General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DPTRRMINATION OF THF MOBILITY PROFILE
 IN GaAs-MESFBTB
 W. Prost

Translation of "Bestimmung des Beweglichkeitsprofils in GaAsMESFETs." THESIS. Duisberg University, West Germany, June 1983, pp. 1-120.

16. Absllact

A process for measuring charge carrier mobility for gallium-arsenid metal semi-conductor-field effect transistors is described in an attempt to optimize the relationship between this factor and production. The physical basis for the process is outlined, as are features of the measuring room. The measuring technique is described and recommendations for setting measuring parameters are made.

1 Introduction 7
1.1 Motivation and Purpose 7
1.2 Magneto-transconductance-mobility-profiling 9
2 Physical basis 9
2.1 Mobility, transconductance 9
2.2 Physical basis of the measuring principle 12
2.2.1 Physical conductance reduction 14
2.2.2 Geometric conductance reduction 14
2.3 Application of physical phenomenon to the real structural elements 18
2.3.1 The GaAs-short channel-MESFET 18
2.3.2 The structural element as Hall-structure 19
2.3 .3 Influence of magnetic fields on conductance 21
2.4 Influence of idealization 22
2.4.1 Finite geometry 23
2.4.2 Parssitic resistance 24
2.4.3 Idealized structure and summary observation of physical and geometric mistakes 30
3 Measuring room 32
3.1 Measuring principle 32
3.2 Measuring instruments and voltage supply 35
3.2.1 Lock-in-amplifier 35
3.2.2 Kiethley-digital multimeter 38
3.2.3 Voltage supply 38
3.2 .4 Test circuit 39
3.3 Magnetic field-control loop 41
3.3.1 Magnetic field-control loop instruments 43
3.3 .2 Magnetic field control 44
3.4 Measuring room automation 49
4 Measuring technique 52
4.1 Observation of errors 52
4.1 .1 Sources of errors 52
4.1.2 Error sensitivity 53
4.1.3 Statistical procedures 57
4.1.3.1 Control of input data 58
4.1.3.2 Error compensation using "linear regression" 60
4.1 .4 Drift phenomena 61
4.2 Techntcal boundaries of the measuring process 63
4.3 Setting recommendations of measuring parameters 65
5. Results 68
5.1 Diffused MRSFETs 68
5.2 Bpitaxial MBSFETs 72
5.3 Hatero-MESFETs 75
6Conclusion76
Appendix: Program read-out 78
References 89
1.1.1 Optimum cycle of structural element production 7
l.l.2 Survey of procedures aimed at a locally resolved mobility profile 8
1.2.1 Schematic mobility profile 9
2.1.1 Output characteristic curve field of a MESFET 10
2.1.2 Output characteristic curve field in the starting range 11
2.2.1 Geometry of a Hall structure 13
2.2.2 Current and equipotential field curves of a semicon- ductor plate in magnetic field with the side rela- tion $L / W=2,4$ according to [2] 15
2.3.1 Schematic cross section of a MESFET 18
2.3.2 Tolerance of effective Hall structure 20
2.4.1 Geometric function for resistance increase of right- angled semiconductor plates 24
2.4 .2 Replacement switch representation characterizing the drain-source current 25
2.4.3 Simplified representation of replacement switch characterizing ids 25
2.4.4 Distribution of the error function f_{b} and its causes in the channel 29
2.4 .5 Experimental confirmation of the evaluation equation 31
3.1 .1 Flow diagram of the measuring cycle 33
3.1.2 Model of measuring device 34
3.1 .3 Technical realization of measuring device 35
3.2.1 Application range of the lock-in amplifier 36
3.2.2 Comparison of reference and entrance voltage of the lock-in amplifier 36
3.2 .3 Test circuit 39
3.2.4 Acceptable value range of the gate-source 40
3.2 .5 The test circuit in the block circuit of the measuring device 41
3.3.1 Block circuit for digital magnetic field regulation 43
3.3.2 Magnetic field regulating circuit 44
3.3.3 Transfer function of instrument group A 46
3.3.4 Time plan of the magnetic field regulation 48
3.4.1 Structure of computer controlled measuring program 49
3.4.2 Entire block circuit of measuring room 51
4.l.1 Adjustment specification for the magnetic field onthe basis of acceptable errors and average mobility56
4.1.2 Error offset by line approxiniation 57
4.1.3 Transient process of measuring value after changing the setting dimensions 58
4.1.4 Storage bank for $k=4$ 59
4.1.5 Uncorrected drifts in measuring device 62
4.1.6 Corrected drifts of the measuring device 63
4.3.1 Estimation value of mobility of different tests 66
4.3.2 Calculable transconductance range in dependency of $u_{g s}$ and S_{E} 67
5.1.1 III-49 Mobility profile 69
5.1.2 III-49 Line approximation 69
5.1.3 III-49 Tabulated mobility profile 70
5.1.4 III-78 Mobility profile 71
5.1.5 Data comparison for two diffused tests 71
5.2.1 I-208b Tabular mobility profile 73
5.2.2 I-208b Mobility profile 74
5.2.3 ALF 1003/l Mobility profile 74
5.3.1 Structure of a hetero-MESFET 75
5.3.2 D-6-9a Mobility profile 76

DETERMINATION OF THE MOBILITY PROFILE
 IN GaAs-MRSFRTs
 W. Proat

1.1 Motivation and Purpose

The Institute for Semiconductor Technology (HLT) at the University of Duisburg (West Germany) produces and investigates gallium-arsenide-metal-semiconductor-field effect-transistors (GaAs-MESFET). It is the goal of the Institute to optimize certain characteristics of the structural elements through directed influence on technology.

Technology
Physical Parameters

Characteristics of Structural Elements

Fig. 1.l.1: Optimum cycle of structural element production

The producer of the structural elements observes the influence of technology on the physical parameters and on the finished L2 product. A change in structural element production aimed at optimization of the desired relationship requires full awareness of all available data. The interdependence of these quantities is so great and varied that conscious optimization is unthinkable without awareness of the physical parameters.

The object of this thesis is to supply producers of structural elements with a measuring process which incorporates one of these physical parameters, namely charge carrier mobility, and its local dispersion in the channel (mobility profile).

