:

Return the next character from the line of input text which was broadcast

from the Controller. Multiple calls to RDCEI may be made for each call to

QUERY. A carriage return (CR, >0D) is always the last character in the

line 9 and is returned just like any other character. If no input is

available, RDCII will wait indefinitely.

Arguments:

None.

Function result:

The next character in the line of input text from the Controller.

f- Warnings/Limitations:

A call to QUERY must be made to obtain a line of input text.

The CR character must be used to check for end-of-line. An attempt to

read past CR will cause the program to wait forever for input.

Application notes:

Use RDCH to parse lines of input text from the Controller.

Usage example:

MSG('Press RETURN to continue...'); QUERY;

CIt:=RDCH;

27

PASLIB Programmer's Guide

3.2.3 RD|I

Purpose:

Read a hexadecimal value from the terminal.

Declaration:

FUNCTION RDH:INTEGER;EXTERNAL;

Description:

Parses a line of input text containing hexadecimal digits and returns an

integer value. The input string may contain from I to 4 hex digits
("O"..."9","A"..."F"). If more than 4 digits are entered, only the 4

least significant digits are used. If the input string is empty or has

illegal hex input, a message is issued and the user is re-prompted for

the input.

Arguments:

None.

Function result:

A 16-bit two's complement integer value.

Warnings/Limitations:

A call to QUERY must precede a call to RDH.

Only one call to RDH should be made for each QUERY.

Application notes:

RDII is primarily useful in diagnostic programs and other system software
applications.

Usage example :

MSG('ENTER TEST PATTERN: "); QUERY;

DATA:=RDH;

28

PASLIB Programmer's Guide

3.2.4 RDI

Purpose:

Read an integer from the terminal.

- Declaration:

FUNCTION RDI:INTEGER;EXTERNAL;

Description:

Parses a line of input text and returns an integer value. If the line of

text is empty or has illegal integer input_ a message is issued and the

user is re-prompted for the input.

Arguments:

None.

Function result:

A 16-bit integer value.

Warnings/Limitations:

A call to QUERY must precede a call to RDI.

Only one call to RDI should be made for each QUERY.

Application notes:

Use RDI to read an integer from the user's terminal.

Usage example:

MSG('ENTER N:'); QUERY;

N:=RDI;

29

PASLIB Programmer'a Guide

3.2.5 RDR

Purpose :

Read a single precision floating-point number from the terminal,

Declaration:

FUNCTION RDR: REAL; EXTERNAL ;

Description:

Parses a line of input text and returns a single precision floating-point

value in 9512 format. If the line of text is empty or has illegal

floating-point input, a message is issued and the user is re-prompted for

the input. Allowable input formats include

sdddddddd

sdddd.dddd

sdddd.ddddEsdd

sddddddddEsdd

where s is either "+"_ "-"y or omitted_ and d is a decimal digit. One or

more digits may be entered_ but only the first eight are significant. A

digit must precede the decimal point.

Arguments : A

None.

Function result:

A 32-blt floatlng-point number in Am9512 single precision format.

Warnings/Limi rations :

A call to QUERY must precede a call to RDR.

Only one call to RDR should be made for each QUERY.

The program must be expecting a 9512-format number rather than a
990-format number.

Application notes:

Use RDR to read a REAL number from the user's terminal.

Usage example:

MSG('Enter convergence criterion'); QUERY;

CVRG :=RDR;

30

PASLIB Programmer's Guide

3.3 Data Areas

Data areas are referenced from Pascal programs via pointer variables. A

type transfer is used in conjunction with the DAPTR routlne to obtain the

address of a specific data area. The standard Pascal routines NEW and DISPOSE
should not be used with data area pointers. Data areas 0 - 3 are reserved for

" use by the system as follows:

0 - list of physical neighbors

1 - loglcal-to-physical mapping
2 - llst of logical neighbors
3 - reserved for future use.

Data areas 4 - 31 are available to user programs.

Data areas are defined, downloaded, and uploaded from the Controller. See

the FACS User's Guide for more information.

31

PASLIB Programmer's Guide

3.3.1 DAPTR

Purpose: 4

Obtain the address of a data area.

Declaration:

FUNCTION DAPTR(DA:DANUM):ADDR;EXTERNAL;

Description:

The address of the specified data area is obtained from the data area

table_ and the length of the descriptor is added to obtain a pointer to
the data.

Arguments:

DA - An integer data area number in the range 0..MAXDA.

Function result:

The address of the data portion of the specified data area.

Warnings/Limitations:

Data area DA must be defined.

A type transfer is needed to assign the function result to a pointer
variable.

Data areas 0 - 3 are reserved for use by the system•

Application notes:

Use DAPTR to map Pascal program data structures onto data areas.

Usage example:

TYPE DA4 = ARRAY [i..12,1..12] OF REAL;

DA4PTR = @DA4 ;

VAR KDATA :DA4PTR;

KDATA ::ADDR :=DAPTR(4);
FOR 1:=I TO 12 DO

FOR J:=l TO 12 DO

KDATA@ [I,J] :=CV9 512 (KDATA@ [I,J]);

32

PASI°IB Programmer's Guide

3.4 Flags

The flag network can be used for a variety of signaling and

synchronlzat{on needs. There are eight flags, numbered 0 through 7. Flag 0 is

unique since it is the only flag which supports the FIRST signal. Flag I is

reserved for use by the system (SYSFLAG), although there are circumstances

- where it can be used for synchronization (barriers) in user programs.

At the beginning of program execution, all flags except SYSFLAG have been

disabled by Nodal Exec. SYSFLAG is enabled and reset. On inactive (OFF)

processors and on the Controller, all flags {nciuding SYSFLAG are disabled.
Before any of the flags may be used, they must be enabled and either set or
reset so that a known state exists in the flag network. As shown in the

following example, SYSFLAG may be used [o synchronize this operation across
all of the active processors. The example assumes that only flags 2 and 3 will

be used by the program.

FLGEN(2); FLGRES(2); (* Enable and reset flag 2 *)

FLGEN(3); FLGSET(3); (* Enable and set flag 3 *)

BAR(SYSFLAG); (* Wait for all processors to catch up *)

The system flag is also used by Nodal Exec in the QUERY routine, the program

initiation and termination routines (EXEC and STOP), and the CONNECT command.

NOTE

When a program terminates, all flags on that processor, except

SYSFLAG, are disabled. This effectively removes terminated

processors from the flag network. In cases where processors

terminate at different times_ and the final state of the flags must

be maintained until all processors have terminated, a flag barrier

should be placed immediately preceding the END statement for

procedure PSCL$$. This will ensure that all processors terminate

together, and do not disable their flags prematurely.

33

PASLIB Programmer's Guide

3.4.1 FLGEN

Purpose:

Enable a given flag on this processor.

Declaration:

PROCEDURE FLGEN(F:FLAG);EXTERNAL;

Description:

Flag F is enabled on the processor on which the routine is executed.

Arguments:

F - A eonstant_ variable_ or expression of type FLAG.

Warnings/Limitations:

FLGEN should not be used on SYSFLAG.

The status of a flag which has been disabled should be considered to be

undefined following a FLGEN until a FLGRES or FLGSET is performed.

Application notes:

Use FLGEN to enable a flag for subsequent use_ or to re-enable a flag

which has been disabled for some reason. With the exception of SYSFLAG,

all flags must be enabled before they can be set or reset.

Usage example:

FOR F IN [0,2..7] DO

FLGEN(F) ;

34

PASLIB Programmer's Guide

3.4.2 FLGD IS

Purpose :

Disable a given flag on this processor.

- Declaration:

PROCEDURE FLGDIS(F :FLAG) ;EXTERNAL;

Description:

Flag F is disabled on the processor on which the routine is executed.

Arguments:

F - A constant, variable, or expression of type FLAG.

Warnings/Limitations:

FLGDIS should not be used on SYSFLAG.

Application notes:

Use FLGDIS (in conjunction with FLGEN) to dynamically control a

processor's contributions to the flag network. For example, a program

_- might need to be contributing to a flag signal during one portion of its
code r but not during another portion.

Usage example:

IF LSELF < (NNODES/2) THEN

FLGDIS(4+(LSELF MOD 2));

35

PASLIB Programmer's Guide

3.4.3 FLGRES

Purpose:

Reset a given flag on this processor.

Declaration:

PROCEDURE FLGRES(F :FLAG) ;EXTERNAL;

Description:

Flag F is reset (cleared) on the processor on which the routine is
exe cuted.

Argument s:

F - A constant, variable, or expression of type FLAG.

Wa rnings/Limi tations :

Flag F must be enabled.

FLGRES should not be used on SYSFLAG.

Application notes:

Use FLGRES to signal the absence of some condition on a processor.

Usage example:

IF NOT CONVERGED TIIEN

FLGRES(CVG FLAG) ;

36

PASLIB Programmer's Guide

3.4.4 FLGSET

Purpose:

Set a given flag on this processor.

- Declaration:

PROCEDURE FLGSET(F:FLAG);EXTERNAL;

Description:

Flag F is set on the processor on which the routine is executed•

Arguments:

F - A constant_ variable, or expression of type FLAG.

Warnings/Limitations:

Flag F must be enabled•

FLGSET should not be used on SYSFLAG.

Application notes:

Use FLGSET to indicate the presence of some condition on a processor.

Usage example:

FLGSET(2);

IF ALL(2) THEN

F

37

PASLIB Programmer's Guide

3.4.5 ANY

Purpose :

Test the Any signal for a given flag.

Declaration:

FUNCTION ANY(F:FLAG):BOOLEAN;EXTERNAL;

Description:

The ANY routine tests the status of the global flag signal Any for flag

F. If one or more processors with flag F enabled also have flag F set_

then ANY returns a value of TRUE; otherwise ANY returns FALSE.

Arguments:

F - A constant_ variable_ or expression of type FLAG.

Function result:

A Boolean value indicating the status of Any for flag F.

Warnings/Limitations:

None.

Application notes:

Use ANY to determine if some condition exists on one or more of the

participating processors.

Usage example:

IF ANY(ERR FLAG) THEN

MSGLN('*** Errors detected in assembly phase');

38

PASLIB Programmer's Guide

3.4.6 ALL

Purpose:

Test the All signal for a given flag.

Declaration:

FUNCTION ALL(F:FLAG):BOOLEAN;EXTERNAL;

Description:

The ALL routine tests the status of the global flag signal All for flag
F. If every processor with flag F enabled also has flag F set_ then ALL
returns a value of TRUE; otherwise ALL returns FALSE.

Arguments:

F - A constant_ variable, or expression of type FLAG.

Function result:

A Boolean value indicating the status of All for flag F.

Warnings/Limitations:

._-_ None.

Application notes:

Use ALL to determine if some condition exists on every participating

processor.

Usage example:

WHILE NOT ALL(7) DO

BEGIN

END;

39

PASLIB Programmer's Guide

3.4.7 SYNC

Purpose:

Test the Sync signal for a given flag.

Declaration:

FUNCTION SYNC(F:FLAG):BOOLEAN;EXTERNAL;

Description:

The SYNC routine tests the status of the global flag signal Sync for flag

F. The Sync signal becomes true when All is true_ and remains true until
Any becomes false•

Arguments:

F - A constant_ variable_ or expression of type FLAG.

Function result:

A Boolean value indicating the status of Sync for flag F.

Warnings/Limitations:

None.

Application notes:

Use SYNC to indicate that a condition has occurred on all participating

processors, and is still occurring on one or more of those processors•

Usage example:

FLGRES(FLAG4);

BAR(FLAG2);
REP EAT

IF CMP(X0,XI) < 0 THEN

FLGSET(FLAG4);

e•e

UNTIL SYNC(FLAG4) ;
WHILE SYNC(FLAG4) DO

BEGIN

IF CMP(XI,X2) > 0 THEN
FLGRES(FLAG4);

4O

PASLIB Programmer's Guide

END;

41

PASLIB Programmer's Guide

3.4.8 FIRST

Purpose:

Test the First signal for flag 0.

Declaration:

FUNCTION FIRST:BOOLEAN;EXTERNAL;

Description:

The FIRST routine tests the status of the global flag signal First. First

is set by the (approximately) first processor to set flag 0 after Any(0)
has been false.

Arguments:

None.

Function result:

A Boolean value indicating whether or not this is the first processor to
set flag 0.

Warnings/Limitations:

Due to signal propagation delays_ etc. 9 a true value for FIRST does not

guarantee that the processor was absolutely the first one to set its

flag. FIRST does indicate a unique processor which did set its flag 0

within a very short time period (possibly 0) following the absolutely
first one.

Flag 0 must be enabled.

A call to FLGSET for flag 0 must precede a call to FIRST.

Application notes:

FIRST can be used to select a single processor (out of many) to carry out
some task.

Usage example:

FLGSET(0);

IF FIRST TIIEN (* Ist processor prints the title *)

PRINTHEADING;

42

PASLIB Programmer's Guide

3.4.9 BAR

Purpose:

Synchronize the participating processors using a flag barrier.

Declaration:

PROCEDURE BAR(F :FLAG) ;EXTERNAL;

Description:

All processors which have flag F enabled are synchronized in time by

simultaneously reaching the same point in the BAR routine. The algorithm

used for a flag barrier is as follows:

WHILE SYNC(F) DO

; (* wait for Sync to go low *)

FLGSET(F) ;
WIIILE NOT SYNC(F) DO

; (* wait for Sync to go high *)
(* Processors are synchronized at this point *)

FLGRES(F) ;

F must be in a reset state prior to entering the barrier_ and is left in

a reset state upon exit from the barrier.

Argument s:

F - A constant_ variable_ or expression of type FLAG.

Warnings/Limitations:

Flag F must be enabled and reset before calling BAR.

SYSFLAG should be used only in carefully thought out situations.

Application notes:

Use BAR to synchronize processors. This is especially useful for

guaranteeing that a certain state has been reached on all participating

processors before proceeding.

Usage example:

(* enable and reset flags *)

FLGEN(2) ; FLGRES(2) ;
FLCEN(3) ; FLGRES(3) ;

BAR(SYSFLAG) ;

f W|IILE NOT ALL(2) DO

BEGIN

43

PASLIB Programmer's Guide

IF CMP(X_DELTA) < 0 THEN

FLGSET(2)
ELSE

FLGRES(2);

BAR(3) (* synchronize before testing ALL(2) *)

END;

44

PASLIB Programmer's Guide

3.5 Am9512 Floating-point Operations

Functions are provided to add, subtract, multiply, divide, negate,

compare, and take the absolute value of single and double precision

floating-point numbers in Am9512 format. Refer to Section 2.2 for information

about writing programs which use 9512 arithmetic.

Floating-point exceptions include exponent underflow and overflow, and

division by zero. For all exceptions, an appropriate error message is

generated. For exponent overflow and division by zero the program is aborted.

For exponent underflow, the result of the operation is set to zero and
execution continues.

p

45

PASLIB Programmer's Guide

3.5.1 ADD

Purpose:

Add two 9512-format single precision floating-polnt numbers.

Declaration:

FUNCTION ADD(X,Y:REAL):REAL;EXTERNAL;

Description:

X and Y are pushed onto the 9512 stack, a SADD operation is performed,
and the result is popped from the stack. The status byte is checked for
exceptions.

Arguments:

X,Y - Variables or expressions of type REAL in 9512 single
precision format.

Function result:

X+Y in 9512 format.

Warnings/Limitations:

Possible exceptions: underflow, overflow.

X and Y must be 9512-format numbers.

Application notes:

Use to add two single precision numbers.

Usage example:

C:=ADD(A,B);

46

PASLIB Programmer's Guide

3.5.2 SUB

Purpose :

Subtraction of 9512-format single precision floatlng-point numbers.

Declaration:

FUNCTION SUB(X,Y:REAL):REAL;EXTERNAL;

Description:

X and Y are pushed onto the 9512 stack_ a SSUB operation is performed_
and the result is popped from the stack. The status byte is checked for

exceptions.

Arguments:

X,Y - Variables or expressions of type REAL in 9512 single
precision format.

Function result:

X-Y in 9512 format.

Warnings/Limitations:

Possible exceptions: underflow_ overflow.

X and Y must be 9512-format numbers.

Application notes:

Use to subtract one single precision number from another.

Usage example:

DELTA:=SUB(X[I+I],X[I]);

47

PASLIB Programmer's Guide

3•5.3 MU LT

Purpose:

Multiply two 9512-format single precision floating-point numbers.

Declaration:

FUNCTION MULT(X,Y :REAL) :REAL ;EXT ERNAL ;

Description:

X and Y are pushed onto the 9512 stack, a SMUL operation is performed,

and the result is popped from the stack. The status byte is checked for
exceptions.

Argume nt s:

X,Y - Variables or expressions of type REAL in 9512 single
precision format.

Function result:

X*Y in 9512 format.

Warnings/Limitations :

Possible exceptions: underflow, overflow.

X and Y must be 9512-format numbers.

Application notes:

Use to multiply two single precision numbers.

