- @ https://ntrs.nasa.gov/search.jsp?R=19850012417 2020-03-20T18:47:08+00:00Z

NHOTC UN" 1 1L L3

NASA Contractor Report 172281 NASA-CR-172281
19850012417

PASLIB PROGRAMMER'S GUIDE FOR THE FINITE
ELEMENT MACHINE
REVISION 2.1-A

Thomas W. Crockett POR REFEBENCE

M
.w -
Cot to tE TARDE FECIS room§ esesh!

KENTRON INTERNATIONAL, INC.
Aerospace Technologies Division
Hampton, Virginia 23666

Contract NAS1-16000
April 1984

LIBRARY CaPY

A7 111984

LANGLEY RESEARCH CENTER

LIBRARY, NASA
I\S A HAMETON, VIRGINIA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

PASLIB Programmer’s Guide

SUMMARY .

1. INTRODUCTION « . « . .«

2. PROGRAM CONSIDERATIONS .

2.1
2.2
2.3

3. SUBROUTINE DESCRIPTIONS

3.1

3.2

3.3

3.4

Text Qutput . .

MSG .
MSGLN
ENDLN
NXTLN
MSGCH
MSGI .
MSGL .
MSGR .
MSGD .
MSGIH
MSGRH
MSGDH
CWAIT

.
.

* o
.
WN—~ O

WWWWWwWwLwLWLWwWLwLww W
[]

bt b et et b b bt b e et ped et et
.

= = = O 0~ PWN -

.

Interactive Input

QUERY
RDCH .
RDH .
RDI .
RDR .

wwwoLw
L]

N NN NN
.

w & W N -

Data Areas . .

3.3.1 DAPTR

3
Pt
[
o
[72]
.

FLGEN
FLGDIS
FLGRES
FLGSET
ANY .
ALL .
SYNC .
FIRST
BAR .

W b ww
»

B N
.

O 0O~ OV WN

Contents

Writing TI Pascal Programs for Nodal
Floating-point Operations
Linking for Execution on

e e o o o

FEM

e o e & o o o o v
. e o o o o o . 1
. e o & o & o o 3

.
.
.
.
.
.
.
.
S LW

e s e e e s e e 12
e o o ¢ s o & o 13
e e e e s e« o 14
e o o o o s o s 15
e e o e o o o s 16
B W
e o o ¢ o+ o o 18
o e o o e« o« s 19
e o o o s s o s 20
S |
o« o o e e e s & 22
e e o o o o o o 23
e e e e e o 4 o 24

e e e o o o o« 26
e o s o e o o o 27
e ¢ s o o o o o« 28
A
e o o o« o s+ o« 30

e« ® e o e o o 34
e o e o s e o @ 35
LI e o o e o o 36

39

s s e e o e s o 40
L] . L] L] . . L L4 42
L] . L] . . L] . L 43

PASLIB Programmer’s Guide

ii

3.5

3.6

3.7

3.8

3.9

Am9512 Floating-point Operations

ADD ¢ ¢ « o o o o o o
SUB o o o o o o o o o o
MULT o ¢ o o o o o o o o
DIVD « ¢ o o o o o o o @
NEG o o o o o o o o o o
ABSO5 ¢ ¢ o ¢ o o o o .
CMP & ¢ o ¢ o o o o o &
DADD o o o o o o o o o o
DSUB ¢ o ¢ o o o o o o
0 DMULT o o o o o o o o &
1 DDIVD ¢ ¢ o ¢ o o o o &
2 DNEG « o o o o o o o o &
3
4

WWWwLWWWWWWWWWWW
[]

(G V. RV RNV, R, R, RV, U, BT, BV, RV RV,
.

— st b b = WO 0O SN YU S WN

DABS95 ¢« ¢ o o o o o o &
DCMP ¢ ¢ o ¢ o o o o o &

>
3

O
v
—
N

Floating-point Constants .

MAX95 o« o o« o o o o o &
MINIS . & o o o o o o &
DMAX9S ¢ ¢ ¢ « o o o o o
DMINGS « o ¢ o ¢ o o o o

]
N
O N—~

W W wWww
.

[ox e T e) T,
.

Am9512 Floating-point Conversions

CVI512 v o o ¢ o o o o &
CVI90 & o o o o o o o
FLOATI « o o o o o o o &«
FLOATL « o o o ¢ o o o @
IFIX o ¢ o o o o o o o @
LFIX ¢ ¢ o o ¢ o o o o &
SINGLE ¢ ¢ o o o o = o
DVI512 ¢ ¢ ¢ ¢ &« & « o &
DVIO0 ¢ o« o o o o o o &
DFLOTI o o« o o o o o o &«
DFLOTL o ¢ o o o o o o &«
IFIXD o ¢ o o o o o o »
LFIXD o o o o o o« o o &
DOUBLE o ¢ o o o o o o &

NN N N N N N N N N N N N

WWWWLWWwWwWwWW WWWLWW
* o

— = b b b WD 00 S ON P LON

ML NO=O

Am9512 Mathematical Subroutines .

SQRTIS o « o o o o o o o
DSQRTI5 o o« o o o o o o
UDP ¢ v o o o o o o o .
DUDP v o o o o o« o« o o o
URAN o « o o o o o o o o
DURAN '« v o = o = o « &
RANSEED « o o « o & « &
SINE o v « o o o o o o o
DSINE o o o = o« o o o »

WWwbwWwwLww
.

0o 0O 00 00 00 0O 00 0O OO
.

Wo~~NOW» WM =

Sum/Maximum « « o o o o o o o o o

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

61
62
63
64

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79

80

82
83
84
86
87
89
90
91
92

93

PASLIB Programmer’s Guide

4n

5.

A.
B.

C.

3.10 Neighbor Communications . « « « .

3.10.1 SEND ¢ v o v e o s e o o
3.10.2 SENDZ ¢ o o o o o o « o
3.10.3 SENDALL + « o o o o « «
3.10.4 SEND2ALL o « o o o o o =
3.10.5 RECV o o o ¢ o o o o o
3.10.6 RECVZ & o o o o o o o o
3.10.7 TOSMODE « « o o« « o o o
3.10.8 GBUSY o « o o o o o o o

3.11 Timing .+ « o o o o ¢ o ¢ o o o

3.11.1 XTIME o« o o o o o o o @
3.11.2 XTIMEL ¢ ¢ o o o o o o @
3.11.3 DLY o o o o o o o o o o
3.11.4 TSTART o ¢ ¢ o o o o o o
3.11.5 TSTOP ¢« o o o ¢ o o o @

3.11.6 TREAD =+ ¢ o o o o o o o
3.11.7 TREAD] ¢ ¢ o o ¢ o ¢ o «

3.12 Processor Identification « « o «

3.12.1 PSELF - - L) . L * Ld L L]

3.12.2 LSELF L . * L] L] L] L] . .

EFFICIENCY CONSIDERATIONS .« ¢ o o o «

.1 Compiler Options « « « o ¢ o o o &
.2 Algorithms and Overhead . . . « .

4.2.1 Workload .+ &« « o o o o &
4.2.2 Problem Partitioning . .
4.2.3 Synchronization « « « « &
4.2.4 Communication « « « o o o

4
4

EXECUTION, ANALYSIS, AND DEBUGGING . . .

5.1 Problem Setup =« « « ¢ o o o o o o
5.2 Execution Control =« « « « « « « &
5.3 Debugging « « ¢ ¢« o o o o o o o
5.4 Analysis o« o« ¢ ¢« ¢ ¢ o « o 0 o o e

EXAMPLE PROGRAM + ¢« ¢ o s o o s o « = =
EPROM=RESIDENT SUBROUTINES « ¢ o« & « o &
SUBROUTINE REFERENCE SHEET « « o « o «

94

97

99
101
102
104
106
108
109

110

111
112
114

115
116

117
119

121

122
123

125

125
126
126
126
127
127

129

129
129
130
130

133
145
147

iii

PASLIB Programmer’s Guide

iv

Figures

Program Structure for FEM « « « « + « &

Comparison of TI 990 and Am9512 Floating-point Formats

Link Edit Control File for FEM Execution

Constant and Type Declarations for PASLIB Routines

PASLIB Mathematical Subroutines
Sizes of Commonly Used Pascal Data Types

o~

10
81
96

PASLIB Programmer’s Guide

SUMMARY

The Finite Element Machine (FEM) is an experimental parallel computer
being built at NASA’s Langley Research Center to study the application of
concurrent processing to structural engineering analysis. Physically, FEM is
composed of two major units, the Array and the Controller. The Array contains
up to 36 autonomous microcomputers, each capable of executing its own program
on its own data. An elaborate network of special purpose circuitry provides
for communication and synchronization among all of these processors. The
Controller is an off-the-shelf minicomputer augmented with a special interface
to serve as a front-end to the parallel Array.

Three major system software components have been developed for the Finite
Element Machine. A package of user-interface and control software known as
FACS (FEM Array Control Software) resides on the Controller. A specialized
operating system called Nodal Exec is stored in read-only-memory on each of
the processors in the Array. A subroutine library named PASLIB allows users”’
programs running on processors in the Array to access the communication and
synchronization hardware, to perform arithmetic using the floating-point unit
available on each processor, and to obtain services from Nodal Exec.

This report serves two purposes: (1) to document the PASLIB subroutines
and describe their use within the environment provided by Nodal Exec and FACS,
and (2) to outline the procedures necessary for developing efficient programs
for execution on the Array.

PASLIB Programmer’s Guide

1. INTRODUCTION

PASLIB is a library of subroutines which facilitate the use of the
special architectural features of the Finite Element Machine. PASLIB
subroutines are invoked by standard procedure and function calls from TI
Pascal programs. Most PASLIB routines are written in assembly language for
efficiency and compactness, although a few are written in Pascal. Some of the
most frequently used PASLIB routines are stored in EPROM on the nodal
processors. (See Appendix B.) This technique reduces the size of the object
code which must be downloaded from the Controller to the Array, and allows
more space for the user’s programs and data.

This manual describes how to construct TI Pascal (TIP) programs for
parallel execution on the Finite Element Machine using the PASLIB subroutines.
It assumes that the reader is familiar with TI Pascal, the FEM architecture,
concepts of data and program management on FEM, SCI commands for FEM, and wuse
of the DX10 operating system. The following references contain most of the
necessary information.

THE FINITE ELEMENT MACHINE PROGRAMMER’S REFERENCE MANUAL

FEM ARRAY CONTROL SOFTWARE (FACS) USER’S GUIDE

FINITE ELEMENT MACHINE PROGRAMMING MEMORANDA

MODEL 990 COMPUTER TI PASCAL REFERENCE MANUAL

MODEL 990 COMPUTER DX10 TI PASCAL PROGRAMMER’S GUIDE

MODEL 990 COMPUTER DX10 OPERATING SYSTEM, Vols. I - VI

MODEL 990 COMPUTER LINK EDITOR REFERENCE MANUAL

PASLIB Programmer’s Guide

2. PROGRAM CONSIDERATIONS

Several considerations are important when writing TI Pascal programs for
execution by processors in the FEM Array. These arise because of hardware and
software differences between the TI 990 minicomputer and the FEM processors.
TI Pascal 1is intended primarily for use under the DX10 operating system
running on a TI 990 minicomputer. By contrast, processors in the Array are
based on the TMS9900 microprocessor, augmented with an Am9512 floating-point
chip and many special hardware features, all under control of the Nodal Exec
operating system. The two main problems which must be addressed are (1)
elimination of any dependencies on DX10, and (2) conversion of all
floating-point operations from TI 990 software to Am9512 hardware.

2.1 Writing TI Pascal Programs for Nodal Exec

To eliminate any dependencies on the DX10 operating system, Pascal
programs must conform to the requirements for stand-alone execution as
described in Chapter 7 of the DX10 TI PASCAL PROGRAMMER’S GUIDE. The most
significant restriction is that none of the standard I/0 routines such as READ
and WRITE are available to stand-alone programs. These are partially
compensated for by PASLIB routines which can perform I/0 to the Controller
(Sections 3.1 and 3.2), and by data areas which can be used to move
information between the Controller and processors in the Array (Sectiom 3.3).

Another important requirement is on the structure of the program. A dummy
main program is required, and the actual body of the program begins in a
procedure called PSCL$$. Figure 2-1 jllustrates the structure of TI Pascal
programs for FEM. The compiler options NO TRACEBACK and NO ASSERTS will
slightly reduce the size of the object code generated for each subroutine,
with no loss of capabilities, since TRACEBACK and ASSERT are not supported
anyway in stand-alone TIP programs. Many other compiler options could be
specified at this point, including WIDELIST, MAP, GLOBALOPT, CKINDEX, etc. The
7COPY statement after the PROGRAM declaration includes constant and type
declarations used by PASLIB routines. These declarations may also be
referenced by user-written code at lower nesting levels. EXTERNAL declarations
for any PASLIB routines referenced by the program must come next.

NOTE

PASLIB routines must be declared at this level to prevent improper
nesting of workspaces on the PASCAL stack. They should not be
declared inside PSCL$$ or at lower levels.

Procedure PSCLSS is defined next. This 1is the routine in which execution
begins, and is effectively the main program from the programmer’s standpoint.
Declarations and procedures may be nested inside PSCL$$ according to the usual
rules for Pascal. Following PSCL$$, the NO OBJECT optiom is used to suppress
generation of the empty main program. A complete sample program is shown 1in
Appendix A.

PASLIB Programmer’s Guide

(*$NO TRACEBACK,NO ASSERTS *)
PROGRAM EXAMPLE 1 ;

?COPY SYS1.FEM.PASLIB.UTILS$.TYPDCL

(* external declarations for PASLIB routines go here *)
PROCEDURE PSCLS$S;

(* constant, type, variable, procedure, and function *
(* declarations go here *)

BEGIIN
(* 'actual main program *)
END; (* PSCLS *)

BEGIN (* dummy main program *)

(*$NO OBJECT *)
END.

Figure 2-1. Program Structure for FEM

PASLIB Programmer’s Guide

kxecution of the program on FEM is not truly stand-alone, since the Nodal
Exec operating system provides control and many support capabilities. To take
advantage of this, a special runtime system (called NSMAIN) has been developed
to replace the standard P$MAINSA stand-alone runtime system of TI Pascal.
NSMAIN includes the ability to report Pascal errors, to record stack and heap
information in the execution statistics, and to return control to the Nodal
Exec program termination routine (STOP). N$MAIN is included in the link edit
control file in place of PSMAINSA (see Section 2.3).

2.2 Floating-point Operations

Floating-point operations in TI Pascal use 32- and 64-bit numbers in TI
990 format. On the 990/10, these operations are performed by a software
interpreter. The internal representation uses a sign bit, a 7-bit hexadecimal
exponent, and a 24— or 56-bit hexadecimal mantissa. On the FEM processors,
floating-point arithmetic is performed by an Am9512 floating-point chip, which
also accepts 32- and 64-bit operands. However, the Am9512 format is
substantially different from the TI 990 format. For 32-bit numbers, a sign
bit, 8-bit binary exponent, and 24-bit binary mantissa (with the most
significant bit implied) are wused; for 64-bit numbers, a sign bit, 1l-bit
binary exponent, and 53-bit binary mantissa (MSB implied) are used. Figure 2-2
summarizes the 990 and 9512 floating-point formats.

In order for TI Pascal programs to use the 9512, provisions must be made
to (1) access the 9512 chip rather than the TIP floating-point interpreter,
and (2) convert all operands to their 9512 representations. The first
requirement is met somewhat clumsily and inefficiently by using PASLIB
functions for all floating-point operations (Section 3.5). For example, the
Pascal statement

IF (X*Y+Z) <= A THEN
becomes

IF CMP(ADD(MULT(X,Y),Z),A) <= 0 THEN
for execution on the Array. To satisfy the second requirement, conversion
routines are provided for switching between 9512-format numbers and the scalar
types INTEGER, LONGINT, REAL, and REAL(16) (Section 3.7). The programmer must
convert all program constants and data which originated on the TI 990 to 9512
format before using them. For example,

VAR X:REAL(16);

X:=2.0%17.5Q10;

becomes

VAR R2 :REAL;
X,D17_5Ql0:REAL(16);

PASLIB Programmer’s Guide

R2:=CV9512(2.0) ;
D17_5Q10:=DV9512(17.5Q10) ;

X :=MULT(DOUBLE(R2),D17_5Q10);

when using 9512 arithmetic.

NOTE

Since there appears to be no satisfactory technique in TI Pascal for
declaring Am9512 numbers to be distinct from type REAL, it 1is the
programmer’s responsibility to ensure that floating-point numbers
are in the correct format for the operation to be performed.

2.3 Linking for Execution on FEM

A sample link edit control file for Pascal programs to be run on FEM is
shown in Figure 2-3, This file is available online as
SYS1.FEM.PASLIB.UTILS.LINKCTRL. The Nodal Exec loader will accept compressed
format object code only. The use of compressed object code saves disk space on
the Controller and significantly reduces the time required to download
programs. Failure to use compressed format object code will cause the 1loader
to generate an error message, and the load will be aborted. The program must
be linked to PASLIB as well as to the standard TIP libraries. Note that the
LIBRARY statements must be specified in the order shown so that the proper
routines are included. INCLUDE statements are necessary for the Pascal runtime
system (NSMAIN) and the program object code file from the TIP compiler. Stack
and heap space are specified by including modules called STK$n and HP$n, where
"n" is the number of 1024-byte blocks of memory to be allocated. If no heap is
required, use HP$0.

PASLIB Programmer’s Guide

TI 990 Am9512
SINGLE PRECISION
+=+ + + +=+ + —
1s! exp ! mantissa ! !s! exp ! mantissa !
T + +=4 + +
01 7 8 31 01 89 31

Hexadecimal exponent
Bias: 64
Max: 10%%*75
Min: 10%*(-78)

Hexadecimal mantissa
Precision: 21-24 bits
Normalization: O0.x (hex)

Binary exponent
Bias: 127
Max: 10%*38
Min: 10%*(-38)

Binary mantissa with
implied MSB
Precision: 24 bits
Normalization: 1.x (bin)

DOUBLE PRECISION

[- +
1s! exp ! mantissa !
=t - o
01 78 63

Hexadecimal exponent
Bias: 64
Max: 10%*75
Min: 10%*(-78)

Hexadecimal mantissa
Precision: 53-56 bits
Normalization: 0.x (hex)

bt —m— oo m +
!s! exp ! mantissa !
=t + —
01 11 12 63

Binary exponent
Bias: 1023
Max: 10%*307
Min: 10%*(-308)

Binary mantissa with
implied MSB
Precision: 53 bits
Normalization: 1l.x (bin)

Figure 2-2. Comparison of TI 990 and Am9512
Floating-point Formats

PASLIB Programmer’s Guide

NOSYMT

FORMAT COMPRESSED
LIBRARY SYS1.TIP.MINOBJ
LIBRARY SYS1.TIP.LUNOBJ
LIBRARY SYS1.TIP.OBJ
LIBRARY SYS1.FEM.PASLIB
PHASE (Q,<{program name>
INCLUDE (N$MAIN)
INCLUDE <program object code file from compiler)
INCLUDE (STK$n)

INCLUDE (HPS$n)

END

Figure 2-3. Link Edit Control File for FEM Execution

PASLIB Programmer’s Guide
3. SUBROUTINE DESCRIPTIONS

The following information is given for each of the PASLIB subroutines:
Purpose: Why the routine exists,

Declaration: The EXTERNAL declaration which must be used to reference
the subroutine.

Description: What the routine does and how it does it.

Arguments: A description of each of the arguments.,
Warnings/Limitations: Ways to get into trouble with this routine.
Application notes: Typical ways to use the routine.

Usage example: A program fragment demonstrating how the routine is
invoked.

For functions, an additional item is given:
Function result: A description of the value returned by the function.

The declarations for PASLIB routines use several data types which are shown in
Figure 3-1. These constant and type declarations are available online in
SYS1 .FEM.PASLIB.UTILS.TYPDCL. The subroutine declarations are summarized for
quick reference in Appendix C, and are also available online in
SYS1 .FEM.PASLIB.UTIL$.PASDCL.

PASLIB Programmer’s Guide

CONST MAXIDX=255;

MAXREC=255;
MAXNODE=36;
MAXDA=31;
MAXINT=32767;
SYSFLAG=1 ;

TYPE NODE =]1..MAXNODE;

10

IDX = 1..MAXIDX;
RECLEN = 1..MAXREC;
DANUM = 0..MAXDA;
FLAG = 0..7;

ADDR = INTEGER;
POSINT = 1..MAXINT;

Figure 3-1. Constant and Type Declarations for PASLIB Routines.