[^0]It is already possible to determine charge carrier concentration, DC power characteristic curves, and microwave characteristics by means of measuring technology. The incorporation of the mobility profile, therefore, supplements the Institute's measuring technology.

Due to the reciprocal action of all date involved in the production process, it is advantageous to be able to measure the physical parameters on the structural element itself rather than on a special measuring structur (for example, Hall-Kreuz). Further, the measuring process shoi d be nondestructive, so that the structural element is available for further measurements and can be characterized in detail. Both of these criterialed to the selection of the measuring procedure.
$\angle 3$.

No. Methods	Locally resolved?	$\begin{aligned} & \text { Destruc- } \\ & \text { tion? } \end{aligned}$	Special Measure Structure?	Literature
1 Chemical	indirect	yes	yes	[7]
2 Long-channel	indirect	no	yes	[5]
3 van der Pauw (diff.)	indirect	no	yes	[6]
4 Magnetoresistance	indirect	no	no	[4]
5 Magnetotransconductance	direct	no	no	[1]

Table l.l.2: Survey of procedure aimed at a locally resolved mobility profile

We see from Table (1.1.2) that procedures 4 and 5 satisfy the aforementioned assumptions. The decided advantage of No. 5 lies in the fact that mobility $b\left(x_{0}\right)$ is measured in a very thin layer ($\delta=0,6-6 \mathrm{~nm}$) at x_{0}, while all of the other procedures determine $b\left(x_{0}\right)$ as integral mobility over the still open channel of x_{0} to $x=d_{0}$, the boundary of the semi-insulating material (SI).

For this reason, only procedure No. 5, MAGNETO-TRANSCONDUCTANCE-MOBILITY-PROFILING, is capable of definitely recognizing the extremely important boundary layer effects at the gate contact, as well as those on the boundary surface to the SI.

This concept identifies the measuring process which evaluates the change in transconductance in magnetic field in order to determine charge carrier mobility in the channel. This procedure does not determine charge carrier mobility as mean value over the entire density of the channel, but rather as a value on a defined position x_{0}.

x: Channel depth coordinates
$x=0$: Gate contact
$x=\mathrm{d}_{0}$: Boundary to SI

Fig. 1.2.1: Schematic mobility profile
The procedure is applicable to all normal MESFETs with a gate length in the range of $1 \mu m$ as used in microwave circuits.
$2 \quad$ Physical basis
2.1 Mobility, transconductance

If an external voltage U is applied to a semiconducting crystal, an electric field strength E occurs in the crystal and applies a force to the electrically charged particles.

$$
\begin{equation*}
\stackrel{\rightharpoonup}{F}=q \cdot \stackrel{\rightharpoonup}{E} \tag{2.1.1}
\end{equation*}
$$

If the charge carriers are not connected to the grid, this load leads to a movement of the charge carriers and also to a flow of current. Charge carriers do not move uniformly. They are disturbed in their movement by collisions with grid atoms and ionized atoms. By taking the mean, one arrives at the following relationship:

$$
\begin{equation*}
\vec{v}=\frac{q t}{m *} R \cdot \vec{B} \tag{2.1.2}
\end{equation*}
$$

$\stackrel{\rightharpoonup}{v}$; Drift speed
t_{R} : Relaxation tire
m* : Effective mass of the charge carrier
Drift speed is proportional to the electric field. The proportionality factor is called forge carrier mobility.

$$
\begin{equation*}
\frac{g t}{m *} R=b \tag{2.1.3}
\end{equation*}
$$

From equations (2.1.2) and (2.'1.3) it follows that:

$$
\begin{equation*}
\vec{v}=b \cdot \overrightarrow{\mathbf{B}} \tag{2,1,4}
\end{equation*}
$$

Ohmic law is applied to attain the relationship for the conductance of the crystal.

$$
\begin{align*}
\overrightarrow{\mathbf{g}} & =\mathbf{a} \cdot \overrightarrow{\mathbf{B}} \\
& =\mathbf{q} \cdot \mathbf{n} \cdot \overrightarrow{\mathbf{v}} \tag{2.1.5}\\
\mathbf{0} & =\mathbf{q} \cdot \mathbf{n} \cdot \mathbf{b}
\end{align*}
$$

(Ohmitélaw)
$\stackrel{\rightharpoonup}{g}: \quad$ Electric current density
n
$\sigma \quad$ Charge carrier concentration
σ

The relationship (2.1.2) is not valid for all high field strengths. Speed saturation occurs beginning at a defined field strength Ef.

$$
\begin{equation*}
\mathbf{v}=\mathbf{v}_{\mathbf{S a t}} \tag{2.1.6}
\end{equation*}
$$

For all field strengths $E)_{S}$ relationships (2.1.3) to (2.1.5) are no longer valid. This is of great importance in determining the measuring process, since it follows that charge carrier mobility can only be determined in the valid range of the ohmic law.

Fig. 2.1.1: Output characteristic curve field of a MBSFET

The measurements must, for this reason, always be carried out at working points ($U_{D S}, U_{G S}$), which guaruntee $E \ll E_{S}$.

The more uniform the crystal structure, the freater the mobility of the charge carrier in the crystal. Dislocations, discontinuities, and other grid disturbances impair the mobility of the charge carriers. Also the necessary doping of semiconductors is a disturbs the crystal grid and leads to a reduction of charge carrier mobility. For this reason a compromise has to be found between high current density resulting from high discontinuities and high mobility resulting from low discontinuity concentration.

The measuring procedure depends upon the transconductance of the magnetic field. For this reason, we shall now concentrate on the concept of transconductance.

$$
\begin{equation*}
S=\lim _{\Delta U_{G S} \rightarrow 0} \frac{\Delta I_{D S}}{\Delta U_{G S}} \tag{2.1.7}
\end{equation*}
$$

In the linear range of the characteristic curve field (saturation ranges no longer being connitered) transconductance increases linearly with UDS.