Usage example:

X_SQUARED:=MULT(X,X) ;

48

PASLIB Programmer's Guide

3.5.4 DIVD

Purpose :

Division of 9512-format single precision floating-polnt numbers.

Declaration:

FUNCTION DIVD(X,Y :REAL) :REAL ;EXTERNAL;

Description:

X and Y are pushed onto the 9512 stack, a SDIV operation is performed_

and the result is popped from the stack. The status byte is checked for

exceptions.

Arguments:

X,Y - Variables or expressions of type REAL in 9512 single

precision format.

Function result:

X/Y in 9512 format.

Warnings/Limitations:

Possible exceptions: underflow_ overflow_ division by zero.

X and Y must be 9512-format numbers.

Application notes:

Use to divide one single precision number by another.

Usage example:

PI 2:=DIVD(CV9512(3.141593),CV9512(2-0));
m

F

49

PASLIB Programmer's Guide

3.5.5 NEG

Purpose:

Negates a 9512-format single precision floating-point number.

Declaration:

FUNCTION NEG(X:REAL):REAL;EXTERNAL;

Description:

Inverts the sign bit of X.

Arguments:

X - A variable or expression of type REAL in 9512 single
precision format.

Function result:

-X in 9512 format.

Warnings/Limitations:

None.

Application notes:

Use to obtain the additive inverse of single precision numbers.

Usage example:

X[I,J]:=MULT(Y[I],NEC(DY[J]));

50

PASLIB Programmer's Guide

3.5.6 ABS95

Purpose :

Take the absolute value of a 9512-format single precision floating-point

number.

Declaration:

FUNCTION ABS95(X :REAL) :REAL; EXTERNAL;

Description:

Sets the sign bit of X to zero.

Argument s:

X - Variable or expression of type REAL in 9512 single precision
format.

Function result:

Absolute value of X.

Warni ngs/Limi tations :

None.

Application notes:

Use to obtain the absolute value of a single precision number•

Usage example:

IF CMP(ABS95(X[I]),CV9512(0.0001)) < 0 THEN

51

PASLIB Programmer's Guide

3•5•7 CMP

Purpose :

Compare two 9512-format single precision floating-point numbers•

Declaration:

FUNCTION CMP(X_Y:REAL):INTEGER;EXTERNAL;

Description:

Performs a software comparison of two 9512-format numbers and returns the
result•

Argument s:

X,Y - Variables or expressions of type REAL in 9512 single

precision format•

Function result:

-i : X<Y
0 : X= Y

1 : X>Y

Warnings/Limi tat ions :

X and Y must be 9512-format numbers•

Application notes:

Use to compare floatlng-point values. The following table shows

comparison expressions for standard Pascal and their equivalent when

using 9512 arithmetic.

TIP 9512

X < Y CMP(X,Y) < 0

X <= Y CMP(X,Y) <= 0
X = Y CMP(X_Y) = 0

X >= Y CMP(X,Y) >= 0

X > Y CMP(X,Y) > 0

Usage example:

WIIILE CMP(SUB(X[I],X[I-I]),DX) > 0 DO

52

PASLIB Programmer's Guide

3.5.8 DADD

Purpose:

Add two 9512-format double precision floating-point numbers.

Declaration:

FUNCTION DADD(X,Y:REAL(16)):REAL(16);EXTERNAL;

Description:

X and Y are pushed onto the 9512 stack_ a DADD operation is performed 9
and the result is popped from the stack. The status byte is checked for
exceptions.

Arguments:

X,Y - Variables or expressions of type REAL(16) in 9512 double
precision format.

Function result:

X+Y in 9512 format.

Warnings/Limitations:

Possible exceptions: underflow, overflow.

X and Y must be 9512-format numbers.

Application notes:

Use to add two double precision numbers.

Usage example:

V :=DADD(U,DOUBLE(X)) ;

53

PASLIB Programmer's Guide

3.5.9 DSUB

Purpose:

Subtraction of 9512-format double precision floatlng-point numbers.

Declaration:

FUNCTION DSUB(X,Y:REAL(16)):REAL(16);EXTERNAL;

Description:

X and Y are pushed onto the 9512 stack_ a DSUB operation is performed_

and the result is popped from the stack. The status byte is checked for

exceptions.

Arguments:

X,Y - Variables or expressions of type REAL(16) in 9512 double

precision format.

Function result:

X-Y in 9512 format.

Warnings/Limitations:

Possible exceptions: underflow_ overflow.

X and Y must be 9512-format numbers.

Application notes:

Use to subtract one double precision number from another.

Usage example:

DZ:=DSUB(Z2,ZI);

54

I'ASL[B Programmer'8 Guide

3.5.10 DMULT

Purpose:

Multiply two 9512-format double precision floating-point numbers.

Declaration:

FUNCTION DMULT(X,Y :REAL(16)):REAL(16) ;EXTERNAL;

Description:

X and Y are pushed onto the 9512 stack_ a DMUL operation is performed_
and the result is popped from the stack. The status byte is checked for

exceptions.

Arguments:

X,Y - Variables or expressions of type REAL(16) in 9512 double

precision format.

Function result:

X*Y in 9512 format.

Warnings/Limitations:

Possible exceptions: underflow_ overflow.

X and Y must be 9512-format numbers.

Application notes:

Use to multiply two double precision numbers.

Usage example:

X CUBED:=DMULT(X,DMULT(X,X));

55

PASLIB Programmer's Guide

3.5.11 DDIVD

Purpose:

Division of 9512-format double precision floating-point numbers.

Declaration:

FUNCTION DDIVD(X,Y:REAL(16)):REAL(16);EXTERNAL;

Description:

X and Y are pushed onto the 9512 stack, a DDIV operation is performed,

and the result is popped from the stack. The status byte is checked for

exceptions.

Arguments:

X,Y - Variables or expressions of type REAL(16) in 9512 double

precision format.

Function result:

X/Y in 9512 format.

Warnings/Limitations:

Possible exceptions: underflow, overflow, division by zero.

X and Y must be 9512-format numbers.

Application notes:

Use to divide one double precision number by another.

Usage example:

PI 4:=DDIVD(DV9512(3.141592653589793QO),DV9512(4.0QO));

56

PASLIB Programmer's Guide

3.5.12 DNEG

Purpose:

Negates a 9512-format double precision floating-polnt number.

Declaration:

FUNCTION DNEG(X: REAL(16)):REAL(16) ;EXTERNAL ;

Description:

Inverts the sign bit of X.

Argument s:

X - A variable or expression of type REAL(16) in 9512 double

precision format.

Function result:

-X in 9512 format.

Warnings/Limitations :

None.

Application notes:

Use to obtain the additive inverse of double precision numbers.

Usage example:

C :=DNEG(DMULT(A,B));

F

57

PASLIB Programmer's Guide

3.5.13 DABS95

Purpose:

Take the absolute value of a 9512-format double precision floatlng-point
number.

Declaration:

FUNCTION DABS95(X: REAL(16)):REAL(16) ;EXTERNAL;

Description:

Sets the sign bit of X to zero.

Arguments :

X - Variable or expression of type REAL(16) in 9512 double

precision format.

Function result:

Absolute value of X.

Warnings/Limitations :

None.

Application notes:

Use to obtain the absolute value of a double precision number.

Usage example:

ANS :=DABS95(DSUB(Y[l+J], Y[I-J]));

58

PASLIB Programmer's Guide

3.5.14 DCMP

Purpose:

Compare two 9512-format double precision floating-point numbers.

Declaration:

FUNCTION DCMP(X_Y:REAL(16)):REAL(16);EXTERNAL;

Description:

Performs a software comparison of two 9512-format numbers and returns the
result.

Arguments:

X_Y - Variables or expressions of type REAL(16) in 9512 double

precision format.

Function result:

-I : X < Y

O: X=Y

1 : X > Y

Warnings/Limitatlons:

X and Y must be 9512-format numbers.

Application notes:

Use to compare floating-point values. (See the comparison table for the

CMP routine_ Section 3.5.7.)

Usage example:

IF DCMP(DABS95(DSUB(DELTA[I-I],DELTA[I])),EPSILON) > 0 THEN

59

PASLIB programmer's Guide

3.6 Am9512 Floatlng-point Constants

Functions are provided which return the maximum and minimum positive
Am9512 floatlng-point values. These values are typically useful for

initializing variables or guarding against underflow or overflow conditions.

60

PASLIB Programmer's Guide

3.6.1 MAX95

Purpose:

Provides an exact representation of the largest positive single precision

Am9512 floatlng-point number.

Declaration:

FUNCTION MAX95:REAL;EXTERNAL;

Description:

Returns the maximum Am9512 single precision value.

Arguments:

None.

Function result:

A REAL value containing the largest representable Am9512 single precision

floating-point number, approximately 3.402823E+38.

Warnings/Limltatlons:

_- None.

Application notes:

Use MAX95 when a very large number is needed.

Usage example:

(* INITIALIZE DELTAS *)

MAXREAL:=MAX95;
FOR I:=i TO 12 DO

DELTA[I]:=MAXREAL;

61

PASLIB Programmer's Guide

3.6.2 MIN95

Purpose :

Provides an exact representation of the smallest positive single

precision Am9512 floating-point number.

Declaration:

FUNCTION MIN95:REAL;EXTERNAL;

Description:

Returns the minimum positive Am9512 single precision value.

Arguments:

None.

Function result:

A REAL value containing the smallest representable positive Am9512 single

precision floating-point number, approximately 1.175494E-38.

Warnings/Limitatlons:

None.

Application notes:

Use MIN95 when a very small_ but non-zero_ number is needed.

Usage example:

IF CMP(X,MULT(TEN,MIN95)) <= 0 THEN (* UNDERFLOW IS IMMINENT *)
X :=UNDE RFLOW(X)

ELSE

X :=DIVD(X,TEN) ;

62

PASLIB Programmer's Guide

3 •6 •3 DMAX9 5

Purpose:

Provides an exact representation of the largest positive double precision

Am9512 floating-point number.

Declaration:

FUNCTION DMAX95:REAL(16);EXTERNAL;

Description:

Returns the maximum Am9512 double precision value.

Arguments:

None.

Function result:

A REAL(16) value containing the largest representable Am9512 double

precision floating-point number, approximately 1.79769313486231D+308.

Warnings/Limitations:

None.

Application notes:

Use DMAX95 when a very large number is needed.

Usage example:

MSG(_Input values must be less than "); MSGD(DMAX95);

ENDLN(2) ;

r

63

PASLIB Programmer's Guide

3.6.4 DMIN95

Purpose:

Provides an exact representation of the smallest positive double

precision Am9512 floating-point number.

Declaration:

FUNCTION DMIN95:REAL(16);EXTERNAL;

Description:

Returns the minimum positive Am9512 double precision value.

Arguments:

None.

Function result:

A REAL(16) value containing the smallest representable positive Am9512

double precision floating-point number_ approximately
2.22507385850720D-308.

Warnings/Limitations:

None.

Application notes:

Use DMIN95 when a very small_ but non-zero 9 number is needed.

Usage example:

MINDBLE:=DMIN95;
FOR I:=I TO 32 DO

FOR J:=! TO 32 DO

A[I,J]:=MINDBLE;

64

PASLIB Programmer's Guide

3.7 Am9512 Floating-point Conversions

A complete set o[functions are provided for conversions between single

and double precision 9512-format numbers and the TI Pascal data types REAL_

REAL(16)_ INTEGER_ and LONGINT. These routines must be used when converting

9512-format numbers; the TIP standard conversion routines and implicit
conversions will produce unexpected results if Am9512 numbers are involved.

65

PASLIB Programmer's Guide

3.7.1 CV9512

Purpose:

Convert a 990-format single precision floatlng-point value to 9512
format.

Declaration:

FUNCTION CV9512(X:REAL):REAL;EXTERNAL;

Description:

Re-align the mantissa and convert the hexadecimal exponent to binary,

adjusting for shifting of the mantissa.

Arguments:

X - Constant, variable, or expression of type REAL in TI 990
format.

Function result:

Am9512 representation of X.

Warnings/Limitations:

Exponent underflow or overflow may occur. Allowable exponents are in the

range -38 to +38.

The 9512-format result will contain space for zero to three additional

bits in the mantissa; these are filled with trailing zeroes.

Application notes:

Use CV9512 to convert program constants_ and data which originated on the
Controller.

Usage example:

FOR 1:=I TO DA4@.NNODES DO

DA5@[I] :=CV9512(DA5@[I]);

66

PASLIB Programmer's Guide

3.7.2 CV990

Purpose:

Convert a 9512-format single precision floating-point value to 990
format.

Declaration:

FUNCTION CV990(X:REAL):REAL;EXTERNAL;

Description:

Convert the exponent from binary to hexadecimal and normalize the

mantissa based on hexadecimal digits.

Arguments:

X - Variable or expression of type REAL in Am9512 format.

Function result:

990-format representation of X.

Warnings/Limitatlons:

From zero to three bits of precision will be lost from the mantissa by
normalizing to hex digits.

Appl_cation notes:

Use CV990 to convert results to TI 990 format before uploading them to
the Controller.

Usage example:

FOR I:=I TO NROWS DO

FOR J:=1 TO NCOLS DO

STRESS@[I,J]:=CV990(STRESS@[I,J]);

67

PASLIB Programmer's Gu{de

3.7.3 FLOATI

Purpose:

Convert a 16-blt two's complement integer to Am9512 single precision
floating-point.

Declaration:

FUNCTION FLOATI(I:INTEGER):REAL;EXTERNAL;

Description:

The sign of I is determined, and the absolute wilue is found. The integer

is normalized (right-shifted), and the shift count becomes the binary

exponent. This conversion is always exact.

Arguments:

I - Constant, variable, or expression of type INTEGER.

Function result:

Am9512 single precision representation of I.

Warnings/Limitations:

None.

Application notes:

Use FLOATI whenever an integer value needs to be converted to a 9512
real.

Usage example:

ONE:=FLOATI(1);

68

PASLIB Programmer's Guide

3 •7•4 FLOATL

Purpose:

Convert a 32-bit two's complement integer to Am9512 floating-polnt.

Declaration:

FUNCTION FLOATL(I:LONGINT):REAL;EXTERNAL;

Description:

Determine the sign of I, and take the absolute value. Normalize the

integer_ and use the shift count as the binary exponent. Extra bits are
truncated.

Arguments:

I - Constant, variable_ or expression of type LONGINT.

Function result:

Am9512 single precision representation of I.

Warnings/Limitations:

From zero to eight bits of precision may be lost during normalization,f-

depending on the magnitude of I.

Application notes:

FLOATL is used to convert long integers to 9512 single precision numbers.

Usage example:

IO RATE:=FLOATL(100L*NWORDS)/FLOATL(T ELAPSED);

69

PASLIB Programmer's Guide

3.7.5 IFIX

Purpose:

Convert an Am9512-format single precision value to a 16-bit two's

complement integer.

Declaration:

FUNCTION IFIX(X:REAL):INTEGER;EXTERNAL;

Description:

Break the floating-point number up into sign, exponent, and mantissa.
De-normalize the mantissa based on the value of the exponent. Fractional

digits in the mantissa are truncated. If necessary, complement the number

to account for the sign.

Arguments:

X - A variable or expression of type REAL in 9512 format.

Function result:

A 16-bit number of type INTEGER.

Warnings/Limitations:

X must be in the range -(2"'15) to (2"'15)-1, or else integer overflow
will occur.

The integer result is obtained by truncating (rather than rounding) the
mantissa. From 9 to 24 b_ts of precision may be lost_ depending on the

value of the exponent.

Application notes:

Use IFIX to convert 9512-format numbers to integers.

Usage example:

N:=IFIX(ADD(X[I],Y[I]));

70

PASLIB Programme r_s Guide

3.7.6 LFIX

Purpose :

Convert an Am9512-format single precision value to a 32-bit two's

complement integer.

Declaration:

FUNCTI ON LFIX (X :REAL) :LONGI NT;EXTERNAL ;

Description:

Break the floating-point number into sign, exponent, and mantissa.

De-normalize the mantissa based on the value of the exponent. The integer

result may either have digits truncated, or be padded with trailing

zeroes, depending on the value of the exponent. If the sign is negative,

the integer is complemented.

Arguments:

X - Variable_or expression of type REAL in 9512 format.

Function result:

A 32-bit number of type LONGINT.

Warnings/Limitations:

X must be in the range -(2"'31) to (2"'31)-1, or else integer overflow

will occur.

The integer result is obtained by either truncation or padding of the

mantissa (rather than rounding). Up to 7 trailing zeroes may be appended

to the result, or up to 24 bits of precision may be lost by truncation,

depending on the value of the exponent.

Application notes:

Use LFIX to convert floating-point values to long integers.

Usage example:

NMAX :=LFIX(MULT(X[1],Y[I])) ;

71

PASLIB Programmer's Guide

3.7.7 SINGLE

Purpose:

Convert a double precision Am9512-format number to a single precision
Am9512-format number.