L W W WP NP

Type Declarations for PASLIB V2.1
OCT 12, 1983 TWC

maximum neighbor I/0 index tag
maximum record length for mbr I/0
maximum node number

maximum data area number

maximum integer

system flag

neighbors

index tags

neighbor I/0 record length
data area numbers

signal flags

integer used as an address
positive integer

PASLIB Programmer’s Guide

3.1 Text Output

Programs on FEM may produce output to the Controller in two ways, (1)
ASCIT text which is transmitted to the Controller during program execution,
and (2) binary data which is stored in a data area for subsequent uploading by
the Controller. Text output is most useful for debug messages, prompts, and
printed results, while data areas should be used for larger blocks of binary
data (Section 3.3).

Lines of text are built up by making successive calls to the text output
routines, analogous to the way lines are extended by the Pascal WRITE
procedure. A line is terminated by a call to an end-of-line routine (ENDLN,
NXTLN, MSGLN, or QUERY), which sends a signal to the Controller to close out
the current line and begin a new one. The maximum line length is defined by
the Controller software to be 80 characters, although automatic wrap-around is
performed for lines which exceed that length., Refer to the FEM ARRAY CONTROL

SOFTWARE USER’S GUIDE for more information about processing of text from the
Array. ’

11

PASLIB Programmer’s Guide

3.1.1 MSG
Purpose:

Write an ASCII character string to the Controller.
Declaration:

PROCEDURE MSG(STRING:PACKED ARRAY [1..?] OF CHAR) ;EXTERNAL;
Description:

The contents of STRING are moved to an output buffer which is placed on
the global send queue with the Controller specified as the destination.

Arguments:

STRING - Either a character string enclosed in quotes or a variable
defined to be PACKED ARRAY OF CHAR.

Warnings/Limitations:

STRING must be at least 2 characters in length and must not exceed 255
characters in length.

Application notes:
Use this routine to write character data to the Controller whenever an
immediate end-of-line is not desired (see MSGLN). MSG should also be used

to prompt for interactive input (Section 3.2).

Usage example:

MSG(’THE VALUE OF X = ‘); MSGR(X); NXTLN;

12

PASLIB Programmer’s Guide

3.1.2 MSGLN
Purpose:

Write an ASCII character string to the Controller and terminate the
current line of text.

Declaration:

PROCEDURE MSGLN(STRING:PACKED ARRAY [1..?] OF CHAR);
EXTERNAL;

Description:
The contents of STRING are queued for output followed by an EOL
(end-of-line) indicator. The destination is the Controller. MSGLN is
equivalent to MSG followed by ENDLN(1).

Arguments:

STRING - Either a character string enclosed in quotes or a variable
defined to be PACKED ARRAY OF CHAR.

Warnings/Limitations:

STRING must be at least 2 characters in length and must not exceed 255
characters in length.

Application notes:

Use MSGLN to write character data to the Controller and close out the
current line.

Usage example:

MSGLN(’This is a complete line of text.’);

13

PASLIB Programmer’s Guide

1.1.3

ENDLN

Purpose:

Terminate the current line of text and advance one or more lines.

Declaration:

PROCEDURE ENDLN(N:POSINT) ;EXTERNAL;

Description:

N end-of-line (EOL) indicators are queued for output to the Controller.
Each EOL terminates the current line of text and advances to the next
line. ENDLN can be used to control line spacing; ENDLN(1) is single
spacing, ENDLN(2) is double spacing, etc.

Arguments:

Warni

Appli

Usage

14

N - A positive integer specifying the line spacing following the
current line,

ngs/Limitations:
Large values of N are not recommended.

cation notes:

Use ENDLN to terminate a line of text and control spacing to the next
line of text.

example:

MSG(*DOUBLE SPACING EXAMPLE’); ENDLN(2);
MSGLN(“THIS LINE IS PRECEDED BY A BLANK LINE’);

PASLIB Programmer’s Guide

3.1.4 NXTLN
Purpose:
Terminate the current line of text and advance to the next line.
Declaration:
PROCEDURE NXTLN;EXTERNALj;
Description:

An EOL indicator is queued for output to the Controller. NXTLN is
equivalent to ENDLN(1).

Arguments:
None.
Warnings/Limitations:
None.
Application notes:

Use NXTLN to terminate the current line of text when single spacing is
desired.

Usage example:

MSG(’I = “); MSGI(I); MSG(’y, J = "); MSGI(J); NXTLN;

15

PASLIB Programmer’s Guide

3.1.5 MSGCH
Purpose:

Write a single ASCII character to the current line of output text.
Declaration:

PROCEDURE MSGCH(CH:CHAR) ;EXTERNAL;
Description:

CH is queued for output to the Controller.
Arguments:

CH - A constant, variable, or expression of type CHAR.
Warnings/Limitations:

Repeated calls to MSGCH are less efficient than a single call to MSG or
MSGLN.

Application notes:
Use MSGCH whenever a single character must be written to the current line
of output text. 1If several consecutive characters must be written, use
one of the character string routines, MSG or MSGLN.

Usage example:
BUF EFFICIENCY:=SUCCESS DIV ATTEMPT;

MSG(’Buffer allocation efficiency = *);
MSGI(BUF_EFFICIENCY); MSGCH(’%Z‘); ENDLN(2);

16

PASLIB Programmer’s Guide

3.1.6 MSGI
Purpose:
Write an integer to the current line of output text.
Declaration:
PROCEDURE MSGI(T:INTEGER) ;EXTERNAL;
Description:
I is converted from a 16-bit binary integer into its decimal ASCII
representation, and the resulting string 1is queued for output to the
Controller. The numeric characters are right-justified in a 6-character
field with leading blaunks.
Arguments:
1 - An integer variable, constant, or expression.
Warnings/Limitations:
None.
Application notes:
Use MSGI to write integer values in lines of text.

Usage example:

VAR J:INTEGER;

J:= ces 3

MSG(“Result = “); MSGI(5%J); NXTLN;

17

PASLIB Programmer’s Guide

3.1.7 MSGL
Purpose:
Write a long integer to the current line of output text,
Declaration:
PROCEDURE MSGL(I:LONGINT) ;EXTERNAL;
Description:
I is converted from a 32-bit binary integer into its decimal ASCII
representation, and the resulting string is queued for output to the
Controller. The numeric characters are right justified in an ll-character
field with leading blanks.
Arguments:
1 - A variable, constant, or expression of type LONGINT.
Warnings/Limitations:
None.
Application notes:
Use MSGL to write LONGINT values in lines of text.
Usage example:
CONST MINLINT = -2147483648L;

MSG(’Minimum long integer = ’); MSGL(MINLINT); NXTLN;

18

PASLIB Programmer’s Guide

3.1.8 MSGR
Purpose:

Write a single precision floating-point number in 9512-format to the
current line of output text.

Declaration:
PROCEDURE MSGR(X:REAL) ;EXTERNAL;
Description:

X is converted from a 32-bit 9512~format value to a l3-character string
of the form

nd.ddddddEsdd
where n is "-" or blank, d is a decimal digit, and s is "+" or "-"., If X
equals zero, the output string is "0.0" with one leading and nine
trailing blanks. The string is queued for output to the Controller.

Arguments:

X - A single precision 9512-format variable or expression of type
REAL.

Warnings/Limitations:
X must be in Am9512 format.
Application notes:

Use MSCR to write single precision floating-point values in lines of
text.

Usage example:
VAR PI,TWO:REAL;

P1:=CV9512(3.141593);
TWO:=CV9512(2.0);
MSG(“P1/2 = *); MSGR(DIVD(PI,TWO)); NXTLN;

19

PASLIB Programmer’s Guide

3.1.9 MSGD

Purpose:

Write a double precision floating-point number in 9512-format to the
current line of output text.

Declaration:
PROCEDURE MSGD(X:REAL(16)) ;EXTERNAL;
Description:

X is converted from a 64~bit 9512-format value to a 22-character string
of the form

nd.ddddddddddddddDsddd
where n is "=" or blank, d is a decimal digit, and s is "+" or "-". If X
equals zero, the string is "0.0" with one leading and 18 trailing blanks.
The string is queued for output to the Controller.

Arguments:

X - A double precision 9512-format variable or expression of type
REAL(16) .

Warnings/Limitations:

X must be in Am9512 format.

’

Application notes:

Use MSGD to write double precision floating-point values in lines of
text.

Usage example:
VAR BB,A:REAL(16);

MSG(‘BB = “); MSGD(BB); MSG(’ BC =)3
MSGD(DDIVD(BB,A)); NXTLN;

20

PASLIB Programmer’s Guide

3.1.10 MSGIN
Purpose:

Write the hexadecimal representation of an integer to the current line of
output text.

Declaration:
PROCEDURE MSGIH(I:INTEGER) ;EXTERNAL;
Description:

I is converted to a string of four hexadecimal digits, and the string is
queued for output to the Controller.

Arguments:

1 - A variable, expression, or constant of type INTEGER.
Warnings/Limitations:

None.
Application notes:

This routine 1is primarily useful 1in diagnostic programming or other
applications where the bit pattern is of interest.

Usage example:

MSG(’1 = DECIMAL ‘); MSGI(I);
MSG(*, HEX ’); MSGIH(I); NXTLN;

21

PASLIB Programmer’s Guide

3.1.11 MSGRH
Purpose:

Write the hexadecimal representation of a single precision floating-point
number to the current line of output text.

Declaration:
PROCEDURE MSGRH(X:REAL) ;EXTERNAL;
Description:
X is converted to an unformatted string of eight hexadecimal digits, and
the string is queued for output to the Controller. X may be in either 990
or 9512 format.
Arguments:
X - A constant, variable, or expression of type REAL.
Warnings/Limitations:
None.
Application notes:

MSGRH is primarily useful in diagnostic and systems programming.

Usage example:

’

MSG(’EXPECTED); MSGRH(X1);
MSG(“RECEIVED = “); MSGRH(X2); NXTLN;

22

PASLIB Programmer’s Guide

3.1.12 MSGDH
Purpose:

Write the hexadecimal representation of a double precision floating-point
number to the current line of output text.

Declaration:
PROCEDURE MSGDH(X:REAL(16)) ;EXTERNAL;
Description:
X is converted to an unformatted string of 16 hexadecimal digits, and the
string 1is queued for output to the Controller. X may be in either 990 or
9512 format.
Arguments:
X - A constant, variable, or expression of type REAL(16).
Warnings/Limitations:
None.
Application notes:
MSGDH is primarily useful in diagnostic and systems programming.
Usage example:
VAR Q1 _O0:REAL(16);

Ql _0:=DV9512(1.0Q0);

MSGLN(’Internal Representation of 1.0Q0°);

MSG(’ 990 FORMAT: “); MSGDH(1.0Q0);

MSG(”’ 9512 FORMAT: ‘); MSGDH(Ql 0); ENDLN(2);

23

PASLIB Programmer’s Guide

3.1.13 CWAIT
Purpose:

Following a text output operation to the Controller, delay the program
until the Controller has had a chance to receive and process the text.

Declaration:
PROCEDURE CWAIT;EXTERNAL;
Description:

CWAIT waits until all of the buffers on the global output list have been
put into the hardware output FIFO. It then executes a delay which is long
enough for the Controller to receive and process all of the data. The
delay time is based on a conservative estimate of the time required for
the Controller to receive and process 64 words of text when a single
processor is transmitting to the Controller. At the end of the delay,
control is returned to the calling program.

Arguments:
None.
Warnings/Limitations:

The delay time assumes that only a single processor is transmitting to
the Controller. If more than one processor is transmitting, the delay
could be too short, thereby allowing the calling program to proceed
prematurely. : \

Application notes:

Use CWAIT for cooperative messages generated by multiple processors. This
technique can be used to order the arrival of messages on the Controller

so that post-sorting of the text is not necessary.

Usage example:

FOR I:=FIRST_NODE TO LAST NODE DO

BEGIN

BAR(REPORT_FLAG) ;

IF I = LSELF THEN
BEGIN
MSG(‘Node ‘); MSGI(I); NXTLN;
MSG(’Displacement = ‘); MSGR(DSPL); ENDLN(2);
CWAIT 4
END

END;

24

PASLIB Programmer’s Guide

3.2 Interactive Input

Pascal programs running on FEM may be written to interact with a user,
subject to certain restrictions. The program must first signal the Controller
that it wants input from the terminal; this is called a "query" operation, and
is supported by the QUERY subroutine. A query operation must take place
simultaneously on all active processors in the Array, and all processors must
expect the same input. This restriction is necessary to prevent a wuser from
having to respond to many (potentially 36) requests, each expecting possibly
different input. To ensure that a query is performed cooperatively, the QUERY
routine internally performs a barrier operation using the system flag (flag
1). This implies that the program must be written so that all active
processors will perform each query operation.

Upon reception of a query, the Controller terminates the current line of
output text for each processor, and prompts the user for input at the terminal
by displaying a "?" at the beginning of the next line. The user must enter the
appropriate response, followed by a carriage return. The line of input text
(excluding the leading "?") is then broadcast to all active processors for
evaluation. The numeric input routines RDH, RDI, and RDR include error
recovery procedures which will re-prompt the user for input in the event of an
illegal or missing value. Only one call to RDH, RDI, or RDR should be issued
for each call to QUERY.

Interactive input is primarily useful for entering parameter values which
are the same on all processors and vary from run to run. Data areas (Section
3.3) should be used instead for input which (1) differs from processor to
processor, (2) is stored on Controller files, (3) is constant from run to run,
or (4) consists of more than a few values.

25

PASLIB Programmer’s Cuide

3.2.1 QUERY
Purpose:

Signals the Controller that the program running on the Array desires
input from the terminal.

Declaration:
PROCEDURE QUERY ; EXTERNAL;
Description:
All active processors are synchronized by a barrier operation on SYSFLAG
(flag 1). A query request is then queued for output to the Controller. A
query implies an end-of-line (EOL).
Arguments:
None.
Warnings/Limitations:
All active processors must participate in every query operation,
Application notes:

Use QUERY to request interactive input in those situations in which all
processors wish to receive the same value.

Usage example:

MSG(’Enter the initial guess:’); QUERY;
INITIAL:=RDR;

26

PASLIB Programmer’s Guide

3.2.2

RDCH

Purpose:

Read a character from the terminal.

Declaration:

FUNCTION RDCH:CHAR;EXTERNAL;

Description:

Return the next character from the line of input text which was broadcast
from the Controller. Multiple calls to RDCH may be made for each call to
QUERY. A carriage return (CR, >0D) is always the last character in the
line, and is returned just like any other character. If no input is
available, RDCH will wait indefinitely.

Arguments:

None.

Function result:

The next character in the line of input text from the Controller.

Warnings/Limitations:

A call to QUERY must be made to obtain a line of input text.

The CR character must be used to check for end-of-line. An attempt to
read past CR will cause the program to wait forever for input,

Application notes:

Use RDCH to parse lines of input text from the Controller.

Usage example:

MSG(’Press RETURN to continue...’); QUERY;
CH:=RDCH;

27

PASLIB Programmer’s Guide

3.2.3 RDH

Purpose:
Read a hexadecimal value from the terminal.

Declaration:
FUNCTION RDH:INTEGER;EXTERNAL;

Description:
Parses a line of input text containing hexadecimal digits and returns an
integer value. The input string may contain from 1 to 4 hex digits
("o".. .9, AL L U"F"),. If more than 4 digits are entered, only the 4
least significant digits are used. If the input string is empty or has
illegal hex input, a message is issued and the user is re-prompted for
the input.

Arguments:
None.

Function result:
A 16-bit two’s complement integer value.

Warnings/Limitations:
A call to QUERY must precede a call to RDH.
Only one call to RDH should be made for each QUERY.

Application notes:

RDHIl is primarily useful in diagnostic programs and other system software
applications. '

Usage example:

MSG(“ENTER TEST PATTERN: ‘); QUERY;
DATA :=RDH;

28

PASLIB Programmer’s Guide

3.2.4 RDI
Purpose:
Read an integer from the terminal.
Declaration:
FUNCTION RDI:INTEGER;EXTERNAL;
Description:
Parses a line of input text and returns an integer value. If the line of
text is empty or has illegal integer input, a message is issued and the
user is re-prompted for the input.
Arguments:
None.
Function result:
A 16-bit integer value.
Warnings/Limitations:
A call to QUERY must precede a call to RDI.
Only one call to RDI should be made for each QUERY.
Application notes:
Use RDI to read an integer from the user’s terminal.
Usage example:

MSG(’ENTER N:’); QUERY;
N:=RDI;

29

PASLIB Programmer’s Guide

3.2.5

RDR

Purpose:

Read a single precision floating-point number from the terminal.

Declaration:

FUNCTION RDR:REAL;EXTERNAL;

Description:

Parses a line of input text and returns a single precision floating-point
value in 9512 format, If the 1line of text is empty or has illegal
floating-point input, a message is issued and the user is re-prompted for
the input. Allowable input formats include

sdddddddd

sdddd.dddd
sdddd.ddddEsdd
sddddddddEsdd

where s is either "+", "-", or omitted, and d is a decimal digit. One or
more digits may be entered, but only the first eight are significant. A
digit must precede the decimal point.

Arguments:

None.

Function result:

A 32-bit floating~point number in Am9512 single precision format.

Warnings/Limitations:

A call to QUERY must precede a call to RDR.
Only one call to RDR should be made for each QUERY.

The ﬁrogram must be expecting a 9512-format number rather than a
990~format number.

Application notes:

Use RDR to read a REAL number from the user’s terminal.

Usage example:

30

MSG(’Enter convergence criterion®); QUERY;
CVRG:=RDR;

PASLIB Programmer’s Guide

3.3 Data Areas

Data areas are referenced from Pascal programs via pointer variables. A
type transfer is used in conjunction with the DAPTR routine to obtain the
address of a specific data area. The standard Pascal routines NEW and DISPOSE
should not be used with data area pointers. Data areas 0 - 3 are reserved for
use by the system as follows:

list of physical neighbors
logical-to-physical mapping
list of logical neighbors
reserved for future use.

WK -~ O
tt

Data areas 4 - 31 are available to user programs.

Data areas are defined, downloaded, and uploaded from the Controller. See
the FACS User’s Guide for more information.

31

PASLIB Programmer’s Guide

3.3.1 DAPTR
Purpose:
Obtain the address of a data area.
Declaration:
FUNCTION DAPTR(DA:DANUM) : ADDR;EXTERNAL;
Description:
The address of the specified data area is obtained from the data area
table, and the length of the descriptor is added to obtain a pointer to

the data.

Arguments:

DA

An integer data area number in the range 0..MAXDA.
Function result:

The address of the data portion of the specified data area.
Warnings/Limitations:

Data area DA must be defined.

A type transfer is needed to assign the function result to a pointer
variable.

Data areas 0 -~ 3 are reserved for use by the system.
Application notes:

Use DAPTR to map Pascal program data structures onto data areas.
Usage example:

TYPE DA4 = ARRAY [1..12,1..12] OF REAL;
DA4PTR = @DA4;

VAR KDATA:DA4PTR;

KDATA : : ADDR:=DAPTR(4) ;
FOR I:=1 TO 12 DO
FOR J:=1 TO 12 DO
KDATA@Q[I,J] :=CV9512(KDATAR[I,J]);

32

PASLIB Programmer’s Guide

3.4 Flags

The flag network can be used for a variety of signaling and
synchronization needs. There are eight flags, numbered 0 through 7. Flag 0 is
unique since it is the only flag which supports the FIRST signal. Flag 1 is
reserved for use by the system (SYSFLAG), although there are circumstances
where it can be used for synchronization (barriers) in user programs.

At the beginning of program execution, all flags except SYSFLAG have been
disabled by Nodal Exec. SYSFLAG is enabled and reset. On inactive (OFF)
processors and on the Controller, all flags including SYSFLAG are disabled.
Before any of the flags may be used, they must be enabled and either set or
reset so that a known state exists in the flag network. As shown in the
following example, SYSFLAG may be used to synchronize this operation across
all of the active processors. The example assumes that only flags 2 and 3 will
be used by the program.

FLGEN(2); FLGRES(2); (* Enable and reset flag 2 *)
FLGEN(3); FLGSET(3); (* Enable and set flag 3 *)
BAR(SYSFLAG); (* Wait for all processors to catch up %)

The system flag is also used by Nodal Exec in the QUERY routine, the program
initiation and termination routines (EXEC and STOP), and the CONNECT command.

NOTE

When a program terminates, all flags on that processor, except
SYSFLAG, are disabled. This effectively removes terminated
processors from the flag network. In cases where processors
terminate at different times, and the final state of the flags must
be maintained until all processors have terminated, a flag barrier
should be placed immediately preceding the END statement for
procedure PSCLS. This will ensure that all processors terminate
together, and do not disable their flags prematurely.

33

PASLIB Programmer’s Guide

3.4.1 FLGEN
Purpose:

Enable a given flag on this processor.
Declaration:

PROCEDURE FLGEN(F :FLAG) ;EXTERNAL;
Description:

Flag F is enabled on the‘processor on which the routine is executed,.
Arguments:

F - A constant, variable, or expression of type FLAG.
Warnings/Limitations:

FLGEN should not be used on SYSFLAG.

The status of a flag which has been disabled should be considered to be
undefined following a FLGEN until a FLGRES or FLGSET is performed.