Fig. 2.1.2: Output characteristic curve field in the starting range

For each respective working point the transconductance characterizes the grid penetration factor contained in a change of the input quantity $U_{G S}$ upon the output quantity $I_{D S}$. The transconductance of a MESFET is determined by gate capscity and current depth. In the linear range a relationship between
transconductance and electric conductivity can be obtained with the help of equation (2.1.7) and the ohmic law.

$$
\begin{equation*}
S=\sigma \cdot \lim _{\Delta U_{G S} \rightarrow 0} \frac{\Delta(E \cdot A)}{\Delta U_{G S}} \tag{2.1.8}
\end{equation*}
$$

B : Field strength in the channel
A : Cross section of the channel opened through $U_{G S}$
Transconductance is proportional to in the linear range.
2.2

Physical basis of the measuring principle
As already mentioned in Chapter (l.2), the measuring principle essentially consists of measurement of the tansconductance
-- with magnetic field
-- without magnetic field
In order to better understand the gffects and the derivation of the algorithm, which, on the basis of these measurements, determines charge carrier mobility, we shall now investigate the influence of the magnetic field upon transconductance. Since equation (2.1.8) makes a proportionality between transconductance and electric conductivity evident, it suffices to describe the magnetic field dependency of σ.

In the electric and magnetic field a force F acts upon charge carriers in the crystal, which in practice is composed of an n doped material or electrons:

$$
\begin{equation*}
\vec{F}=-e \cdot(\vec{E}+\vec{v} * \vec{B}) \tag{2.2.1}
\end{equation*}
$$

e : Blectric elementary load
B : Magnetic flow density
Under the influence of this force, the charge carriers drift away from their course, which would run parallel to the electric field if it weren't for the magnetic field. On the one side of the conducting crystal a relative charge carrier deficiency occurs, while on the other side a relative charge carrier excess comes into being. A potential difference occurs between the two sides, the "Hall-potential" U_{H}.

Fig. 2.2.1: Geometry of Hall structure

The field strength E_{y} increases until it has compensated the Lorentz portion $\vec{v} \cdot \vec{B}$. Statically, no force acts upon the charge carrier t direction \vec{e}_{y}. They cross the semiconductor along the field in ve of E_{x}, that is the shortest course. Along the oarremp depth has changed in opposition to the situation $B=0$. It increases in direction $-\underset{\mathbf{e}}{\mathbf{y}}$. No change in electric conductivity is to be expected. A reduction of conductance first occurs when the transient phenomenon is disturbed between Lorentz portion $\vec{V} \times \vec{B}$ and B_{y} and the charge carrier no longer crosses the crystal by the shortest course. There are two causes for this:
-- the physical resistance effect $P\left(n, p, b_{n}, b_{p}\right)$
-- the geometric resistance effect $G_{R}(L / W, \Theta H)$

$$
\begin{equation*}
\Theta_{H} \nless(\vec{E}, \vec{g}) \tag{2.2.2a}
\end{equation*}
$$

B : Resulting field strength in the crystal
p : Concentration of positive charge carriers
With these assumptions a statement of electric conductivity is defined as a function of magnetic field dependency :

$$
\begin{equation*}
\sigma(B)=\frac{\sigma(0)}{G_{R}\left(L / W, \Theta_{H}\right) \cdot P\left(n, p, p, b_{n}, b_{p}\right)} \tag{2.2.2b}
\end{equation*}
$$

2.2.1 Physical conductance reduction

In the case of a two unit conductor, n and p are equal or of equal magnitude and a compensation of the Hall field strength occurs. Positive as well es negative charge carriers are displaced in the same direction by the force $q \cdot v * \vec{B}$, so that on the sides charge carriers are simultaneously charged positively and/or negatively. Compensation occurs and the Hall field strength decreases. Since, however, the Lorentz force continues without decrease in strength to act upon the charge carriers the current lines become crooked. The path through the crystal becomes longer and electric conductivity decreases. $\angle 11$

Aside from the concentrations n and p, the effect is atill dependent upon the charge carrier mobility (p. [2]). For $n \gg p$, not enough p-charge carriers are available to cause a noticeable compensation. For doped semiconducter material it is, therefore, valid, that:

$$
\begin{equation*}
P(n \gg p)=1 \tag{2.2.3}
\end{equation*}
$$

Accordingly, the physical resistance effect cannot be responsible for the decrease in transconductance of highly doped MESFETs in a magnetic field.
2.2.2 Geometric conductance reduction

Every real Hall structure has finite dimensions, which are defined here by
$\mathrm{L}: \quad$ Length in direction of control current
$\mathrm{W}:$ Length in direction of the Hall potential which is
formed
(see Fig. \&. 2.l). Along W the Hall structure is metallically contacted, to facilitate better control current feed. Near this metallic contact:

$$
\mathrm{E}_{\mathbf{y}}=0
$$

On ideally conductive materials, field curves of the electric field strength will always be perpendicular. This means, however, that no Hall field strength can develop there and that the current lines are therefore crooked.

Fig. 2.2.2: Current and equipotential field curves of a semiconductor plate in magnetic field with ratio $L / W=2.4$ according to $/ 2 /$.

Figure (2.2.2) clarifies how the Hell field strenght disappears and causes the current curves to become crooked at the contacts. In the middle of the fall structure the Hall field strength is completely developed and the current curves run parallel to the applied electric field E_{x}.

In the case $L / W \rightarrow \infty$, the ranges with crooked current curves are relatively minimal and the effect can be ignored.

$$
\begin{equation*}
G_{R}(L / W \rightarrow \infty)=1 \tag{2.2.4a}
\end{equation*}
$$

Actually in an actual short channel-MESFBT the relationship is approximately:

$$
L / W=0.0023
$$

For this reason we must consider the boundary case $L / W=0$ more closely. In this case the transient phenomenon is completely destroyed and therefore

$$
G_{R}(L / W \rightarrow 0)=G_{R} \max
$$

The mathematics for the description of this process are quite involved. Here it will have to suffice to quote statements and results ([2]p. 74ff).