Declaration:

FUNCTION SINGLE(X:REAL(16)):REAL;EXTERNAL;

Description:

Convert the exponent from double precision to single precision by

changing the blas_ and re-allgn the mantissa for single precision format.

Arguments:

X - A variable or expression of type REAL(16) in 9512 format.

Function result:

A single precision number of type REAL in 9512 format.

Warnings/Limitations:

The double precision number must be in the range 10"*(-38) to 10"*(+38),

or else exponent underflow or overflow will occur.

Mantissa conversion results in the truncation of the 29 least-signlficant

bits of X.

Application notes:

Use SINGLE to convert double precision numbers to single precision. This
can be useful when maximum precision is desired for calculations, but

only single precision is required to store the final result.

Usage example:

SUM:=SINGLE(DSUB(DF[J] ,DVDP(N,DELTA,K[I])));

72

PASLIB Programmer's Guide

3.7.8 DV9512

Purpose:

Convert a 990-format double precision floating-p0int value to 9512
forma t.

Declaration:

FUNCTION DV9512(X:REAL(16)):REAL(16);EXTERNAL;

Description:

Re-align the mantissa_ normalizing for binary digits rather than
hexadecimal digits. Convert the exponent from hex to binary_ and adjust

for shifting of the mantissa.

Arguments:

X - Constant, variable_ or expression of type REAL(16) in TI 990
forma t.

Function result:

Am9512 representation of X.

f Warnings/Limitations:

From zero to three bits of precision will be lost in the Am9512 number_
since there are fewer bits in the mantissa.

Application notes:

Use DV9512 to convert program constants, and data which originated on the
Controller.

Usage example:

DI:=DV9512(I.OQ0);

F

73

PASLIB Programmer's Guide

3.7.9 DV990

Purpose :

Convert a 9512-format double precision floating-point value to 990
format.

Declaration:

FUNCTION DV990(X:REAL(16)):REAL(16);EXTERNAL;

Description:

Convert the exponent from binary to hexadecimal and normalize the
mantissa based on hexadecimal digits.

Arguments:

X - Variable or expression of type REAL(16) in Am9512 format.

Function result:

990-format representation of X.

Warnings/Limitations:

X must be in the range 10"*(-78) to 10"*(+75), or else exponent underflow
or overflow will occur.

From zero to three extra bits of precision can be represented in the

990-format result. These are filled with trailing zeroes.

Application notes:

CV990 is used to convert double precision results to TI 990 format before

uploading them to the Controller.

Usage example:

FOR I:=I TO MAX ELEMENTS DO

SDATA@ [I]:=DV990 (SDATA@ [I]);

74

f

PASLIB Programmer's Guide

3.7.10 DFLOTI

Purpose:

Convert a 16-bit two's complement integer to Am9512 double precision

floating-point.

Declaration:

FUNCTION DFLOTI(I:INTEGER):REAL(16);EXTERNAL;

Description:

The sign of I is determined, and the absolute value is found. The integer
is normalized (right-shifted), and the shift count becomes the binary

exponent. This conversion is always exact.

Arguments:

I - Constant, variable, or expression of type INTEGER.

Function result:

Am9512 double precision representation of I.

Warnings/Limitations:

.f--_

None.

Application notes:

Use DFLOTI to convert integers to double precision reals.

Usage example:

XI:=DDIVD(X,DFLOTI(N MOD 64));

f

75

PASLIB Programmer's Guide

3.7.11 DFLOTL

Purpose:

Convert a 32-bit two's complement integer to Am9512 double precision

floating-point.

Declaration:

FUNCTION DFLOTL(I:LONGINT):REAL(16);EXTERNAL;

Description:

Determine the sign of I_ and take the absolute value. Normalize the
integer_ and use the shift count as the binary exponent. This conversion

is always exact.

Arguments:

I - A constant_ variable_ or expression of type LONGINT.

Function result:

Am9512 double precision representation of I.

Warnings/Limitations:

None.

Application notes:

DFLOTL is used to convert long integers to 9512 double precision numbers.

Usage example:

DX:=DFLOTL(LX*2L);

76

PASLIB Programmer's Guide

3.7.12 IFIXD

Purpose:

Convert an Am9512-format double precision value to a 16-bit two's

complement integer.

Declaration:

FUNCTION IFIXD(X :REAL(16)):INTEGER; EXTERNAL ;

Description:

Break the floating-point number up into sign_ exponent_ and mantissa.
De-normalize the mantissa based on the value of the exponent. Fractional

digits in the mantissa are truncated. If necessary_ complement the number

to account for the sign.

Arguments:

X - A variable or expression of type REAL(16) in 9512 format.

Function result:

A 16-bit number of type INTEGER.

s Warnings/Limitations:

X must be in the range -(2"'15) to (2"'15)-I, or else integer overflow
will occur.

The integer result is obtained by truncating (rather than rounding) the
mantissa. From 38 to 53 bits of precision may be lost_ depending on the

value of the exponent.

Application notes:

Use IFIXD to convert 9512-format double precision numbers to integers.

Usage example:

J :=IFIXD(DDIVD(DX[I] ,DV9512(10.0Q0)) ;

77

PASLIB Programmer's Guide

3.7.13 LFIXD

Purpose:

Convert an Am9512-format double precision value to a 32-bit two's

complement integer.

Declaration:

FUNCTION LFIXD(X :REAL(16)):LONGINT; EXTERNAL;

Description:

Split the floating-point number into sign, exponent, and mantissa.
De-normalize the mantissa based on the value of the exponent. Fractional

digits in the mantissa are truncated. If necessary_ complement the number
to account for the sign.

Arguments:

X - A variable or expression of type REAL(16) in 9512 format.

Function result:

A 32-bit number of type LONGINT.

Warnings/Limitations:

X must be in the range -(2"'31) to (2"'31)-I, or else integer overflow
will occur.

The integer result is obtained by truncating (rather than rounding) the
mantissa. From 22 to 53 bits of precision may be lost, depending on the

value of the exponent.

Application notes:

LFIXD is used to convert double precision numbers to long integers.

Usage example:

B PERCENT:=LFIXD(MULT(BUF EFFICIENCY,DV9512(100.0QO)));

78

V

PASLIB Programmer's Guide

3.7.14 DOUBLE
F_

Purpose:

Convert a single precision Am9512-format number to a double precision
Am9512-format number.

Declaration:

FUNCTION DOUBLE(X:REAL):REAL(16);EXTERNAL;

Description:

Convert the exponent from single precision to double precision by

changing the bias, and re-align the mantissa for double precision format.

The double precision result is filled in with 29 trailing zero bits.

Arguments:

X - Variable or expression of type REAL in 9512 format.

Function result:

A double precision number of type REAL(16) in 9512 format.

Warnings/Limitations:

None.

Application notes:

Use DOUBLE to convert single precision numbers to double precision. This

can be useful when additional precision is required for intermediate

calculations_ or when the initial values are stored as single precision
numbers.

Usage example:

DX:=DOUBLE(X);

79

PASLIB Programmer's Guide

3.8 Am9512 Mathematical Subroutines

This section describes a number of subroutines which provide specific

mathematical services using the Am9512 floating-point processor. Figure 3-2

lists the routines by functional category. Routines denoted by "*" are coded

in assembly language to take advantage of the Am9512"s stack architecture for

accumulating intermediate results. The performance of these routines will

generally be significantly better than an equivalent algorithm coded using the

individual operations of Section 3.5.

Whenever vectors or matrices are involved_ the subroutines assume

row-major storage order_ consistent with TI Pascal.

All of the routines in this section assume that floating-point parameters

are in 9512 format_ and all results are returned as 9512-format numbers.
Failure to heed this restriction will result in incorrect results and/or
run-time errors.

80

PASLIB Programmer's Guide

Vector Operations Random Numbers

* VDP URAN

* DVDP DURAN
RANSEED

Trigonometric Functions Roots

SINE * SQRT95

DSINE * DSQRT95

* Optimized for Am9512 stack architecture.

Figure 3-2. PASLIB Mathematical Subroutines

f--_

81

PASLIB Programmer's Guide

3.8.1 SQRT95

Purpose:

Computes the positive square root of an Am9512-format single precision
number.

Declaration:

FUNCTION SQRT95(X:REAL):REAL;EXTERNAL;

Description:

The square root is found using the Newton-Raphson method. An initial

guess X(0) is obtained by halving the exponent of X_ and adding I to it.

A sequence of approximations is computed such that x(i+l) =

(x(i)+X/X(i))/2. The iteration is terminated when the sequence becomes

non-decreasing, and the last X(i) is used as the result.

Arguments:

X - A non-negative variable or expression of type REAL in 9512
format.

Function result:

The postive square root of X.

Warnings/Limitations:

X must be non-negative.

Application notes:

Use SQRT95 in place of the TI Pascal SQRT routine to calculate square
roots of 9512-format numbers.

Usage example:

C :=SQRT95(ADD(MULT(A,A), MULT(B,B))) ;

82

PASLIB ProgrammerPs Guide

3.8.2 DSQRT95

Purpose:

Computes the positive square root of an Am9512-format double precision
number.

Declaration:

FUNCTION DSQRT95(X:REAL(16)):REAL(16);EXTERNAL;

Description:

The double precision square root is calculated using the Newton-Raphson

technique. See the description of SQRT95 for details.

Arguments:

X - A non-negative variable or expression of type REAL(16) in
9512 format.

Function result:

The positive square root of X.

Warnings/Limitations:

X must be non-negative.

Application notes:

Use DSQRT95 in place of the TI Pascal SQRT routine to calculate square
roots of 9512-format double precision numbers.

Usage example:

DX:=DSUB(X2,XI);

DY:=DSUB(Y2,YI);

DIST :=DSQRT95 (ADD(MULT(DX, DX), MULT(DY, DY)));

83

PASLIB Programmer's Guide

3.8.3 VDP

Purpose:

Computes the dot product of two vectors.

Declaration:

FUNCTION VDP(N:POSINT;

VAR A:ARRAY [I..?] OF REAL;

VAR B:ARRAY [I..?] OF REAL) :REAL;EXTERNAL;

Description:

Computes the dot product (scalar product, inner product) of two vectors A
and B. This is defined as the sum of all A(i)*B(i) for i=l,2,...,N. For

the sake of efficiency, A and B are passed as VAR parameters, but the
contents of A and B are not modified. A and B may be of different

lengths, but N must be less than or equal to the number of elements in
the shorter of the two. The sum is accumulated on the 9512 stack.

Arguments:

N - A positive constant, variable 9 or expression of type POSINT
which indicates the number of elements in A and B to be

multiplied and summed.
A,B - Variables of type ARRAY [l..n] OF REAL containing 9512-format

numbers.

Function result:

The dot product of A and B in 9512 single precision format.

Warnings/Limitations:

N must be less than or equal to the length of the shortest vector.

Possible exceptions: underflow, overflow.

Application notes:

Use VDP for efficient computation of dot products. A and/or B may be rows

of a matrix, or a type transfer may be used to force a matrix to be

passed as a vector with each row concatenated to the preceding row. This
last technique assumes row-major storage of arrays. (See the usage

example below.)

Usage example:

TYPE AI2 = ARRAY [1..12] OF REAL;

VAR K:ARRAY [I..12] OF AI2;

DELTA:ARRAY [I..4,1..3] OF REAL;
SUM:A12;

84

PASLIB Programmer's Guide

FOR 1:=1 TO 12 DO (* initialize K *)

FOR J:=l TO 12

K[I,J]:= . . •

FOR I:=1 TO 12 DO

SUM[I]:=VDP(12 ,K[I],DELTA: :AI2) ;

85

PASLIB Programmer's Guide

3.8.4 DVDP

Purpose:

Computes the dot product of two double precision vectors.

Declaration:

FUNCTION DVDP(N:POSINT;

VAR A:ARRAY [I..?] OF REAL(16);
VAR B:ARRAY [i..?] OF REAL(16)):REAL(16) ;

EXTERNAL;

Description:

Computes the dot product of two double precision vectors A and B. This is
defined as the sum of all A(i)*B(i) for i=l,2,...,N. For efficiency, A

and B are passed as VAR parameters, but the contents of A and B are not

modified. A and B may be of different lengths_ but N must be less than or

equal to the number of elements in the shorter of the two.

Arguments:

N - A positive constant, variable_ or expression of type POSINT
which indicates the number of elements in A and B to be

multiplied and summed.

A,B - Variables of type ARRAY [l..n] OF REAL(16) containing
9512-format double precision numbers.

Function result:

The dot product of A and B in 9512 double precision format.

Warnings/Limitations:

N must be less than or equal to the length of the shortest vector.

Possible exceptions: underflow, overflow.

Application notes:

Use DVDP for efficient computation of double precision dot products. A

and/or B may be rows of a matrix, or a type transfer may be used to force
a matrix to be passed as a vector (assuming row-major storage order).

Usage example:

DX:=DVDP(M,DU,DV);

86

PASLIB Programmer's Guide

3.8.5 URAN

Purpose:

Generates the next number in a pseudo-random sequence uniformly

distributed on the interval [0,I), and returns the result as an

Am9512-format single precision value.

Declaration:

FUNCTION URAN:REAL;EXTERNAL;

Description:

The linear congruentlal method is used to generate a sequence of 32-bit

pseudo-random numbers 9 which are interpreted as binary fractions on the

interval [0,1). The implementation used here is based on recommendations

given in Knuth, THE ART OF COMPUTER PROGRAMMING, Vol. 2, "Semlnumerical

Algorithms", Chapter 3, Section 6. This generator has a cycle length

(period) of 2**32 (4,294,9679296), and each of the 2**32 possible numbers

in the sequence will be produced exactly once each cycle. An arbitrarily

chosen seed of 453290171 is used, but any long integer value can be used

as a seed by calling procedure RANSEED.

URAN generates the next random number in sequence and converts the 32-bit

fraction to a positive 9512-format single precision number in the

F interval [0.0,I.0). Since only 24 bits of precision are available in the

mantissa, some duplicate values will be produced during a cycle due to
truncation of less significant bits. If duplicate values are not

acceptable for a particular application, function DURAN should be used
instead.

Arguments:

None.

Function result:

An Am9512 single precision pseudo-random number in the interval

[0.0,1.0).

Warnings/Limitatlons:

Because of truncation, duplicate numbers will occur within the cycle

period of 2**32 calls.

Chi-square tests on the frequency distribution of numbers produced by

URAN have given acceptable results using several different sample sizes
and numbers of intervals. For critical applications, however, additional

testing (such as a spectral test) may be desirable before depending on
the randomness of the sequence produced by this routine. Tests for
randomness are discussed in detail in Knuth, Vol. 2, Chapter 3.

Application notes:

87

PASLIB Programmer's Guide

Use URAN to generate test data for programs_ or to drive simulations.

Usage example:

(* Generate test data in the range i..I00 *)

R1 :=CV9512(1.0) ;
R99 :=CV9512(99.0) ;
FOR I:=I TO 500 DO

TEST_DATA[I] :=ADD(MULT(URAN, R99), Rl);

88

PASLIB Programmer's Guide

3.8.6 DURAN

Purpose:

Generates the next number in a pseudo-random sequence uniformly

distributed on the interval [0,I), and returns the result as an

Am9512-format double precision value.

Declaration:

FUNCTION DURAN:REAL(16);EXTERNAL;

Description:

DURAN uses the same linear congruential generator as URAN, but converts

the 32-bit fraction to a 9512-format double precision result. Since there

is no truncation of the mantissa, all 2**32 possible random numbers can

be represented with no duplication within a cycle of the generator.

Arguments:

None.

Function result:

An Am9512 double precision pseudo-random number in the interval

f- [0.0,1.0) •

Warnings/Limitatlons:

Before relying on DURAN for critical applications, additional randomness

tests should be performed, as required by the application.

Application notes:

Use DURAN to generate test data for programs, or to drive simulations.

Usage example:

NEXT SAMPLE:=LFIXD(DMULT(DURAN,DFLOTL(MAXLINT)));

89

PASLIB Programmer's Guide

3.8.7 RANSEED

Purpose:

Select an alternate seed for the random number generator.

Declaration:

PROCEDURE RANSEED(SEED:LONGINT);EXTERNAL;

Description:

The long integer SEED is used as the initial value for the linear

congruential random number generator used by URAN and DURAN. SEED may be

any LONGINT value. If RANSEED is not called, an arbitrarily chosen

default seed of 453290171 is used. A given seed value always produces the

same sequence of pseudo-random numbers.

Arguments:

SEED - A constant, variable, or expression of type LONGINT.

Warnings/Limitations:

None.

Application notes:

Use RANSEED to alter the sequence of random numbers produced by URAN and
DURAN. Seeds based on a processor_s self-ID (Section 3.12) can be used to

produce different sequences on each processor. When using random numbers

to produce test data, this approach can give more thorough test coverage
with no increase in execution time by running different test sets in

parallel on multiple processors. For simulations, asynchronous behavior

can be readily produced by using different seeds on different processors

to generate delay counts or time steps.

