NASA Contractor Report 172538

ICASE REPORT NO. 85-8

ICASE

THE EIGENVALUES OF THE PSEUDOSPECTRAL FOURIER APPROXIMATION TO THE OPERATOR $\sin (2 x) \frac{\partial}{\partial x}$

Hillel Tal-Ezer

Contract No. NASI-17070
February 1985

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

N/SN

National Aeronautics and Space Administration

WRNM REP品

APPROXIMATION TO THE OPERATOR $\sin (2 x) \frac{\partial}{\partial x}$

Hillel Tal-Ezer

School of Mathematical Sciences, Tel-Aviv University

Abstract

In this note we show that the eigenvalues Z_{i} of the pseudospectral Fourier approximation to the operator $\sin (2 x) \frac{\partial}{\partial x}$ satisfy $$
\mathrm{R}_{\mathrm{e}} \mathrm{Z}_{\mathrm{i}}= \pm \mathrm{l} \text { or } \mathrm{R}_{\mathrm{e}} \mathrm{z}_{\mathrm{i}}=0
$$

Whereas this does not prove stability for the Fourier method, applied to the hyperbolic equation

$$
U_{t}=\sin (2 x) U_{x} \quad-\pi<x<\pi ;
$$

it indicates that the growth in time of the numerical solution is essentially the same as that of the solution to the differential equation.

To be submitted for publication in Mathematics of Computation.

Research was supported in part by the National Aeronautics and Space Administration under NASA Contract No. NAS1-17070 while the author was in residence at the Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665.

1. Introduction

Let us consider the problem

$$
\begin{gather*}
U_{t}-G U=0 \quad 0 \leqslant x \leqslant 2 \pi \\
U(x, 0)=U^{0}(x) \tag{1.1}
\end{gather*}
$$

where

$$
\begin{equation*}
G=a(x) \frac{\partial}{\partial x} . \tag{1.2}
\end{equation*}
$$

In the Fourier pseudospectral (collocation) method, we seek a trigonometric polynomial of degree N, U_{N}, that satisfies

$$
\begin{align*}
& \left(U_{N}\right)_{t}-G_{N} U_{N}=0 \\
& U_{N}(x, 0)=U_{N}^{0}(x) \tag{1.3}
\end{align*}
$$

where

$$
G_{N}=P_{N} G ;
$$

${ }^{\mathrm{P}} \mathrm{N}$ is the pseudospectral projection operator [5]. It is known [2] that when $a(x)$ does not change sign in the interval, the semidiscrete solution of (1.3) is stable. When $a(x)$ changes sign in the interval, the situation is much more complicated. Gottlieb, Orszag and Turkel [1] have proved stability for the case where $a(x)$ is of the form

$$
\begin{equation*}
a(x)=\alpha \sin (x)+\beta \cos (x)+\gamma . \tag{1.4}
\end{equation*}
$$

In [4], Tadmor argues that this stability proof results from the special form of $a(x)$ in (1.4) and cannot be extended. In the next section we prove a theorem related to the problem of stability of (1.1) where $a(x)$ is a second degree trigonometric polynomial.

2. The Theorem and Its Proof

Theorem: Considering (1.1), (1.2), where $a(x)=\sin (2 x)$, then the eigenvalues λ_{i}^{N} of G_{N} satisfy

$$
\begin{equation*}
R_{e} \lambda_{i}^{N}=-1 \quad \text { or } \quad R_{e} \lambda_{i}^{N}=0 \quad \text { or } \quad R_{e} \lambda_{i}^{N}=1 \tag{2.1}
\end{equation*}
$$

Proof:

The projected subspace V_{N} that results from using the operator P_{N} is spanned by the following 2 N basis functions

$$
\begin{equation*}
\left.V_{N}=S_{p}\{1, \cos (x), \ldots, \cos (N x), \sin (x), \ldots, \sin (N-1) x)\right\} .(N \text { even }) \tag{2.2}
\end{equation*}
$$

Define the following four subspaces of V_{N}

$$
\begin{align*}
& W_{1}=S_{p}\{\cos (x), \cos (3 x), \ldots, \cos ((N-1) x)\} \\
& W_{2}=S_{p}\{\sin (x), \sin (3 x), \ldots, \sin ((N-1) x)\} \tag{2.3}\\
& W_{3}=S_{p}\{\sin (2 x, \sin (4 x), \ldots, \sin ((N-2) x)\} \\
& W_{4}=S_{p}\{1, \cos (2 x), \ldots, \cos (N x)\} .
\end{align*}
$$

It is easily verified that

$$
\begin{equation*}
v_{N}=w_{1} \oplus w_{2} \oplus w_{3} \oplus w_{4} \tag{2.4}
\end{equation*}
$$

and each W_{i} is invariant of G_{N}; therefore we can discuss separately the four matrices which represent G_{N} in each one of the subspaces W_{i}.