Generally, Maxwell equations with a problem set up according to Figure (2.2.2) are applied for universal L / W. Kuhrt and Lippmann find a solution through conforming illustrations:

$$
\begin{equation*}
G_{R}\left(\frac{L}{W}, \theta_{H}\right)=\frac{W}{L} \cdot \frac{1}{\cos \theta_{H}} \cdot \frac{Z_{R}}{N} \tag{2.2.5a}
\end{equation*}
$$

Z_{R} and N are integral expressions in accordance with:

$$
\begin{equation*}
Z_{R}=\int_{0}^{\infty} \frac{\cosh \left(\frac{\theta_{n}}{\pi} \cdot v\right)}{\sqrt{\frac{4 k}{(1+k)^{2}}+\sinh ^{2} v}} d v \tag{2.2.5b}
\end{equation*}
$$

$$
\begin{align*}
& V=\int_{0}^{\infty} \frac{\cosh \left(2 \frac{\theta_{n}}{\pi} \cdot v\right)}{\sqrt{\left(\frac{1-k}{1+k}\right)^{2}+\sinh ^{2} v}} d v \tag{2.2.5c}\\
& -/ W=\frac{K\left(\sqrt{1-k^{2}}\right)}{2 \cdot K(k)} \tag{2.2.5d}
\end{align*}
$$

$K(\mu)$ is the "complete elliptic integral". Bquation (2.2.5) describes the geometric function G_{R} for universal L / W. For the application, however, we must consider the boundary case $G_{R}(L / W=$ 0).

The boundary value formation $L / W \rightarrow 0$ on the equation (2.2.5) applies the following geometric function in a simplified form:

$$
\begin{equation*}
G_{R}\left(L / W \quad 0, \Theta_{H}\right)=1+\tan ^{2} \Theta_{H} \tag{2,2,6}
\end{equation*}
$$

As the form of the equation (2.2.5) already auggests, the boundary value formation is not elementary, but rather requires complex calculations. Here, too, one should refer to literature /2/.

The equation (2.2.6), however, is a fairly manageable mathematical intermediate result. The variable Θ fis nonetheless a disturbing factor. It still has to be replaced. For this purpose one uses the relation:

$$
\begin{equation*}
\tan H=\sigma(B) \cdot R_{H}(B) \cdot B \tag{2.2.7}
\end{equation*}
$$

This relationship is known from the theory of the Hall generators. For strongly doped semiconductor material in the exhausted range $R_{H}(B)$ becomes:

$$
\begin{equation*}
R_{H}=-\frac{1}{e} \cdot \frac{N_{D}}{} \tag{2.2.8}
\end{equation*}
$$

N_{D} : Doping level
Kuhrt and Lippmann report, that this is valid for magnetic flow densities up to 18 tesla ([2], p. 71). In equation (2.2.7) the physical conductance reduction is indicated with $\sigma=\sigma(B)$, which has already been excluded for highly doped materials in Chapter (2.2.1). With the universal definition equation of the conductivity for n-conducting material

$$
\begin{equation*}
\sigma=-\mathbf{e} \cdot \mathbf{b} \cdot N_{D} \tag{2.2.9}
\end{equation*}
$$

and equation (2.2.8) equation (2.2.7) becomes:

$$
\begin{equation*}
\tan \Theta H=b \cdot B \tag{2.2.10}
\end{equation*}
$$

The mobility of the charge carriers can be calculated using equations (2.2.8) and (2.2.9).

$$
\begin{equation*}
\mathbf{b}=\mathbf{R}_{\mathrm{H}} \cdot \mathbf{\sigma} \tag{2.2.11}
\end{equation*}
$$

It is particularly important here that the Hall constant R_{H} and electric conductivity are not functions of magnstic flow density. It follows that:

$$
\begin{equation*}
b \neq f(B) \tag{2.2.12}
\end{equation*}
$$

Equation (2.2.10) inserted into equation (2.2.6) results in:

$$
\begin{align*}
& G_{R}(L / W \rightarrow 0)=1+b^{2} \cdot B^{2} \\
& \sigma(B)=\frac{\sigma(0)}{1+b^{2} \cdot B^{2}} \tag{2.2.14}
\end{align*}
$$

With respect to b, equation (2.2.14) can be solved thusly:

$$
\begin{equation*}
b=\frac{1}{B} \sqrt{\frac{\sigma(0)}{\sigma(B)}-1} \tag{2.2.15}
\end{equation*}
$$

Since b is not a function of magnetic flow density, equation (2.2.15) can be considered a physically viable possibility for determining charge carrier mobility. Prerequisite to this application is the preservation of all idealizations which were made in attaining equation (2.2.15):

1. $n \gg p$
2. $L / W \rightarrow 0$
3. The field curves of the electric field strength are perpendicular to the contacts.