Usage example:

RANSEED(LINT(LSELF)*32771L) ;

90

PASLIB Programmer's Guide

3.8.8 SINE
f--_

Purpose:

Computes the sine function using Am9512 single precision arithmetic.

Declaration:

FUNCTION SlNE(X:REAL):REAL;EXTERNAL;

Description:

The sine of X is approximated using recurrence relations to compute the

trigonometric series for the sine function. To improve convergence and
reduce roundoff error, X is first mapped into the interval [-pl/2,+pi/2]

using trigonometric reduction relations for the sine function. For more
details on the method, see N. Wirth, SYSTEMATIC PROGRAMMING: AN

INTRODUCTION, Chapter 9, Prentice-Hall, 1973.

Arguments:

X - A variable or expression of type REAL in 9512 format. X is
assumed to be in units of radians.

Function result:

The (approximate) sine of X.

Warnlngs/Limitations:

For large values of X (about 10"'7 or larger), there are insufficient

significant bits to determine the quadrant in which X lies, so the result

is arbitrarily set to 0.0. SINE appears to give best results for numbers
on the order of I0"*0.

Very small values of X may result in exponent underflow, but the answer

will still be approximately correct.

Application notes:

Use SINE in place of the TI Pascal SIN function to compute the sine of
9512-format single precision numbers.

Usage example:

D2R:=CV9512(I.745329E-2); (* degrees-to-radians *)
FOR I:=0 TO 360 DO (* compute sine curve *)

Y[I] :=SINE(MULT(FLOATI(1) ,D2R)) ;

91

PASLIB Programmer's Guide

3.8.9 DSINE

Purpose:

Computes the sine function using Am9512 double precision arithmetic.

Declaration:

FUNCTION DSlNE(X:REAL(16)):REAL(16);EXTERNAL;

Description:

The sine of X is approximated using recurrence relations to compute the

trigonometric series for the sine function. To improve convergence and
reduce roundoff error, X is first mapped into the interval [-pi/2_+pi/2].

The algorithm used is similar to that for the SINE routine.

Arguments:

X - A variable or expression of type REAL in 9512 format. X is
assumed to be in units of radians.

Function result:

The (approximate) sine of X.

Warnings/Limitatlons:

For large values of X (about 10"'15 or larger), there are insufficient

significant bits to determine the quadrant in which X lies9 so the result

is arbitrarily set to 0.0. DSINE gives best results for numbers on the
order of I0"*0.

Very small values of X may result in exponent underflow_ but the answer

will still be approximately correct.

Application notes:

Use DSINE in place of the TI Pascal SIN function to compute the sine of

9512-format double precision numbers.

Usage example:

FUNCTION DCSC(X:REAL(16)):REAL(16) ;

(* Double precision cosecant *)
BEGIN

DCSC :=DDIVD(DV9512(IQO), DSINE(X))
END;

92

PASLIB Programmer's Guide

f-_ 3.9 Sum/Maximum

The sum/max network is not operational at this time. Therefore, no

routines are provided for its use. Global calculations can be performed by

using the neighbor communication routines (Section 3.10) to transmit operands
and results among processors.

93

PASLIB Programmer's Guide

3.10 Neighbor Communications

Routines are provided for transmitting data between neighboring

processors. For two processors to be neighbors_ the following must be true

prior to execution:

(i) Each processor must reference the other in the list of logical

neighbors stored in data area 2.

(2) If data area 1 is defined, it must contain a mapping table which

assigns logical neighbor numbers to particular processors. If data
area 1 is undefined_ an identity mapping is assumed, and logical

neighbor numbers are equivalent to the self-IDs of the processors.

Data area 1 is ordinarily defined and initialized by the RESET
command (see the FAGS User's Guide).

(3) Connectivity must be established and input buffers allocated using
the SYNCON or ASYNCON command (FACS User's Guide).

All of the neighbor communication routines use logical neighbor numbers to

identify processors. This allows programs to be written without regard to the

actual processor on which it will execute. That information is supplied
independently of the program by the mapping table. Note that the mapping

determines whether neighbors will communicate via the local links or the

global bus_ and hence can have an impact on program performance.

Two communication modes are available_ synchronous or asynchronous. These

are selected by using either the SYNCON or ASYNCON command_ respectively_ to

establish connectivity. In synchronous mode_ data is received and stored by

source processor number in first-in first-out (FIFO) software queues. The

depth of these queues is specified by the SYNCON command. Ordinarily a queue

depth of two is used_ which allows neighbors to be up to one iteration out of
step with each other. Larger queue depths may be used to buffer multiple

records. Tightly synchronized programs may be able to use a queue depth of

one. If the queue is empty_ an attempt to get data with the RECV or RECV2

routine will cause the processor to wait until data arrives from the

neighboring processor. This property causes synchronization of the processors
based on the arrival time of data from neighbors.

In asynchronous mode_ data which is received overwrites previously

received data from the same processor. The RECV and RECV2 routines do not wait

for data, but return the most recently received value. If a processor is

running more slowly than its neighbor_ some of the data sent to it from the

neighbor may never be used_ but will instead be replaced by more recently
received data. If_ however_ a processor is running faster than its neighbor,

some of the received values may be used repeatedly. Since no data

synchronization is performed_ asynchronous mode may be used to implement

asynchronous or "chaotic" algorithms which allow processors to proceed at
different rates.

NOTE

When using asynchronous mode, it is important that an initial value

94

PASLIB Programmer's Guide

be sent from each processor to its neighbors_ and that this value be
received at its destination before executing the first call to the
RECV or RECV2 routines. The BAR (Section 3.4.9) and DLY (Section

3.11.3) routines can be used to enforce this requirement.

The same subroutines are used regardless of which communication mode was

selected; the mode is implemented transparently within Nodal Exee and PASLIB.
The IO$MODE routine can be used by a program to determine whether synchronous

or asynchronous mode was selected. It is therefore possible to write a single

program which can run using either communication technique.

Neighbor communication is based on sending and receiving data records. A

record may be as small as a single data item_ or as large as an entire array

(subject to a maximum record length of 255 words9 or 510 bytes). The user

specifies a maximum record length for his program in the range 1-255 words_

using the connectivity commands. During execution_ records sent or received
must be less than or equal to the specified maximum length. Figure 3-3 gives

the size in words of commonly used TI Pascal data types.

The use of record-oriented communication does not imply that data to be

transmitted/received must be stored as Pascal RECORD types. The neighbor

communication routines are general since they will support the use of any data

type which occupies contiguous memory locations. Only the address of the data

is passed as a parameter. The TIP LOCATION function can be used to obtain the

address of specific data items.

An index or tag value may be associated with each record which is

transmitted to a neighboring processor. This index tag can be used to

distinguish between records which contain logically distinct information. For

example_ a different index could be used for each degree of freedom in a

problem_ or to identify colors in a multi-color solution technique. In

synchronous mode m a separate queue is maintained for each index value. In

asynchronous mode_ separate buffers are used for each index value so that a
freshly received record only overwrites a previous record with the same index
value. The number of index tags required for a problem is specified using the

connectivity commands_ and must be in the range from 1 to 255. When using

index tags_ the SEND2 or SEND2ALL routines are used for transmlssion_ and the
RECV2 routine is used for reception. The SEND_ SENDALL_ and RECV routines do

not allow an index to be specified_ but assume an index value of I.

Data may be transmitted to either specific neighbors or to all neighbors.
The SEND and SEND2 routines require a destination parameter which indicates a

specific neighbor. The SENDALL and SEND2ALL routines transmit data to all of
the logical neighbors specified in data area 2. In this case_ parallel output

circuitry allows the data to be sent to all local neighbors slmultaneously_
but the data must be transmitted individually to each global neighbor. The

send-all operation should not be confused with a global bus broadcast_ which

is not supported in the current hardware/software implementation. Data

reception is always by individual neighbor_ using either the RECV or RECV2
routines.

95

PASLIB ProgrammerPs Guide

TYPE SIZE (words)

CHAR 1

PACKED ARRAY OF CHAR 2 chars/word

INTEGER 1
LONGINT 2

REAL 2

REAL(16) 4

F_gure 3-3. Sizes of Commonly Used Pascal Data Types.

96

PASLIB Programmer's Guide

3.10.1 SEND

Purpose:

Transmit data to a neighboring processor.

Declaration:

PROCEDURE SEND(N:NODE; LOC:ADDR; NWORDS:RECLEN);EXTERNAL;

Description:

N is converted from a logical neighbor number to a physical processor

number according to the mapping table stored in data area i. If data area

i is undefined, N is assumed to be the physical processor number, i.e.,

an identity mapping is used. An output buffer is allocated of sufficient

size to hold NWORDS of data plus a header word and a trailing checksum.

An index tag value of 1 is assumed and stored in the header word along

with the record length. NWORDS of data are copied from LOC and placed in

the buffer. The checksum is calculated and stored as the last word in the

buffer. N is determined to be either a local or global neighbor, and the

output buffer is inserted at the end of the appropriate output queue.

Arguments:

N - Logical neighbor number of the destination processor.

_ LOC - Address of the data to be transmitted.
NWORDS - Number of data words to be transmitted.

Warnings/Limitations:

NWORDS must be less than or equal to the maximum record length specified

in the connectivity command.

Application notes:

Use SEND to transmit data to a specific neighbor.

Usage example:

CONST NNBRS = 6;

DOF = 2 ;

TYPE DA2 = ARRAY [I..NNBRS] OF NODE;

VAR NBRS :@DA2 ;

DSPL:ARRAY [I..NNBRS,I..DOF] OF REAL(16) ;
DPTR:ARRAY [I..NNBRS] OF ADDR;

NBRS ::ADDR:=DAPTR(2) ;
FOR I:=1 TO NNBRS DO

DPTR[I] :=LOCATION(DSPL[I]);

97

PASLIB Programmer's Guide

FOR I:=l TO NNBRS DO

SEND(NBRS@[I],DPTR[I],8); (* send a row to nbr[i] *)

98

PASLIB Programmer's Guide

- 3.10.2 SEND2

Purpose:

Transmit data to a neighboring processor and identify the data with an

index tag.

Declaration:

" PROCEDURE SEND2(N:NODE; INDEX:IDX; LOC:ADDR; NWORDS:RECLEN)

;EXTERNAL;

Description:

Same as SEND_ except that the index tag is passed as a parameter.

Arguments:

N - Logical neighbor number of the destination processor.

INDEX - A user-defined value which identifies the kind of data to be
transmitted.

LOC - Address of the data to be transmitted•

NWORDS - Number of data words to be transmitted•

Warnings/Limitations:

_ INDEX must be less than or equal to the maximum index specified in the

connectivity command•

NWORDS must be less than or equal to the maximum record length specified

in the connectivity command.

Application notes:

Use SEND2 to identify data which is sent to a specific neighbor. This can

be particularly useful if more than one type of data record is being
transmitted_ if the order of reception of data does not guarantee its

type, or when asynchronous I/O is being used with multiple data records•

Usage example:

CONST NBR CNT = I; (* Tags: I = # of neighbors *)

NBRS = 2; (* 2 = set of neighbors *)

MAXNBRS = 6; (* Max # of nbrs per node *)

TYPE NBR LIST = SET OF NODE;

VAR CONNECTIONS:NBRLIST;
NNBRS:0..MAXNODE;

FOR I:=i TO MAXNBRS DO

99

PASLIB Programmer's Guide

IF I <> LSELF THEN

BEGIN

NNBRS:=0;

CONNECTIONS:=[]; (* empty set *)
FOR J:=l TO MAXNBRS DO

IF CONNECTED(I_J) THEN
BEGIN

CONNECTIONS:=CONNECTIONS+[J];
NNBRS :=NNBRS+I

END;

SEND2 (I,NB R_CNT, LOCATION(NNBRS), 1) ;
SEND2 (I,NBRS, LOCATION(CONNECTIONS)

(SIZE(NBR LIST)+1) DIV 2)
END

ELSE

i00

PASLIB Programmer*s Guide

3.10.3 SENDALL

Purpose :

Transmit data to all neighboring processors•

Declaration:

PROCEDURE SENDALL(LOC:ADDR; NWORDS:RECLEN);EXTERNAL;

Description:

A record header word is built with an assumed index tag of I and a record

length obtained from NWORDS. A checksum is computed for the NWORDS of
data beginning at LOC. For each global neighbor, an output buffer is

allocated, the data is copied from LOC into the buffer, the header word
and checksum are inserted, and the buffer is placed on the end of the

global output queue• An additional buffer is allocated for output to all

local neighbors, and the record header, data, and checksum are copied
into this buffer. The buffer is then inserted at the end of the local

output queue for simultaneous transmission to all local neighbors•

Arguments:

LOC - Address of the data to be transmitted•

NWORDS - Number of data words to be transmitted•

Warnings/Limitations:

NWORDS must be less than or equal to the maximum record length specified

in the connectivity command.

Application notes:

Use SENDALL whenever a data value must be transmitted to all of the

neighbors listed in data area 2. SENDALL is much faster than using

multiple calls to SEND, since data is sent in parallel to all of the

local neighbors.

Usage example:

TYPE DSPL REC = RECORD

X:REAL;

Y:REAL;
Z:REAL

END;

VAR DELTA:DSPLREC;

SENDALL(LOCATION(DELTA) ,6) ;

101

PASLIB Programmer's Guide

3.10.4 SEND2ALL

Purpose:

Transmit data to all neighboring processors and identify the data with an

index tag.

Declaration:

PROCEDURE SEND2ALL(INDEX:IDX; LOC:ADDR; NWORDS:RECLEN);

EXTERNAL;

Description:

Same as SENDALL_ except that the index tag is passed as a parameter•

Arguments:

INDEX - A user-defined value which identifies the kind of data to be

transmitted.

LOC - Address of the data to be transmitted.

NWORDS - Number of data words to be transmitted.

Warnings/Limitations:

INDEX must be less than or equal to the maximum index specified in the

connectivity command.

NWORDS must be less than or equal to the maximum record length specified

in the connectivity command.

Application notes:

Use SEND2ALL whenever a data value to be transmitted to all neighbors

needs to be identified as to its contents. Such tag information can be

useful when multiple record types are being transmitted_ when the data is

not ordered by time 9 or when asynchronous I/O mode is being used with

multiple records.

Usage example:

VAR DSPL: REAL;

DSPL PTR :ADDR;

DSPL PTR:=LOCATION(DSPL);m

FOR I:=i TO NDOF DO

BEGIN

DSPL:=SUB(F[I] ,VDP(N,K[I] ,DELTA));

SEND2ALL(I_DSPL._PTR_2);

102

PASLIB Programmer's Guide

END;

103

PASLIB Programmer's Guide

3.10.5 RECV

Purpose:

Receive data from a neighboring processor.

Declaration:

PROCEDURE RECV(N:NODE; LOC:ADDR; NWORDS:RECLEN);EXTERNAL;

Description:

N is converted from logical neighbor number to physical processor number

based on the mapping table in data area i. If data area i is undefined, N
is assumed to be the physical processor number (an identity mapping). An

index tag value of i is assumed. NWORDS of data are then read from the

input buffer for neighbor N, index 1. If the communication mode is

synchronous, the input buffer is a queue, and RECV will wait for data to

arrive if less than NWORDS are present in the queue. If the mode is

asynchronous, RECV will immediately retrieve whatever value is in the
buffer. The data is copied from the buffer and stored at the address

specified by LOC.

Arguments:

N - Logical neighbor number of the source processor.
LOC - Address where the received data will be stored.

NWORDS - Number of data words to be read.

Warnings/Limitations:

NWORDS must be less than or equal to the maximum record length specified

in the connectivity command.

Data must be read in the same order in which it arrives. For example,

suppose that processor A sends two records to processor B using the SEND

routine, and that the first record contains two integers and the second
record contains four single precision reals. Then processor B must first

RECV the integers and then the reals. This could be done by calling RECV

twice 9 once for the integers and once for the reals_ or else one call

could be made with NWORDS = 10 to read a single record which contains two

integers followed by four reals. If processor A did not always send the
data in the same order, then the SEND2 and RECV2 routines should be used_

with different index tags for the integers and the reals.

If asynchronous communication mode is used, data which is received from a

neighbor overwrites previously received data from that neighbor.

Application notes:

Use the RECV routine to read data which has been sent from a neighboring

processor. If synchronous communication mode is selected, RECV can be
used in a message-passing scheme to synchronize processors.

104

PASLIB Programmer's Guide

Usage example:

VAR STRING: PACKED ARRAY [0..N NEIGHS_I..80] OF CHAR;

STRING[0]: = . . . ;
SENDALL(LOCATION(STRING[0]),40);
FOR 1:=1 TO N NEIGHS DO

" (* Get text--from each neighbor *)

RECV(DA2PTR[I],LOCATION(STRING[I]),40) ;

105

PASLIB Programmer's Guide

3.10.6 RECV2

Purpose:

Receive data from a neighboring processor and identify the data with an

index tag.