Application notes:
Use FLGEN to enable a flag for subsequent use, or to re-enable a flag
which has been disabled for some reason. With the exception of SYSFLAG,
all flags must be enabled before they can be set or reset.

Usage example:

FOR F IN {0,2..7] DO
FLGEN(F) ;

34

PASLIB Programmer’s Guide

3.4.2 FLGDIS
Purpose:
Disable a given flag on this processor.
Declaration:
PROCEDURE FLGDIS(F:FLAG) ;EXTERNAL;
Description:
Flag F is disabled on the processor on which the routine is executed.
Arguments:
F - A constant, variable, or expression of type FLAG.
Warnings/Limitations:
FLGDIS should not be used on SYSFLAG.
Application notes:
Use FLGDIS (in conjunction with FLGEN) to dynamically control a
processor’s contributions to the flag network. For example, a program
might need to be contributing to a flag signal during one portion of its
code, but not during another portion.

Usage example:

IF LSELF < (NNODES/2) THEN
FLGDIS(4+(LSELF MOD 2));

35

PASLIB Programmer’s Guide

3.4.3 FLGRES
Purpose:

Reset a given flag on this processor.
pDeclaration:

PROCEDURE FLGRES(F:FLAG) ;EXTERNAL;
Description:

Flag F is reset (cleared) on the processor on which the routine is
executed.

Arguments:

F - A constant, variable, or expression of type FLAG.
Warnings/Limitations:

Flag F must be enabled.

FLGRES should not be used on SYSFLAG.
Application notes:

Use FLGRES to signal the absence of some condition on a processor,
Usage example:

IF NOT CONVERGED THEN
FLGRES(CVG_FLAG) ;

36

PASLIB Programmer’s Guide

3.4.4 FLGSET
Purpose:

Set a given flag on this processor.
Declaration:

PROCEDURE FLGSET(F:FLAG) ;EXTERNAL;
Description:

Flag F is set on the processor on which the routine is executed.
Arguments:

F - A constant, variable, or expression of type FLAG.
Warnings/Limitations:

Flag F must be enabled.

FLGSET should not be used on SYSFLAG.
Application notes:

Use FLGSET to indicate the presence of some condition on a processor.
Usage éxample:

FLGSET(2) ;

IF ALL(2) THEN

37

PASLIB Programmer’s Guide

3.4.5 ANY
Purpose:
Test the Any signal for a given flag.
Declaration:
FUNCTION ANY(F:FLAG) :BOOLEAN; EXTERNAL;
Description:
The ANY routine tests the status of the global flag signal Any
F. If one or more processors with flag F enabled also have flag
then ANY returns a value of TRUE; otherwise ANY returns FALSE.
Arguments:
F - A constant, variable, or expression of type FLAG.
Function result:
A Boolean value indicating the status of Any for flag F.
Warnings/Limitations:

None.

Application notes:

for flag

F

set,

Use ANY to determine if some condition exists on one or more of the

participating processors.
Usage example:

IF ANY(ERR_FLAG) THEN
MSGLN(**%** Errors detected in assembly phase’);

38

PASLIB Programmer”s Guide

3.4.6 ALL
Purpose:
Test the All signal for a given flag.
Declaration:
FUNCTION ALL(F:FLAG) :BOOLEAN;EXTERNAL;
Description:
The ALL routine tests the status of the global flag signal All for flag
F. 1I1f every processor with flag F enabled also has flag F set, then ALL
returns a value of TRUE; otherwise ALL returns FALSE.
Arguments:
F - A constant, variable, or expression of type FLAG.
Function result:
A Boolean value indicating the status of All for flag F.
Warnings/Limitations:
None.

Application notes:

Use ALL to determine if some condition exists on every participating
processor.

Usage example:

WHILE NOT ALL(7) DO
BEGIN

END;

39

PASLIB Programmer’s Guide

3.4.7 SYNC
Purpose:
Test the Sync signal for a given flag.
Declaration:
FUNCTION SYNC(F:FLAG) :BOOLEAN; EXTERNAL;
Description:
The SYNC routine tests the status of the global flag signal Sync for flag
F. The Sync signal becomes true when All is true, and remains true until
Any becomes false.
Arguments:
F - A constant, variable, or expression of type FLAG.
Function result:
~ A Boolean value indicating the status of Sync for flag F.
Warnings/Limitations:
None.
Application notes:

Use SYNC to indicate that a condition has occurred on all participating
processors, and is still occurring on one or more of those processors.

Usage example:
FLGRES(FLAG4)

BAR(FLAG2) ;
REPEAT

IF CMP(X0,X1) < O THEN
FLGSET(FLAG4) ;

UNTIL SYNC(FLAG4);
WHILE SYNC(FLAG4) DO

BEGIN

IF CMP(X1,X2) > 0 THEN
FLGRES(FLAG4)

40

PASLIB Programmer’s Guide

END;

41

PASLIB Programmer’s Guide

3.4.8 FIRST
Purpose:

Test the First signal for flag 0.
Declaration:

FUNCTION FIRST:BOOLEAN;EXTERNAL;
Description:

The FIRST routine tests the status of the global flag signal First., First
is set by the (approximately) first processor to set flag 0 after Any(0)
has been false.

Arguments:
None.
Function result:

A Boolean value indicating whether or not this is the first processor to
set flag 0.

Warnings/Limitations:
Due to signal propagation delays, etc., a true value for FIRST does not
guarantee that the processor was absolutely the first one to set its
flag. FIRST does 1indicate a unique processor which did set its flag 0

within a very short time period (possibly 0) following the absolutely
first one.

Flag 0 must be enabled.
A call to FLGSET for flag 0 must precede a call to FIRST.
Application notes:

FIRST can be used to select a single processor (out of many) to carry out
some task.

Usage example:
FLGSET(0) ;

IF FIRST THEN (% lst processor prints the title *)
PRINT HEADING;

42

PASLIB Programmer’s Guide

3.4.9 BAR
Purpose:
Synchronize the participating processors using a flag barrier.
Declaration:
PROCEDURE BAR(F:FLAG) ;EXTERNAL;
Description:
All processors which have flag F enabled are synchronized in time by

simultaneously reaching the same point in the BAR routine. The algorithm
used for a flag barrier is as follows:

WHILE SYNC(F) DO
; (* wait for Sync to go low *)
FLGSET(F);
WHILE NOT SYNC(F) DO
; (* wait for Sync to go high ¥)
(* Processors are synchronized at this point *)
FLGRES(F) ;

F must be in a reset state prior to entering the barrier, and is left in
a reset state upon exit from the barrier.

Arguments:
F - A constant, variable, or expression of type FLAG.
Warnings/Limitations:
Flag F must be enabled and reset before calling BAR.
SYSFLAG should be used only in carefully thought out situationms.
Application notes:
Use BAR to synchronize processors. This is especially useful for
guaranteeing that a certain state has been reached on all participating
processors before proceeding.
Usage example:
(* enable and reset flags ¥*)
FLGEN(2); FLGRES(2);

FLGEN(3); FLGRES(3);
BAR(SYSFLAG) ;

WHILE NOT ALL(2) DO
BEGIN

43

PASLIB Programmer’s Guide

IF CMP(X,DELTA) < O THEN
FLGSET(2)
ELSE
FLGRES(2) ;
BAR(3) (* synchronize before testing ALL(2) *)
END;

44

PASLIB Programmer’s Guide

3.5 Am9512 Floating-point Operations

Functions are provided to add, subtract, multiply, divide, negate,
compare, and take the absolute value of single and double precision
floating-point numbers in Am9512 format. Refer to Section 2.2 for information
about writing programs which use 9512 arithmetic.

Floating-point exceptions include exponent underflow and overflow, and
division by zero. For all exceptions, an appropriate error message is
generated. For exponent overflow and division by zero the program is aborted.
For exponent underflow, the result of the operation is set to zero and
execution continues.

45

PASLIB Programmer”’s Guide

3.5.1 ADD

Purpose:
Add two 9512-format single precision floating-point numbers.

Declaration:
FUNCTION ADD(X,Y:REAL) : REAL;EXTERNAL;

Description:
X and Y are pushed onto the 9512 stack, a SADD operation is performed,
and th? result is popped from the stack. The status byte is checked for
exceptions.

Arguments:

X, Y -~ Variables or expressions of type REAL in 9512 single
precision format.

Function result:
X+Y in 9512 format,
Warnings/Limitations:
Possible exceptions: wunderflow, overflow.
X and Y must be 9512-format numbers.
Application notes:
Use to add two single precision numbers.
Usage example:

C:=ADD(A,B);

46

PASLIB Programmer’s Guide

3.5.2 SUB
Purpose:
Subtraction of 9512-format single precision floating-point numbers.
Declaration:
FUNCTION SUB(X,Y:REAL) :REAL;EXTERNAL;
Description:
X and Y are pushed onto the 9512 stack, a SSUB operation is performed,
and t?e result is popped from the stack. The status byte is checked for
exceptions.

Arguments:

X,Y - Variables or expressions of type REAL in 9512 single
precision format.

Function result:
X-Y in 9512 format.
Warnings/Limitations:
Possible exceptions: underflow, overflow.
X and Y must be 9512-format numbers.
Application notes:
Use to subtract one single precision number from another.
Usage example:

DELTA:=SUB(X[I+1],X[1]);

47

PASLIB Programmer’s Guide

3.5.3 MULT
Purpose:
Multiply two 9512~format single precision floating-point numbers.
Declaration:
FUNCTION MULT(X,Y:REAL) :REAL;EXTERNAL;
Description:
X and Y are pushed onto the 9512 stack, a SMUL operation is performed,
and thg result is popped from the stack. The status byte is checked for
exceptions.

Arguments:

X,Y - Variables or expressions of type REAL in 9512 single
precision format.

Function result:

X*Y in 9512 format.
Warnings/Limitations:

Possible exceptions: underflow, overflow.

X and Y must be 9512-format numbers.
Application notes:

Use to multiply two single precision numbers.
Usage example:

X_SQUARED:=MULT(X,X) ;

48

PASLIB Programmer’s Guide

3.5.4 DIVD
Purpose:
Division of 9512-format single precision floating-point numbers.
Declaration:
FUNCTION DIVD(X,Y:REAL) :REAL;EXTERNAL;
Description:
X and Y are pushed onto the 9512 stack, a SDIV operation is performed,
and tve result is popped from the stack. The status byte is checked for
exceptions.,

Arguments:

X,Y - Variables or expressions of type REAL in 9512 single
precision format.

Function result:
X/Y in 9512 format.
Warnings/Limitations:
Possible exceptions: underflow, overflow, division by zero.
X and Y must be 9512-format- numbers.
Application notes:
Use to divide one single precision number by another.
Usage example:

PI_2:=DIVD(CV9512(3.141593),CV9512(2.0));

49

PASLIB Programmer’s Guide

3.5.5 NEG
Purpose:
Negates a 9512-format single precision floating-point number,
Declaration:
FUNCTION NEG(X:REAL) : REAL;EXTERNAL;
Description:
Inverts the sign bit of X.
Arguments: |

X - A variable or expression of type REAL in 9512 single
precision format.

Function result:
-X in 9512 format.
Warnings/Limitations:
None.
Application notes:
Use to obtain the additive inverse of single precision numbers.

Usage example:

X[1,J):=MULT(Y{I],NEG(DY[J]));

50

PASLIB Programmer’s Guide

3.5.6 ABS95
Purpose:

Take the absolute value of a 9512-format single precision floating-point
number.

Declaration:

FUNCTION ABS95(X:REAL) :REAL;EXTERNAL;
Description:

Sets the sign bit of X to zero.
Arguments:

X - Variable or expression of type REAL in 9512 single precision
format.

Function result:
Absolute value of X.
Warnings/Limitations:
None.
Application notes:
Use to obtain the absolute value of a single precision number.
Usage example:

IF CMP(ABS95(X[I]),CV9512(0.0001)) < O THEN

51

PASLIB Programmer’s Guide

3.5.7 CMP

Purpose:

Compare two 9512-format single precision floating-point numbers.

Declaration:
FUNCTION CMP(X,Y:REAL) :INTEGER;EXTERNAL;

Description:

Performs a software comparison of two 9512-format numbers and returns the

result,
Arguments:

X,Y - Variables or expressions of type
precision format.

Function result:

-1 : X<KY¥Y
0: X=Y
1 : X>%

Warnings/Limitations:
X and Y must be 9512-format numbers.
Application notes:
Use to compare floating-point values. The

comparison expressions for standard Pascal and
using 9512 arithmetic.

TIP 9512
X< Y CMP(X,Y) < O
X<=Y CMP(X,Y) <= 0
X= Y CMP(X,Y) = 0
X >=Y CMP(X,Y) >= 0
X> Y CMP(X,Y) > 0

Usage example:

WHILE CMP(SUB(X[I],X[I-1]),DX) > 0 DO

52

REAL

in 9512

following table

their

equivalent

single

shows
when

PASLIB Programmer’s Guide

3.5.8 DADD

Purpose:
Add two 9512-format double precision floating~point numbers.

Declaration:
FUNCTION DADD(X,Y:REAL(16)):REAL(16) ;EXTERNAL;

Description:
X and Y are pushed onto the 9512 stack, a DADD operation is performed,
and th? result is popped from the stack. The status byte is checked for
exceptions,

Arguments:

X,Y - Variables or expressions of type REAL(16) in 9512 double
precision format.

Function result:
X+Y in 9512 format,
Warnings/Limitations:
Possible exceptions: underflow, overflow.
X and Y must be 9512-format numbers.
Application notes:
Use to add two double precision numbers.
Usage example:

V:=DADD(U,DOUBLE(X));

53

PASLIB Programmer’s Guide

3.5.9 DSUB
Purpose:
Subtraction of 9512-format double precision floating-point numbers.
Declaration:
FUNCTION DSUB(X,Y:REAL(16)):REAL(16) ;EXTERNAL;
Description:
X and Y are pushed onto the 9512 stack, a DSUB operation 1is performed,
and t?e result is popped from the stack. The status byte is checked for
exceptions.

Arguments:

X,Y - Variables or expressions of type REAL(16) in 9512 double
precision format.

Function result:
X-Y in 9512 format.
Warnings/Limitations:
Possible exceptions: underflow, overflow.
X and Y must be 9512~format numbers.
Application notes:
Use to subtract one double precision number from another.

Usage example:

DZ:=DSUB(22,21);

54

PASLIB Programmer’s Guide

3.5.10 DMULT
Purpose:
Multiply two 9512-format double precision floating-point numbers.
Declaration:
FUNCTION DMULT(X,Y:REAL(16)):REAL(16) ;EXTERNAL;
Description:
X and Y are pushed onto the 9512 stack, a DMUL operation is performed,
and thg result is popped from the stack. The status byte is checked for
exceptions.

Arguments:

X,Y - vVariables or expressions of type REAL(16) in 9512 double
precision format.

Function result:

X*Y in 9512 format.
Warnings/Limitations:

Possible exceptions: underflow, overflow.

X and Y must be 9512-format numbers.
Application notes:

Use to multiply two double precision numbers.
Usage example:

X_CUBED :=DMULT(X,DMULT(X,X)) ;

55

PASLIB Programmer’s Guide

3.5.11 DDIVD
Purpose:
Division of 9512-format double precision floating-point numbers.
Declaration:
FUNCTION DDIVD(X,Y:REAL(16)):REAL(16) ;EXTERNAL;
Description:
X and Y are pushed onto the 9512 stack, a DDIV operation 1is performed,
and tbe result is popped from the stack. The status byte is checked for
exceptions.,

Arguments:

X,Y —~ Variables or expressions of type REAL(16) in 9512 double
precision format.

Function result:
X/Y in 9512 format.
Warnings/Limitations:
Possible exceptions: wunderflow, overflow, division by zero.
X and Y must be 9512-format numbers.
Application notes:
Use to divide one double precision number by another.
Usage example:

PI 4:=DDIVD(DV9512(3.141592653589793Q0),DV9512(4.0Q0));

56

PASLIB Programmer’s Guide

3.5.12 DNEG
Purpose:
Negates a 9512-format double precision floating-point number.
Declaration:
FUNCTION DNEG(X:REAL(16)):REAL(16) ;EXTERNAL;
Description:
Inverts the sign bit of X.
Arguments:

X - A variable or expression of type REAL(16) in 9512 double
precision format.

Function result:
-X in 9512 format.
Warnings/Limitations:
None.
Application notes:
Use to obtain the additive inverse of double precision numbers.
Usage example:

C:=DNEG(DMULT(A,B));

57

PASLIB Programmer”’s Guide

3.5.13 DABS95
Purpose:

Take the absolute value of a 9512-format double precision floating-point
number.

Declaration:

FUNCTION DABS95(X:REAL(16)) :REAL(16) ;EXTERNAL;
Description:

Sets the sign bit of X to zero.
Arguments:

X - Variable or expression of type REAL(16) in 9512 double
precision format.

Function result:
Absolute value of X.
Warnings/Limitations:
None.
Application notes:
Use to obtain the absolute value of a double precision number.
Usage example:

ANS :=DABS95(DSUB(Y[I+J),Y[I-J]));

58

PASLIB Programmer’s Guide

3.5.14 DCMP
Purpose:
Compare two 9512-format double precision floating-point numbers.
Declaration:
FUNCTION DCMP(X,Y:REAL(16)) :REAL(16) ;EXTERNAL;
Description:

Performs a software comparison of two 9512~format numbers and returns the
result.

Arguments:

X,Y - Variables or expressions of type REAL(16) 1in 9512 double
precision format.

Function result:

-1 ¢+ X<K¥Y
0: X=Y
1 : X>%Y%

Warnings/Limitations:
X and Y must be 9512~format numbers.
Application notes:

Use to compare floating—point values. (See the comparison table for the
CMP routine, Section 3.5.7.)

Usage example:

IF DCMP(DABS95(DSUB(DELTA[I-1],DELTA[I])),EPSILON) > O THEN

59

PASLIB Programmer”s Guide

3.6 Am9512 Floating-point Constants
Functions are provided which return the maximum and minimum positive

Am9512 floating-point values. These values are typically useful for
initializing variables or guarding against underflow or overflow conditions.

60

PASLIB Programmer’s Guide

3.6.1 MAX95
Purpose:

Provides an exact representation of the largest positive single precision
Am9512 floating-point number.

Declaration:
FUNCTION MAX95:REAL;EXTERNAL;
Description:
Returns the maximum Am9512 single precision value.
Arguments:
None.
Function result:

A REAL value containing the largest representable Am9512 single precision
floating-point number, approximately 3.402823E+38.

Warnings/Limitations:

None.
Application notes:

Use MAX95 when a very large number is needed.
Usage example:

(* INITIALIZE DELTAS *)

MAXREAL :=MAX95 ;

FOR I:=1 TO 12 DO
DELTA[1] :=MAXREAL;

61

PASLIB Programmer’s Guide

3.6.2 MIN9S
Purpose:

Provides an exact representation of the smallest positive single
precision Am9512 floating-point number.

Declaration:
FUNCTION MIN95:REAL;EXTERNAL;
Description:
Returns the minimum positive Am9512 single precision value.
Arguments:
None.
Function résult:

A REAL value containing the smallest representable positive Am9512 single
precision floating-point number, approximately 1.175494E-38.

Warnings/Limitations:
None.
Application notes:
Use MIN9S5 when a very small, but non-zero, number is needed.
Usage example:
IF CMP(X,MULT(TEN,MIN95)) <= 0 THEN (* UNDERFLOW IS IMMINENT *)
X :=UNDERFLOW(X)

ELSE
X:=DIVD(X,TEN);

62

PASLIB Programmer’s Guide

3.6.3 DMAX95
Purpose:

Provides an exact representation of the largest positive double precision
Am9512 floating-point number.

Declaration:
FUNCTION DMAX95:REAL(16) ;EXTERNAL;
Description:
Returns the maximum Am9512 double precision value.
Arguments:
None.
Function result:

A REAL(16) value containing the largest representable Am9512 double
precision floating-point number, approximately 1.79769313486231D+308.

Warnings/Limitations:

None.
Application notes:

Use DMAX95 when a very large number is needed.
Usage example:

MSG(’Input values must be less than “); MSGD(DMAX95);
ENDLN(2) ;

63

PASLIB Programmer’s Guide

3.6.4 DMIN95S
Purpose:

Provides an exact representation of the smallest positive double
precision Am9512 floating-point number.

Declaration:
FUNCTION DMIN95:REAL(16) ;EXTERNAL;
Description:
Returns the minimum positive Am9512 double precision value.
Arguments:
None.
Function result:
A REAL(16) value containing the smallest representable positive Am9512
double precision floating=-point number, approximately
2.22507385850720D-308.
Warnings/Limitations:
None.
Application notes:
Use DMIN95 when a very small, but non-zero, number is needed.
Usage example:
MINDBLE :=DMIN95;
FOR I:=1 TO 32 DO

FOR J:=1 TO 32 DO
A[I,J]:=MINDBLE;

64

PASLIB Programmer’s Guide

3.7 Am9512 Floating-point Conversions

A complete set of functions are provided for conversions between single
and double precision 9512-format numbers and the TI Pascal data types REAL,
REAL(16), INTEGER, and LONGINT. These routines must be used when converting
9512-format numbers; the TIP standard conversion routines and implicit
conversions will produce unexpected results if Am9512 numbers are involved.

