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Hillel Tal-Ezer

School of Mathematical Sciences, Tel-Aviv University

Abstract

In this note we show that the eigenvalues Zi of the pseudospeetral

Fourier approximation to the operator sin(2x) -_ satisfy

Re Zi = ± 1 or Re Zi = O.

Whereas this does not prove stability for the Fourier method, applied to the

hyperbolic equation

Ut = sin(2x)U x - _ < x < _;

it indicates that the growth in time of the numerical solution is essentially

the same as that of the solution to the differential equation.

To be submittedfor publicationin Mathematicsof Computation.
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I. Introduction

Let us consider the problem

Ut - GU = 0 0 .<x .<27

U(x,O) = U°(x) (1.1)

where

G = a(x)_-_ . (1.2)

In the Fourier pseudospectral (collocation) method,we seek a trigonometric

polynomial of degree N , UN_that satisfies

(UN)t - GNUN = 0

o

UN(X,O) = UN(X) (1.3)

where

GN = PNG;

PN is the pseudospectral projection operator [5]. It is known [2] that

when a(x) does not change sign in the interval, the semidiscrete solution

of (1.3) is stable. When a(x) changes sign in the interval, the

situation is much more complicated. Gottlieb, Orszag and Turkel [I] have

proved stability for the case where a(x) is of the form

a(x) = _ sin(x) + B COS(X) + y. (1.4)

In [4], Tadmor argues that this stability proof results from the special

form of a(x) in (1.4) and cannot be extended. In the next section we

prove a theorem related to the problem of stability of (I.I) where a(x)

is a second degree trigonometric polynomial.
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2. The Theorem and Its Proof

Theorem: Considering (i.i), (1.2), where a(x) = sin(2x), then the eigen-

values _Nx of GN satisfy

Proof:

The projected subspace VN that results from using the operator PN

is spanned by the following 2N basis functions

VN = Sp{l,cos(x).....cos(Nx), sin(x),...,sin(N-l)x)}. (N even) (2.2)

Define the following four subspaces of VN

W1 = Sp{COS(X), cos(3x),...,cos((N-I)x)}

W2 = Sp{sin(x), sin(3x),...,sin((N-l)x)} (2.3)

W3 = S {sin(2x, sin(4x),...,sin((N-2)x)}P

W4 = S {l,cos(2x),...,cos(Nx)}.P

It is easily verified that

VN = W1 @ W2 @ W3 @ W4 (2.4)

and each W. is invariant of GN; therefore we can discuss separately1

the four matrices which represent GN in each one of the subspaces Wi.
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Define now

BM = [GN]w. I $ i $ 4 (M = _); (2.5)I
1

then by using elementary trigonometric relations we get that BM are

tridiagonal matrices whose elements are:

-I -3 \
1 0 -S

3 " "

M 1 • • -N+3 "
B1 = _

• 0 -N+I

N-3 ×N_
2 2

/ 1-3 ii

1 0 -5

3 • "

M 1 • • -N+3 "
B2 = _

o 0 -N+

N-3-N+I/N__× N_-
2 2

/ 0 -4 21

i 2 0 -

M 1
B3 = [ • • -N+4

0 -N+

N-4 0 /(N-i) × (N-I)

0 -2 1

0 0 -4

2 " "

M 1
B4 = _ • • -N+2 '

0 0
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let A by any tridiagonal matrix:

aI cI

b2 a2 c2

A = (2.6)

bn_ I an_ I Cn_ I

b a
n n

and let _ by the submatrix

aI c1

b2 a2 c2

- (2.7)

bk_ I ak_ I Ok_ I

bk ak

Upon defining

qk(A) = det _ (2.8)

it is easily verified that

qk+l (A) = ak+l qk (A) - bk+l Ck qk-I (A) (2.9)
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and

qn(A) = det A.

M i = 1,2,3,4In the following we treat each one of the matrices Bi,

separately.

H
LemmaI: The matrix B1 has one zeroeigenvalue,and all itsother

• I.=1.
eigenvalues 11 satisfy Re i

Proof: For any M define

polynomial of 2BM is given by
The characteristic

QM(t) : det CM _2.10)

and using (2.8)

%_(I): %(%_).

We define now the following family of polynomials (in the variable I)

P0= l Pl= - (I+ i)
(2.11)

Pk+l = - lPk . (4k2 - l) Pk-i 1 .<k <

Note that from (2.9) and the structure of CM

Pk = qk(% ) 2 .< k < M; (2.12)
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however (2.12) is not true for k = M; rather we have

QM(X) = (2hi- 1 - _) PM-1 + (4(M-1)2 - 1) PM-2 2 < M . (2.15)

From (2.11) we get

O.M(X) = (2M - 1) PM-1 + PM 2 < M. (2.14)

Using (2.14) and (2.13) results in

QM+I(x) = - x PM+ (2,'4+1)O_ 2 < M. (2.is)

Finally we solve (2.15) for PM in terms of %1 (_)' QM+I (X) and

substitute the result in (2.14). We thus get the polynomials QM(1), M >.2

that satisfy the following recursion formula

Q2(t) = 1(X-2) ; Q3(1) = - t(t2-4t + 13)

(2.16)

O,M+I(1) = (2-t) QM(),) + (2M-l) 2 ON_l(1 ) 3 < M .

k_

It is easy to verify now that I = 0 is an eigenvalue of 2KI.
In fact

I = 0 is a root of Q2(1) and Q3(X) and therefore of any QM(1). We

define now

x = 1(2 - 1) (a) (2.17)

and

1 _(x) • (i) '`4-1P_(x) = 7 (b)
to get

R2 = - x ; R3 = x 2 _ 9

and

2
_+1 = :__ - (z'4-1) %t-1 M>.a. (2.18)
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The relation (2.18) defines RM(X) as a family of orthogonal polynomials

on the real axis. Therefore, for every M the roots of RM(X) are real,

which implies by (2.17)(a) that 2 X are imaginary. Therefore, the

of the matrices 2BM for any M have real part equal to 2.eigenvalues

This completes the proof of Lemma i.

Lemma 2: For any M the matrix BM has one zero eigenvalue and the real

part of the others is -I.

Proof: The proof is an immediate result of the fact that in view of (2.9)

qk(-BM - Xl)

satisfy the same recurrence formula as qk(BM - %1).

Lemma 3: The eigenvalues of BM are purely imaginary.

Proof: Define the matrix

l/d

Then it is clear that

D-l B_'_D

is a skew symmetric matrix, and therefore its eigenvalues are purely

M
imaginary. The same is of course true for B3.

Lemma 4: The eigenvalues of BM are purely imaginary.
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M M it followsthat if Pk isProof: From the definitionof B3 and B4

M 12Pkcharacteristicpolynomialof (B3)k×k then is the characteristic
o_M. M

polynomialof [B4)(k+2)×(k+2)"Thus the eigenvaluesof B4 are purely

imaginary.

The proof of Lemma 4 concludesthe proof of the theorem.
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