Declaration:

PROCEDURE RECV2(N:NODE; INDEX:IDX; LOC:ADDR; NWORDS:RECLEN)
;EXTERNAL;

Description:

Same as RECV_ except that the index tag is passed as a parameter.

Arguments:

N - Logical neighbor number of the source processor.
INDEX - A user-defined value which identifies the kind of data to be

received.

LOC - Address where the received data will be stored.

NWORDS - Number of data words to be read.

Warnings/Limitations:

INDEX must be less than or equal to the maximum index specified in the

connectivity command.

NWORDS must be less than or equal to the maximum record length specified

in the connectivity command.

Data from a given processor with a given index tag must be read in the

same order in which it arrives. If asynchronous communication mode is

used, data which is received from a neighbor will overwrite previously

received data from that neighbor which has the same index tag.

Application notes:

Use RECV2 to read data which has been sent from a neighboring processor

with an index tag. The tag can be used to distinguish different types of

data_ or to prevent overwriting when multiple records are sent using
asynchronous I/O mode.

Usage example:

WHILE NOT ALL(FLAG2) DO
BEGIN

FOR 1:=i TO NNBRS DO

FOR J:=1 TO NDOF DO

RECV2(NEIGH@[I],J,LOCATION(DELTA[I,J]),DSIZE);

106

PASLIB Programmerr_s Guide

END ;

107

PASLIB Programmer's Guide

3 •I0•7 IO$MODE

Purpose:

Allows a program to determine the communication mode which has been
selected.

Declaration:

FUNCTION IO$MODE:INTEGER;EXTERNAL;

Description:

The communication mode which was set by the SYNCON or ASYNCON command is
obtained from Nodal Exec.

Arguments:

None.

Function result:

I : Synchronous mode was selected.
2 : Asynchronous mode was selected.

Warnings/Limitations:

Connectivity must be established via the SYNCON or ASYNCON FACS command

before calling IO$HODE.

Application notes:

IO$MODE can be used by a program to determine_ at runtlme9 the
communication mode being used. The program can use this information to

adapt to either a synchronous or asynchronous environment.

Usage example:

IF IO$MODE = 1 THEN SYNCHRONOUS:=TRUE

ELSE SYNCHRONOUS:=FALSE;

108

PASLIB Programmer,s Guide

3.10.8 GBUSY

Purpose :

Determines if global bus output is pending for this processor.

Declaration:

FUNCTION GBUSY:BOOLEAN;EXTERNAL;

Description:

Checks the global output buffer list to see if any data buffers are
queued for output on the global bus.

Arguments:

None.

Function result:

TRUE : Global bus output is pending.

FALSE : No buffers are waiting on the global output buffer list (i.e.

all global bus output has been moved to the hardware outputFIFOs).

Warnings/Limitations:

The absence of queued buffers does not necessarily imply that the data

has arrived at its destination, since there may still be untransmitted

data in the hardware output FIFOs of the sending processor, or
unprocessed data in the hardware input FIFOs on the receiving processor.

Application notes:

GBUSY may be used to determine if global bus output is backlogged. This
information may be useful in load-balancing applications.

Usage example:

IF GBUSY THEN (* Slow down *)
DLY(50);

109

PASLIB Programmer's Guide

3.11 Timing

Two separate timing facilities are provided. One is an elapsed execution

time based on the TMS9902 interval timer. This timer is maintained by Nodal

Exec and has a clock period of 16 milliseconds. It starts counting when a
program begins execution on the processor, halts if a halt command is issued
to the processor or a breakpoint is encountered, and resumes when a resume

command is issued. The execution timer stops when the program terminates

normally or aborts with a fatal error, or when a kill command is issued to the

processor. The XTIME and XTIMEI routines allow this timer to be interrogated
from user programs. The DLY routine uses this timer to delay programs for a
specified interval.

The other timer is based on the TMS9901 interval timer, and is under the

control of the user's program. The clock period is selectable from i to 349

milliseconds. The timer is started with the TSTART routine, and is stopped
with the TSTOP routine or when the program terminates or aborts or is killed.

This timer is not halted when a halt command or breakpoint occurs, but
continues to accumulate time until TSTOP is called or the program ends. The
TREAD and TREADI routines are used to interrogate this timer.

In certain situations the timers may not accurately capture all of the

elapsed time. This typically occurs when critical sections in the memory

management routines of Nodal Exec lock out interrupts for intervals longer

than the clock periods of the timers. In these cases the timer interrupts
cannot be serviced before the clock "ticks" again, and thus one or more ticks

may be lost, producing a timer overrun error. Overrun errors usually occur
only when memory becomes badly fragmented due to a backlog of untransmitted

output data buffers. The execution statistics report (see Section 5.4) can

give some clue if this situation occurred. If the memory allocation or
deallocation efficiencies are low, then timer overrun errors are a

possibility. The execution statistics will report the number of overrun errors

(if any) which occured for the TMS9902 timer. Overrun errors for the TMS9901

timer cannot be detected by software, but the capture ratio improves as the

timer period increases. Clock periods of 50 milliseconds or longer should be
immune to overrun errors. If overrun errors do occur, then the times measured

will be somewhat less than the actual elapsed times. Timer overruns are not
expected to be a common or serious problem, and most users should be able to
get accurate timing data with little or no trouble.

110

PASLIB Programmer's Guide

3.11.1 XTIME

Purpose:

Obtain the approximate elapsed execution time_ in milliseconds_ of the

currently executing program.

Declaration:

FUNCTION XTIME:LONGINT;EXTERNAL;

Description:

The elapsed execution time, based on the TMS9902 timer, is obtained from
Nodal Exec.

Arguments:

None.

Function result:

The approximate elapsed execution time in milliseconds.

Warnings/Limitations:

f_ The result should be regarded as approximate for two reasons:

(I) the timer resolution is plus or minus 16 milliseconds_ and

(2) timer overrun errors may occur in certain situations.

To obtain good results_ intervals to be measured should be several times

the 16 millisecond timer period.

The maximum elapsed execution time before LONGINT overflow is about 24

days.

Application notes:

XTIME may be used to determine the elapsed execution time of programs or

program segments• The duration of a program segment can be measured by

calling XTIME at the beginning of the segment and again at the end; the
difference is the elapsed time for that segment•

Usage example:

MSG("Total execution time = ');

MSGL(XTIME) ;
_ISGLN(• msec. •)

END; (* PSCL$$ *)

III

PASI.IB Programmer's Cuide

3•1 1 •2 XT [ME!

Purpose:

Obtain the approximate elapsed execution time, in hours, minutes, and
seconds, of the currently executing program.

Declaration:

PROCEDURE XTIMEI(VAR IIMS:PACK[.'I) ARRAY [l..?] OF CtlAR);
EXTERNAL;

Description:

The elapsed execution time in milliseconds is obtained from Nodal Exec.

This is rounded to the nearest number of seconds, and converted to hours,
minutes, and seconds. The result is returned as a character string of the
form "hh:mm:ss".

Argument s:

IIMS - A packed array of characters containing at least eight

elements. The result is stored in the first eight bytes of
this string.

Warni nys/Limi rations:

The result should be regarded as approximate for two reasons:

(I) the resolution of the result is plus or minus 516 milliseconds,
and

(2) timer overrun errors may perturb the result in some cases•

The maximum elapsed time to be measured by this routine should not exceed
99 hours, 59 minutes, and 59 seconds, or about 4 days•

Application notes:

Use XTIMEI to express execution times in an hh:mm:ss format.

Usage example:

VAI! EXTIME:PACKEI) ARRAY [1..10] OF CIIAR;

EXTIME[91 :=" ,
EXTIME[IOI:=" ";

FOR l:=l TO MAXIq'EILq DO
BI,:CIN

XTIMEI (EXTIME) ;

112

PASLIB Programmer's Guide

MSG(EXTIME) ;

/-_ MSG('End of iteration ");
MSGI(I); NXTLN

END;

113

PASLIB Programmerts Guide

3 .I1.3 DLY

Purpose:

Delay a program for a specified period of time.

Declaration:

PROCED URE DLY (T :INTEGE R) ;EXTE RNAL ;

Description:

First, the current elapsed execution time is obtained, and the specified

delay time is added to determine the end of the delay period. The routine

loops_ polling the execution timer, until the elapsed time equals or

exceeds the end of the delay period. Control is then returned to the
calling program.

Arguments :

T - Integer constant, variable_ or expression which is the

requested delay time in milliseconds.

Warnings/Limi tati ons :

The requested delay time, T, should be regarded as approximate for the
following reasons:

(I) Timer resolution is 16 milliseconds. The actual delay time will

normally bc within plus or minus 16 milliseconds of the requested
delay.

(2) Timer overrun errors could cause the actual delay to be longer
than expected.

(3) Asynchronous activity on the processor (such as I/O interrupts)

continues during the DLY routine. This activity could extend the

actual delay period slightly if the I/0 load is heavy.

Application notes:

DLY may be used to allow time for asynchronous operations (such as output

interrupts) to occur before allowing the program to proceed. This
technique can also be used to allow time for operations to occur on other

processors or on the Controller, although in most cases flag barriers

(Section 3.4.9) would be preferred for this purpose. DLY may also find

uses in dynamic load-balancing, or as a method of deliberately
de-synchronizing processors.

Usage: example:

BAR(FLAG3) ;
DLY(PSELF*20); (* de-synchronize *)

114

PASLIB Pr.ogrammer's Guide

3 •II.4 TSTART

Purpose :

Initialize and turn on the TMS9901 interval timer.

Declaration:

PROCEDURE TSTART(T:POSINT);EXTERNAL;

Description:

Sets the TMS9901 timer for a period of approximately T milllseconds_ and

begins timing. The minimum clock period is I millisecond 9 and the maximum
is 349 milliseconds.

Arguments:

T - An integer constant 9 variable_ or expression in the range
from I to 349.

Warnings/Limitations:

The selected timer period ("tick") is not always exactly T milliseconds_

but is as close to T as the hardware will allow. The maximum potential
error is 0.021333... milliseconds/tick. The effect of this error

- decreases as the timer period increases. For a requested period T_ the

actual timer period is ((375"T+4) DIV 8)*0.021333... milliseconds.

Application notes:

Call TSTART to select a timer period and begin timing.

Usage example:

TSTART(5); (* 5 mS timer period *)

115

PASI, IB Progr,lmmt, r'n Guide

3.1 1.5 TSTOP

Purpose:

Turn off the TMS9901 timer•

Declaration:

PROCEDURE TSTOP ;EXTERNAL ;

Description:

The TMS9901 timer is disabled and further timer interrupts are inhibited.

Argument s:

None.

Warnings/Limi tat ions :

None.

Application notes:

Use TSTOP to turn off the timer at the end of an interval which is being
measured.

Usage example:

TSTART(1) ;
FOR 1:=1 TO N DO

BEGIN

END ;

TSTOP;

MSG('Time for loop = •); MSGL(TREAD) ;
MSGLN(• msecs.•) ;

116

PASLIB Programmer's Guide

_ 3.11.6 TREAD

Purpose:

Obtain the approximate elapsed time, in milliseconds, of an interval

measured by the TMS9901 timer.

Declaration:

FUNCTION TREAD:LONGINT;EXTERNAL;

Description:

The number of clock ticks since the last call to TSTART is multiplied by

the length of the timer period as specified in the last call to TSTART.

The long integer result is the approximate elapsed time in milliseconds.

TREAD may be called either while the timer is active (between a call to

TSTART and TSTOP), or after the timer has been stopped by a call to
TSTOP.

Arguments:

None.

Function result:

f- If the timer is active, the result is the approximate elapsed time in
milliseconds since the last call to TSTART. If the timer has been

stopped, the result is the approximate elapsed time in milliseconds
between the call to TSTART and the call to TSTOP.

Warnlngs/Limitations:

The result is approximate for the following reasons:

(I) Timer resolution is plus or minus T9 where T is the requested

clock period.

(2) The actual timer period may not be exactly equal to T. See the

description of the TSTART routine (Section 3.11.4) for details.
(3) Timer overrun errors may result in missed ticks. Short timer

periods (a few milliseconds) are much more susceptible to this
effect. Timer periods greater than a few tens of milliseconds

should be virtually immune to overrun errors.

(4) The timer interrupts generated by the TMS9901 require 0.034
milliseconds overhead for each tick. This time should be

subtracted from the result to account for perturbations induced by
the t_mer.

The approximate elapsed time before LONGINT overflow is about 24 days.

Application notes:

Call TREAD to determine the duration of program segments. The selectable

period (set by TSTART) allows events as short as one millisecond to be
measured. If overrun errors are suspected, their severity can be measured

117

PASLIB Programmer's Guide

by repeatedly testing the program segment with a range of timer
intervals. This will showy within the timer resolution_ how much time is

being lost due to missed ticks.

Usage example:

T:=256;
REPEAT

TSTART(T) ;

TSTOP ;
MSG('Timer period = •); MSGI(T);

MSG(•, measured time = "); MSGL(TREAD) ;

NXTLN;
T:=T DIV 2

UNTIL T = 0 ;

118

PASLIB Programmer's Guide

3.11.7 TREADI

Purpose:

Obtain the approximate elapsed time, in hours, minutes, and seconds, of

an interval measured by the TMS9901 timer•

Declaration:

" PROCEDURE TREADI(VAR HMS:PACKED ARRAY [1..?] OF CHAR);

EXTERNAL;

Description:

The elapsed time in milliseconds is obtained by a call to TREAD. This

value is rounded to the nearest number of seconds, and converted to

hours, minutes, and seconds• The result is returned as a character string
of the form "hh:mm:ss".

Arguments:

HMS - A packed character array containing at least eight elements.

The result is stored in the first eight bytes of this string.

Warnings/Limltations:

.-- The result should be regarded as approximate since

(I) the resolution of the result is plus or minus 500 milliseconds,
and

(2) the result is subject to all of the considerations listed for
TREAD (Section 3.11.6).

The maximum interval to be measured by this routine should not exceed 99

hours, 59 minutes, and 59 seconds, or about 4 days.

Application notes:

Use TREAD1 to express time intervals in hours, minutes, and seconds•

Usage example:

VAR TELAPS:PACKED ARRAY [I..26] OF CIIAR;

TELAPS:='O0:O0:O0 Completed cycle ";

TSTART(10) ;
FOR I:=I TO N CYCLES DO

BEGIN

TREAD1 (TELAPS) ;
MSG(TELAPS); MSGI(I); NXTLN

119

PASLIB Programmer's Guid_:

END ;

120

PASLIB Programmer's Guide

3.12 Processor Identification

A processor may be identified either by its physical location within the

hardware system_ or by its logical position within an algorithm. Functions are

provided which allow programs to determine the physical (hardware) and logical

(algorithmic) self-IDs of the processors on which they are executing.

121

PASLIB Programmer's Guide

3.12.1 PSELF

Purpose:

Obtain the physical self identifier of a processor.

Declaration:

FUNCTION PSELF:NODE;EXTERNAL;

Description:

The processor's hardware self-ID is obtained from Nodal Exec and returned

to the calling program.

Arguments:

None.

Function result:

A value of type NODE which uniquely identifies the processor.

Warnings/Limitations:

None.

Application notes:

Use PSELF to determine which processor a program is executing on.

Usage example:

MSG('Processor "); MSCI(PSELF);

MSGLN(" beginning execution.');

122

PASLIB Programmer's Guide

3.12.2 LSELF

Purpose:

Obtain the logical self identifier of a processor.

Declaration:

FUNCTION LSELF:NODE;EXTERNAL;

Description:

The processorts logical self-ID is obtained from Nodal Exec and returned
to the calling program. LSELF is set equal to PSELF when Nodal Exec is
initialized. When connectivity is established with either the SYNCON or

ASYNCON FACS command, LSELF is re-set based on the logical-to-physlcal

mapping table loaded into data area i. If an identity mapping is used_
LSELF remains equal to PSELF. LSELF may be modified by loading a new

mapping table and re-issuing one of the connectivity commands. If
connectivity is cleared with the CLEAR command, LSELF reverts tO PSELF.

Arguments :

None,

Function result:

A value of type NODE which identifies the processor's logical position

within an algorithm_ subject to the considerations mentioned above.

Warnings/Limitatlons:

LSELF returns the physical self-ID of the processor until after a mapping

has been loaded and connectivity has been established.

Application notes:

Programs should use LSELF to determine a processorts identity within the
context of a multi-processor algorithm. This capability allows programs

to be written without knowledge of the actual physical processors on

which they will execute. LSELF can be used to determine control paths

through a program based on the logical processor on which it is

executing.