65

PASLIB Programmer”s Guide

3.7.1 CV9512
Purpose:

Convert a 990-format single precision floating-point value to 9512
format.

Declaration:
FUNCTION CV9512(X:REAL) : REAL;EXTERNAL;
Description:

Re-align the mantissa and convert the hexadecimal expounent to binary,
adjusting for shifting of the mantissa.

Arguments:

X - Constant, variabie, or expression of type REAL in TI 990
format.

Function result:
Am9512 representation of X.
Warnings/Limitations:

Exponent underflow or overflow may occur. Allowable exponents are in the
range =38 to +38.

The 9512-format result will contain space for zero to three additional
bits in the mantissa; these are filled with trailing zeroes.

Application notes:

Use CV9512 to convert program constants, and data which originated on the
Controller.

Usage example:

FOR I:=1 TO DA4Q@.NNODES DO
DAS@[I]:=CV9512(DAS@A[I]);

66

PASLIB Programmer’s Guide

3.7.2 €v990
Purpose:

Convert a 9512-format single precision floating-point value to 990
format,

Declaration:
FUNCTION CV990(X:REAL) :REAL;EXTERNAL;
Description:

Convert the exponent from binary to hexadecimal and normalize the
mantissa based on hexadecimal digits.

Arguments:

X -~ Variable or expression of type REAL in Am9512 format.
Function result:

990-format representation of X.
Warnings/Limitations:

From zero to three bits of precision will be lost from the mantissa by
normalizing to hex digits.

Application notes:

Use CV990 to convert results to TI 990 format before uploading them to
the Controller.

Usage example:
FOR I:=1 TO NROWS DO

FOR J:=1 TO NCOLS DO
STRESS@[I,J] :=CV990(STRESS@[I,J]);

67

PASLIB Programmer’s Guide

3.7.3 FLOATI

Purpose:

Convert a 16-bit two’s complement integer to Am9512 single precision
floating-point,

Declaration:
FUNCTION FLOATI(I:INTEGER) :REAL;EXTERNAL;
Description:
The sign of I is determined, and the absolute value is found. The integer
is normalized (right-shifted), and the shift count becomes the binary
exponent. This conversion is always exact.
Arguments:
I - Constant, variable, or expression of type INTEGER.
Function result:
Am9512 single precision representation of I.
Warnings/Limitations:
None.

Application notes:

Use FLOATI whenever an integer value needs to be converted to a 9512
real.

Usage example:

ONE:=FLOATI(1);

68

PASLIB Programmer’s Guide

3.7.4 FLOATL
Purpose:
Convert a 32-bit two’s complement integer to Am9512 floating-point.
Declaration:
FUNCTION FLOATL(I:LONGINT) :REAL;EXTERNAL;
Description:
Determine the sign of I, and take the absolute value. Normalize the
integer, and use the shift count as the binary exponent. Extra bits are
truncated.
Arguments:
1 - Constant, variable, or expression of type LONGINT.
Function result:
Am9512 single precision representation of I.
Warnings/Limitations:

From zero to eight bits of precision may be lost during normalization,
depending on the magnitude of I.

Application notes:
FLOATL is used to convert long integers to 9512 single precision numbers.
Usage example:

10 RATE:=FLOATL(100L*NWORDS)/FLOATL(T_ELAPSED) ;

69

PASLIB Programmer’s Guide

3.7.5 1IFIX
Purpose:

Convert an Am9512-format single precision value to a 16-bit two’s
complement integer.,

Declaration:
FUNCTION IFIX(X:REAL):INTEGER;EXTERNAL;

Description:
Break the floating-point number up into sign, exponent, and mantissa.
De-normalize the mantissa based on the value of the exponent., Fractional

digits in the mantissa are truncated. If necessary, complement the number
to account for the sign.

Arguments:

X - A variable or expression of type REAL in 9512 format.
Function result:

A 16-bit number of type INTEGER.
Warnings/Limitations:

X must be in the range =(2%%15) to (2%*15)-1, or else integer overflow
will occur.

The integer result is obtained by truncating (rather than rounding) the
mantissa. From 9 to 24 bits of precision may be lost, depending on the
value of the exponent.

Application notes:
Use IFIX to convert 95]12-format numbers to integers.

Usage example:

N:=IFIX(ADD(X{1]},Y[1])));

70

PASLIB Programmer’s Guide

3.7.6 LFIX
Purpose:

Convert an Am9512-format single precision value to a 32~bit two’s
complement integer. :

Declaration:
FUNCTION LFIX(X:REAL) :LONGINT;EXTERNAL;

Description:
Break the floating-point number into sign, exponent, and mantissa.
De-normalize the mantissa based on the value of the exponent. The integer
result may either have digits truncated, or be padded with trailing
zeroes, depending on the value of the exponent. I1f the sign is negative,
the integer is complemented.

Arguments:
X - Variableqor expression of type REAL in 9512 format.

Function result:
A 32-bit number of type LONGINT.

Warnings/Limitations:

X must be in the range =(2%¥*31) to (2%¥31)-1, or else integer overflow
will occur.

The integer result is obtained by either truncation or padding of the
mantissa (rather than rounding). Up to 7 trailing zeroes may be appended
to the result, or up to 24 bits of precision may be lost by truncation,
depending on the value of the exponent.

Application notes:
Use LFIX to convert floating-point values to long integers.

Usage example:

NMAX :=LFIX(MULT(X[1},Y[1]));

71

PASLIB Programmer’s Cuide

3.7.7 SINGLE
Purpose:

Convert a double precision Am9512-format number to a single precision
Am9512-format number.

Declaration:
FUNCTION SINGLE(X:REAL(16)) :REAL;EXTERNAL;
Description:

Convert the exponent from double precision to single precision by
changing the bias, and re-align the mantissa for single precision format.

Arguments:

X - A variable or expression of type REAL(16) in 9512 format.
Function result:

A single precision number of type REAL in 9512 format.
Warnings/Limitations:

The double precision number must be in the range 10%*(-38) to 10%*(+38),
or else exponent underflow or overflow will occur.

Mantissa conversion results in the truncation of the 29 least-significant
bits of X.

Application notes:
Use SINGLE to convert double precision numbers to single precision. This
can be useful when maximum precision is desired for calculations, but
only single precision is required to store the final result.

Usage example:

SUM:=SINGLE(DSUB(DF[J],DVDP(N,DELTA,K[I])));

72

PASLIB Programmer’s Guide

3.7.8 DV9512

Purpose:

Convert a 990-format double precision floating-point value to 9512
format. '

Declaration:
FUNCTION DV9512(X:REAL(16)) :REAL(16) ;EXTERNAL;

Description:
Re-align the mantissa, normalizing for binary digits rather than
hexadecimal digits. Convert the exponent from hex to binary, and adjust

for shifting of the mantissa.

Arguments:

X - Constant, variable, or expression of type REAL(16) in TI 990
format.

Function result:
Am9512 representation of X.
Warnings/Limitations:

From zero to three bits of precision will be lost in the Am9512 number,
since there are fewer bits in the mantissa.

Application notes:

Use DV9512 to convert program constants, and data which originated on the
Controller.

Usage example:

D1 :=DV9512(1.0Q0);

73

PASLIB Programmer’s Guide

3.7.9 DV990
Purpose:

Convert a 9512-format double precision floating-point value to 990
format.

Declaration:
FUNCTION DV990(X:REAL(16)) :REAL(16) ;EXTERNAL; -
Description:

Convert the exponent from binary to hexadecimal and normalize the
mantissa based on hexadecimal digits.

Arguments:

X - Variable or expression of type REAL(16) in Am9512 format.
Function result:

990-format representation of X.
Warnings/Limitations:

X must be in the range 10**(-78) to 10**(+75), or else exponent underflow
or overflow will occur.

From zero to three extra bits of precision can be represented in the
990-format result. These are filled with trailing zeroes.

Application notes:

CV990 is used to convert double precision results to TI 990 format before
uploading them to the Controller.

Usage example:

FOR I:=1 TO MAX_ELEMENTS DO
SDATA@[1] :=DV990(SDATA@[I]);

74

PASLIB Programmer‘’s Guide

3.7.10 DFLOTI

Purpose:

Convert a 16-bit two’s complement integer to Am9512 double precision

floating-point.
Declaration:
FUNCTION DFLOTI(I:INTEGER) :REAL(16);EXTERNAL;
Description:
The sign of I is determined, and the absolute value is found. The
is normalized (right-shifted), and the shift count becomes the
exponent. This conversion is always exact.
Arguments:
1 - Constant, variable, or expression of type INTEGER.
Function result:
Am9512 double precision representation of I.
Warnings/Limitations:
None.
" Application notes:
Use DFLOTI to convert integers to double precision reals.

Usage example:

X1 :=DDIVD(X,DFLOTI(N MOD 64));

integer
binary

75

PASLIB Programmer”’s Guide

3.7.11 DFLOTL
Purpose:

Convert a 32-bit two”s complement integer to Am9512 double precision
floating-point.

Declaration:
FUNCTION DFLOTL(I:LONGINT):REAL(16) ;EXTERNAL;
Description:
Determine the sign of I, and take the absolute value. Normalize the
integer, and use the shift count as the binary exponent. This conversion
is always exact, :
Arguments:
I - A constant, variable, or expression of type LONGINT.
Function result:
Am9512 double precision representation of I.
Warnings/Limitations:
None.
Application notes:
DFLOTL is used to convert long integers to 9512 double precision numbers,

Usage example:

DX :=DFLOTL(LX*2L) ;

76

PASLIB Programmer’s Guide

3.7.12 IFIXD
Purpose:

Convert an Am95]12-format double precision value to a 16-bit two’s
complement integer.

Declaration:
FUNCTION IFIXD(X:REAL(16)):INTEGER;EXTERNAL;

Description:
Break the floating-point number up into sign, exponent, and mantissa.
De-normalize the mantissa based on the value of the exponent. Fractional

digits in the mantissa are truncated. If necessary, complement the number
to account for the sign.

Arguments:

X | - A variable or expression of type REAL(16) in 9512 format.
Function result:

A 16;bit number of type INTEGER.
Warnings/Limitations:

X must be in the range =(2*%*15) to (2%*15)-1, or else integer overflow
will occur.

The integer result is obtained by truncating (rather than rounding) the
mantissa. From 138 to 53 bits of precision may be lost, depending on the
value of the exponent.

Applicatibn notes:
Use IFIXD to convert 9512-format double precision numbers to integers.

Usage example:

J:=IFIXD{DDIVD(DX[I]},DV9512(10.0Q0));

77

PASLIB Programmer’s Guide

3.7.13 LFIXD

Purpose:

Convert an Am9512-format double precision value to a 32-bit two’s
complement integer.

Declaration:

FUNCTION LFIXD(X:REAL(16)):LONGINT;EXTERNAL;

Description:

Split the floating-point number into sign, exponent, and mantissa.
De-normalize the mantissa based on the value of the exponent. Fractional
digits in the mantissa are truncated. If necessary, complement the number
to account for the sign.

Arguments:

X - A variable or expression of type REAL(16) in 9512 format.

Function result:

A 32-bit number of type LONGINT.

Warnings/Limitations:

X must be in the range -(2*%31) to (2%¥%31)-1, or else integer overflow
will occur.

The integer result is obtained by truncating (rather than rounding) the
mantissa. From 22 to 53 bits of precision may be lost, depending on the

value of the exponent.

Application notes:

LFIXD is used to convert double precision numbers to long integers.

Usage example:

78

B_PERCENT:=LFIXD(MULT(BUF_EFFICIENCY,DV9512(100.0Q0)));

P

PASLIB Programmer’s Guide

3.7.14 DOUBLE
Purpose:

Convert a single precision Am9512~format number
Am9512~-format number.

Declaration:
FUNCTION DOUBLE(X:REAL) :REAL(16) ;EXTERNAL;
Description:

Convert the exponent from single precision

to a double precision

to double . precision by

changing the bias, and re-align the mantissa for double precision format.
The double precision result is filled in with 29 trailing zero bits.

Arguments:

X - Variable or expression of type REAL in 9512 format.

Function result:

A double precision number of type REAL(16) in 9512 format.

Warnings/Limitations:
None.

Application notes:

Use DOUBLE to convert single precision numbers to double precision. This
can be wuseful when additional precision is required for intermediate
calculations, or when the initial values are stored as single precision

numbers.
Usage example:

DX :=DOUBLE(X) ;

79

PASLIB Programmer’s Guide

3.8 Am9512 Mathematical Subroutines

This section describes a number of subroutines which provide specific
mathematical services using the Am9512 floating-point processor. Figure 3-2
lists the routines by functional category. Routines denoted by "*" are coded
in assembly language to take advantage of the Am9512"s stack architecture for
accumulating intermediate results. The performance of these routines will
generally be significantly better than an equivalent algorithm coded using the
individual operations of Section 3.5.

Whenever vectors or matrices are involved, the subroutines assume
row-major storage order, consistent with TI Pascal.

All of the routines in this section assume that floating-point parameters
are in 9512 format, and all results are returned as 9512-format numbers.
Failure to heed this restriction will result in incorrect results and/or
run-time errors.

80

PASLIB Programmer’s Guide

Vector Operations

* VDP
* DVDP

Trigonometric Functions

SINE
DSINE

Random Numbers

URAN
DURAN
RANSEED

3%

SQRT95
DSQRT95

%

* Optimized for Am9512 stack architecture,

Figure 3-2. PASLIB Mathematical Subroutines

81

PASL1IB Programmer’s Guide

3.8.1 SQRT95
Purpose:

Computes the positive square root of an Am9512-format single precision
number.

Declaration:
FUNCTION SQRT95(X:REAL):REAL;EXTERNAL;

Description:
The square root is found using the Newton-Raphson method. An initial
guess X(0) is obtained by halving the exponent of X, and adding 1 to it.
A sequence of approximations is computed such that X(i+l) =
(X(i)+X/X(i))/2. The iteration is terminated when the sequence becomes

non-decreasing, and the last X(i) is used as the result.

Arguments:

X - A non-negative variable or expression of type REAL in 9512
format.

Function result:

The postive square root of X.
Warnings/Limitations:

X must be non-negative.
Application notes:

Use SQRT95 in place of the TI Pascal SQRT routine to calculate square
"roots of 9512-format numbers.

Usage example:

C:=SQRT95(ADD(MULT(A,A) ,MULT(B,B)));

82

PASLIB Programmer’s Guide

3.8.2 DSQRT95
Purpose:

Computes the positive square root of an Am9512-format double precision
number. :

Declaration:
FUNCTION DSQRT9S5(X:REAL(16)) :REAL(16) ;EXTERNAL;
Description:

The double precision square root is calculated using the Newton-Raphson
technique. See the description of SQRT95 for details.

Arguments:

X - A non-negative variable or expression of type REAL(16) in
9512 format.

Function result:

The positive square root of X.
Warnings/Limitations:

X must be non-negative.
Application notes:

Use DSQRT95 in place of the TI Pascal SQRT routine to calculate square
roots of 9512-format double precision numbers.

Usage example:
DX :=DSUB(X2,X1) ;

DY:=DSUB(Y2,Y1);
DIST:=DSQRT95(ADD(MULT(DX,DX),MULT(DY,DY)));

83

PASLIB Programmer’s Guide

3.8.3 VDP
Purpose:

Computes the dot product of two vectors.
Declaration:

FUNCTION VDP(N:POSINT;
VAR A:ARRAY [1..?] OF REAL;
VAR B:ARRAY [1..7?] OF REAL) :REAL;EXTERNAL;

Description:

Computes the dot product (scalar product, inner product) of two vectors A
and B. This is defined as the sum of all A(i)*B(i) for 1i=1,2,...,N. For
the sake of efficiency, A and B are passed as VAR parameters, but the
contents of A and B are not modified. A and B may be of different
lengths, but N must be less than or equal to the number of elements in
the shorter of the two. The sum is accumulated on the 9512 stack.

Arguments:

N - A positive constant, variable, or expression of type POSINT
which indicates the number of elements in A and B to be
multiplied and summed.

A,B - Variables of type ARRAY [l..n] OF REAL containing 9512-format

numbers.
Function result:
The dot product of A and B in 9512 single precision format.
Warnings/Limitations:
N must be less than or equal to the length of the shortest vector.
Possible exceptions: underflow, overflow.
Application notes:
Use VDP for efficient computation of dot products. A and/or B may be rows
of a matrix, or a type transfer may be used to force a matrix to be
passed as a vector with each row concatenated to the preceding row. This
last technique assumes row-major storage of arrays. (See the usage
example below.)
Usage example:
TYPE Al12 = ARRAY [1..12] OF REAL;
VAR K:ARRAY [1..12] OF Al2;
DELTA:ARRAY [l..4,1..3] OF REAL;
SUM:Al2;

84

PASLIB Programmer”s Guide

FOR I:=1 TO 12 DO (* initialize K *)
FOR J:=1 TO 12
K[I,J]):= . . .

FOR I:=1 TO 12 DO
SUM[1]:=vDP(12,K[1],DELTA::A12);

85

PASLIB Programmer’s Guide

3.8.4 DVDP
Purpose:
Computes the dot product of two double precision vectors.

Declarationg
FUNCTION DVDP(N:POSINT;
VAR A:ARRAY [1..7] OF REAL(16);

VAR B:ARRAY [1..?] OF REAL(16)):REAL(16);
EXTERNAL;

Description:
Computes the dot product of two double precision vectors A and B. This is
defined as the sum of all A(i)*B(i) for i=1,2,...,N. For efficiency, A
and B are passed as VAR parameters, but the contents of A and B are not

modified. A and B may be of different lengths, but N must be less than or
equal to the number of elements in the shorter of the two.

Arguments:

N - A positive constant, variable, or expression of type POSINT
which indicates the number of elements in A and B to be
multiplied and summed.

A,B - Variables of type ARRAY [l..n] OF REAL(16) containing
9512-format double precision numbers.

Function result:
The dot product of A and B in 9512 double precision format.
Warnings/Limitations:
N must be less than or equal to the length of the shortest vector.
Possible exceptions: underflow, overflow.
Application notes:

Use DVDP for efficient computation of double precision dot products. A

and/or B may be rows of a matrix, or a type transfer may be used to force

a matrix to be passed as a vector (assuming row-major storage order).

Usage example:

DX :=DVDP(M,DU,DV) ;

86

PASLIB Programmer’s Guide

3.8.5 URAN
Purpose:

Generates the next number in a .pseudo-random sequence uniformly
distributed on the interval [0,1), and returns the result as an
Am95]2-format single precision value.

Declaration:
FUNCTION URAN:REAL;EXTERNAL;
Description:

The linear congruential method is used to generate a sequence of 32-bit
pseudo-random numbers, which are interpreted as binary fractions on the
interval [0,1). The implementation used here is based on recommendations
given in Knuth, THE ART OF COMPUTER PROGRAMMING, Vol. 2, "Seminumerical
Algorithms", Chapter 3, Section 6. This generator has a cycle length
(period) of 2**32 (4,294,967,296), and each of the 2**32 possible numbers
in the sequence will be produced exactly once each cycle. An arbitrarily
chosen seed of 453290171 is used, but any long integer value can be used
as a seed by calling procedure RANSEED.

URAN generates the next random number in sequence and converts the 32-bit
fraction to a positive 9512-format single precision number in the
interval [0.0,1.0). Since only 24 bits of precision are available in the
mantissa, some duplicate values will be produced during a cycle due to
truncation of 1less significant bits. If duplicate values are not
acceptable for a particular application, function DURAN should be wused
instead.

Arguments:
None.
Function result:

An Am9512 single precision pseudo-random number in the interval
f0.0,1.0).

Warnings/Limitations:

Because of truncation, duplicate numbers will occur within the cycle
period of 2**32 calls.

Chi-square tests on the frequency distribution of numbers produced by
URAN have given acceptable results using several different sample sizes
and numbers of intervals. For critical applications, however, additional
testing (such as a spectral test) may be desirable before depending on
the randomness of the sequence produced by this routine. Tests for
randomness are discussed in detail in Knuth, Vol. 2, Chapter 3.

Application notes:

87

PASLIB Programmer’s Guide

Use URAN to generate test data for programs, or to drive simulations.
Usage example:

(* Generate test data in the range 1..100 *%)

R1:=CV9512(1.0);

R99:=CV9512(99.0);

FOR I:=1 TO 500 DO
TEST_DATA[I] :=ADD(MULT(URAN,R99),R1);

88

PASLIB Programmer’s Guide

3.8.6 DURAN

Purpose:
Generates the next number in a pseudo-random sequence uniformly
distributed on the interval [0,1), and returns the result as an
Am9512-format double precision value.