Define now

$$
\begin{equation*}
B_{i}^{M}=\left[G_{N}\right]_{w_{i}} \quad 1 \leqslant i \leqslant 4 \quad\left(M=\frac{N}{2}\right) ; \tag{2.5}
\end{equation*}
$$

then by using elementary trigonometric relations we get that B_{i}^{M} are tridiagonal matrices whose elements are:

$$
\mathrm{B}_{3}^{\mathrm{M}}=\frac{1}{2}\left(\begin{array}{cccccc}
0 & -4 & & & & \\
2 & 0 & -6 & & & \\
& 4 & \cdot & \cdot & & \\
& & \cdot & \cdot & -\mathrm{N}+4 & \\
& & & \cdot & 0 & -\mathrm{N}+2 \\
& & & & \mathrm{~N}-4 & 0
\end{array}\right)\left(\frac{\mathrm{N}}{2}-1\right) \times\left(\frac{\mathrm{N}}{2}-1\right)
$$

$$
\mathrm{B}_{4}^{\mathrm{M}}=\frac{1}{2}\left(\begin{array}{cccccc}
0 & -2 & & & & \\
0 & 0 & -4 & & & \\
& 2 & \cdot & \cdot & & \\
& & \cdot & \cdot & -\mathrm{N}+2 & \\
& & & \cdot & 0 & 0 \\
& & & & \mathrm{~N}-2 & 0
\end{array}\right)\left(\frac{\mathrm{N}}{2}+1\right)\left(\frac{\mathrm{N}}{2}+1\right) ;
$$

$$
\begin{aligned}
& B_{1}^{M}=\frac{1}{2}\left(\begin{array}{cccccc}
-1 & -3 & & & & \\
1 & 0 & -5 & & & \\
& 3 & \cdot & \cdot & & \\
& & \cdot & \cdot & -N+3 & \\
& & & \cdot & 0 & -N+1 \\
& & & & N-3 & N-1
\end{array}\right)^{\frac{N}{2} \times \frac{N}{2}} \\
& B_{2}^{M}=\frac{1}{2}\left(\begin{array}{cccccc}
1 & -3 & & & & \\
1 & 0 & -5 & & & \\
& 3 & \cdot & \cdot & & \\
& & \cdot & \cdot & -N+3 & \\
& & & \cdot & 0 & -N+1 \\
& & & & N-3 & -N+1
\end{array}\right)_{\frac{N}{2} \times \frac{N}{2}}
\end{aligned}
$$

-5-
let A by any tridiagonal matrix:

$$
A=\left(\begin{array}{cccccc}
a_{1} & c_{1} & & & & \tag{2.6}\\
b_{2} & a_{2} & c_{2} & & & \\
& \cdot & \cdot & \cdot & & \\
& & \cdot & \cdot & \cdot & \\
& & & b_{n-1} & a_{n-1} & c_{n-1} \\
& & & & b_{n} & a_{n}
\end{array}\right)
$$

and let A_{k} by the submatrix

$$
A_{k}=\left(\begin{array}{cccccc}
a_{1} & c_{1} & & & & \tag{2.7}\\
b_{2} & a_{2} & c_{2} & & & \\
& \cdot & \cdot & \cdot & & \\
& & \cdot & \cdot & \cdot & \\
& & & b_{k-1} & a_{k-1} & c_{k-1} \\
& & & & b_{k} & a_{k}
\end{array}\right) \cdot
$$

Upon defining

$$
\begin{equation*}
q_{k}(A)=\operatorname{det} A_{k} \tag{2,8}
\end{equation*}
$$

it is easily verified that

$$
\begin{equation*}
q_{k+1}(A)=a_{k+1} q_{k}(A)-b_{k+1} c_{k} q_{k-1}(A) \tag{2.9}
\end{equation*}
$$

and

$$
q_{n}(A)=\operatorname{det} A .
$$

In the following we treat each one of the matrices $B_{i}^{M}, i=1,2,3,4$ separately.

Lemma 1: The matrix B_{1}^{M} has one zero eigenvalue, and all its other eigenvalues λ_{i} satisfy $R_{e} \lambda_{i}=1$.

Proof: For any M define

$$
C_{M}=2 B_{1}^{M}-\lambda I .
$$

The characteristic polynomial of $2 \mathrm{~B}_{1}^{\mathrm{M}}$ is given by

$$
\begin{equation*}
Q_{M}(\lambda)=\operatorname{det} C_{M} \tag{2.10}
\end{equation*}
$$

and using (2.8)

$$
Q_{M}(\lambda)=q_{M}\left(C_{N}\right) .
$$

We define now the following family of polynomials (in the variable λ)

$$
\begin{align*}
& P_{0}=1 \quad P_{1}=-(\lambda+1) \\
& P_{k+1}=-\lambda P_{k}+\left(4 k^{2}-1\right) P_{k-1} \quad 1 \leqslant k<\infty . \tag{2.11}
\end{align*}
$$