Usage example:

FOR 1:=I TO N PROCS DO

IF I <> LSE_F THEN

SEND(I,LOC(X[I]),2);

123

PASLIB Programmer's Guide

4. EFFICIENCY CONSIDERATIONS

Many factors influence the performance of programs which execute on the
Finite Element Machine. Some of these concerns are the same as those for

sequential computers, for example, the algorithm chosen_ the skill of the

programmer, the amount of I/0 involved, the quality of the code generated by

the compiler, and the efficiency and internal organization of the operating
system. Other concerns are introduced because of the parallel nature of FEM,

including distribution of the workload, problem partitioning, processor

synchronization, interprocessor communication, and complexity of control
structures. The following sections discuss some of the things to bear in mind

when writing efficient programs.

4.1 Compiler Options

Two categories of TIP compiler options have a significant effect on

execution time. One category consists of the runtime checks (CKINDEX, CKOVER_

CKSUB, etc.), and the other controls code optimization (GLOBALOPT, etc.).

The execution time checks are strongly recommended for use until a

program has been fully debugged and tested. However, their use can result in

significant increases in both execution time and size of object code. The

default when no checking options are specified is no checking, which will
result in maximum performance and minimum object code.

A number of optimization levels are available in TI Pascal. The default

is OPTIMIZE, which enables simple statement-level optimizations. The GLOBALOPT

option includes additional optimizations at the routine level. SPEEDOPT is

supposed to modify the optimization strategy to improve performance, but with

a possible increase in the object code size. The UNSAFEOPT option allows

additional optimizations which attempt to improve register usage; however,

these optimizations cannot be performed correctly for all programs. A program

should first be thoroughly tested without UNSAFEOPT, and then re-tested with

UNSAFEOPT turned on to assure that the optimizations are correct.

Experiments have shown that the best optimization strategy is highly
program dependent. While SPEEDOPT improves the performance of some programs,

it may actually degrade the performance of others (relative to GLOBALOPT).

Similarly, UNSAFEOPT can be quite beneficial for some code, but may show
little or no improvements in other cases.

Experience has also shown that the compiler occasionally makes mistakes
when optimizing code. If a program is producing incorrect results and there

are no detectable flaws in the logic, then optimization errors are a

possibility. Test for optimization errors by disabling GLOBALOPT, SPEEDOPT,
and UNSAFEOPT, and recompiling with NO OPTIMIZE. If the program still produces

the same incorrect results, then the problem lies in the user's program or

elsewhere in the compiler. Most optimization errors can be circumvented by
minor rearrangements of the source code in the vicinity of the error_ without

resorting to NO OPTIMIZE for the production version. Optimizations are routine
I-- level options, so that NO OPTIMIZE can be restricted to a module which causes

problems, while still allowing full optimization of other parts of the

125

PASLIB Programmer's Guide

program.

For a full description of the various compiler options, refer to Chapter
11 in the TI PASCAL REFERENCE MANUAL.

The FEM Project has adopted a standard set of compiler options which

should be used when comparing the execution speeds or object code sizes of

different programs. These are:

(*$GLOBALOPT,NO TRACEBACK,NO ASSERTS *)

Other options which have no effect on object code may be used as desired. Of

these, WIDELIST and MAP are strongly recommended for debugging purposes.

4.2 Algorithms and Overhead

A useful measure of the overhead incurred by a parallel program is the
parallel efficiency, defined as follows:

T(1)
e -

p*T(p)

T(1) is the execution time for a uniprocessor implementation of an algorithm,

and T(p) is the execution time for the same algorithm implemented on p
processors. Values of e close to 1.0 indicate low overhead, while smaller

valu_:s indicate higher overhc:ad. Values greater than 1.0 might be realized by
some asynchronous or combinatorially implosive algorithms.

This section discusses several of the more important issues which

contribute to overhead in parallel programs written for FEM.

4.2.1 Workload

Distribution of the workload is a critical factor for synchronous

algorithms. Each processor should be given approximately the same amount of

work to do, so as to minimize the overall idle time. If a small percentage of

processors have substantially more work to do than the rest, then the

efficiency will be low because of high idle time on the larger number of
processors which must wait.

4.2.2 Problem Partitioning

Related to the idea of workload is the concept of problem partitioning.
Ideally a problem would be partitioned into p equal-sized pieces and solved on

p processors. The fineness or granularity of the partitioning can affect the

overhead of the parallel solution. Coarse partitionings generally have a high
computation-to-communication ratio and high efficiency; very fine
partitionings may have a low computation-to-communication ratio and low

efficiency. For many problems there is an optimal partitioning of the problem

onto some number of processors. If more processors are added, no improvement

126

PASLIB Programmer's Guide

will be seen because ow:rhead costs become the dominant factor in execution

time.

4.2.3 Synchronization

Two factors contribute to synchronization overheads. One is idle time,

mentioned above, and the other is the mechanism used to achieve
synchronization. PASLIB provides two different synchronization methods, one

based on message passing and the other on the flag network.

When synchronous communication mode is chosen, the receive routines of

Section 3.10 will wait for input from the specified processor if none is

currently available in the input queue. This property can be used to bring

processors into a loosely synchronized state. For algorithms which must

transmit data between processors anyway, the communication routines can

provide some or all of the required synchronization.

The preferred synchronization mechanism for most applications, however,

is the flag barrier. The BAR routine (Section 3.4.9) incurs much less overhead

than the communication routines, and guarantees that all participating

processors have arrived at the same point in a program at the same time.

4.2.4 Communication

Data communication between processors is one of the major overheads in

many parallel programs. The amount of communication between processors is

determined by the nature of the problem and the algorithm selected to solve

it. Some algorithms may require no interaction between processors, while

others may move large amounts of data at frequent intervals.

The local link hardware provides the capability to send the same data to

several processors simultaneously. This is supported by PASLIB in the form of

the SENDALL and SEND2ALL procedures. Algorithms which transmit the same data

to all neighbors will incur substantially less overhead by using SENDALL or

SEND2ALL rather than repeated calls to SEND or SEND2. Efficient use of

send-all depends on a logical-to-physical mapping which maximizes use of the

local links and minimizes global bus communication.

Overhead for the communication routines can be divided into three

components: (I) a fixed overhead for the I/O call which is independent of the

amount of data transferred, (2) a data movement overhead which is a function

of the amount of data to be transmitted, and (3) a dynamic interrupt overhead

which depends on the number of send and receive interrupts generated.

For a given algorithm, the fixed overhead can be minimized by making as

few SEND and RECV calls as possible. This implies that a few large blocks of

data should be transmitted between processors, rather than many small ones.

PASLIB supports this by allowing transmission of variable length data records

up to a maximum size of 255 words.

I-- Data mow_ment overhead consists primarily of the time to copy data into
and out of I/O buffers, but also includes the hardware transmission time. Data

127

PASLIB Programmer's Guide

movemc_nt can be reduced by using SENDALL and the local links wherever

appropriate.

Interrupt overhead is sensitive to the sequencing and duration of local

and global send and receive interrupts. Since FEM processors are asynchronous

(do not share a common clock)_ the interrupt overhead is difficult to predict 9
and may vary from run to run t even though the program and data remain the
same. Transmitting larger blocks of data will tend to reduce the number of

interrupts_ thereby decreasing the interrupt overhead. The depth of the
hardware data buffers may impose an upper limit on interrupt efficiencies.

128

PASLIB Programmer's Guide

5. EXECUTION_ ANALYSIS9 AND DEBUGGING

The FEM Array Control Software (FACS) in conjunction with the Nodal Exec

operating system provides facilities for data management, execution control,

debugging, and performance analysis. The following sections outline the

procedures for setting up, executing, debugging, and analyzing Pascal programs

on the Array. For more detailed information, consult the FACS USER'S GUIDE and

the relevant FEM Programming Memoranda.

5.1 Problem Setup

Before a program can be executed on the Array, several steps must be
taken to set up the proper environment. The first step is to initialize the

hardware and system software on the Array, and to define the

logical-to-physical processor mapping (RESET command). Next, the set of
processors to be used for the problem must be selected (SAC). If data areas

are needed, they must be defined (DEFDAD, DEFDAI) and any necessary data must

be loaded (LDAD, LDAI). If processors need to communicate with each other,

data areas 0 and 2 must be defined, and a list of logical neighbors must be

loaded into data area 2 on each processor. Data areas 0 and 2 must be

identical in size and type of data (integer). After setting up data areas 0

and 2, connectivity must be established (SYNCON, ASYNCON). If there is no

communication between processors, data areas 0 and 2 are not needed and

connectivity may be ommitted.

Programs are loaded into processors (LDPG) from files of compressed

object code which are produced by the link editor (see Section 2.3). The same

code may be loaded into all processors, or different code may be loaded into

different processors as required. Only one program may be loaded per

processor. Loading a new program will automatically delete the previous one.

When a program is loaded, the entry point of the linked module is stored; this

value is used to initialize the processor's program counter when execution

begins. For Pascal programs, the proper entry point is the address of module

NSMAIN, usually relative address 0 (*0000). The link map may be used to verify

the correct entry point. The AUTOSTAT command can be used to modify the entry

point if needed.

The best order for defining data areas, loading programs, and

establishing connectivity depends on the life-spans of the objects being

allocated. FEM Programming Memo 2 discusses optimal memory management for
Nodal Exec.

If a particular setup sequence is to be performed more than a few times,

an SCI command procedure should be written to expedite the process. Consult
the FACS USER'S GUIDE and Volume III of the DXI0 OPERATING SYSTEM manual for

more information about writing SCI procs.

5.2 Execution Control

FACS/Nodal Exec provide commands to execute, halt, resume, and kill

programs on the Array. In addition, a breakpoint in a program causes an

129

PASLIB Programmerts Guide

internally generated halt. Programs may be executed repeatedly without

reloading the object code. If a program is halted or killed_ the program
counter must be re-lnltialized to the entry address (STAT or AUTOSTAT command)

before the program can be re-executed. Data areas need to be reloaded only if

the program has modified the data, or if new data is needed for the next run.

Large programs may be broken into multiple phases which run one after the

other, with each new phase being loaded to replace the previous one.

Intermediate results may be stored in data areas between phases 9 eliminating
the need for moving large amounts of data to and from the Controller.

5.3 Debugging

All of the debugging tools of FACS/Nodal Exec are available to the Pascal

programmer. These allow the programmer to inspect and modify memory and
registers, set breakpoints, and single-step the processor. The SPSF (Show

Pascal Stack on FEM) command was designed specifically for debugging TI Pascal
programs. Use of SPSF requires a working knowledge of the TIP data structures
which are described in Chapter 8 of the TI PASCAL PROGRAMMER'S GUIDE.

A useful strategy for initial testing of programs is to set breakpoints
(SFB) at the entry addresses of procedures and functions. These can be either

user-defined routines or PASLIB routines. The entry addresses are obtained

from the symbol definitions (rather than the module map) produced as output

from the link editor. Breakpoints should be set in the order that the program
is expected to execute. In this way the programmer can follow the execution

sequence and determine the approximate location of errors when they occur. If
better resolution is desired, the Pascal reverse assembler (XRASS) can be used

to determine the addresses of particular statements in the program, although
this requires some knowledge of TMS9900 assembly language and TIP data
structures and register conventions.

The SPSF command can be used at breakpoints to examine registers and

variables in the Pascal stack. By modifying the workspace pointer field_

variables at lower nesting levels in the stack can be examined. The workspace
pointer must be restored to its original value before resuming execution.

5.4 Analysis

Nodal Exec incorporates two features which aid in the analysis of program

execution. One of these is a trace capability which samples the program
counter (PC) at specified intervals during execution. The PC values are sent

to the Controller where they are stored for post-processing. By comparing the

distribution of PC samples against the link editor module map, the percentage

of time spent in different parts of the program (including PASLIB and much of

Nodal Exec) can be determined. Programming Memo 3 discusses the trace sampling
facility in detail.

The other analysis feature is a table of execution statistics which are

automatically collected by Nodal Exec and PASLIB. Information is recorded

about execution time, I/O, memory management, flags, and floating-point
operations. This data may be post-processed to derive several measures of
execution efficiency. Programming Memo 4 describes the execution statistics

130

PASLIB Programmerts Guide

report in detail.

131

PASLIB Programmer's Guide

APPENDIX A

I-- EXAMPLE PROGRAM

Source Code

(*$WIDELIST,MAP,NO ASSERTS,NO TRACEBACK *)

(*$GLOBALOPT *)

(* CKINDEX_CKOVER, CKSUB *)

PROGRAM JACOBI;

(*..*)
(* *)
(* JACOB1 V2.1 12/21/82 *)

(* *)
(* This program solves Loendorf's 4-node wing box problem *)

(* using either the standard or asynchronous Jacobi method. *)

(* The solution technique is determined by the I/O mode used *)

(* in the connectivity command, either synchronous (SYNCON) *)

(* or asynchronous (ASYNCON). *)
(* *)
(* This version of the program has been modified to use the *)
(* record-oriented 1/O of Nodal Exec/PASLIB V2.1. The three *)

(* displacement values calculated by each node are sent or *)

(* received in a single operation. *)
(* *)
(* Data Areas *)

(* 0 - physical neighbor table *)

(* 1 - logical-to-physical mapping *)

(* 2 - logical neighbor table *)

(* 3 - reserved for system use *)

(* 4 - K matrix, 12 x 12 *)

(* 5 - vector of applied forces *)

(* 6 - input parameters: *)

(* NDOF -number of degrees of freedom *)

(* NCON -number of neighbors *)
(* NNODES -total number of nodes *)

(* *)
(* Must be_run under V2.1 of Nodal Exec/PASLIB. *)

(* *)
(*..*)r

(* *)

(* PASLIB DECLARATIONS *)

(* *)

?COPY SYSI.FEM.PASLIB.UTIL$.TYPDCL

(* FLAG ROUTINES *)

133

FUNCTION ALL(F :FLAG) :BOOLEAN;EXTERNAL;

FUNCTION FIRST:BOOLEAN;EXTERNAL;

PROCEDURE BAR(F:FLAG) ;EXTERNAL;

PROCEDURE FLGEN(F:FLAG);EXTERNAL;

PROCEDURE FLGRES(F :FLAG) ;EXTERNAL ;

PROCEDURE FLGSET(F :FLAG) ;EXTERNAL ;

(* DATA AREA ACCESS *)

FUNCTI ON DAPTR(DA :DANUM) :ADDR; EXTERNAL ;

(* NEIGHBOR COMMUNICATIONS *)

PROCEDURE SENDALL(LOC :ADDR; NWORDS :INTEGER) ;EXTERNAL ;

PROCEDURE RECV(N:NODE; LOC:ADDR; NWORDS:INTEGER);EXTERNAL;

FUNCTION IO$MODE :INTEGER; EXTERNAL;

(* FLOATING POINT ROUTINES *)

FUNCT ION CV9512 (X:REAL) :REAL ;EXTERNAL ;
FUNCTION MAX95 :REAL;EXTERNAL;

FUNCTION CMP(X,Y :REAL) :INTEGER; EXTERNAL ;

FU NCTI ON ABS95 (X :REAL) :REAL ;EXTERNAL ;

FUNCTION SUB(X,Y:REAL) :REAL;EXTERNAL;
FUNCTION DIVD(X,Y:REAL):REAL;EXTERNAL;

FUNCTION VDP(N:POSINT; VAR A:ARRAY [I..?] OF REAL;
VAR B:ARRAY [I..?] OF REAL) :REAL;EXTERNAL;

(* OUTPUT ROUTINES *)

PROCEDURE MSG(STRING :PACKED ARRAY[1..?] OF CHAR) ;EXTERNAL;

PROCEDURE MSGLN(STRING:PACKED ARRAY[I..?] OF CHAR);

EXTERNAL ;
PROCEDURE NXTLN ;EXTERNAL ;

PROCEDURE ENDLN(N:POSINT) ;EXTERNAL;

PROCEDURE MSGCH(CH: CHAR) ;EXTERNAL;

PROCEDURE MSGI(I:INTEGER) ;EXTERNAL;

PROCEDURE MSGL(I:LONGI NT) ;EXTERNAL ;

PROCEDURE MSGR(X: REAL) ;EXTERNAL;

PROCEDURE CWAIT ;EXTERNAL ;

(* TIMER ROUTINES *)

PROCEDURE TSTART(T:POSINT) ;EXTERNAL;

FUNCTION TREAD:LONGINT;EXTERNAL;

PROCEDURE TREADI(VAR IIMS:PACKED ARRAY[I..?] OF CIIAR);EXTERNAL;

PROCEDURE TSTOP;EXTERNAL;

(* MISCELLANEOUS *)

FUNCTION LSELF:NODE;EXTERNAL;

FUNCTION PSELF:NODE;EXTERNAL;

FUNCTION GBUSY :BOOLEAN; EXTERNAL;

(* *)
(* MAIN PROGRAM *)

(* *)

PROCEDURE PSCL$$;

134

CONST FLAG0=0; (* FIRST FLAG *)

FLAG2=2 ; (* CONVERGENCE *)

FLAG3=3 ; (* SYNCHRONIZATION *)

EPSILON=I.0E-07; (* CONVERGENCE CRITERION *)

SYNCHRONOUS=I ; (* SYNCHRONOUS I/O MODE *)
" DSIZE=6; (* DATA RECORD SIZE *)