Declaration:
FUNCTION DURAN:REAL(16) ;EXTERNAL;

Description:
DURAN uses the same linear congruential generator as URAN, but converts
the 32-bit fraction to a 9512-format double precision result. Since there
is no truncation of the mantissa, all 2%%32 possible random numbers can
be represented with no duplication within a cycle of the generator.

Arguments:
None.

Function result:

An Am9512 double precision pseudo-random number in the interval
[0.0’1-0)0

Warnings/Limitations:

Before relying on DURAN for critical applications, additional randomness
tests should be performed, as required by the application.

Application notes:
Use DURAN to generate test data for programs, or to drive simulations.
Usage example:

NEXT_SAMPLE:=LFIXD(DMULT(DURAN,DFLOTL(MAXLINT)));

89

PASLIB Programmer”s Guide

3.8.7

RANSEED

Purpose:

Select an alternate seed for the random number generator.

Declaration:

PROCEDURE RANSEED(SEED:LONGINT) jEXTERNAL;

Description:

The long integer SEED is wused as the 1initial value for the linear
congruential random number generator used by URAN and DURAN. SEED may be
any LONGINT value. If RANSEED is not called, an arbitrarily chosen
default seed of 453290171 is used. A given seed value always produces the
same sequence of pseudo-random numbers.

Arguments:

Warni

Appli

Usage

90

SEED - A constant, variable, or expression of type LONGINT.
ngs/Limitations:
None.

cation notes:

Use RANSEED to alter the sequence of random numbers produced by URAN and
DURAN. Seeds based on a processor”s self-ID (Section 3.12) can be used to
produce different sequences on each processor. When using random numbers
to produce test data, this approach can give more thorough test coverage
with no increase in execution time by running different test sets in
parallel on multiple processors. For simulations, asynchronous behavior
can be readily produced by using different seeds on different processors
to generate delay counts or time steps.

example:

RANSEED(LINT(LSELF)*32771L);

PASLIB Programmer’s GCuide

3.8.8

SINE

Purpose:

Computes the sine function using Am9512 single precision arithmetic.

Declaration:

FUNCTION SINE(X:REAL):REAL;EXTERNAL;

Description:

The sine of X is approximated using recurrence relations to compute the
trigonometric series for the sine function. To improve convergence and
reduce roundoff error, X is first mapped into the interval [-pi/2,+pi/2]
using trigonometric reduction relations for the sine function. For more
details on the method, see N. Wirth, SYSTEMATIC PROGRAMMING: AN
INTRODUCTION, Chapter 9, Prentice-Hall, 1973.

Arguments:

Funct

Warni

Appli

Usage

X - A variable or expression of type REAL in 9512 format. X is
assumed to be in units of radians.

ion result:

The (approximate) sine of X.

ngs/Limitations:

For large values of X (about 10%*7 or larger), there are insufficient
significant bits to determine the quadrant in which X lies, so the result
is arbitrarily set to 0.0. SINE appears to give best results for numbers

on the order of 10%*(Q.

Very small values of X may result in exponent underflow, but the answer
will still be approximately correct.

cation notes:

Use SINE in place of the TI Pascal SIN function to compute the sine of
95]12-format single precision numbers.

example:
D2R:=CV9512(1.745329E=2); (* degrees-to-radians *)

FOR 1I:=0 TO 360 DO (* compute sine curve *)
Y[1] :=SINE(MULT(FLOATI(I),D2R));

91

PASLIB Programmer”’s Guide

3.8.9 DSINE
Purpose:
Computes the sine function using Am9512 double precision arithmetic.
Declaration:
FUNCTION DSINE(X:REAL(16)) :REAL(16) ;EXTERNAL;
Description:
The sine of X is approximated using recurrence relations to compute the
trigonometric series for the sine function. To improve convergence and
reduce roundoff error, X is first mapped into the interval [-pi/2,+pi/2].
The algorithm used is similar to that for the SINE routine.

Arguments:

X - A variable or expression of type REAL in 9512 format. X is
assumed to be in units of radians.

Function result:
The (approximate) sine of X.
Warnings/Limitations:

For large values of X (about 10%*15 or larger), there are insufficient
significant bits to determine the quadrant in which X lies, so the result
is arbitrarily set to 0.0. DSINE gives best results for numbers on the
order of 10%%*0.

Very small values of X may result in exponent underflow, but the answer
will still be approximately correct.

Application notes:

Use DSINE in place of the TI Pascal SIN function to compute the sine of
9512-format double precision numbers.

Usage example:

FUNCTION DCSC(X:REAL(16)):REAL(16);
(* Double precision cosecant %)
BEGIN
DCSC:=DDIVD(DV9512(1Q0),DSINE(X))
END;

92

PASLIB Programmer’s Guide

3.9 Sum/Maximum

The sum/max network is not operational at this time. Therefore, no
routines are provided for its use. Global calculations can be performed by
using the neighbor communication routines (Section 3.10) to transmit operands
and results among processors.

93

PASLIB Programmer’s Guide

3.10 Neighbor Communications

Routines are provided for transmitting data between neighboring
processors. For two processors to be neighbors, the following must be true
prior to execution:

(1) Each processor must reference the other in the list of logical
neighbors stored in data area 2.

(2) If data area 1 is defined, it must contain a mapping table which
assigns logical neighbor numbers to particular processors. If data
area 1 is undefined, an identity mapping 1is assumed, and logical
neighbor numbers are equivalent to the self-IDs of the processors.
Data areca | is ordinarily defined and 1initialized by the RESET
command (see the FACS User’s Guide).

(3) Connectivity must be established and input buffers allocated using
the SYNCON or ASYNCON command (FACS User’s Guide).

All of the neighbor communication routines use logical neighbor numbers to
identify processors. This allows programs to be written without regard to the
actual processor on which it will execute. That information 1is supplied
independently of the program by the mapping table. Note that the mapping
determines whether neighbors will communicate via the local 1links or the
global bus, and hence can have an impact on program performance.

Two communication modes are available, synchronous or asynchronous. These
are sclected by using either the SYNCON or ASYNCON command, respectively, to
establish connectivity. In synchronous mode, data is received and stored by
source processor number in first-in first-out (FIFO) software queues. The
depth of these queues is specified by the SYNCON command. Ordinarily a queue
depth of two is used, which allows neighbors to be up to one iteration out of
step with each other. Larger queue depths may be used to buffer multiple
records. Tightly synchronized programs may be able to use a queue depth of
one. If the queue is empty, an attempt to get data with the RECV or RECV2
routine will cause the processor to wait until data arrives from the
neighboring processor. This property causes synchronization of the processors
based on the arrival time of data from neighbors.

In asynchronous mode, data which 1is received overwrites previously
received data from the same processor. The RECV and RECV2 routines do not wait
for data, but return the most recently received value. If a processor is
running more slowly than its neighbor, some of the data sent to it from the
neighbor may never be used, but will instead be replaced by more recently
received data. If, however, a processor is running faster tham its neighbor,
some of the received values may be used repeatedly. Since no data
synchronization is performed, asynchronous mode may be used to implement
asynchronous or '"chaotic" algorithms which allow processors to proceed at
different rates.

NOTE
When using asynchronous mode, it is important that an initial value

94

PASLIB Programmer’s Guide

be sent from each processor to its neighbors, and that this value be
received at its destination before executing the first call to the
RECV or RECV2 routines. The BAR (Section 3.4.9) and DLY (Section
3.11.3) routines can be used to enforce this requirement.

The same subroutines are used regardless of which communication mode was
selected; the mode is implemented transparently within Nodal Exec and PASLIB.
The IO$MODE routine can be used by a program to determine whether synchronous
or asynchronous mode was selected. It is therefore possible to write a single
program which can run using either communication technique.

Neighbor communication is based on sending and receiving data records. A
record may be as small as a single data item, or as large as an entire array
(subject to a maximum record length of 255 words, or 510 bytes). The user
specifies a maximum record length for his program in the range 1-255 words,
using the connectivity commands. During execution, records sent or received
must be less than or equal to the specified maximum length. Figure 3-3 gives
the size in words of commonly used TI Pascal data types.

The use of record-oriented communication does not imply that data to be
transmitted/received must be stored as Pascal RECORD types. The neighbor
communication routines are general since they will support the use of any data
type which occupies contiguous memory locations. Only the address of the data
is passed as a parameter. The TIP LOCATION function can be used to obtain the
address of specific data items.

An index or tag value may be associated with each record which is
transmitted to a neighboring processor. This index tag can be used to
distinguish between records which contain logically distinct information., For
example, a different index could be used for each degree of freedom in a
problem, or to identify colors in a multi-color solution technique. 1In
synchronous mode, a separate queue is maintained for each index value. In
asynchronous mode, separate buffers are used for each index value so that a
freshly received record only overwrites a previous record with the same index
value. The number of index tags required for a problem is specified using the
connectivity commands, and must be in the range from 1 to 255. When using
index tags, the SEND2 or SEND2ALL routines are used for transmission, and the
RECV2? routine 1is used for reception. The SEND, SENDALL, and RECV routines do
not allow an index to be specified, but assume an index value of 1.

Data may be transmitted to either specific neighbors or to all neighbors.
The SEND and SEND2 routines require a destination parameter which indicates a
specific neighbor. The SENDALL and SEND2ALL routines transmit data to all of
the logical neighbors specified in data area 2. In this case, parallel output
circuitry allows the data to be sent to all local neighbors simultaneously,
but the data must be transmitted individually to each global neighbor. The
send-all operation should not be confused with a global bus broadcast, which
is not supported in the current hardware/software implementation. Data
reception is always by individual neighbor, using either the RECV or RECV2
routines.

95

PASLIB Programmer’s Guide

TYPE SIZE (words)

CHAR 1
PACKED ARRAY OF CHAR 2 chars/word
INTEGER 1
LONGINT 2
REAL 2

4

REAL(16)

Figure 3-3. Sizes of Commonly Used Pascal Data Types.

96

PASLIB Programmer’s Guide

3.10.1 SEND
Purpose:
Transmit data to a neighboring processor.
Declaration:
PROCEDURE SEND(N:NODE; LOC:ADDR; NWORDS:RECLEN) ; EXTERNAL;
Description:

N is converted from a logical neighbor number to a physical processor
number according to the mapping table stored in data area 1. If data area
1 is undefined, N is assumed to be the physical processor number, i.c.,
an identity mapping is used. An output buffer is allocated of sufficient
size to hold NWORDS of data plus a header word and a trailing checksum.
An index tag value of 1 is assumed and stored in the header word along
with the record length. NWORDS of data are copied from LOC and placed in
the buffer. The checksum is calculated and stored as the last word in the
buffer. N is determined to be either a local or global neighbor, and the
output buffer is inserted at the end of the appropriate output queue.

Arguments:

N - Logical neighbor number of the destination processor.
LOC - Address of the data to be transmitted.
NWORDS - Number of data words to be transmitted.

Warnings/Limitations:

NWORDS must be less than or equal to the maximum record length specified
in the connectivity command.

Application notes:
Use SEND to transmit data to a specific neighbor.
Usage example:

CONST NNBRS

DOF = 2;

TYPE DA2 = ARRAY [1..NNBRS] OF NODE;
VAR NBRS:@DA2 ;

DSPL:ARRAY [1..NNBRS,1..DOF] OF REAL(16);
DPTR:ARRAY [1..NNBRS] OF ADDR;

NBRS: :ADDR:=DAPTR(2) ;
FOR I:=1 TO NNBRS DO
DPTR[I] :=LOCATION(DSPL[I]);

97

PASLIB Programmer’s Guide

FOR I:=1 TO NNBRS DO
SEND(NBRS@[I],DPTR[I],8); (* send a row to nbr[i] *)

98

PASLIB Programmer’s Guide

3.10.2 SEND2
Purpose:

Transmit data to a neighboring processor and identify the data with an
index tag.

Declaration:

PROCEDURE SEND2(N:NODE; INDEX:IDX; LOC:ADDR; NWORDS:RECLEN)
s EXTERNAL;

Description:

Same as SEND, except that the index tag is passed as a parameter.

Arguments:

N - Logical neighbor number of the destination processor.,

INDEX - A user-defined value which identifies the kind of data to be
transmitted.

LoC - Address of the data to be transmitted.

NWORDS - Number of data words to be transmitted.

Warnings/Limitations:

INDEX must be less than or equal to the maximum index specified in the
connectivity command.

NWORDS must be less than or equal to the maximum record length specified
in the connectivity command.

Application notes:
Use SEND2 to identify data which is sent to a specific neighbor. This can
be particularly useful if more than one type of data record 1is being
transmitted, if the order of reception of data does not guarantee its

type, or when asynchronous 1/0 is being used with multiple data records.

Usage example:

CONST NBR CNT = 1; (* Tags: 1 = # of neighbors *)
NBRS = 2; (* 2 = gset of neighbors *)
MAXNBRS = 63 (* Max # of nbrs per node *)

"

TYPE NBR LIST SET OF NODE;

VAR CONNECTIONS:NBR LIST;
NNBRS:0. .MAXNODE;

FOR I:=1 TO MAXNBRS DO

99

PASLIB Programmer”s Guide

IF I <> LSELF THEN
BEGIN
NNBRS :=0;
CONNECTIONS:=[]; (* empty set *)
FOR J:=1 TO MAXNBRS DO
IF CONNECTED(I,J) THEN
BEGIN
CONNECTIONS :=CONNECTIONS+[J] ;
NNBRS :=NNBRS+1
END;
SEND2(I,NBR CNT,LOCATION(NNBRS),1);
SEND2(1,NBRS,LOCATION(CONNECTIONS),
(SIZE(NBR LIST)+1) DIV 2)
END
ELSE

100

PASLIB Programmer’s Guide

3.10.3 SENDALL
Purpose:

Transmit data to all neighboring processors.
Declaration:

PROCEDURE SENDALL(LOC:ADDR; NWORDS:RECLEN) ;EXTERNAL;
Description:

A record header word is built with an assumed index tag of 1 and a record
length obtained from NWORDS. A checksum is computed for the NWORDS of
data beginning at LOC. For ecach global neighbor, an output buffer is
allocated, the data is copied from LOC into the buffer, the header word
and checksum are 1inserted, and the buffer is placed on the end of the
global output queue. An additional buffer is allocated for output to all
local neighbors, and the record header, data, and checksum are copied
into this buffer. The buffer is then inserted at the end of the local
output queue for simultancous transmission to all local neighbors.

Arguments:

LOC - Address of the data to be transmitted.
NWORDS - Number of data words to be transmitted.

Warnings/Limitations:

NWORDS must be less than or equal to the maximum record length specified
in the connectivity command.

Application notes:

Use SENDALL whenever a data value must be transmitted to all of the
neighbors listed in data area 2. SENDALL is much faster than using
multiple calls to SEND, since data is sent in parallel to all of the
local neighbors.

Usage example:
TYPE DSPL_REC = RECORD
X :REAL;
Y : REAL;
Z :REAL
END;

VAR DELTA:DSPL_REC;

SENDALL(LOCATION(DELTA),6) ;

101

PASLIB Programmer”s Guide

3.10.4 SEND2ALL
Purpose:

Transmit data to all neighboring processors and identify the data with an
index tag.

Declaration:

PROCEDURE SEND2ALL(INDEX:IDX; LOC:ADDR; NWORDS:RECLEN) ;
EXTERNAL;

Description:
Same as SENDALL, except that the index tag is passed as a parameter.

Arguments:

INDEX - A user-defined value which identifies the kind of data to be
transmitted.

LoC - Address of the data to be transmitted.

NWORDS ~ Number of data words to be transmitted.

Warnings/Limitations:

INDEX must be less than or equal to the maximum index specified in the
connectivity command.

NWORDS must be less than or equal to the maximum record length specified
in the connectivity command.,

Application notes:

Use SEND2ALL whenever a data value to be transmitted to all neighbors
needs to be identified as to its contents. Such tag information can be
useful when multiple record types arc being transmitted, when the data is
not ordered by time, or when asynchronous I/0 mode is being used with
multiple records.

Usage example:

VAR DSPL:REAL;
DSPL_PTR:ADDR;

DSPL_PTR:=LOCATION(DSPL) ;

FOR I:=1 TO NDOF DO
BEGIN
DSPL:=SUB(F[I],VDP(N,K{I},DELTA));
SEND2ALL(I,DSPL_PTR,2);

102

PASLIB Programmer’s Guide

END;

103

PASLIB Programmer’s Guide

3.10.5 RECV
Purpose:
Receive data from a neighboring processor.

Declaration:

PROCEDURE RECV(N:NODE; LOC:ADDR; NWORDS : RECLEN) ;EXTERNAL;
Description:

N 1is converted from logical neighbor number to physical processor number
based on the mapping table in data area 1. If data areca] is undefined, N
is assumed to be the physical processor number (an identity mapping). An
index tag value of 1 is assumed. NWORDS of data are then read from the
input buffer for neighbor N, index 1. If the communication mode is
synchronous, the input buffer is a queue, and RECV will wait for data to
arrive if less than NWORDS are present in the queue. If the mode is
asynchronous, RECV will immediately retrieve whatever value is in the
buffer. The data is copied from the buffer and stored at the address
specified by LOC.

Arguments:

N - Logical neighbor number of the source processor.
LoC - Address where the received data will be stored.
NWORDS - Number of data words to be read.

Warnings/Limitations:

NWORDS must be less than or equal to the maximum record length specified
in the connectivity command.

Data must be read in the same order in which it arrives. For example,
suppose that processor A sends two records to processor B using the SEND
routine, and that the first record contains two integers and the sccond
record contains four single precision reals. Then processor B must first
RECV the integers and then the reals. This could be done by calling RECV
twice, once for the integers and once for the reals, or else one call
could be made with NWORDS = 10 to rcad a single record which contains two
integers followed by four reals, If processor A did not always send the
data in the same order, then the SEND2 and RECV2 routines should be used,
with different index tags for the integers and the reals.

If asynchronous communication mode is used, data which is received from a
neighbor overwrites previously received data from that neighbor.

Application notes:
Use the RECV routine to read data which has been sent from a neighboring

processor. If synchronous communication mode is selected, RECV can be
used in a message-passing scheme to synchronize processors.

104

PASLIB Programmer’s Guide

Usage example:

VAR STRING: PACKED ARRAY [0..N NEIGHS,1..80} OF CHAR;

STRING[0]:= « . « 3

SENDALL(LOCATION(STRING[0]),40);

FOR 1:=1 TO N_NEIGHS DO
(* Get text from each neighbor *)
RECV(DA2PTR[I],LOCATION(STRING[1]),40);

105

PASLIB Programmer’s Guide

3.10.6 RECV2
Purpose:

Receive data from a neighboring processor and identify the data with an
index tag.

Declaration:

PROCEDURE RECV2(N:NODE; INDEX:IDX; LOC:ADDR; NWORDS:RECLEN)
;EXTERNAL;

Description:

Same as RECV, except that the index tag is passed as a parameter.

Arguments:

N - Logical neighbor number of the source processor.

INDEX - A user-defined value which identifies the kind of data to be
received.

LOC - Address where the received data will be stored.

NWORDS ~ Number of data words to be read.
Warnings/Limitations:

INDEX must be less than or equal to the maximum index specified in the
connectivity command.

NWORDS must be less than or equal to the maximum record length specified
in the connectivity command.

Data from a given processor with a given index tag must be read in the
same order in which it arrives. If asynchronous communication mode is
used, data which 1is reccived from a neighbor will overwrite previously
received data from that neighbor which has the same index tag.

Application notes:

Use RECV2 to read data which has been sent from a neighboring processor
with an index tag. The tag can be used to distinguish different types of
data, or to prevent overwriting when multiple records are sent wusing
asynchronous 1/0 mode.

Usage example:

WHILE NOT ALL(FLAG2) DO
BEGIN
FOR I:=1 TO NNBRS DO
FOR J:=1 TO NDOF DO
RECV2(NEIGH@[{1),J,LOCATION(DELTA[I,J])),DSIZE);

106

PASLIB Programmer”s Guide

END;

107

PASLIB Programmer’s Guide

3.10.7 TIOSMODE
Purpose:

Allows a program to determine the communication mode which has been
selected.

Declaration:
FUNCTION IO$MODE:INTEGER;EXTERNAL;
Description:

The communication mode which was set by the SYNCON or ASYNCON command is
obtained from Nodal Exec.

Arguments:
None.
Function result:

1
2

Synchronous mode was sclected.
Asynchronous mode was seclected.

Warnings/Limitations:

Connectivity must be established via the SYNCON or ASYNCON FACS command
before calling IO$MODE.

Application notes:

IO$MODE can be used by a program to determine, at runtime, the
communication mode being used. The program can use this information to
adapt to either a synchronous or asynchronous environment.