$$
E_{y}=0
$$

4. To solve the integral expression (2.2.5) a Taylor series $\angle 16$ development of the course of an electron was used. Between two collisions with the grid the electron's course in the magnetic field describes a cycloid [2]. The following simplifications are therefore valid, if only a small part of the cycloid is traversed, so that the approximation using Taylor series developments is sufficiently precise. In the literature the following boundaries are cited:
```
b b B < l[4]
b • B<< l
2.3.1 GaAs-short channel-MESFET

Let us now consider a schematic drawing of the function and the geometry of the structural element.


Fig. 2.3.1: Schematic cross section of a MESFET
\((R)=\) space charge zone
(SI) = semi-insulation material

Typical gemetric data are:
\[
\begin{array}{ll}
\text { Gate length } & \mathrm{L}=0.7 \mu \mathrm{~m} \\
\text { Gate width } & W=300 \mu \mathrm{~m} \\
\text { Gate-source distance } & \mathrm{l}_{\mathrm{GS}}=2.5 \mu \mathrm{~m} \\
\text { Gate-drain distance } & l_{G D}=2.5 \mu \mathrm{~m} \\
\text { Total channel density } & \mathrm{d}_{0}=60 \text { to } 300 \mathrm{~nm} \\
\text { Passage area height } & \mathrm{h}=200 \text { to } 400 \mathrm{~nm}
\end{array}
\]

Source (S) and drain (D) are block-free ohmic contacts.gate electrode. To this end voltage \(U_{G S}\) is applied between the
gate and the source. This voltage determines the density of the space charge zone under the gate and with it the density of the open channel. It can vary between:
\[
U_{T} \leq U_{G S} \leq U_{B i}
\]
\(U_{T}\) : the channel is constricted and the voltage applied between the drain and source cannot drive any current (except for a residual current) through the structural element.
\(U_{B i}\) : the space charge zone is discharged. The channel is open from the gate contact to the \(S I\), so that the channel resistance is minimal and the drain-source current IDS is maximal.

Density and conductance of the open channel range can be determined as follows [12]:
\[
\begin{align*}
& \alpha=\alpha_{0}-\sqrt{\frac{2 \cdot \varepsilon_{0} \cdot E_{r}}{q \cdot N_{D}}\left(U_{B i}-U_{G S}\right)}  \tag{2.3.1}\\
& d_{0}=\sqrt{\frac{2 \cdot \varepsilon_{0} \cdot E_{r}}{q \cdot N_{D}} \cdot U_{p}}  \tag{2.3.1a}\\
& U_{p}=U_{B i}=U_{T}  \tag{2.3.1b}\\
& G_{K}=\frac{q \cdot n \cdot b \cdot \alpha \cdot W}{L}  \tag{2.3.2a}\\
& G_{K}=\sigma \cdot \frac{d \cdot W}{L} \tag{2.3.2b}
\end{align*}
\]
d : open channel density
\(\varepsilon_{0}\) : di-electric constants of the vacuum
\(\varepsilon_{r}\) : relative di-electric constants from GaAs (ll to l3)
\(U_{P}\) : total potential difference between completely opened Ll9 and constricted channel
\(N_{D}\) : doping level in the channel

\subsection*{2.3.2 Structural element as Hall structure}

According to Figure (2.3.1), the structural element is exposed to a homogenous transverse magnetic field. As a result the electric conductivity in the entire area between the drain and source is influenced. Evaluation of this conductivity variation as described in [4] is not limited to the channel, but rather includes the contact areas and the areas between the contacts. The influence of these dimensions diminishes according to how the
passage and contact resistances become negligible with regard to channel resistance. At voltages \(U_{G S} \geq 0\) Volts the channel is wide open. Then, in spite of gate lowering, channel resistance is dimensionally equal to passage and contact resistance.

By superimposition of amall alternating voltage ugs on the grid potential of the gate \(U_{G S}\) it is, however, possible, not for the entire open channel density \(d\), but solely for the channel layer o modulated by ugs to be considered an effective Hall structure. It is necessary only to evaluate the additional alternating current ids flowing through ugs.


Figure. 2.3.2: Tolerance of effective Hall structure
In preliminary approximations it may be assumed that the length and width of the channel concur with those of the gate contact. For this reason the values ( \(L=0.7 \mu m, W=300 \mu m\) ) taken from Figure (2.3.1) can be used. The channel layer density is calculated with half of equation (2.3.1).
\[
\begin{align*}
& \delta=d\left(U_{G S}-u_{g S}\right)-d\left(U_{G S}\right)  \tag{2.3.4a}\\
& \delta=\sqrt{\frac{2 \varepsilon_{0} E_{r}}{q \cdot N_{D}}} \cdot\left[\sqrt{U_{B i}-U_{G S}-\left|U_{G S}\right|}-\sqrt{U_{B i}-U_{G S}}\right] \tag{2.3.4b}
\end{align*}
\]

Calculating on the basis of the MESFET data from Figure (2.3.1) and using the values:
\[
\begin{aligned}
& \mathrm{N}_{\mathrm{D}}=0.5 \cdot 10^{18} \mathrm{~cm}^{-3} \\
& \mathrm{u}_{\mathrm{gs}}=50 \mathrm{mV}
\end{aligned}
\]
the density of the channel layer in the proximity of the gate GS \(=0.5 \mathrm{~V}\) ) is found to be:
\[
\delta=2 \mathrm{~nm}
\]

In the proximity of \(S I\left(U_{G S}=-1.3 \mathrm{~V}\right)\) it is:
\[
\delta=0.6 \mathrm{~nm}
\]

For minimally doped MESFETs the density of the layer can increase to 6 nm . In comparison with the density of the right-of-way area ( 80 to 400 nm ) these values are minute. Since resistance is reversely proportional to density, channel layer resistance is much greater than passage area and contact resistances.

On the basis of the geometry of Figure (2.3.2) a side relationship occurs, given as:
\[
L / W=0.0023
\]

This value very nearly equates to the boundary case \(L / W=0\), which was used for the simplified evaluation of the geometric conductance reduction. The influence of the magnetic field on the conductivity of a thin channel layer in the structural element can, therefore, be described sufficiently well with the following expression (see Chapter 2.4):
\[
\begin{equation*}
\sigma(B)=\frac{\sigma(0)}{1+b^{2} B^{2}} \tag{2.3.5}
\end{equation*}
\]
2.3.3 Influence of magnetic fields on transconductance

Up to this point it has been possible to determine the \(\angle 22\) magnetic field dependency of the electric conductivity. The Magneto-transconductance-mobility-profiling procedure does not, however, depend upon conductivity measurements, but rather upon transconductance measurements. For this reason it is necessary to investigate how transconductance changes in magnetic fields.