TYPE DISPLACEMENTS = ARRAY [i..3] OF REAL;
A12 = ARRAY [I..12] OF REAL;

DA2 = ARRAY [1..3] OF NODE;

DA4 = ARRAY [1..12] OF A12;

DA5 = A12 ;

DA6 = RECORD

NDOF :IDX ;

NCON: i..3 ;
NNODE :NODE

END ;

VAR DSPL, R0, MAXREAL, CNVRG :REAL;

DELTA:ARRAY [1..4] OF DISPLACEMENTS;

K:ARRAY [i..12] OF A12;

F:AI2;

DELTAT :DISPLACEMENTS ;

SELF :NODE ;

- 11_IDOF, II, INT_NN:INTEGER;

mSECS :LONGINT;

HMS:PACKED ARRAY [1..8] OF CHAR;
ASYNC, CONVE RG :BOOLEAN ;

NEIGII:@DA2 ;

KDATA :@DA4 ;

FDATA :@DA5 ;

PARMS :@DA6 ;

DTPTR: ADDR;
DELTAPTR:ARRAY [1..4] OF ADDR;

BEGIN (* PSCL$$ *)

(* ENABLE AND RESET FLAGS *)

FOR I IN [FLAG0,FLAG2,FLAG3] DO

BEGIN FLGEN(I) ; FLGRES(I)

END;

(* CONSTANTS *)

R0:=CV9512(0.0) ;
MAXREAL :=MAX95 ;

CNVRG:=CV9512(EPSILON);

(* SOLUTION TECIINIQUE *)

IF IO$MODE = SYNCIIRONOUS TIIEN
ASYNC :=FALSE

ELSE

135

ASYNC:=TRUE;

(* GET DATA AREAS *)

NEIGH: :ADDR:=DAPTR(2) ;

KDATA: :ADDR:=DAPTR(4) ;

FDATA ::ADDR:=DAPTR(5) ;

PARMS ::ADDR:=DAPTR(6) ;

(* GET LOGICAL SELF ID *)

SELF:=LSELF;

(* PRINT HEADING *)

BAR(SYSFLAG) ; (* WAlT FOR FLAGS ENABLED & RESET *)
FLGSET(FLAGO) ;
IF FIRST THEN

BEGIN

MSGLN('--- Four-Node Wing Box Problem--- V2.1 ---'); NXTLN;
IF ASYNC THEN

MSG("Asynchronous')
ELSE

MSG("Standard') ;

MSGLN(" Jacobi Solution Technique')
END ;

(* INITIALIZATION *)

DTPTR:=LOCATION(DELTAT) ;
FOR 1:=1 TO PARMS@.NNODE DO

DELTAPTR[I] :=LOCATION(DELTA[I]);

WITII PARMS@ DO

BEGIN

NN:=NDOF*NNODE ;

II :=NN*NN;

II:=3*(SELF-1)+I;

IDOF :=3*(SELF-I) +NDOF

END ;

K:=KDATA@; (* GET WORKING COPIES OF DATA *)

F:=FDATA@;

(* CONVERT DATA TO 9512 FORMAT *)
FOR 1:=i TO NN DO

FOR J:=l TO NN DO

K[I,J] :=CV9512(K[I,J]) ;
WITH PA_S@ DO

FOR I:=i TO NCO_NNODE DO

F[I] :=CV9512(F[I]);

(* SEND INITIAL VALUES *)
FOR I := I TO PARMS@.NDOF DO

BEGIN

DELTA[SELF,I]:=R0;

DELTAT[I]:=MAXREAL

136

- END ;

SENDALL(DELTAPTR[SELF] 9DSIZE) ;
IF ASYNC THEN (* WAlT FOR INITIAL VALUES *)

BAR(FLAG3) ;

FOR J := Ii TO IDOF DO

BEGIN

F[J] :=DIVD(F[J],K[J,J]);
FOR I := I TO 12 DO

IF I <> J THEN

K[J,I] :=DIVD(K[J,I],K[J,J]);
K[J,J] :=R0

END ;

(* MAIN LOOP *)

INT:=0 ;

TSTART(50) ; (* 50 mSEC INTERVAL *)

WITH PARMS@ DO

WHILE NOT ALL(FLAG2) DO
BEGIN

INT:=INT+I ;
FOR I := I TO NCON DO

(* READ DISPLACEMENTS FROM NEIGHBORS *)

RECV(NEIGH@ [I],DELTAPTR[NEIGH@ [I]],DSIZE) ;

II := i;

f- CONVE RG :=TRUE ;
FOR JJ := 11 TO IDOF DO (* CALCULATE NEW DISPLACEMENTS *)

BEGIN

DSPL:=SUB(F[JJ] ,VDP(NN,K[JJ], DELTA: :A12));
CONVERG:=CONVERG AND

(CMP(ABS95(SUB(DSPL,DELTAT[II])),CNVRG) < 0) ;

DELTAT[II] :=DSPL;
II := II+I

END ;

SENDALL(DTPTR, DSIZE) ;

DELTA[SELF] :=DELTAT;
IF CONVERG THEN (* SIGNAL LOCAL CONVERGENCE *)

FLGS Er(FLAG2)
ELSE

FLGRES(FLAG2);
IF NOT ASYNC THEN

(* STD. JACOBI MUST SYNC BEFORE TESTING ALL *)

BAR(FLAG3)

END; (* MAIN LOOP *)

TSTOP;
TREAD1 (HMS) ;

mSECS:=TREAD;

(* REPORT RESULTS *)

FOR I:=! TO PARMS@.NNODE DO
BEGIN

BAR(FLAG3) ;

137

IF I = SELF THEN

BEGIN

ENDLN(2) ;

MSG('Node "); MSGI(1); MSG(" (Processor "); MSGI(PSELF);

MSGCH(')'); NXTLN;
MSG(""); ENDLN(2);
MSG(" ");
MSG('Iterations= "); MSGI(INT);NXTLN;
MSG(" ");
MSG('Elapsedtime for main loop = "); MSG(HMS);
MSG(' ('); MSGL(mSECS); MSG(" msecs)'); NXTLN;
MSG(' "); MSG('Displacements= ");
FOR I:=l TO PARMS@.NDOFDO
BEGIN
MSGR(DELTAT[I]);MSG(" ")
END;

NXTLN;
CWAIT (* WAIT FOR CONTROLLERTO PROCESSMESSAGES*)
END

END

END; (* PSCL$$ *)

BEGIN (*$ NO OBJECT *)
END. (* JACOBI *)

138

PASLIB Programmer's Guide

l.i nk Map

SDSLNK 3.5.0 81.117 11/13/83 12:28:08 PAGE 1

COMMAND LIST

NOSYMT

FORMAT COMPRESSED

LIBRARY SYSI .TIP.MINOBJ

LIBRARY SYSI .TIP.LUNOBJ
LIBRARY SYS1.TIP.OBJ

LIBRARY SYSI. FEM.PASLIB

TASK JC21

INCLUDE (N$MAIN)
INCLUDE USERI.TWC.JACOBI.JC210

INCLUDE (STK$1)

INCLUDE (HP$0)
END

CONTROL FILE = USERI.TWC.JACOBI.JC21C

LINKED OUTPUT FILE = USERI.TWC.JACOBI.JC21L

LIST FILE = SYS2.TWC.T.PRINTI

I-- OUTPUT FORMAT = COMPRESSED

LIBRARIES

NO ORGANIZATION PATHNAME

I RANDOM SYSI .TIP. MINOBJ

2 RANDOM SYSI .TIP .LUNOBJ

3 RANDOM SYSI .TIP.OBJ

4 RANDOM SYSI .FEM.PASLIB

PHASE O, JC21 ORIGIN = 0000 LENGTH = 15EE ENTRY=0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

NSMAI N 1 0000 00C2 INCLUDE,4 09/13/83 13:24:37 SDSMAC

$DATA 1 1116 0098

_ PSCL$$ 2 00C2 0878 INCLUDE 11/13/83 12:19:48 DXPSCL

STK$1 3 093A 0000 INCLUDE,4 08/23/82 14:47:19 SDSMAC

SDATA 3 11AE 0440

HP$0 4 093A 0000 INCLUDE,4 08/23/82 14:48:18 SDSMAC
ABEND$ 5 093A 006A LIBRARY, 1 09/10/81 19:02:38 SDSMAC

I-" GO$SA 6 09A4 0074 LIBRARY, 1 09/10/81 19:17:21 SDSMAC

CKTOP$ 7 OAf8 002C LIBRARY, 2 09/10/81 18:53:22 SDSMAC

139

ENT$ 8 0A44 00CC LIBRARY ,2 09/10/81 18:53:33 SDSMAC

ENT$MD 9 0BIO 000C LIBRARY _3 09/10/81 18:25:21 SDSMAC
SETIN$ 10 OBIC 0024 LIBRARY, 3 09/10/81 18:35:01 SDSMAC

MOVSN 11 0B40 0018 LIBRARY, 3 09/10/81 18:30:10 SDSMAC

SETS EQ 12 0B58 0040 LIBRARY, 3 09/10/81 18:34:51 SDSMAC
PASLNK 13 0B98 0000 LIBRARY 4 10/13/83 08:06:45 SDSMAC

FLGEN 14 0B98 0010 LIBRARY 4 12/10/82 09:30:19 SDSMAC

FLGRES 15 0BA8 0010 LIBRARY ,4 12/10/82 09:30:29 SDSMAC
CV9512 16 0BB8 0010 LIBRARY ,4 12/10/82 09:33:25 SDSMAC

MAX95 17 OBC8 0010 LIBRARY ,4 12/I0/82 09:34:42 SDSMAC

IO$MODE 18 0BD8 0010 LIBRARY ,4 12/10/82 09:31:58 SDSMAC
DAPTR 19 OBE8 0010 LIBRARY,4 12/10/82 09:31:08 SDSMAC

LSELF 20 0BF8 0010 LIBRARY,4 12/10/82 09:36:11 SDSMAC

BAR 21 0C08 0010 LIBRARY,4 12/10/82 09:29:38 SDSMAC

FLGSET 22 0C18 0010 LIBRARY,4 12/10/82 09:30:44 SDSMAC

FIRST 23 0C28 0010 LIBRARY,4 12/10/82 09:29:50 SDSMAC

MSGLN 24 0C38 001A LIBRARY,4 12/10/82 09:35:26 SDSMAC
NXTLN 25 0C52 0010 LIBRARY,4 12/10/82 09:35:39 SDSMAC

MSG 26 0C62 001A LIBRARY,4 12/10/82 09:35:07 SDSMAC

SENDALL 27 0C7C 0010 LIBRARY,4 12/10/82 09:32:34 SDSMAC
DIVD 28 0C8C 0010 LIBRARY,4 12/10/82 09:33:49 SDSMAC

TSTART 29 0C9C 0010 LIBRARY 94 12/10/82 09:36:01 SDSMAC

ALL 30 OCAC 0010 LIBRARY,4 12/10/82 09:29:03 SDSMAC

RECV 31 0CBC 0010 LIBRARY,4 12/10/82 09:31:33 SDSMAC

VDP 32 0CCC 0010 LIBRARY,4 12/10/82 09:35:04 SDSMAC

SUB 33 OCDC 0010 LIBRARY,4 12/10/82 09:35:00 SDSMAC
ABS95 34 OCEC 0010 LIBRARY,4 12/10/82 09:33:04 SDSMAC

CMP 35 0CFC 0010 LIBRARY,4 12/10/82 09:33:19 SDSMAC

TSTOP 36 ODOC 0010 LIBRARY,4 12/10/82 09:36:04 SDSMAC

TREADI 37 0DIC 016C LIBRARY,4 01/03/83 13:56:03 DXPSCL

TREAD 38 0E88 0010 LIBRARY,4 12/10/82 09:36:08 SDSMAC

ENDLN 39 0E98 0010 LIBRARY,4 12/10/82 09:35:36 SDSMAC
MSGI 40 0EA8 0010 LIBRARY,4 12/10/82 09:35:17 SDSMAC

PSELF 41 0EB8 0010 LIBRARY 94 12/10/82 09:36:14 SDSMAC

MSGCII 42 0EC8 0010 LIBRARY,4 12/10/82 09:35:10 SDSMAC

MSGL 43 OED8 0010 LIBRARY,4 12/10/82 09:35:23 SDSMAC

MSGR 44 0EE8 0010 LIBRARY ,4 12/10/82 09:35:29 SDSMAC
CWAIT 45 0EF8 0024 LIBRARY,4 02/15/83 09:28:23 DXPSCL

ALCPY$ 46 0FIC 001E LIBRARY,3 09/10/81 18:17:07 SDSMAC

DI$DIV 47 OF3A 00E8 LIBRARY, 3 09/10/81 18:21:37 SDSMAC

DIV$ 48 1022 0038 LIBRARY _3 09/10/81 18:22:05 SDSMAC

ALLOC$ 49 I05A 0044 LIBRARY, 2 09/10/81 18:52:54 SDSMAC
GBUSY 50 109E 0010 LIBRARY,4 12/10/82 09:31:21 SDSMAC

DLY 51 10AE 0058 LIBRARY,4 02/15/83 09:24:14 DXPSCL

XTIME 52 1106 0010 LIBRARY,4 12/10/82 09:35:58 SDSMAC

DEFINITIONS

NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

$ABS95 2F4A* 13 *$ADD 2EFC* 13 $ALL 2AE2* 13 *$ANY 2AF2* 13

140

$BAR 2B56" 13 $CMP 3054* 13 $CV951 30FA* 13 *$CV990 323C* 13

$DABS9 2F3E 13 *$DADD$ 2F5E* 13 $DAPTR 2B7E* 13 *$DCMP 304A* 13

*$DDIVD 2F76" 13 *$DFLOI 351C* 13 *$DFLOL 3576* 13 SDIVD 2F14" 13
*$DMAX9 30C6" 13 *$DMIN9 30CC* 13 *$DMULT 2F6E* 13 *$DNEG 2FIC* 13

*$DOUBL 33F6" 13 *$DSQRT 3930* 13 *$DSUB$ 2F66" 13 *$DV951 3184" 13

*$DV990 32C4" 13 *$DVDP 3B38" 13 $ENDLN 3CF2" 13 $ERRVE 0080* 13
$FIRST 2B38" 13 *$FLGDI 2AA0* 13 $FLGEN 2A96" 13 $FLGRE 2ABC* 13

$FLGSE 2AA8* 13 *$FLOTI 3450* 13 *$FLOTL 34A4" 13 $GBUSY 2EE8* 13
$IFIX 3600 13 *$IFIXD 3678* 13 IOMO 2ED2* 13 *$LFIX 36F6" 13

$LFIXD 3798 13 $LSELF 3D82" 13 $MAX95 30B2" 13 *$MIN95 30B8" 13

$MSG 3CBC* 13 $MSGCH 3D00* 13 *$MSGDH 3D3E* 13 $MSGI 3D08" 13

*$MSGIH 3DI0" 13 $MSGL 3D18" 13 $MSGLN 3CD4" 13 $MSGR 3D24" 13
*$MSGRH 3D30" 13 *$MULT 2FOC* 13 NHEA F9E8* 13 NSTK F9E4* 13

$NEG 2F28" 13 $NXTLN 3CF8" 13 $OBJPT FA8E 13 $PRPTR FA84* 13

$PSELF 3DSA* 13 *$QUERY 3C2C* 13 *$RDCH 3C30" 13 *$RDH 3C3A* 13
*$RDI 3C66" 13 *$RDR 3C92" 13 $RECV 2BB2* 13 *$RECV2 2BC4" 13

*$SEND 2CE4" 13 *$SEND2 2CF6" 13 $SENDA 2DF6* 13 *$SINGL 338A* 13
*$SND2A 2E04" 13 *$SQRT9 384C* 13 $STOP 008C* 13 $SUB 2F04" 13

