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THE EIGENVALUES OF THE PSEUDOSPECTRAL FOURIER

APPROXIMATION TO THE OPERATOR sin(2x) %;

Hillel Tal-Ezer

School of Mathematical Sciences, Tel-Aviv University

Abstract

In this note we show that the eigenvalues Z; of the pseudospectral

Fourier approximation to the operator sin(2x) %; satisfy

ReZi=:t1 or ReZi=0.

Whereas this does not prove stability for the Fourier method, applied to the
hyperbolic equation

Ut = 31n(2x)Ux -m< x <7

it indicates that the growth in time of the numerical solution is essentially

the same as that of the solution to the differential equation,
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1. Introduction

Let us consider the problem

U -GU =20 0 ¢ x g 2n
U(x,0) = U°(x) (1.1)
where

G = a(x)%;-. (1.2)

In the Fourier pseudospectral (collocation) method,we seek a trigonometric

polynomial of degree N , UN,that satisfies

(UN)t - GNUN =0
0
UN(x,O) = UN(x) (1.3)
where
GN = PNG;

PN is the pseudospectral projection operator [5]. It is known [2] that
when a(x) does not change sign in the interval, the semidiscrete solution
of (1.3) is stable. When a(x) changes sign in the interval, the
situation is much more complicated. Gottlieb, Orszag and Turkel [1] have

proved stability for the case where a(x) 1is of the form

a(x) = o sin(x) + B cos(x) + vy . (1.4)

In [4], Tadmor argues that this stability proof results from the special
form of a(x) in (1.4) and cannot be extended. In the next section we
prove a theorem related to the problem of stability of (1.1) where a(x)

is a second degree trigonometric polynomial.
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2. The Theorem and Its Proof

Theorem: Considering (1.1),

values A? of GN satisfy

R AN = -1 or
e i

Proof:

The projected subspace

is spanned by the following

(1.2), where a(x) = sin(2x), then the eigen-

RA =0 or RAN=1, (2.1)
€ e 1

VN that results from using the operator P

2N basis functions

N

VN = Sp{l,cos(x),...,cos(Nx), sin(x),...,sin(N-1)x)}, (N even) (2.2)

Define the following four subspaces of V

=
1]

=
I}

=
n

=
I

It is easily verified that

N

Sp{cos(x), cos(3x),...,cos((N-1)x)}
Sp{sin(x), sin(3x),...,sin((N-1)x)} (2.3)
Sp{sin(2x, sin(4x),...,sin((N-2)x)}

Sp{l,cos(Zx),...,cos(Nx)}.

V, =W, 6 W, B W, 8 W (2.4)

N 1

and each wi is invariant of G

2 3 4

N’ therefore we can discuss separately

the four matrices which represent GN in each one of the subspaces Wi.



Define now

BY = [G

. N
N N, 1sicgc4 M = 3); (2.5)
1

. . . . M
then by using elementary trigonometric relations we get that Bi are

tridiagonal matrices whose elements are:

-1 -3
1 0 -5
3 .
M _ 1 .
Bl = '2— -N+3 >
. 0 -N+1
N-3 N-1/ N N
2 2
1 -3
1 0 -5
3 .
M 1 .
B2 =3 + +» =N+3 ;
- 0 -N+1
N-3 -N+1/ N N
2 2
0 -4
2 0 -6
4 o+
M 1 .
B3 = '2— . + -N+4 N
- 0 -N+2
N-4 0 N N
(5 ") " (5 '1>
0 -2
0 0 -4
2 - L]
M _ 1 . .- ;
B4 =3 N+2
. 0 0
SR DD



let A by any tridiagonal matrix:

Upon defining

qk(A) = det Ak

it is easily verified that

Uty )

= 81 %

k-1

k+l k Tk-1

(4)

(2.6)

2.7

(2,8)

(2.9)



and
qn(A) = det A.

In the following we treat each one of the matrices B?, i=1,2,3,4

separately.

Lemma 1: The matrix B? has one zero eigenvalue, and all its other

eigenvalues X. satisfy R A, = 1.
i e'i

Proof: For any M define

Gy = ZBT - L.

The characteristic polynomial of 28? is given by

Q (a) = det C, (2.10)

and using (2.8)
Qe(2) = ay(Gy)-

We define now the following family of polvnomials (in the variable 1)

PO =1 P] =-(x+1)

(2.11)
Py = - P+ (ax? -1y p

l sk <>,

k-1

Note that from (2.9) and the structure of CM

Po=q(G) 2sk<M; (2.12)
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however (2.12) is not true for k = M; rather we have

Q) = (M -1 -2 P+ @M-DE-1) Py_s 2<M.  (2.13)

From (2.11) we get

QqA) = (M- 1) By | + P 2 < M. (2.14)

Using (2.14) and (2.13) results in
QM+1(A) =~ A PM + (M+1) QM 2 < M. (2.15)

Finally we solve (2.15) for PM in terms of QM(A), QM+1(A) and
substitute the result in (2.14). We thus get the polynomials QM(X), M=> 2

that satisfy the following recursion formula

Q) =A(-2) ; Q) = - A0 %-4x + 13)
(2.16)
2
Quep ) = (2-2) Q) + (M-1)7 Q, ; () 3<M.,
1

It is easy to verify now that X = 0 is an eigenvalue of ZBf. In fact
A =0 1is a root of QZ(A) and QS(A) and therefore of any QM(A). We
define now

x=1(2 - ) (a) (2.17)
and

1 . M-1

Ry(X) = & Q) » (i) (b)

to get
_ _ .2

R2 = - X ; R3 =x -9

and

RM+1 = X RM - (2M-1)2 RM_1 M3 3. (2.18)



The relation (2.18) defines RM(x) as a family of orthogonal polynomials
on the real axis. Therefore, for every M the roots of RM(x) are real,
which implies by (2.17)(a) that 2 - X are imaginary. Therefore, the
eigenvalues of the matrices 28? for any M have real part equal to 2.

This completes the proof of Lemma 1.

Lemma 2: For any M the matrix Bg has one zero eigenvalue and the real

part of the others is -1.
Proof: The proof is an immediate result of the fact that in view of (2.9)
M
. M
satisfy the same recurrence formula as qk(B1 - AI).

Lemma 3: The eigenvalues of BM

3 are purely imaginary.

Proof: Define the matrix

1/V/2
1//4
D = . .
1/W-2
Then it is clear that
-1 Ai
D B3 D

is a skew symmetric matrix, and therefore its eigenvalues are purely

. M
imaginary. The same is of course true for BS'

Lemma 4: The eigenvalues of B% are purely imaginary.



Proof: From the definition of B? and Bf it follows that if Pk is

characteristic polynomial of (BI;«)kxk then AZPk is the characteristic
. M . M
polynomial of (B4)(k+2)X(k+2)' Thus the eigenvalues of B4 are purely

imaginary.

The proof of Lemma 4 concludes the proof of the theorem.
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