Usage example:

IF IOSMODE = 1 THEN SYNCHRONOUS :=TRUE
ELSE SYNCHRONOUS :=FALSE;

108

PASLIB Programmer’s Guide

3.10.8 GBUSY
Purpose:
Determines if global bus output is pending for this processor.
Declaration:
FUNCTION GBUSY:BOOLEAN;EXTERNAL;
Description:

Checks the global output buffer list to see if any data buffers are
queued for output on the global bus.

Arguments:
None.
Function result:
TRUE : Global bus output is pending.
FALSE : No buffers are waiting on the global output buffer list (1.c.
all global bus output has been moved to the hardware output

FIFOs).

Warnings/Limitations:
The absence of queued buffers does not necessarily imply that the data
has arrived at its destination, since there may still be untransmitted
data in the hardware output FIFOs of the sending processor, or
unprocessed data in the hardware input FIFOs on the receiving processor.

Application notes:

GBUSY may be used to determine if global bus output is backlogged. This
information may be useful in load-balancing applications.

Usage example:

IF GBUSY THEN (* Slow down *)
DLY(50);

109

PASLIB Programmer”s Guide

3.11 Timing

Two separate timing facilities are provided. One is an elapsed execution
time based on the TMS9902 interval timer. This timer is maintained by Nodal
Exec and has a clock period of 16 milliseconds. It starts counting when a
program begins execution on the processor, halts if a halt command is issued
to the processor or a breakpoint is encountered, and resumes when a resume
command is issued. The execution timer stops when the program terminates
normally or aborts with a fatal error, or when a kill command is issued to the
processor. The XTIME and XTIMEl routines allow this timer to be interrogated
from user programs. The DLY routine uses this timer to delay programs for a
specified interval.

The other timer is based on the TMS9901 interval timer, and is under the
control of the user”s program. The clock period is selectable from 1 to 349
milliseconds. The timer is started with the TSTART routine, and is stopped
with the TSTOP routine or when the program terminates or aborts or is killed.
This timer is not halted when a halt command or breakpoint occurs, but
continues to accumulate time until TSTOP is called or the program ends. The
TREAD and TREAD] routines are used to interrogate this timer.

In certain situations the timers may not accurately capture all of the
elapsed time. This typically occurs when critical sections in the wmemory
management routines of Nodal Exec lock out interrupts for intervals longer
than the clock periods of the timers. In these cases the timer interrupts
cannot be serviced before the clock "ticks" again, and thus one or more ticks
may be lost, producing a timer overrun error. Overrun errors wusually occur
only when memory becomes badly fragmented due to a backlog of untransmitted
output data buffers. The execution statistics report (sce Section 5.4) can
give some clue if this situation occurred. If the memory allocation or
deallocation efficiencies are low, then timer overrun errors are a
possibility. The execution statistics will report the number of overrun errors
(if any) which occured for the TMS9902 timer. Overrun errors for the TMS990]
timer cannot be detected by software, but the capture ratio improves as the
timer period increases. Clock periods of 50 milliseconds or longer should be
immune to overrun errors. If overrun errors do occur, then the times measured
will be somewhat less than the actual elapsed times. Timer overruns are not
expected to be a common or serious problem, and most users should be able to
get accurate timing data with little or no trouble.

110

PASLIB Programmer’s Guide

3.11.1 XTIME

Purpose:

Obtain the approximate elapsed execution time, in milliseconds, of the

currently executing program.
Declaration:

FUNCTION XTIME:LONGINT;EXTERNAL;
Description:

The elapsed execution time, based on the TMS9902 timer, is obtained
Nodal Exec.

Arguments:

None.
Function result:

The approximate elapsed execution time in milliseconds.
Warnings/Limitations:

The result should be regarded as approximate for two reasons:

(1) the timer resolution is plus or minus 16 milliseconds, and
(2) timer overrun errors may occur in certain situations,

from

To obtain good results, intervals to be measured should be several times

the 16 millisccond timer period. '

The maximum elapsed execution time before LONGINT overflow 1is about
days.

Application notes:

24

XTIME may be used to determine the elapsed execution time of programs or

program segments. The duration of a program segment can be measured

calling XTIME at the beginning of the segment and again at the end;
difference is the elapsed time for that segment.

Usage example:

MSG(“Total execution time = ‘)3
MSGL(XTIME) ;

MSGLN(’ msec.’)

END; (% PSCL$$ *)

by
the

111

PASLIB Programmer’s Guide

3.11.2 XTIME}
Purpose:

Obtain the approximate elapsed execution time, in hours, minutes, and
seconds, of the currently executing program.

Declaration:

PROCEDURE XTIMEI(VAR HMS:PACKED ARRAY [1..?] OF CHAR);
EXTERNAL;

Description:

The elapsed execution time in milliseconds is obtained from Nodal Exec.

This is rounded to the nearest number of seconds, and converted to hours,

minutes, and seconds. The result is returned as a character string of the

form "hh:mm:ss",
Arguments:

HMS - A packed array of characters containing at least eight
clements. The result is stored iIn the first eight bytes of
this string.

Warnings/Limitations:

The result should be regarded as approximate for two reasons:

(1) the resolution of the result is plus or minus 516 milliseconds,
and

(2) timer overrun errors may perturb the result in some cases.

The maximum elapsed time to be measured by this routine should not exceed
99 hours, 59 minutes, and 59 scconds, or about 4 days.

Application notes:
Use XTIMEl to express excecution times in an hh:mm:ss format.
Usage example:

VAR EXTIME:PACKED ARRAY [1..10] OF CHAR;

EXTIME[9] :=" ‘;
EXTIME[10]):=" *;

FOR L:=1 TO MAXITERS DO
BECIN

XTIMEl (EXTIME) ;

112

PASLIB Programmer’s Guide

MSG(EXTIME) ;

MSG(‘End of iteration 7);
MSGI(I); NXTLN

END;

113

PASLIB Programmer’s Guide

3.11.3 DLY
Purpose:

Delay a program for a specified period of time.
Declaration:

PROCEDURE DLY(T:INTEGER) ;EXTERNAL;

Description:

First, the current elapsed execution time is obtained, and the specified
delay time is added to determine the end of the delay period. The routine
loops, polling the execution timer, until the elapsed time equals or
exceeds the end of the delay period. Control is then returned to the
calling program.

Arguments:

T - Integer constant, variable, or expression which 1is the
requested delay time in milliseconds.

Warnings/Limitations:

The requested delay time, T, should be regarded as approximate for the
following recasons:

(1) Timer resolution is 16 milliscconds. The actual delay time will
normally be within plus or minus 16 milliseconds of the requested
delay.

(2) Timer overrun errors could cause the actual delay to be longer
than expected.

(3) Asynchronous activity on the processor (such as I/0 interrupts)
continues during the DLY routine. This activity could extend the
actual delay period slightly if the 1/0 load is heavy.

Application notes:

DLY may be used to allow time for asynchronous operations (such as output
interrupts) to occur before allowing the program to proceed. This
technique can also be used to allow time for operations to occur on other
processors or on the Controller, although in most cases flag barriers
(Section 3.4.9) would be preferred for this purpose. DLY may also find
uses in dynamic load-balancing, or as a method of deliberately
de-synchronizing processors,

Usage cxample:

BAR(FLAG3) ;
DLY(PSELF*20); (* de-synchronize *)

114

PASLIB Programmer’s Guide

3.11.4 TSTART
Purposc:
Initialize and turn on the TMS9901 interval timer.
Declaration:
PROCEDURE TSTART(T:POSINT) ;EXTERNAL;
Description:
Sets the TMS9901 timer for a period of approximately T milliseconds, and
begins timing. The minimum clock period is 1 millisecond, and the maximum

is 349 milliseconds.

Arguments:

T - An integer constant, variable, or expression in the range
from 1 to 349.

Warnings/Limitations:
The seclected timer period ("tick") is not always exactly T milliseconds,
but is as close to T as the hardware will allow. The maximum potential
error is 0.021333... milliseconds/tick. The effect of this error
decreases as the timer period increases. For a requested period T, the
actual timer period is ((375*T+4) DIV 8)*0.021333... milliseconds.
Application notes:
Call TSTART to select a timer period and begin timing.

Usage example:

TSTART(5); (* 5 mS timer period *)

115

PASLIB Programmer’s Guide

3.11.5 TSTOP
Purpose:

Turn off the TMS9901 timer.
Declaration:

PROCEDURE TSTOP; EXTERNAL;
Description:

The TMS9901 timer is disabled and
Arguments:

None.
Warnings/Limitations:

None.
Application notes:

Use
measured.

Usage example:

TSTART(1) ;
FOR I:=1 TO N DO
BEGIN

END;
TSTOP;
MSG('Time for loop =
MSGLN(’ msecs.”);

116

further timer interrupts are inhibited.

TSTOP to turn off the timer at the end of an interval which is being

”)3 MSGL(TREAD) ;

PASLIB Programmer’s Guide

3.11.6 TREAD
Purpose:

Obtain the approximate elapsed time, in milliseconds, of an interval
measured by the TMS9901 timer.

Declaration:
FUNCTION TREAD:LONGINT;EXTERNAL;
Description:

The number of clock ticks since the last call to TSTART is multiplied by
the length of the timer period as specified in the last call to TSTART.
The long integer result is the approximate elapsed time in milliseconds.
TREAD may be called either while the timer is active (between a call to
TSTART and TSTOP), or after the timer has been stopped by a call to
TSTOP.

Arguments:
None.
Function result:

If the timer is active, the result is the approximate elapsed time in
milliseconds since the last call to TSTART. If the timer has been
stopped, the result is the approximate elapsed time in milliseconds
between the call to TSTART and the call to TSTOP.

Warnings/Limitations:

The result is approximate for the following reasons:

(1) Timer resolution 1is plus or minus T, where T is the requested
clock period.

(2) The actual timer period may not be exactly equal to T. See the
description of the TSTART routine (Section 3.11.4) for details.

(3) Timer overrun errors may result in missed ticks. Short timer
periods (a few milliseconds) are much more susceptible to this
effect. Timer periods greater than a few tens of milliseconds
should be virtually immune to overrun errors.

(4) The timer interrupts generated by the TMS9901 require 0.034
milliseconds overhead for each tick. This time should be
subtracted from the result to account for perturbations induced by
the timer.

The approximate elapsed time before LONGINT overflow is about 24 days.
Application notes:

Call TREAD to determine the duration of program segments. The selectable

period (set by TSTART) allows events as short as one millisecond to be

measured. If overrun errors are suspected, their severity can be measured

117

PASLIB Programmer’s Guide

by repeatedly testing the program segment with a range of timer
intervals. This will show, within the timer resolution, how much time is
being lost due to missed ticks.

Usage example:

T:=256;
REPEAT
TSTART(T) ;

TSTOP;
MSG(’Timer period = “); MSGI(T);
MSG(’, measured time = ‘); MSGL(TREAD);
NXTLN;
T:=T DIV 2
UNTIL T = 0;

118

PASLIB Programmer’s Guide

3.11.7 TREADI]
Purpose:

Obtain the approximate elapsed time, in hours, minutes, and seconds, of
an interval measured by the TMS9901 timer.

Declaration:

PROCEDURE TREAD] (VAR HMS:PACKED ARRAY [1..?] OF CHAR);
EXTERNAL;

Description:

The elapsed time in milliseconds is obtained by a call to TREAD. This
value is rounded to the necarest number of seconds, and converted to
hours, minutes, and seconds. The result is returned as a character string
of the form "hh:mm:ss".

Arguments:

HMS - A packed character array containing at least eight elements,
The result is stored in the first eight bytes of this string.

Warnings/Limitations:

The result should be regarded as approximate since ,
(1) the resolution of the result is plus or minus 500 milliseconds,

and
(2) the result 1is subject to all of the considerations listed for

TREAD (Section 3.11.6).

The maximum interval to be measured by this routine should not exceed 99
hours, 59 minutes, and 59 seconds, or about 4 days.

Application notes:

Use TREAD] to express time intervals in hours, minutes, and seconds.

Usage example:

VAR TELAPS:PACKED ARRAY [1..26] OF CHAR;

TELAPS:="00:00:00 Completed cycle ‘g
TSTART(10);
FOR I:=1 TO N_CYCLES DO

BEGIN

TREAD] (TELAPS) ;
MSG(TELAPS) ; MSGI(I); NXTLN

119

PASLIB Programmer’s Guide

END;

120

PASLIB Programmer’s Guide

3.12 Processor Identification

A processor may be identified either by its physical location within the
hardware system, or by its logical position within an algorithm. Functions are
provided which allow programs to determine the physical (hardware) and logical
(algorithmic) self-IDs of the processors on which they are executing.,

121

PASLIB Programmer’s Guide

3.12.1 PSELF
Purpose:
Obtain the physical self identifier of a processor.
Declaration:
FUNCTION PSELF:NODE;EXTERNAL;
Description:

The processor’s hardware self-ID is obtained from Nodal Exec and returned
to the calling program.

Arguments:

Nonc,
Function result:

A value of type NODE which uniquely identifies the processor.
Warnings/Limitations:

None.
Application notes:

Use PSELF to determine which processor a program is executing on.
Usage example:

MSG(“Processor ‘); MSGI(PSELF);
MSGLN(’ beginning excecution.’);

122

PASLIB Programmer’s Guide

3.12.2 LSELF
Purpose:

Obtain the logical self identifier of a processor.
Declaration:

FUNCTION LSELF:NODE;EXTERNAL;

Description:

The processor’s logical self-ID is obtained from Nodal Exec and returned
to the calling program. LSELF is set equal to PSELF when Nodal Exec is
initialized. When connectivity is established with either the SYNCON or
ASYNCON FACS command, LSELF is re-set based on the logical-to-physical
mapping table loaded into data area 1. If an identity mapping 1is used,
LSELF remains equal to PSELF. LSELF may be modified by loading a new
mapping table and re-issuing one of the connectivity commands. If
connectivity is cleared with the CLEAR command, LSELF reverts to PSELF.

Arguments:
None.
Function result:

A value of type NODE which identifies the processor’s logical position
within an algorithm, subject to the considerations mentioned above.

Warnings/Limitations:

LSELF returns the physical self-ID of the processor until after a mapping
has been loaded and connectivity has been established.

Application notes:

Programs should use LSELF to determine a processor’s identity within the
context of a multi-processor algorithm. This capability allows programs
to be written without knowledge of the actual physical processors on
which they will execute. LSELF can be used to determine control paths
through a program based on the logical processor on which it 1is
executing.,

Usage example:
FOR 1:=1 TO N PROCS DO

IF 1 <> LSELF THEN
SEND(I,LOC(X[1]),2);

123

PASLIB Programmer’s Guide

4. EFFICIENCY CONSIDERATIONS

Many factors influence the performance of programs which execute on the
Finite Element Machine. Some of these concerns are the same as those for
sequential computers, for example, the algorithm chosen, the skill of the
programmer, the amount of I/0 involved, the quality of the code generated by
the compiler, and the efficiency and internal organization of the operating
system. Other concerns are introduced because of the parallel nature of FEM,
including distribution of the workload, problem partitioning, processor
synchronization, interprocessor communication, and complexity of control
structures. The following sections discuss some of the things to bear in mind
when writing efficient programs.

4.1 Compiler Options

Two categories of TIP compiler options have a significant effect on
execution time. One category consists of the runtime checks (CKINDEX, CKOVER,
CKSUB, etc.), and the other controls code optimization (GLOBALOPT, etc.).

The execution time checks are strongly recommended for use until a
program has been fully debugged and tested. However, their use can result in
significant increases in both execution time and size of object code. The
default when no checking options are specified is no checking, which will
result in maximum performance and minimum object code.

A number of optimization levels are available in TI Pascal. The default
is OPTIMIZE, which enables simple statement-level optimizations. The GLOBALOPT
option includes additional optimizations at the routine level. SPEEDOPT is
supposed to modify the optimization strategy to improve performance, but with
a possible 1increase in the object code size. The UNSAFEOPT option allows
additional optimizations which attempt to improve register usage; however,
these optimizations cannot be performed correctly for all programs. A program
should first be thoroughly tested without UNSAFEOPT, and then re-tested with
UNSAFEOPT turned on to assure that the optimizations are correct.

Experiments have shown that the best optimization strategy is highly
program dependent. While SPEEDOPT improves the performance of some programs,
it may actually degrade the performance of others (relative to GLOBALOPT).
Similarly, UNSAFEOPT can be quite beneficial for some code, but may show
little or no improvements in other cases.

Experience has also shown that the compiler occasionally makes mistakes
when optimizing code. If a program is producing incorrect results and there
are no detectable flaws in the logic, then optimization errors are a
possibility. Test for optimization errors by disabling GLOBALOPT, SPEEDOPT,
and UNSAFEOPT, and recompiling with NO OPTIMIZE. If the program still produces
the same incorrect results, then the problem lies in the user’s program or
elsewhere in the compiler. Most optimization errors can be circumvented by
minor rearrangements of the source code in the vicinity of the error, without
resorting to NO OPTIMIZE for the production version. Optimizations are routine
level options, so that NO OPTIMIZE can be restricted to a module which causes
problems, while still allowing full optimization of other parts of the

125

PASLIB Programmer’s Guide

program.

For a full description of the various compiler options, refer to Chapter
11 in the TI PASCAL REFERENCE MANUAL.

The FEM Project has adopted a standard set of compiler options which
should be used when comparing the execution speeds or object code sizes of
different programs. These are:

(*$GLOBALOPT,NO TRACEBACK,NO ASSERTS *)

Other options which have no effect on object code may be used as desired. Of
these, WIDELIST and MAP are strongly recommended for debugging purposes.

4.2 Algorithms and Overhead

A useful measure of the overhead incurred by a parallel program is the
parallel efficiency, defined as follows:

T(1) 1is the execution time for a uniprocessor implementation of an algorithm,
and T(p) is the execution time for the same algorithm implemented on p
processors. Values of e close to 1.0 indicate low overhead, while smaller
values indicate higher overhead. Values greater than 1.0 might be realized by
some asynchronous or combinatorially implosive algorithms.

This section discusses several of the more important issues which
contribute to overhead in parallel programs written for FEM.

4.2.1 Workload

Distribution of the workload is a critical factor for synchronous
algorithms. Each processor should be given approximately the same amount of
work to do, so as to minimize the overall idle time. If a small percentage of
processors have substantially more work to do than the rest, then the
efficiency will be low because of high idle time on the larger number of
processors which must wait.

4.2.2 Problem Partitioning

Related to the idea of workload is the concept of problem partitioning.
Ideally a problem would be partitioned into p equal-sized pieces and solved on
p processors. The fineness or granularity of the partitioning can affect the
overhead of the parallel solution. Coarse partitionings generally have a high
computation-to-communication ratio and high efficiency; very fine
partitionings may have a low computation-to-communication ratio and low
efficiency. For many problems there is an optimal partitioning of the problem
onto some number of processors. If more processors are added, no improvement

126

PASLIB Programmer’s Guide

will be seen because overhead costs become the dominant factor 1in execution
time.

4.2.3 Synchronization

Two factors contribute to synchronization overheads. One is idle time,
mentioned above, and the other 1is the mechanism used to achieve
synchronization. PASLIB provides two different synchronization methods, one
based on message passing and the other on the flag network.

When synchronous communication mode is chosen, the receive routines of
Section 3.10 will wait for input from the specified processor if none is
currently available in the input queue. This property can be used to bring
processors into a loosely synchronized state. For algorithms which must
transmit data between processors anyway, the communication routines can
provide some or all of the required synchronization.

The preferred synchronization mechanism for most applications, however,
is the flag barrier. The BAR routine (Section 3.4.9) incurs much less overhead
than the communication routines, and guarantees that all participating
processors have arrived at the same point in a program at the same time.

4.2.4 Communication

Data communication between processors is one of the major overheads in
many parallel programs. The amount of communication between processors is
determined by the nature of the problem and the algorithm selected to solve
it. Some algorithms may require no interaction between processors, while
others may move large amounts of data at frequent intervals.

The 1local link hardware provides the capability to send the same data to
several processors simultaneously. This is supported by PASLIB in the form of
the SENDALL and SEND2ALL procedures. Algorithms which transmit the same data
to all neighbors will incur substantially less overhead by wusing SENDALL or
SEND2ALL rather than repeated calls to SEND or SEND2. Efficient use of
send-all depends on a logical-to-physical mapping which maximizes use of the
local links and minimizes global bus communication.

Overhead for the communication routines can be divided into three
components: (1) a fixed overhead for the I/0 call which is independent of the
amount of data transferred, (2) a data movement overhead which is a function
of the amount of data to be transmitted, and (3) a dynamic interrupt overhead
which depends on the number of send and receive interrupts generated.

For a given algorithm, the fixed overhead can be minimized by making as
few SEND and RECV calls as possible. This implies that a few large blocks of
data should be transmitted between processors, rather than many small ones.
PASLIB supports this by allowing transmission of variable length data records
up to a maximum size of 255 words.