According to equation (2.1.7) the definition of transconductance is realized by means of superinposition of the alternating voltage \(u_{g s}\) on the grid potential of the gate \(\mathbb{U}_{G S}\) :
\[
\begin{equation*}
S=\lim _{\Delta U_{G S} \rightarrow 0} \frac{\Delta I_{D S}}{\Delta U_{G S}} \approx \frac{i_{d s}}{\mu_{g S}} \tag{2.3.6}
\end{equation*}
\]

Chapter (2.3.2) already introduced the alternating voltage of the gate \(u_{g s}\). It is necessary because it is used to evaluate a thin channel layer (locally resolved mobility profile) and the
influence of the right-of-way and contact resistances can be reduced. A transconductance measurement in accordance with equation (2.3.6) has the advantage that it produces a dimension which
- is only dependent upon ids and \(u_{g s}\).
--guarantees that the evalustion limits itself to the thin channel layer.
--is plain and sensible.
The magnetic field dependency of the transconductance is determined by ids. The working point and the alternating current of the gate are independent of the magnetic field.
\[
\begin{equation*}
i_{\mathrm{ds}}(\mathrm{t})=\mathrm{G}_{\mathrm{K}}(\delta, \mathrm{t}) \mathrm{U}_{\mathrm{DS}} \tag{2.3.7}
\end{equation*}
\]

In equation (2.3.7) it was taken into consideration that
--the work point lies in the starting range of the MESFET, so that the ohmic law is valid.
--the time independence of the current ids can be related back to the channel layer which has been modulated in the cycle of ugs.

If one takes into consideration that the channel conductance is dependent upon the electrical conductivity in accordance with the following:
\[
\begin{equation*}
G_{K}(\delta)=0 \cdot \frac{\delta(t)}{L} \underline{W} \tag{2.3.8}
\end{equation*}
\]
then the following holds true for the relationship of the transconductance without magnetic field \(S(0)\) to the transconductance with magnetic field \(S(0)\) :
\[
\begin{equation*}
\frac{S(0)}{S(B)}=\frac{i}{i} \mathrm{ds}_{\mathrm{ds}} \frac{(0)}{(B)}=\frac{\sigma(0)}{\sigma(B)} \tag{2.3.9}
\end{equation*}
\]

The magnetic field dependency of the transconductance concurs with the dependency of the electric conductivity determined in Chapter (2.2). Integration of equation (2.2.15) leads to the measurement equation:
\[
\begin{equation*}
b=\frac{1}{B} \cdot \sqrt{\frac{S(0)}{S(B)}-1} \tag{2.3.10}
\end{equation*}
\]
2.4 Influence of idealization

Chapter (2.3) showed that the geometry of a GaAs-short channelMESFET is suited for the utilization of the effect of the geometric conductance reduction. The effect of the conductance reduction could be carried over to the transconductance measurements. Cognizant of the geometry and physics of the real structural element, we shall now make a qualitative and, if
possible, quantitative analysis of errors which occur when adapting a MRSFET to the idealizations of equation (2.2.15) and/or (2.3.10).

\subsection*{2.4.1 Finite geometry}

Figure (2.3.2) presents a portion of the structural element which is responsible for the magnetic field dependency of the current \(i_{d s}\). We have established the side ratio:
\[
\begin{equation*}
\mathrm{L} / W=0.0023 \tag{2.4.1}
\end{equation*}
\]

The equations
\[
\begin{align*}
& G R(L / W, b, B)=1+b_{2}^{B} 2  \tag{2.4.2}\\
& \sigma(0)=\frac{\sigma(0)}{1+b^{2} B^{B}} \tag{2.4.3}
\end{align*}
\]
are valid under the given:
\[
\begin{equation*}
L / W \rightarrow 0 \tag{2.4.4}
\end{equation*}
\]

Equation (2.4.1) presents an error, whose influence on equation (2.4.3) must be investigated. The universal solution of the geometric function is:
\[
\begin{equation*}
G_{R}\left(L / W, \theta_{H}\right)=\frac{W}{L} \cdot \frac{1}{\cos \Theta_{H}} \cdot \frac{Z_{R}}{N} \tag{2.4.5}
\end{equation*}
\]
\(Z_{R}\) and \(N\) are non-analytic soluble integral expressions. For this reason integration of equation (2.4.1) into equation (2.4.5) does not lead to an analytical calculation of the mistake through the finite side ratio \(L / W\).

The following graphic solution of the geometric function serves for a qualitative analysis.


Fig, 2.4.l: Geometric function for resistance increase of right-angled semiconductor plates [2]

The representation of the geometric function shows very clearly how near the graph for \(L / W=0.0023\) lies on the graph of \(L / W=0\). It should, however, be pointed out, that the product \(b\) - B does not exceed the value 0.5. This value range is only insufficiently represented in Figure (2.4.1). The integral expressions in equation (2.2.5) are constant, so that the statement encountered in the aforementioned figure for a relatively high b B, can be carried over to a lower value of this product. For this reason a noticeable error caused by the real side ratio \(L / W\) on equation (2.4.3) can be avoided.
2.4.2 Pessage and contact resistance

For short-channel MESFETs in starting range the ohmic law is valid between the applied voltage \(U_{p S}\) and its resulting current \(I_{D S}\). The drain-source current may be characterized by the following representation of a resistance replacement switch.


Fig. 2.4.2: Replacement switch representation characterizing the drain-source current
\(\mathrm{R}_{\mathrm{K}}(\delta) \quad: \quad\) Channel layer resistance modulated by ugs \(\quad \mathbf{0 7}\) \(\mathrm{R}_{\mathrm{K}}(\mathrm{d})\) : Open channel resistance determined by \(\mathrm{U}_{\mathrm{GS}}^{\mathrm{S}}\) R., \(C\) : Contact resistance of the drain/source contact R..B : Passage resistance between drain contact and channel or source contact and channel

The channel conductance in Figure (2.4.2) is represented by the parallel connection of \(\mathcal{K}_{K}(\delta)\) with \(R_{K}(d)\). The superimposition of the gate's grid potential \(\mathrm{U}_{\mathrm{GS}}\) and its alternating voltage \(\mathrm{u}_{\mathrm{gs}}\) must be considered here. Since only the current portion ids is drawn upon for measuring transconductance, channel resistance \(R_{K}(d)\) remains without influence. The following simplified representation of a replacement switch characterizias the alternating current ids results if the contact and passage resistances of the drain and source are combined into one contact and passage resistance.