Note that from (2.9) and the structure of C_{M}

$$
\begin{equation*}
P_{k}=q_{k}\left(C_{M}\right) \quad 2 \leqslant k<M ; \tag{2.12}
\end{equation*}
$$

however (2.12) is not true for $k=M$; rather we have

$$
\begin{equation*}
Q_{M}(\lambda)=(2 M-1-\lambda) P_{M-1}+\left(4(M-1)^{2}-1\right) P_{M-2} \quad 2<M . \tag{2.13}
\end{equation*}
$$

From (2.11) we get

$$
\begin{equation*}
Q_{M}(\lambda)=(2 M-1) P_{M-1}+P_{M} \quad 2<M \tag{2.14}
\end{equation*}
$$

Using (2.14) and (2.13) results in

$$
\begin{equation*}
Q_{M+1}(\lambda)=-\lambda P_{M}+(2 M+1) Q_{M} \quad 2<M \tag{2.15}
\end{equation*}
$$

Finally we solve (2.15) for P_{M} in terms of $Q_{M}(\lambda), Q_{M+1}(\lambda)$ and substitute the result in (2.14). We thus get the polynomials $Q_{M}(\lambda), M \geqslant 2$ that satisfy the following recursion formula

$$
\begin{align*}
& Q_{2}(\lambda)=\lambda(\lambda-2) ; Q_{3}(\lambda)=-\lambda\left(\lambda^{2}-4 \lambda+13\right) \\
& Q_{M+1}(\lambda)=(2-\lambda) Q_{M}(\lambda)+(2 M-1)^{2} Q_{M-1}(\lambda) \tag{2.16}
\end{align*}
$$

It is easy to verify now that $\lambda=0$ is an eigenvalue of $2 B_{1}^{M}$. In fact $\lambda=0$ is a root of $Q_{2}(\lambda)$ and $Q_{3}(\lambda)$ and therefore of any $Q_{M}(\lambda)$. We define now

$$
\begin{equation*}
x=i(2-\lambda) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{M}(x)=\frac{1}{\lambda} Q_{M}(\lambda) \cdot(i)^{M-1} \tag{b}
\end{equation*}
$$

to get

$$
R_{2}=-x ; R_{3}=x^{2}-9
$$

and

$$
\begin{equation*}
R_{M+1}=x R_{M}-(2 M-1)^{2} R_{M-1} \quad M \geqslant 3 \tag{2.18}
\end{equation*}
$$

The relation (2.18) defines $R_{M}(x)$ as a family of orthogonal polynomials on the real axis. Therefore, for every M the roots of $R_{M}(x)$ are real, which implies by (2.17)(a) that $2-\lambda$ are imaginary. Therefore, the eigenvalues of the matrices $2 B_{1}^{M}$ for any M have real part equal to 2 . This completes the proof of Lemma 1.

Lemma 2: For any M the matrix B_{2}^{M} has one zero eigenvalue and the real part of the others is -1 .

Proof: The proof is an immediate result of the fact that in view of (2.9)

$$
q_{k}\left(-B_{2}^{M}-\lambda I\right)
$$

satisfy the same recurrence formula as $q_{k}\left(B_{l}^{M}-\lambda I\right)$.
Lemma 3: The eigenvalues of B_{3}^{M} are purely imaginary.

Proof: Define the matrix

$$
D=\left(\begin{array}{ccc}
1 / \sqrt{2} & & \\
& 1 / \sqrt{4} & \\
& & \\
& & \\
& & \\
& & 1 / \sqrt{N-2}
\end{array}\right)
$$

Then it is clear that

$$
D^{-1} B_{3}^{M} D
$$

is a skew symmetric matrix, and therefore its eigenvalues are purely imaginary. The same is of course true for B_{3}^{M}.

Lemma 4: The eigenvalues of B_{4}^{M} are purely imaginary.

Proof: From the definition of B_{3}^{M} and B_{4}^{M} it follows that if P_{k} is characteristic polynomial of $\left(B_{3}^{M}\right)_{k \times k}$ then $\lambda^{2} \mathrm{P}_{k}$ is the characteristic polynomial of $\left(B_{4}^{M}\right)(k+2) \times(k+2)$. Thus the eigenvalues of B_{4}^{M} are purely imaginary.

The proof of Lemma 4 concludes the proof of the theorem.

References

[1] D. Gottlieb, S. Orszag, E. Turke1, Stability of pseudospectral and finite difference methods for variable coefficient problems, Math. Comp., Vol. 37, No. 156, (1981), pp. 293-305.
[2] D. Gottlieb, S. Orszag, Numerical Analysis of Spectral Methods; Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM Publisher, Philadelphia, PA 1977.
[3] E. Issacson, H.B. Keller, Analysis of Numerical Methods, John Wiley and Sons, Inc., New York. (1966).
[4] E. Tadmor, Finite-difference, spectral and Galerkin methods for time-dependent problems, ICASE Report No. 83-22, NASA CR-172149, 1983.
[5] R.G. Voigt, D. Gottlieb, M.Y. Hussaini, Spectral Methods for Partial Differential Equations, Proceedings of a Symposium. August 16-18, 1983, SIAM, Philadelphia, PA, 1984.

For sale by the National Technical Inlormation Service, Springlield. Vuginia 22161