$SYNC 2B02" 13 $TREAD 3D72" 13 $TSTAR 3D5E 13 $TSTOP 3D6C* 13

$VDP 3A44" 13 $XTIME 3D4E* 13 *ABEND$ 0956 5 ABND$0 097E 5

ABND$1 0976 5 ABND$2 0948 5 ABS95 OCEE 34 ALCPY$ 0FIC 46

ALL 0CAE 30 ALLC$$ 1060 49 *ALLOC$ I05A 49 BAR 0COA 21

CKTOP$ 0A18 7 CMP OCFE 35 CUR$$ 0AF4 8 CV9512 0BBA 16

CWAIT 0EFE 45 DAPTR 0BEA 19 DI$DIV 0F3C 47 DI$MOD 0F46 47

DIV$ 1022 48 DIVD 0C8E 28 DLY 10B2 51 ENDLN 0E9A 39

*ENT$ 0A54 8 *ENT$2 0A44 8 ENT$M 0A5E 8 ENT$MD 0BIO 9
P_ ENT$S 0AEO 8 FIRST 0C2A 23 FLGEN 0B9A 14 FLGRES 0BAA 15

FLGSET 0CIA 22 GBUSY 10A0 50 GO$SA 09A4 6 HP$BOT 15EE 4

HP$TOP 15EE 4 IO$MOD OBDA 18 LSELF OBFA 20 MARG$N 093A 5

*MASKS 0B7A 12 MASK$$ 0B58 12 MAX95 0BCA 17 *MOV$4 OB4E 11
*MOV$ 5 0B4C 11 MOV$6 OB4A 11 *MOV$ 7 0B48 11 *MOV$ 8 0B46 11

MOV$N 0B40 11 MSG 0C64 26 MSGCH 0ECA 42 MSGI 0EAA 40

MSGL 0EDA 43 MSGLN 0C3A 24 MSGR 0EEA 44 NXTLN 0C54 25

*PATCH$ 0A78 8 PSCL$$ 01F6 2 PSELF 0EBA 41 RECV 0CBE 31

*RET$2 0AFA 8 RET$M OBOC 8 RET$S OBOE 8 SENDAL 0C7E 27

*SET$EQ 0B7A 12 SETIN$ 0BIC i0 ST$BOT 11AE 3 ST$TOP 15EE 3

SUB 0CDE 33 *SVC$ 0038 i *T$CC 000A* 1 T$EC 000C* 1

T$MSG 000E 1 T$SYSM 0008* i *T$TIB 1116 i T$WP 0006* 1
TERM$$ 0046 I TREAD 0E8A 38 TREAD1 OD2A 37 TSTART 0C9E 29

TSTOP ODOE 36 VDP OCCE 32 XTIME 1108 52

**** LINKING COMPLETEDP

141

PASI,II_ Prograrnm(.r'_ Cuid_'

SCI Procedure

JC21 (JACOBI / ASYNCHRONOUS JACOBI V2.1 -- 9/83 twc)=3,

SYNCHRONOUS I/O? = YESNO(YES)
SELECTED PROCESSORS = STRING_
REFERENCE PROCESSOR = INT(@$REFPROCESSOR)

P$SYN

Q$ SYN
RESET SELMAP=DF

.IF @$ERRTST_ NE 9 00000

.EXIT

.ENDIF

SAC SP="&SELECTED PROCESSORS"

.IF @$ERRTST, RE9 00000

.EXIT

.ENDIF

LDPG PFAN="USERI .TWC.JACOBI.JC2 IL", SP="&SELECTED PROCESSORS"

•IF @$ERRTST, RE, 00000
.EXIT

.ENDIF

DEFDAD CFAN =''USE R1 .TWC. JACOB I.DATA20 •DEFDA"

.IF @$ERRTST, RE, 00000

.EXIT

.ENDIF

LDAD CFAN=''US ERI .TWC. JACOB I.DATA20 •LOAD DA"

.IF @$ERRTST9 NE_ 00000

.EXIT

.ENDIF

.IF "&SYNCHRONOUS I/0?", GE, "Y"

SYNCON MAXREC=6 _NOITAG=I ,ROLL=8, QD=2
.ELSE

ASYNCON MAXREC=6, NOITAC=I ,NOLL=8
.ENDIF

.IF @$ERRTST, NE, 00000

.EXIT

.ENDIF

XFEM CHECK=Y,TRACENAB=N, REF="&REFERENCE PROCESSOR"

142

PASLIB Programmer's Guide

._ Program Output

--- Four-Node Wing Box Problem --- V2.1 ---

Standard Jacob1 Solution Technique

Node 1 (Processor 16)

Iterations = 281

Elapsed time for main loop = 00:00:09 (9250 msecs)

Displacements = 4.013423E-04 -7.199459E-03 1.311874E-02

Node 2 (Processor 17)

Iterations = 281

Elapsed time for main loop = 00:00:09 (9250 msecs)

Displacements = -4.013424E-04 -7.199458E-03 -1.311875E-02

Node 3 (Processor 18)

Iterations = 281

Elapsed time for main loop = 00:00:09 (9250 msecs)

Displacements = -4.005618E-04 7.200593E-03 1.263331E-02

Node 4 (Processor 19)

Iterations = 281

Elapsed time for main loop = 00:00:09 (9250 msecs)

Displacements = 4.005620E-04 7.200593E-03 -1.263331E-02

143

PASLIB Programmer's Guide

.f-_ APPENDIX B
EPROM-RESIDENT SUBROUTINES

(PASLIB V2.1-i01283)

Listed below are those PASLIB routines which are stored in EPROM on each

" of the processors in the FEM Array. Access to these routines is via small
interface subroutines from SYS1.FEM.PASLIB which are linked with user

programs. The interface subroutines contain procedure and function call entry
and exit code, and a BL (branch and link) instruction to transfer control to

the proper address in EPROM. When the EPROM routine terminates, control is
returned to the interface subroutine using the address in register 11.

Subroutine Starting Address Ending Address

ABS95 2F4A 2F5C

ADD 2EFC 2F02

ALL 2AE2 2B2E
ANY 2AF2 2B2 E

BAR 2B56 2B7C

CMP 3054 30B0

CV9512 30FA 3182

CV990 323C 32C2

DABS95 2F3E 2F5C
f_ DADD 2F5E 2F64

DAPTR 2B7E 2BB0

DCMP 304A 30B0
DDIVD 2F76 2F7C

DFLOTI 351 C 3574

DFLOTL 3576 35FE

DIVD 2F14 2FIA

DMAX95 30C6 30E0

DMIN95 30CC 30E0
DMULT 2F6E 2F74

DNEG 2FI C 2F3C

DOUBLE 33F6 344E

DSQRT95 3930 3A42
DSUB 2F66 2F6C

DV9512 3184 323A

DV990 32C4 3388

DVDP 3B38 3C2A

ENDLN 3CF2 3CFE

FIRST 2B38 2B54

FLGD IS 2AAO 2AEO
FLGEN 2A96 2AEO

FLGRES 2ABC 2AE0

FLG SET 2AA8 2AE0

FLOATI 3450 34A2
FLOATL 34A4 35 IA

GBUSY 2EE8 2EFA

IFIX 3600 3676
IFIXD 3678 36F4

145

PASLIB Programmer's Guide

IO$MODE 2ED2 2EE6

LFIX 36F6 3796
LFIXD 3798 384A

LSELF 3D82 3D88

MAX95 30B2 30C4

MIN95 30B8 30C4 -
MSG 3CBC 3CD2

MSGCH 3D00 3D06
MSGDH 3D3E 3D4C

MSGI 3D08 3DOE

MSGIH 3DI0 3D16

MSGL 3D18 3D22

MSGLN 3CD4 3CF0
MSGR 3D24 3D2E

MSGRH 3D30 3D3C

MULT 2F0C 2F12

NEG 2F28 2F3C

NXTLN 3CF8 3CFE

PSELF 3D8A 3D90

QRY 3C2C 3C2E

RDCH 3C30 3C38

RDH 3C3A 3C64

RDI 3C66 3C90

RDR 3C92 3CBA

RECV 2BB2 2CE2

RECV2 2BC4 2CE2

SEND 2CE4 2DF4

SEND2 2CF6 2DF4

SEND2ALL 2E04 2ED0
SENDALL 2DF6 2ED0

SINGLE 338A 33F4

SQRT95 384C 392E
SUB 2F04 2F0A

SYNC 2B02 2B2E

TREAD 3D7C 3D80
TSTART • 3D5E 3D6A

TSTOP 3D6C 3D70

VDP 3A44 3B36

XTIME 3D4E 3D5 C

146

PASLIB Programmer's Guide

APPENDIX C

SUBROUTINE REFERENCE SHEET

Text Output

PROCEDURE MSG(STRING:PACKED ARRAY [1..?] OF CHAR) ;EXTERNAL;

PROCEDURE MSGLN(STRING:PACKED ARRAY [i..?] OF CHAR) ;EXTERNAL;

PROCEDURE ENDLN(N:POSINT) ;EXTERNAL;

PROCEDURE NXTLN; EXTERNAL;

PROCEDURE MSGCH(CH: CHAR) ;EXTERNAL ;
PROCEDURE MSGI(I:INTEGER) ;EXTERNAL ;

PROCEDURE MSGL(I:LONG INT) ;EXTERNAL ;

PROCEDURE MSGR(X: REAL) ;EXTERNAL;
PROCEDURE MSGD(X:REAL(16));EXTERNAL;

PROCEDURE MSGIH(I:INTEGER) ;EXTERNAL;

PROCEDURE MSGRH(X:REAL) ;EXTERNAL;

PROCEDURE MSGDH(X:REAL(16));EXTERNAL;

PROCEDURE CWAIT; EXTERNAL;

Interactive Input

PROCEDURE QUERY ;EXTERNAL ;

FUNCTION RDCH :CHAR; EXTERNAL ;

FUNCTI ON RDH :INTEGE R;EXTERNAL ;

FUNCTION RDI :INTEGER;EXTERNAL;

FUNCTION RDR:REAL ;EXTERNAL ;

Data Areas

FUNCTI ON DAPTR(DA :DANUM) :ADDR; EXTERNAL ;

Flags

PROCEDURE FLGEN(F:FLAG);EXTERNAL;

PROCEDURE FLGDIS(F:FLAG);EXTERNAL;

PROCEDURE FLGRES(F:FLAG);EXTERNAL;

PROCEDURE FLGSET(F:FLAG);EXTERNAL;

FUNCTION ANY(F:FLAG):BOOLEAN;EXTERNAL;

FUNCTION ALL(F:FLAG):BOOLEAN;EXTERNAL;

FUNCTION SYNC(F:FLAG):BOOLEAN;EXTERNAL;

FUNCTION FIRST(F:FLAG):BOOLEAN;EXTERNAL;

PROCEDURE BAR(F:FLAG);EXTERNAL;

Floating-point Operations

FUNCTION ADD(X,Y:REAL) :REAL;EXTERNAL;
FUNCTION SUB(X,Y:REAL):REAL;EXTERNAL;

FUNCTION MULT(X,Y:REAL):REAL;EXTERNAL;
FUNCTION DIVD(X,Y:REAL):REAL;EXTERNAL;

147

PASLIB Programmer's Guide

FUNCTION NEG(X:REAL):REAL;EXTERNAL;

FUNCTION ABS95(X:REAL):REAL;EXTERNAL;
FUNCTION CMP(X,Y:REAL):INTEGER;EXTERNAL;

FUNCTION DADD(X,Y:REAL(16)):REAL(16);EXTERNAL;

FUNCTION DSUB(X,Y:REAL(16)):REAL(16);EXTERNAL;

FUNCTION DMULT(X,Y:REAL(16)):REAL(16);EXTERNAL;

FUNCTION DDIVD(X,Y:REAL(16)):REAL(16);EXTERNAL;

FUNCTION DNEG(X:REAL(16)):REAL(16);EXTERNAL;

FUNCTION DABS95(X:REAL(16)):REAL(16);EXTERNAL;
FUNCTION DCMP(X,Y:REAL(16)):INTEGER;EXTERNAL;

Floating-point Constants

FUNCTION MAX95 :REAL ;EXTERNAL ;

FUNCTION MIN95:REAL;EXTERNAL;

FUNCTION DMAX95:REAL(16) ;EXTERNAL;

FUNCTION DMIN95:REAL(16);EXTERNAL;

Floating-point Conversions

FU NCT ION CV9512 (X :REAL) :RE AL ;EX TE RNAL ;

FUNCTION CV990 (X :REAL) :REAL ;EXTERNAL ;

FUNCTION FLOATI (I :INTEGER) :REAL ;EXTERNAL ;

FUNCTION FLOATL(I:LONGINT) :REAL;EXTERNAL;

FUNCTION IFIX(X:REAL):INTEGER;EXTERNAL;

FUNCTION LFIX(X:REAL) :LONGINT;EXTERNAL;

FUNCTION SINGLE(X:REAL(16)) :REAL;EXTERNAL;

FUNCTION DV95!2(X:REAL(16)):REAL(16) ;EXTERNAL;

FUNCTION DV990(X:REAL(16)) :REAL(16) ;EXTERNAL;

FUNCTION DFLOTI(I:INTEGER) :REAL(16) ;EXTERNAL;

FUNCTION DFLOTL(L:LONGINT) :REAL(16) :EXTERNAL;

FUNCTION IFIXD(X:REAL(16)):INTEGER;EXTERNAL;

FUNCTION LFIXD(X:REAL(16)):LONGINT;EXTERNAL;

FUNCTION DOUBLE(X:REAL) :REAL(16) ;EXTERNAL;

Mathematical Subroutines

FUNCTION SQRT95(X:REAL) :REAL;EXTERNAL;

FUNCTION DSQRT95(X:REAL(16)):REAL(16) ;EXTERNAL;

FUNCTION VDP(N:POSINT;

VAR A:ARRAY [1..?] OF REAL;

VAR B:ARRAY [1..?] OF REAL):REAL;EXTERNAL;

FUNCTION DVDP(N:POSINT;

VAR A:ARRAY [1..?] OF REAL(16) ;
VAR B:ARRAY [I..?] OF REAL(16)):REAL(16):EXTERNAL;

FU NCTI ON URAN :REAL ;EXTERNAL ;

FUNCTION DURAN: REAL(16) ;EXTERNAL;
PROCEDURE RANSEED(SEED:LONGINT);EXTERNAL;

FUNCTION SINE(X:REAL) :REAL;EXTERNAL;
FUNCTION DSINE(X:REAL(16)) :REAL(16) ;EXTERNAL;

148

PASLIB Programmerts Guide

Sum/Maximum

*** Not implemented ***

Neighbor Communications

PROCEDURE SEND(N:NODE; LOC:ADDR; NWORDS:RECLEN);EXTERNAL;
PROCEDURE SEND2(N:NODE; INDEX:IDX; LOC:ADDR; NWORDS:RECLEN);

EXTERNAL;

PROCEDURE SENDALL(LOC:ADDR; NWORDS:RECLEN);EXTERNAL;
PROCEDURE SEND2ALL(INDEX:IDX; LOC:ADDR; NWORDS:RECLEN);

EXTERNAL;

PROCEDURE RECV(N:NODE; LOC:ADDR; NWORDS:RECLEN);EXTERNAL;
PROCEDURE RECV2(N:NODE; INDEX:IDX; LOC:ADDR; NWORDS:RECLEN);

EXTERNAL;

FUNCTION IO$MODE:INTEGER;EXTERNAL;

FUNCTION GBUSY:BOOLEAN;EXTERNAL;

Timing

FUNCTION XTIME:LONGINT;EXTERNAL;
PROCEDURE XTIMEI(VAR HMS:PACKED ARRAY [I..?] OF CHAR);EXTERNAL;

PROCEDURE DLY(T:INTEGER);EXTERNAL;

f-_ PROCEDURE TSTART(T:POSINT);EXTERNAL;

PROCEDURE TSTOP;EXTERNAL;

FUNCTION TREAD:LONGINT;EXTERNAL;

PROCEDURE TREADI(VAR HMS:PACKED ARRAY [i..?] OF CHAR);EXTERNAL;

Processor Identification

FUNCTION PSELF:NODE;EXTERNAL;

FUNCTION LSELF:NODE;EXTERNAL;

149

1, Report No. 2. Government Accession No. 3. Recipient's' Catalog No.
NASA CR-172281

4. Title and Subtitle S. Report Date

Apri I 1984PASLIB Programmer's Guide for the Finite Element Machine

Revision 2. I-A 6. PerformingOrganizationCode

7. Author(s) 8. Performing Organization Report No.

Thomas W. Crockett

10. Work Unit No.

9. Performing Organization Name and Address

Kentron International, Inc.
Aerospace Technologies Division 11 Contract or Grant No.
3221 N. Armistead Ave. NASl-16000
Hampton,VA 23666 13. Type of Report andPeriodCovered

12. SponsoringAgency Name and Address ContractorReport
NationalAeronauticsand Space Administration
Washington,DC 20546 14.SponsoringAgencyCode

15, Supplementary Notes

Langley Technical Monitor: Olaf O. Storaasli

16. Abstract

PASLIB is a library of Pascal-callable subroutines designed to give application
programs access to the unique architectural features of the Finite Element Machine
and to the software support services provided by the Nodal Exec operating system
which runs on it. This report documents each of the PASLIB subroutines, and describes
the procedures needed to write Pascal programs for execution on the Finite Element
Machine. It also discusses considerations for obtaining optimum hardware and
software performance, and gives a brief overview of debugging and performance
analysis capabilities available to the programmer.

i

7. Key Words (Sugg_ted by Author(s)) 18. Distribution Statement

parallel processing
Finite Element Machine Unclassified - Unlimited
computer software

Subject Category 62

19. S_urity Oasslf. (of this report) 20. S_urity Classif. (of this _ge) 21. No. of Pa_s 22. Dice

Unclassified Unclassified 156 A08

.-3o_ Forsalebythe NationalTechnicalInformationService,Springfield,Virginia 22161

f--