Fig. 2.4.3. Simplified representation of a replacement switch characterizing \(i_{d s}\)

On the basis of Figure (2.4.3) the influence of errors caused by passage and contact resistance can be investigated. The following relationship serves as a solution statement:
\[
\begin{align*}
& \frac{S(B)}{S(0)}=\frac{R(0)}{\lambda(B)} \\
& \frac{S(B)}{S(D)}=\frac{R_{c}+R_{B}+\dot{R}_{K}(\delta)}{R_{C}\left(1+\sigma_{C}^{2} B^{2}\right)+R_{B}\left(1+b^{2} B^{2}\right)+R_{K}(\delta)\left(1+6_{K}^{2} B^{2}\right)} \tag{2.4.6}
\end{align*}
\]
\(\mathrm{b}_{\mathrm{K}}\) : Charge carrier mobility in the channel \(b_{C}\); Charge carrier mobility in the contact area

This statement begins with the assumption that every resistance is subject to a geometric conductance reduction in the boundary case \(L / W=0\). A side ratio of 0.01 is not exceeded for the passage areas, so that the approximation is sufficiently fullfilled in all cases. Taking the contact area as a Hall structure is more problematic. Here, current flow and magnetic field are not always perpendicular to each other. It is also unusual to apply Hall structures to ohmic contacts. Nevertheless, the electric conductivity, which is described as analogous to semiconductor materials by means of mobility and concentration of the charge carriers, is completely dependent upon the magnetic field. The resulting side ratio concurs epproximately with that of the passage areas.

For consideration of errors, therefore, a statement based on equation (2.6.6) is legitimate and can describe the influence of parasitic resistances on the equation
\[
\begin{equation*}
\frac{S(B)}{S(0)} \quad \frac{1}{1+b^{2} B^{2}} \tag{2.4.7}
\end{equation*}
\]

An evaluation of equation (2.4.7) delivers an uncorrected value b for mobility in the channel, while an evaluation of equation (2.4.6) delivers a corrected value, the actual mobility in the channel. The error which is being sought results from an evaluation of equation (2.4.7). To this end the two equations are equated to each other:
\[
\begin{equation*}
\frac{1}{1+E_{1}^{2} B^{2}}=\frac{R_{c}+R_{B}+R_{K}(\delta)}{R_{c}\left(1+b_{c}^{2} B^{2}\right)+R_{B}\left(1+b_{B}^{2} B^{2}\right)+R_{K}(S)\left(1+b_{K}^{2} B^{2}\right)} \tag{2.4.8}
\end{equation*}
\]

Transformations of the equation result in:
\[
\begin{equation*}
\frac{b_{k}}{b}=\sqrt{1+\frac{R_{c}}{R_{k}(\delta)}\left(1-\frac{b_{c}^{2}}{b^{2}}\right)+\frac{R_{B}}{R_{k}(\delta)},\left(1-\frac{b_{B}^{2}}{b^{2}}\right)} \tag{2.4.9}
\end{equation*}
\]

A simplification for small \(k\) can be carried out by means of Taylor series development. It is based on:
\[
\sqrt{1+k} \approx 1+0,5 \cdot k
\]

This approximation can be applied to equation (2.4.9), since the geometry guarantecis, that
\[
\begin{equation*}
\frac{b_{k}}{b}=1+\frac{1}{2} \frac{R_{c}}{R_{k}(6)} \cdot\left(1-\frac{b_{c}^{2}}{b^{2}}\right)+\frac{1}{2} \frac{R_{B}}{R_{k}(\delta)} \cdot\left(1-\frac{b_{b}^{2}}{b^{2}}\right) \tag{2.4.10}
\end{equation*}
\]

The error is defined at:
\[
\begin{equation*}
f_{b}=\frac{b_{x}}{b}-1 \tag{2,4,11}
\end{equation*}
\]

A comparison with equation (2.4.10) gives us:
\[
\begin{equation*}
f_{6}=\frac{1}{2} \frac{R_{c}}{R_{k}(\delta)}\left(1-\frac{\sigma_{B}^{2}}{s^{2}}\right)+\frac{1}{2} \frac{R_{B}}{R_{k}(\delta)}\left(1-\frac{\sigma_{g}^{2}}{\sigma^{2}}\right) \tag{2.4.12}
\end{equation*}
\]

\section*{Discussion of equation (2, 4, 12):}

Bquation (2.4.12) consists of two correction terms. The left describes the influence of the contact areas, the right those of the passage areas. The direction of the influences is given by the relationship of the mobilities. The resistance relationship only has influence on the strength.

Ohmic contacta generally have a high concentration and a low mobility of charge carriers. \(b_{C}\) is therefore generally smaller than \(b\), so that the first term is negative.

In passage areas the mobility is higher because of the \(\angle 30\) larger distance from the surface, so that the second term will be positive. The errors do not generally add up.

The resistance \(R_{K}(\delta)\) is a function of the depth in the channel. At the gate contact \(\delta\) is large and therfore resistance is small. As distance from the gate increases, \(\delta\) decreases and resistance increases. For this reason the influence of mistakes caused by resistance relationships is greatest at the gate contact.

In the following we shall assume a quantitative mistake estimation. If we limit ourselves here to the passage areas, then this will be an estimation upwards, since the errors from the contact areas must be substre ted quantitively from it.
\[
\begin{equation*}
f_{b}<f_{0}=\frac{1}{2} \cdot \frac{R_{B}}{R_{k}(\delta)} \cdot\left(1-\frac{b_{3}^{2}}{b_{c}^{2}}\right) \tag{2.4.13}
\end{equation*}
\]

At the gate contact \(b<b_{B}\), Depending upon the profile, a drop in voltage up to half of the maximum value can result. The mobility \(b_{B}\) is an average dimension above the height of the passage areas and is not dependent upon the working point. From the primary approximation the following can be set:
\[
\mathbf{b}_{\max }=\mathbf{b}_{\mathrm{B}}
\]

The maximum mobility in the channel corresponds to the mobility of the passage areas. With the aforementioned assumptions, then, it is valid that:
\[
b_{\min }=0.5 b_{B}
\]

The resistances are calculated according to equation (2.3.2):
\[
\begin{align*}
& R_{K}(\delta)=\frac{1}{n \cdot b \cdot a} \cdot \frac{1}{W \cdot \delta}  \tag{2.4.14a}\\
& R_{B}=\frac{1}{n \cdot b_{B} \cdot q} \cdot \frac{2 \cdot I_{B}}{W \cdot h} \tag{2.4.14b}
\end{align*}
\]
\(l_{B}\) : Length of the passage areas between contact and \(\angle 31\) channel
\(h\) : Height of the passage areas
The factor 2 in the equation of the pasaage resistance considels the addition of the passage resistance between the gate and source and the gate and drain. Integration of the values \(L=0.7 \mu m\) and a layer depth \(\delta=2.6\) nin results in a resistance relationship:
\[
\begin{equation*}
\frac{R_{3}}{R_{k}(6)}=2 \cdot \frac{6 \cdot 6 \cdot l_{3}}{2 \cdot 6 \cdot h \cdot L}=0,0046 \tag{2.4.15}