Data movement overhead consists primarily of the time to copy data into
and out of I/0 buffers, but also includes the hardware transmission time. Data

127

PASLIB Programmer’s Guide

movement can be reduced by using SENDALL and the local 1links wherever
appropriate.

Interrupt overhead is sensitive to the sequencing and duration of local
and global send and receive interrupts. Since FEM processors are asynchronous
(do not share a common clock), the interrupt overhead is difficult to predict,
and may vary from run to run, even though the program and data remain the
same., Transmitting larger blocks of data will tend to reduce the number of
interrupts, thereby decreasing the interrupt overhead. The depth of the
hardware data buffers may impose an upper limit on interrupt efficiencies.

128

PASLIB Programmer’s Guide

5. EXECUTION, ANALYSIS, AND DEBUGGING

The FEM Array Control Software (FACS) in conjunction with the Nodal Exec
operating system provides facilities for data management, execution control,
debugging, and performance analysis, The following sections outline the
procedures for setting up, executing, debugging, and analyzing Pascal programs
on the Array. For more detailed information, consult the FACS USER’S GUIDE and
the relevant FEM Programming Memoranda.

5.1 Problem Setup

Before a program can be executed on the Array, several steps must be
taken to set up the proper environment. The first step is to initialize the
hardware and system sof tware on the Array, and to define the
logical-to-physical processor mapping (RESET command). Next, the set of
processors to be wused for the problem must be selected (SAC). If data areas
are needed, they must be defined (DEFDAD, DEFDAI) and any necessary data must
be loaded (LDAD, LDAI). If processors need to communicate with each other,
data areas 0 and 2 must be defined, and a list of logical neighbors must be
loaded 1into data area 2 on each processor. Data areas 0 and 2 must be
identical in size and type of data (integer). After setting up data areas 0
and 2, connectivity must be established (SYNCON, ASYNCON). If there is no
communication between processors, data areas 0 and 2 are not needed and
connectivity may be ommitted.

Programs are loaded into processors (LDPG) from files of compressed
object code which are produced by the link editor (see Section 2.3). The same
code may be loaded into all processors, or different code may be loaded into
different processors as required. Only one program may be loaded per
processor. Loading a new program will automatically delete the previous one.
When a program is loaded, the entry point of the linked module is stored; this
value is used to initialize the processor’s program counter when execution
begins. For Pascal programs, the proper entry point is the address of module
NSMAIN, usually relative address 0 (*0000). The link map may be used to verify
the correct entry point. The AUTOSTAT command can be used to modify the entry
point if needed.

The best order for defining data areas, loading programs, and
establishing connectivity depends on the 1life-spans of the objects being
allocated. FEM Programming Memo 2 discusses optimal memory management for
Nodal Exec.

1f a particular scetup sequence is to be performed more than a few times,
an SCI command procedure should be written to expedite the process. Consult

the FACS USER’S GUIDE and Volume III of the DX10 OPERATING SYSTEM manual for
more information about writing SCI procs.

5.2 Execution Control

FACS/Nodal Exec provide commands to execute, halt, resume, and kill
programs on the Array. In addition, a breakpoint in a program causes an

129

PASLIB Programmer’s Guide

internally gencerated halt. Programs may be executed repeatedly without
reloading the object code. If a program is halted or killed, the program
counter must be re-initialized to the entry address (STAT or AUTOSTAT command)
before the program can be re-executed. Data areas need to be reloaded only if
the program has modified the data, or if new data is needed for the next run.
Large programs may be broken into multiple phases which run one after the
other, with each new phase being loaded to replace the previous one.
Intermediate results may be stored in data areas between phases, eliminating
the need for moving large amounts of data to and from the Controller.

5.3 Debugging

All of the debugging tools of FACS/Nodal Exec are available to the Pascal
programmer. These allow the programmer to inspect and modify memory and
registers, set breakpoints, and single-step the processor. The SPSF (Show
Pascal Stack on FEM) command was designed specifically for debugging TI Pascal
programs. Use of SPSF requires a working knowledge of the TIP data structures
which are described in Chapter 8 of the TI PASCAL PROGRAMMER’S GUIDE.

A useful strategy for initial testing of programs is to set breakpoints
(SFB) at the entry addresses of procedures and functions. These can be either
user-defined routines or PASLIB routines. The entry addresses are obtained
from the symbol definitions (rather than the module map) produced as output
from the link editor. Breakpoints should be set in the order that the program
is expected to execute. In this way the programmer can follow the execution
sequence and determine the approximate location of errors when they occur, If
better resolution is desired, the Pascal reverse assembler (XRASS) can be used
to determine the addresses of particular statements in the program, although
this requires some knowledge of TMS9900 assembly language and TIP data
structures and register conventions.

The SPSF command can be used at breakpoints to examine registers and
variables in the Pascal stack. By modifying the workspace pointer field,
variables at lower nesting levels in the stack can be examined. The workspace
pointer must be restored to its original value before resuming execution.

5.4 Analysis

Nodal Exec incorporates two features which aid in the analysis of program
execution. One of these is a trace capability which samples the program
counter (PC) at specified intervals during execution. The PC values are sent
to the Controller where they are stored for post-processing. By comparing the
distribution of PC samples against the link editor module map, the percentage
of time spent in different parts of the program (including PASLIB and much of
Nodal Exec) can be determined. Programming Memo 3 discusses the trace sampling
facility in detail,

The other analysis feature is a table of execution statistics which are
automatically collected by Nodal Exec and PASLIB. Information is recorded
about execution time, 1/0, memory management, flags, and floating-point
operations. This data may be post-processed to derive several measures of
execution efficiency. Programming Memo 4 describes the execution statistics

130

PASLIB Programmer’s Guide

report in detail,

131

PASLIB Programmer’s Guide

APPENDIX A
EXAMPLE PROGRAM

Source Code

(*$WIDELIST,MAP,NO ASSERTS,NO TRACEBACK *)

(*$GLOBALOPT *)
(* CKINDEX,CKOVER,CKSUB *

PROGRAM JACOBI;

[2 —— - %)
(* *)
(* JACOBI V2.1 12/21/82 *)
(* *)
(* This program solves Loendorf’s 4-node wing box problem %)
(* wusing either the standard or asynchronous Jacobi method. ¥*)
(* The solution technique is determined by the I/0 mode used *)
(*# 1in the connectivity command, either synchronous (SYNCON) %)
(* or asynchronous (ASYNCON). *)
(* %)
(* This version of the program has been modified to use the ¥*)
(* record-oriented I/0 of Nodal Exec/PASLIB V2.1. The three ¥)
(* displacement values calculated by each node are sent or %)
(* received in a single operation. *)
(* *)
(* Data Areas *)
(* 0 =~ physical neighbor table *)
(* 1 - logical-to-physical mapping *)
(* 2 = logical neighbor table *)
(* 3 - rescrved for system use *)
(* 4 - K matrix, 12 x 12 *)
(* 5 =~ vector of applied forces %)
(* 6 - input parameters: *)
(* NDOF -number of degrees of freedom *)
(* NCON -number of neighbors %)
(* NNODES ~total number of nodes *)
(* %*)
(* Must be’'run under V2.1 of Nodal Exec/PASLIB. *)
(* *)
(Fmmmmem - _— — *)
(% %)

{(* PASLIB DECLARATIONS *)
)

*
o

?COPY SYS!.FEM.PASLIB.UTILS.TYPDCL

(* FLAG ROUTINES *)

133

FUNCTION ALL(F:FLAG) : BOOLEAN;EXTERNAL;
FUNCTION FIRST:BOOLEAN;EXTERNAL;
PROCEDURE BAR(F:FLAG) ;EXTERNAL;
PROCEDURE FLGEN(F:FLAG) ;EXTERNAL;
PROCEDURE FLGRES(F :FLAG) ;EXTERNAL;
PROCEDURE FLGSET(F:FLAG) ;EXTERNAL;

(* DATA AREA ACCESS *)
FUNCTION DAPTR(DA:DANUM) : ADDR;EXTERNAL;

(* NEIGHBOR COMMUNICATIONS *)

PROCEDURE SENDALL(LOC:ADDR; NWORDS:INTEGER) ;EXTERNAL;
PROCEDURE RECV(N:NODE; LOC:ADDR; NWORDS:INTEGER) jEXTERNAL;
FUNCTION IOSMODE:INTEGER;EXTERNAL;

(* TFLOATING POINT ROUTINES *)
FUNCTION CV9512(X:REAL) : REAL; EXTERNAL;
FUNCTION MAX95:REAL;EXTERNAL;
FUNCTION CMP(X,Y:REAL):INTEGER;EXTERNAL;
FUNCTION ABS95(X:REAL) : REAL;EXTERNAL;
FUNCTION SUB(X,Y:REAL) :REAL;EXTERNAL;
FUNCTION DIVD(X,Y:REAL) : REAL ;EXTERNAL;
FUNCTION VDP(N:POSINT; VAR A:ARRAY [1..?] OF REAL;
VAR B:ARRAY [1..?] OF REAL) :REAL;EXTERNAL;

(* OUTPUT ROUTINES *)

PROCEDURE MSG(STRING:PACKED ARRAY[1..?] OF CHAR) ;EXTERNAL;

PROCEDURE MSGLN(STRING:PACKED ARRAY[1..?] OF CHAR);
EXTERNAL;

PROCEDURE NXTLN;EXTERNAL;

PROCEDURE ENDLN(N:POSINT) ;EXTERNAL;

PROCEDURE MSGCH(CH:CHAR) ;EXTERNAL;

PROCEDURE MSGI(I:INTEGER) ;EXTERNAL;

PROCEDURE MSGL(I:LONGINT) ;EXTERNAL;

PROCEDURE MSGR(X:REAL) ;EXTERNAL;

PROCEDURE CWAIT;EXTERNAL;

(* TIMER ROUTINES *)

PROCEDURE TSTART(T:POSINT) ;EXTERNAL;

FUNCTION TREAD:LONGINT;EXTERNAL;

PROCEDURE TREAD] (VAR HMS :PACKED ARRAY[1..?] OF CHAR) ;EXTERNAL;
PROCEDURE TSTOP;EXTERNAL;

(* MISCELLANEOUS *)

FUNCTION LSELF:NODE;EXTERNAL;
FUNCTION PSELF:NODE;EXTERNAL;
FUNCTION GBUSY:BOOLEAN;EXTERNAL;

(7': *)
(* MAIN PROGRAM *)
(* *)
PROCEDURE PSCLS$S;

134

CONST FLAGO=0; (* FIRST FLAG
FLAG2=2; (* CONVERGENCE
FLAG3=3; (* SYNCHRONIZATION
EPSILON=1.0E-07; (* CONVERGENCE CRITERION
SYNCHRONOUS=1 (* SYNCHRONOUS I/0 MODE
DSIZE=6; (* DATA RECORD SIZE

TYPE DISPLACEMENTS = ARRAY [l..3] OF REAL;
Al2 = ARRAY [1..12] OF REAL;

DA2 = ARRAY [1..3] OF NODE;
DA4 = ARRAY [1..12] OF Al2;
DAS = Al2;

DA6 = RECORD
NDOF :IDX 3
NCON:l..3;
NNODE : NODE

END;

VAR DSPL,R0O,MAXREAL,CNVRG:REAL;
DELTA:ARRAY [1..4] OF DISPLACEMENTS;
K:ARRAY [1..12] OF Al2;

F:Al12;

DELTAT:DISPLACEMENTS;
SELF:NODE;
I1,IDOF,II,INT,NN:INTEGER;
mSECS:LONGINT;

HMS :PACKED ARRAY [1..8] OF CHAR;
ASYNC, CONVERG : BOOLEAN;
NEIGH:@DA2 ;

KDATA :@DA4

FDATA :@DA5;

PARMS :@DA6 ;

DTPTR:ADDR;

DELTAPTR: ARRAY [1..4] OF ADDR;

BEGIN (* PSCLSS *)

(* ENABLE AND RESET FLAGS *)

FOR I IN [FLAGO,FLAG2,FLAG3] DO
BEGIN FLGEN(I); FLGRES(I)
END;

(* CONSTANTS *)

RO :=CV9512(0.0);
MAXREAL :=MAX95;
CNVRG:=CV9512(EPSILON) ;

(* SOLUTION TECHNIQUE *)

IF I0$SMODE = SYNCHRONOUS THEN
ASYNC :=FALSE

ELSE

*)
*)
*)
*)
*)

*)

135

ASYNC :=TRUE;

(* GET DATA AREAS ¥)
NEIGH: :ADDR:=DAPTR(2) ;
KDATA: :ADDR:=DAPTR(4) ;
FDATA: : ADDR:=DAPTR(5) ;
PARMS : : ADDR:=DAPTR(6) ;

(¥ GET LOGICAL SELF ID *)
SELF:=LSELF;

(* PRINT HEADING *)
BAR(SYSFLAG); (* WAIT FOR FLAGS ENABLED & RESET ¥)
FLGSET(FLAGO) ;
IF FIRST THEN
BEGIN
MSGLN(’==~ Four-Node Wing Box Problem --- V2.1 --="); NXTLN;
IF ASYNC THEN
MSG(‘Asynchronous’)
ELSE
MSG(‘Standard’);
MSGLN(’ Jacobi Solution Technique’)
END;

(* INITIALIZATION <)

DTPTR:=LOCATION(DELTAT) ;

FOR I:=]1 TO PARMS@.NNODE DO
DELTAPTR[I] :=LOCATION(DELTA[I]);

WITH PARMS@ DO

BEGIN
NN:=NDOF*NNODE;
IT1:=NN*NN;

11 :=3*%(SELF-1)+1;
IDOF :=3*(SELF-1)+NDOF
END;

K:=KDATA@; (* GET WORKING COPIES OF DATA *)
F:=FDATAQ;

(* CONVERT DATA TO 9512 FORMAT *)
FOR I:=1 TO NN DO
FOR J:=1 TO NN DO
K[I,J]:=CV9512(K[I,J]);
WITH PARMS@ DO
FOR I:=1 TO NCON*NNODE DO
F[1]:=CV9512(F[1]));

(* SEND INITIAL VALUES)
FOR 1 := 1 TO PARMS@.NDOF DO
BEGIN
DELTA{SELF,I]:=R0;
DELTAT(I] :=MAXREAL

136

END;

SENDALL(DELTAPTR[SELF],DSIZE) ;
IF ASYNC THEN (* WAIT FOR INITIAL VALUES *)

BAR(FLAG3) ;

FOR J := Il TO IDOF DO

(~k

BEGIN
F[J]:=DIVD(F[J],K[J,J]);
FORI :=1 TO 12 DO

IF I <> J THEN
K{J,1]:=DIVD(K[J,I],K[J,J]);

K[J,J]:=RO
END;

MAIN LOOP *)

INT:=0;
TSTART(50); (* 50 mSEC INTERVAL *)

WITH PARMS@ DO

WHILE NOT ALL(FLAG2) DO

BEGIN

INT:=1INT+];

FOR I := 1 TO NCON DO
(* READ DISPLACEMENTS FROM NEIGHBORS *)
RECV(NEIGH@[I]),DELTAPTR[NEIGH@[I]],DSIZE);

IT := 13

CONVERG:=TRUE;

FOR JJ := Il TO IDOF DO (* CALCULATE NEW DISPLACEMENTS *)
BEGIN
DSPL:=SUB(F[JJ],VDP(NN,K[JJ],DELTA::A12));
CONVERG :=CONVERG AND

(cMP(ABS95(SUB(DSPL,DELTAT[II])),CNVRG) < 0);
DELTAT[I1):=DSPL;
IT := II+]
END;

SENDALL(DTPTR,DSIZE) ;

DELTA[SELF] :=DELTAT;

IF CONVERG THEN (* SIGNAL LOCAL CONVERGENCE *)
FLGSET(FLAG2)

ELSE
FLGRES(FLAG2) ;

IF NOT ASYNC THEN
{(* STD. JACOBI MUST SYNC BEFORE TESTING ALL *)
BAR(FLAG3)

END; (* MAIN LOOP *)

TSTOP;
TREAD]1 (HMS) ;
mSECS :=TREAD;

(7’c

REPORT RESULTS *)

FOR I:=1 TO PARMS@.NNODE DO

BEGIN
BAR(FLAG3) ;

137

IF

I = SELF THEN
BEGIN
ENDLN(2) ;
MSG(‘Node “); MSGI(I); MSG(’ (Processor ‘); MSGI(PSELF);
MSGCH(") ") ; NXTLN;
MSG(" =—- --’); ENDLN(2);
MSG(*);
MSG(‘Iterations = “); MSGI(INT); NXTLN;
MSG(* ‘)3
MSG(‘Elapsed time for main loop = “); MSG(HMS);
MSG(’ (’); MSGL(mSECS); MSG(’ msecs)’); NXTLN;
MSG(” ’); MSG(’Displacements = ")
FOR I:=1 TO PARMS@.NDOF DO

BEGIN

MSGR(DELTAT[I]); MSG(" /)

END;
NXTLN;
CWAIT (* WAIT FOR CONTROLLER TO PROCESS MESSAGES *)
END

END

END;

(* PSCL$$ *)

BEGIN (*$ NO OBJECT *)

END.

138

(* JACOBI *)

PASLIB Programmer’s Guide

Link Map

SDSLNK 3.5.0 81.117 11/13/83
COMMAND LIST
NOSYMT
FORMAT COMPRESSED
LIBRARY SYS1.TIP.MINOBJ
LIBRARY SYS1.TIP.LUNOBJ
LIBRARY SYS1.TIP.OBJ
LIBRARY SYSI.FEM.PASLIB
TASK JC21

INCLUDE (N$SMAIN)
INCLUDE USER! .TWC.JACOBI.JC210
INCLUDE (STKS$1)
INCLUDE (HPS$0)
END

CONTROL FILE = USER].TWC.JACOBI.JC21C
LINKED OUTPUT FILE = USER].TWC.JACOBI.JC21L
LIST FILE = SYS2.TWC.T.PRINTI

OUTPUT FORMAT = COMPRESSED

LIBRARIES

NO ORGANIZATION PATHNAME

1 RANDOM SYS1 .TIP.MINOBJ

2 RANDOM SYS1.TIP.LUNOBJ

3 RANDOM SYS1.TIP.OBJ

4 RANDOM SYS1 . FEM.PASLIB

PHASE 0, JC21 ORIGIN = 0000 LENGTH = 15EE
MODULE NO ORIGIN LENGTH TYPE
NSMAIN 1 0000 00C2 INCLUDE, 4
$DATA 1 1116 0098

PSCLSS 2 00C2 0878 INCLUDE
STKS1 3 093A 0000 INCLUDE, 4
$DATA 3 11AE 0440

HPSO 4 093A 0000 INCLUDE, 4
ABENDS 5 0934 006A LIBRARY,]
GO$SA 6 0944 0074 LIBRARY,1
CKTOPS 7 0Al8 002¢C LIBRARY,2

12:28:08

ENTRY=0000

DATE TIME
09/13/83 13:24:37
11/13/83 12:19:48
08/23/82 14:47:19
08/23/82 14:48:18
09/10/81 19:02:38
09/10/81 19:17:21
09/10/81 18:53:22

PAGE 1

CREATOR

SDSMAC

DXPSCL
SDSMAC

SDSMAC
SDSMAC
SDSMAC
SDSMAC

139

ENTS
ENT$MD
SETINS
MOVS$ N
SETS$EQ
PASLNK
FLGEN
FLGRES
CV9512
MAX95
10$MODE
DAPTR
LSELF
BAR
FLGSET
FIRST
MSGLN
NXTLN
MSG
SENDALL
DIVD
TSTART
ALL
RECVY
VDP
SUB
ABS95
cMP
TSTOP
TREAD]
TREAD
ENDLN
MSGI
PSELF
MSGCH
MSGL
MSGR
CWAIT
ALCPY$
DI$DIV
DIVS
ALLOCS
GBUSY
DLY
XTIME

NAME
$ABS95

140

8 0AL4
9 0B10
10 0Bl1C
11 0B40
12 0B58
13 0B98
14 0B98
15 0OBA8
16 0OBB8
17 0BC8
18 0BD8
19 OBES8
20 OBF8
21 0Co8
22 0C18
23 0C28
24 0C38
25 0C52
26 0C62
27 0C7C
28 0cscC
29 0C9C
30 0CAC
31 0CBC
32 occc
33 0CDC
34 0CEC
35 0CFC
36 0DocC
37 0oplcC
38 OE88
39 0E98
40 OEA8
41 OEBS8
42 0ECS8
43 0EDS8
44 OEE8
45 OEFS8
46 OF1C
47 0F3A
48 1022
49 105A
50 109E
51 10AE
52 1106
VALUE NO
2F4A% 13

NAME

*$ADD

00ccC
000C
0024
0018
0040
0000
0010
0010
0010
0010
0010
0010
0010
0010
0010
0010
001A
0010
001A
0010
0010
0010
0010
0010
0010
0010
oolo
0010
0010
016C
0010
0010
0010
0010
0010
0010
0010
0024
00lE
0OES8
0038
0044
0010
0058
0010

LIBRARY,2
LIBRARY,3
LIBRARY,3
LIBRARY,3
LIBRARY,3
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,4
LIBRARY,3
LIBRARY,3
LIBRARY,3
LIBRARY,2
LIBRARY,4
LIBRARY,4
LIBRARY,4

09/10/81
09/10/81
09/10/81
09/10/81
09/10/81
10/13/83
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82 .
12/10/82
12/10/82
12/10/82
01/03/83
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
12/10/82
02/15/83
09/10/81
09/10/81
09/10/81
09/10/81
12/10/82
02/15/83
12/10/82

DEFINITTIONS

VALUE NO

2EFC* 13

NAME

$ALL

VALUE NO

2AE2* 13

18:53:33
18:25:21
18:35:01
18:30:10
18:34:51
08:06:45
09:30:19
09:30:29
09:33:25
09:34:42
09:31:58
09:31:08
09:36:11
09:29:38
09:30:44
09:29:50
09:35:26
09:35:39
09:35:07
09:32:34
09:33:49
09:36:01
09:29:03
09:31:33
09:35:04
09:35:00
09:33:04
09:33:19
09:36:04
13:56:03
09:36:08
09:35:36
09:35:17
09:36:14
09:35:10
09:35:23
09:35:29
09:28:23
18:17:07
18:21:37
18:22:05
18:52:54
09:31:21
09:24:14
09:35:58

NAME

*$ANY

SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
DXPSCL
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
DXPSCL
SDSMAC
SDSMAC
SDSMAC
SDSMAC
SDSMAC
DXPSCL
SDSMAC

VALUE NO

2AF2* 13

SBAR
*$DABS9
*$DDIVD
*$ DMAX9
#*$DOUBL
*$DV990

$FIRST

SFLGSE
*$TFIX
*$LFIXD

SMSG
*$MSG IH
*$MSGRH
*$NEG

$PSELF
*$RDI
*$SEND
*$SND2 A
*$SYNC

$VDP

ABNDS$1

ALL

CKTOPS

CWAIT

DIVS$
*ENT$

ENT$S

FLGSET

HP$ TOP
*MASKS
*MOV$ S

MOV$ N

MSGL
*PATCHS
*RETS$2
*SETSEQ

SUB
*TSMSG

TERMS$ $

TSTOP

2B56%*
2F3E*
2F76*
30C6*
33F6*
32C4%*
2B38*
2 AAB*
3600%
3798*
3CBC*
3Dl0*
3D30%
2F28%
3DBA*
3C66%
2CE4*
2EQ4%*
2B02*
3AL4*
0976
0CAE
0Al8
OEFE
1022
0A54
0AEQ
0ClA
15EE
0B7A
0B4C
0B40
0EDA
0A78
0AFA
0B7A
0CDE
000E*
0046
0DOE

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13

30
45
48
22
12
11

11
43

12
33
1

36

$CMp
*$DADDS
*$DFLOI
*$DMIN9
*$DSQRT
*$DVDP
*$FLGDI
*$FLOTI
*$IFIXD
SLSELF
$MSGCH
SMSGL
*$SMULT
$NXTLN
*$QUERY
*$RDR
*$SEND2
*$SQRTY
$TREAD
S$XTIME
ABNDS$2
ALLCSS
CMP
DAPTR
DIVD
*ENTS$2
FIRST
GBUSY
10$MOD
MASKS$ S
MOV$6
MSG
MSGLN
PSCLSS
RET$M
SETINS
*SVCS
T$SYSM
TREAD
VDP

#*%%% LINKING COMPLETED

3054*
2F5E*
351c¢%
30CcC*
3930*
3B38%
2AAQ*
3450%
3678*
3pg2*
3D00*
3D18*
2FQC*
3CF8x*
3c2c*
3C92%
2CF6*
384C*
3D72%*
3D4E*
0948
1060
0CFE
0BEA
0C8E
0A44
0cz2a
10A0
0BDA
0B58
0B4A
0C64
0C3A
01F6
0BOC
0B1C
0038
0008*
0E8A
0CCE

13
13

38
32

$CV951
$DAPTR
*$DFLOL
*$SDMULT
*$DSUBS
SENDLN
$FLGEN
*$FLOTL
$I0SMO
SMAX95
*$MSGDH
$MSGLN
$NSHEA
$OBJPT
*$RDCH
$RECV
$SENDA
$STOP
$TSTAR
*ABENDS
ABS95
*ALLOCS
CURSS
DISDIV
DLY
ENTSM
FLGEN
GO$SA
LSELF
MAX95
*MOVS 7
MSGCH
MSGR
PSELF
RETS$S
ST$BOT
*T$CC
*T$TIB
TREAD]
XTIME

30FA*
2B7E*
3576%*
2F6E*
2F66%*
3CF2*
2A96%
34A4%
2ED2*
30B2*
3D3E*
3CD4*
F9E8*
FA8E*
3C30*
2BB2*
2DF6*
008C*
3DSE¥*
0956
O0CEE
105A
0AF4
0F3C
10B2
0A5E
0B9A
09A4
0BFA
0BCA
0B48
0ECA
0EEA
OEBA
0BOE
11AE
000A*
1116
ODZA
1108

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
5

34
49
8

47
51
8

14
6

20
17
11
42
44
41

*3$CV990
*$DCMP
$DIVD
*$DNEG
*$DV951
SERRVE
SFLGRE
$GBUSY
*SLFIX
*$SMIN9 S
$MSGI
$MSGR
NSTK
SPRPTR
*$RDH
*$RECV2
*$SINGL
$SUB
$TSTOP
ABND$0
ALCPYS
BAR
CV9512
DISMOD
ENDLN
ENT$MD
FLGRES
HP$BOT
MARGS N
*MOVS 4
*MOVS$ 8
MSGI
NXTLN
RECV
SENDAL
STSTOP
TSEC
TSWP
TSTART

323C*
304 A%
2F14%
2F1C*
3184%*
0080%*
2ABC*
2EE8*
36F6*
30B8*
3D08*
3D24%*
FOEA*
FA84*
3C3A*
2BC4*
338A%
2F04%*
3D6C*
097E
OFIC
0coa
0BBA
0F46
0E9A
0B10
OBAA
15EE
093A
0B4E
0B46
0EAA
0C54
0CBE
0C7E
15EE
000C*
0006%*
0C9E

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
5

46
21
16
47
39
9

15
4

5

11
11
40
25
31
27
3

1

1

29

141

PASLIB Programmer’s Guide

SCI Procedure

JC21 (JACOBI / ASYNCHRONOUS JACOBI V2.l -- 9/83 twc)=3,
SYNCHRONOUS 1/0? = YESNO(YES),

SELECTED PROCESSORS = STRING,

REFERENCE PROCESSOR = INT(@$REFPROCESSOR)
PSSYN

QSSYN

RESET SELMAP=DF

.IF @SERRTST, NE, 00000

LEXIT

.ENDIF

SAC SP="&SELECTED PROCESSORS"

.IF @SERRTST, NE, 00000

LEXIT

LENDIF

LDPG PFAN="USER! .TWC.JACOBI.JC21L",SP="&SELECTED PROCESSORS"
.IF @$ERRTST, NE, 00000 "

LEXIT

.ENDIF

DEFDAD CFAN="USER! .TWC.JACOBI.DATA20.DEFDA"
.IF @SERRTST, NE, 00000

LEXIT

.ENDIF

LDAD CFAN="USER! .TWC.JACOBI.DATA20.LOADDA"
.IF @SERRTST, NE, 00000

LEXIT

.ENDIF

.IF "&SYNCHRONOUS I/0?", GE, "Y"

SYNCON MAXREC=6,NOITAG=1,NOLL=8,QD=2

.ELSE

ASYNCON MAXREC=6,NOITAG=]1,NOLL=8

LENDIF

.IF @SERRTST, NE, 00000

LEXIT

LENDIF

XFEM CHECK=Y,TRACENAB=N,REF="&REFERENCE PROCESSOR"

142

PASLIB Programmer’s Guide

Program QOutput

~== Four-Node Wing Box Problem === V2,] ===

Standard Jacobi Solution Technique

(Processor 16)

Iterations = 281

Elapsed time for main loop = 00:00:09 (

Displacements = 4.013423E~-04 -7.199459E-03
Node 2 (Processor 17)
Iterations = 281

00:00:09 (
-7.199458E-03

Elapsed time for main loop =
Displacements = =4,013424E~04

Node 3

18)

(Processor

Iterations = 281
Elapsed time for main loop =
Displacements = -=4.005618E-04

00:00:09 (
7.200593E-03

(Processor

Iterations = 281
Elapsed time for main loop =
Displacements = 4.005620E-04

00:00:09 (
7.200593E-03

9250 msecs)
1.311874E-02

9250 msecs)
-1.311875E-02

9250 msecs)
1.263331E-02

9250 msecs)
-1.263331E-02

143

PASLIB Programmer’s Guide

APPENDIX B
EPROM=-RESIDENT SUBROUTINES
(PASLIB V2.1-101283)

Listed below are those PASLIB routines which are stored in EPROM on each
of the processors in the FEM Array. Access to these routines is via small
interface subroutines from SYSl.FEM.PASLIB which are 1linked with user
programs. The interface subroutines contain procedure and function call entry
and exit code, and a BL (branch and link) instruction to transfer control to
the proper address in EPROM. When the EPROM routine terminates, control is
returned to the interface subroutine using the address in register 11l.

Subroutine Starting Address Ending Address
ABS95 2F4A 2F5C
ADD 2EFC 2F02
ALL 2AE2 2B2E
ANY 2AF2 2B2E
BAR 2B56 2B7C
CMP 3054 30BO
Cv9512 30FA 3182
Cv990 323C 32C2
DABS95 2F3E 2F5C
DADD 2F5E 2F64
DAPTR 2B7E ~ 2BBO
DCMP 304A 30B0
DDIVD 2F76 2F7C
DFLOTI 351¢C 3574
DFLOTL 3576 35FE
DIVD 2F14 2F1A
DMAX95 30C6 30E0
DMIN95 30CC 30EQ
DMULT 2F6E 2F74
DNEG 2F1C 2F3C
DOUBLE 33F6 344E
DSQRTI95 3930 3A42
DSUB 2F66 2F6C
DV9512 3184 323A
DV990 32C4 3388
DVDP 3B38 3C2A
ENDLN 3CF2 3CFE
FIRST 2B38 2B54
FLGDIS 2AAQ 2AEQ
FLGEN 2A96 2AEQ
FLGRES 2ABC 2AEQ
FLGSET 2 AA8 2AEQ
FLOATI 3450 34A2
FLOATL 34A4 351A
GBUSY 2EE8 2EFA
IFIX 3600 3676
IFIXD 3678 36F4

145

PASLIB Programmer’s Guide

I0$MODE

LFIX
LFIXD

LSELF
MAX95
MIN9S
MSG
MSGCH
MSGDH
MSGI
MSGIH
MSGL
MSGLN
MSGR
MSGRH
MULT
NEG
NXTLN
PSELF
QRY
RDCH
RDH
RDI
RDR
RECV
RECV2
SEND
SEND2
SEND2 ALL
SENDALL
SINGLE
SQRT95
SUB
SYNC
TREAD
TSTART
TSTOP
VDP
XTIME

146

2ED2
36F6
3798
3Dp82
30B2
30B8
3CBC
3D00
3D3E
3D08
3D10
3D18
3CDh4
3D24
3D30
2F0C
2F28
3CF8
3D8A
3C2¢C
3C30
3C3A
3C66
3C92
2BB2
2BC4
2CE4
2CF6
2E04
2DF6
338A
384¢C
2F04
2B02
3D7C
3D5E
3D6C
3A44
3D4E

2EE6

3796
384A

3D88
30C4
30C4
3CD2
3D06
3D4C
3DOE
3D16
3D22
3CF0
3D2E
3D3C
2F12
2F3C
3CFE
3D90
3C2E
3C38
3C64
3C90
3CBA
2CE2
2CE2
2DF4
2DF4
2EDO
2EDO
33F4
392E
2F0A
2B2E
3D80
3D6A
3D70
3B36
3D5C

PASLIB Programmer’s Guide

APPENDIX C
SUBROUTINE REFERENCE SHEET

Text Output

PROCEDURE MSG(STRING:PACKED ARRAY [1..?] OF CHAR) ;EXTERNAL;
PROCEDURE MSGLN(STRING:PACKED ARRAY [1..?] OF CHAR) ;EXTERNAL;
PROCEDURE ENDLN(N:POSINT) ;EXTERNAL;

PROCEDURE NXTLN;EXTERNAL;

PROCEDURE MSGCH(CH:CHAR) ;EXTERNAL;

PROCEDURE MSGI(I:INTEGER) ;EXTERNAL;

PROCEDURE MSGL(I:LONGINT) ;EXTERNAL;

PROCEDURE MSGR(X:REAL) ;EXTERNAL;

PROCEDURE MSGD(X:REAL(16)) ;EXTERNAL;

PROCEDURE MSGIH(I:INTEGER) ;EXTERNAL;

PROCEDURE MSGRH(X:REAL) ;EXTERNAL;

PROCEDURE MSGDH(X:REAL(16));EXTERNAL;

PROCEDURE CWAIT;EXTERNAL;

Interactive Input

PROCEDURE QUERY ;EXTERNAL;
FUNCTION RDCH:CHAR;EXTERNAL;
FUNCTION RDH:INTEGER;EXTERNAL;
FUNCTION RDI:INTEGER;EXTERNAL;
FUNCTION RDR:REAL;EXTERNAL;

Data Areas

FUNCTION DAPTR(DA:DANUM) : ADDR;EXTERNAL;

Flags

PROCEDURE FLGEN(F:FLAG) ;EXTERNAL;
PROCEDURE FLGDIS(F:FLAG) ;EXTERNAL;
PROCEDURE FLGRES(F:FLAG) ;EXTERNAL;
PROCEDURE FLGSET(F:FLAG) ;EXTERNAL;
FUNCTION ANY(F:FLAG) :BOOLEAN;EXTERNAL;
FUNCTION ALL(F:FLAG) :BOOLEAN;EXTERNAL;
FUNCTION SYNC(F:FLAG) :BOOLEAN;EXTERNAL;
FUNCTION FIRST(F:FLAG) :BOOLEAN;EXTERNAL;
PROCEDURE BAR(F:FLAG) ;EXTERNAL;

Floating-point Operations
FUNCTION ADD(X,Y:REAL) : REAL; EXTERNAL;
FUNCTION SUB(X,Y:REAL) :REAL;EXTERNAL;
FUNCTION MULT(X,Y:REAL) :REAL ;EXTERNAL;
FUNCTION DIVD(X,Y:REAL) : REAL;EXTERNAL;

147

PASLIB Programmer’s Guide

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION
FUNCTION
FUNCTION

FUNCTION

FUNCTION
FUNCTION

NEG(X:REAL) : REAL ; EXTERNAL;
ABS95(X:REAL) : REAL; EXTERNAL;
CMP(X,Y:REAL) : INTEGER; EXTERNAL;
DADD(X,Y:REAL(16)) :REAL(16) ;EXTERNAL;
DSUB(X,Y:REAL(16)) :REAL(16) ;EXTERNAL;
DMULT(X,Y :REAL(16)) :REAL(16) ;EXTERNAL;
DDIVD(X,Y:REAL(16)):REAL(16) ;EXTERNAL;
DNEG(X:REAL(16)) :REAL(16) ;EXTERNAL;
DABS95(X:REAL(16)) :REAL(16) ;EXTERNAL;
DCMP(X,Y:REAL(16)) : INTEGER;EXTERNAL;

Floating-point Constants

MAX95: REAL ; EXTERNAL;
MIN95:REAL; EXTERNAL;
DMAX95:REAL(16) ;EXTERNAL;
DMIN95:REAL(16) ;EXTERNAL;

Floating=-point Conversions

CV9512(X:REAL) : REAL; EXTERNAL;
CV990(X:REAL) : REAL ; EXTERNAL;
FLOATI(I:INTEGER) : REAL; EXTERNAL;
FLOATL(I:LONGINT) : REAL; EXTERNAL;
IFIX(X:REAL) : INTEGER; EXTERNAL;
LFIX(X:REAL) : LONGINT; EXTERNAL;
SINGLE(X:REAL(16)) :REAL; EXTERNAL;
DVY512(X:REAL(16)) :REAL(16) ;EXTERNAL;
DV990(X:REAL(16)) :REAL(16) ;EXTERNAL;
DFLOTI(I:INTEGER) :REAL(16) ;EXTERNAL;
DFLOTL(L:LONGINT) : REAL(16) : EXTERNAL;
IFIXD(X:REAL(16)) : INTEGER;EXTERNAL;
LFIXD(X:REAL(16)) :LONGINT; EXTERNAL;
DOUBLE(X:REAL) : REAL(16) ;EXTERNAL;

Mathematical Subroutines

SQRT95(X:REAL) : REAL ; EXTERNAL;
DSQRT95(X:REAL(16)) :REAL(16) ;EXTERNAL;
VDP(N:POSINT;

VAR A:ARRAY [1..?7] OF REAL;

VAR B:ARRAY [1..?] OF REAL) :REAL;EXTERNAL;

DVDP(N:POSINT;
VAR A:ARRAY [1..?] OF REAL(16);

VAR B:ARRAY {1..?] OF REAL(16)) :REAL(16) :EXTERNAL;

URAN:REAL; EXTERNAL:
DURAN:REAL(16) ;EXTERNAL;

PROCEDURE RANSEED(SEED:LONGINT) ;EXTERNAL;

FUNCTION
FUNCTION

148

SINE(X:REAL) : REAL; EXTERNAL;
DSINE(X:REAL(16)) :REAL(16) ;EXTERNAL;

PASLIB Programmer’s Guide

Sum/Maximum

%% Not implemented ¥%*

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

Neighbor Communications

SEND(N:NODE; LOC:ADDR; NWORDS:RECLEN) ;EXTERNAL;

SEND2(N:NODE; INDEX:IDX; LOC:ADDR; NWORDS:RECLEN) ;
EXTERNAL; .

SENDALL(LOC:ADDR; NWORDS:RECLEN) ;EXTERNAL;

SEND2ALL(INDEX:IDX; LOC:ADDR; NWORDS:RECLEN) ;

EXTERNAL;

RECV(N:NODE; LOC:ADDR; NWORDS:RECLEN) ;EXTERNAL;

RECV2(N:NODE; INDEX:IDX; LOC:ADDR; NWORDS:RECLEN) ;
EXTERNAL;

FUNCTION IO$MODE:INTEGER;EXTERNAL;
FUNCTION GBUSY :BOOLEAN; EXTERNAL;

Timing

FUNCTION XTIME:LONGINT;EXTERNAL;

PROCEDURE XTIME1(VAR HMS:PACKED ARRAY [l..?] OF

PROCEDURE DLY(T:INTEGER) ;EXTERNAL;
PROCEDURE TSTART(T:POSINT) ;EXTERNAL;

PROCEDURE

TSTOP ; EXTERNAL;

FUNCTION TREAD:LONGINT;EXTERNAL;

PROCEDURE TREADI (VAR HMS:PACKED ARRAY [l..?] OF CHAR) ;EXTERNAL;

Processor Identification

FUNCTION PSELF :NODE;EXTERNAL;
FUNCTION LSELF:NODE;EXTERNAL;

CHAR) ;EXTERNAL;

149

1. Report No. . 2. Government Accession No. 3. Recipient’s Catalog No.

NASA CR-172281

4. Title and Subtitle

PASLIB Programmer's Guide for the Finite Element Machine

Revision 2.1-A

. Report Date

5
April 1984

6. Performing Organization Code

7. Author(s)
Thomas W. Crockett

8. Performing Organization Report No.

10. Work Unit No.

9. Performing Organization Name and Address
Kentron International, Inc.
Aerospace Technologies Division
3221 N. Armistead Ave.

Hampton, VA 23666

11. Contract or Grant No.

NAS1-16000

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

Contractor Report

14. Sponsoring Agency Code

15, Supplementary Notes

Langley Technical Monitor: Olaf 0. Storaasli

16. Abstract

PASLIB is a library of Pascal-callable subro
programs access to the unique architectural
and to the software support services provide

utines designed to give application
features of the Finite Element Machine
d by the Nodal Exec operating system

which runs on it. This report documents each of the PASLIB subroutines, and describes
the procedures needed to write Pascal programs for execution on the Finite Element
Machine. It also discusses considerations for obtaining optimum hardware and

software performance, and gives a brief over

view of debugging and performance

analysis capabilities available to the programmer.

17. Key Words (Suggested by Author(s))

parallel processing
Finite Element Machine
computer software

18. Distribution Statement .

Unclassified - Unlimited

Subject Category 62

19. Security Classif. (of this report) 20. Security Classif. {of this page) 21. No. of Pages 22, Price

Unclassified Unclassified

156 A08

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