\end{equation*}
\]

Integration in equation (2.4.13) gives us an upward estimation of the mistake at the gate contact at
\[
f_{0}=-14 \%
\]

This error decreases through the influence of the contact area. As distance from the gate increases, the number of errors decreases rapidly, since
-- layer density of decreases.
-- bincreases.
In the proximity of the semi-insulation material b decreases more drastically again, so that errors, in spite of higher resistance, jncrease again.

Exact error estimation is only possible on the basis of corresponding structural element data and their distribution in the channel. The principle influence will be examined in the following.


Fig. 2.4.4: Distribution of the error function \(f_{b}\) and its causes in the channel

An error boundary is cited in literature source [1]. This value is maintained in wide portions of the profile. A value of \(10 \%\) may not be exceeded in the boundary layers.

In Chapter (2.3.1) the area under the gate was defined as an active Hall structurc. The geometric conductance reduction for this structure was then calculated according to
\[
S(B)=\frac{S(0)}{1+b^{2} B^{2}}
\]

With the exception of the approximation \(L / W \rightarrow 0\), the Hall structure must have metallic contacts in order to fulfill the aforementioned equation ideally. A short circuit of the Hall structure and/or a forced right angle position of the electric field strength on the electrodes can only occur by means of very high contact conductivity. Establishment of such an ideal contact is not given in the MESFET. Nevertheless the connection of the thick passage areas ( \(h \approx 200 \mathrm{~nm}\) ) onto the thin channel layer ( \(\delta \approx 2.6 \mathrm{~nm}\) ) can be considered a relatively ideal contact. In the passage areas the electric current density is very much smaller and therefore
\[
\mathrm{E}_{\mathbf{Y B}}=\mathrm{R}_{\mathbf{H}} \cdot \mathbf{g}_{\mathbf{x B}} \cdot \sigma .
\]

The \(y\)-components of the electric field strength are very small. Further, the geometric resistance effect weakens \(E_{y}\) in the passage areas with
\[
1 / W=0.008
\]

The connection from the passage area to the channel can be looked at as a boundary layer free of space charge, so that it is true that:
\[
\begin{equation*}
\operatorname{div} \vec{E}=0 \tag{2.4.16}
\end{equation*}
\]

The tangential components of \(E\) are constant. Since the \(y\) components of \(E\) are near zero in the passage area, the \(y\) components in the boundary layer are minute as well.

An even more thorough consideration of these and other physical sources of errors would be beyond the scope of the present study. On the basis of the observations we have made thus far it is to be expected that according to
\[
\begin{equation*}
b=\frac{1}{B} \cdot \sqrt{\frac{S(0)}{S(B)}-1} \tag{2.4.17}
\end{equation*}
\]
electron mobility can be measured with a high amount of precision. Nevertheless this relationship can only be valid with a high amount of surety if the experiment confirms its resultant equation:
\[
\begin{equation*}
S(B)=\frac{S(0)}{1+b^{2} B^{2}} \tag{2.4.18}
\end{equation*}
\]

The result of such an experiment is shown in the following figure.


Fig. 2.4.5: Experimental confirmation of the evaluation equation
Over the magnetic flow density \(B\) we add \(\sqrt{\frac{5(0)}{5 \times g}-1}\). A comparison with equation (2.4.17) results in a line equation with the gradient \(b\).
\[
\begin{equation*}
\sqrt{\frac{S(0)}{S(B)}-1}=6 \cdot B \tag{2.4.19}
\end{equation*}
\]

If the graph in Figure (2.4.5) is an even one, then it is a proof for
-- the quadratic relationship between \(S(0)\) and \(S(B)\).
-- the independence of the mobility \(b\) from \(B\) in the exhausted range of the magnetic field.

Experimental control of the resultant equation is needed because of the varied causes of errors. An cract calculable \(\angle 36\) control of the error function \(f_{b}\) according to equation (2.4.12)
is not useful because of the high technical effort required to attain the structural element data which depend on the teat and each respective working point. On the basis of the foregoing considerations the error boundary caused by physical idealization can be established at \(+/-5 x\).
3. Measuring room \(\quad \angle 37\)
3.1 Measuring principle

In the following chapter we shall first summarize the resultant equations for the measuring procedure and then discuss the set up and the functioning of the measuring room.

To determine mobility in the channel we have the resultant equation
\[
\begin{equation*}
b=\frac{1}{B} \cdot \sqrt{\frac{S(0)}{S(B)}-1} \tag{3.1.1}
\end{equation*}
\]

The equation determines mobility at a depth determined by the grid potential of the gate \(U_{G S}\). By superimposition of the alternating voltage \(u_{g s}\) on the grid potential \(U_{G S}\) the thickness of the space charge zone \(d_{R}\) is modulated to its mean value. There is an alternating current ids which originally is connected with the modulated channel layer in the boundary between the space charge zone and the open channel. The transconductance measurement
\[
\begin{equation*}
S=\frac{i_{d s}}{\mu_{g s}} \tag{3.1.2}
\end{equation*}
\]
is strongly related to the modulated channel layer. A second (or more) transconductance measurement results when the test is subject to an homogenous magnetic field of the flow density \(B\). With the data
-- \(S(0)\)
-- \(S(B)\)
-- B
equation (3.1.1) yields the mobility:
\[
\begin{equation*}
b=b\left(x_{0}\right) \tag{3.1.3}
\end{equation*}
\]

With the agreements of Figure (2.3.1) it holds for the \(\angle 38\) depth coordinates \(x_{0}\) that:
\[
\begin{equation*}
x_{0}=d_{\mathcal{R}}\left(U_{G S}\right) \tag{3.1.4}
\end{equation*}
\]

By varying the work points
\[
\begin{align*}
& 0<x<d_{0} \\
& \mathbf{U}_{\mathbf{B i}}>\mathrm{U}_{\mathbf{G S}}>\mathbf{U}_{\mathbf{T}} \tag{3.1.5b}
\end{align*}
\]
\[
(3.1 .5 a)
\]
one can in this manner measure mobility at every depth of the channel. For clarity the measuring process is shown in the following flow diagram.


Key; 1) Start 2) Setting of UDS 3) Setting of \(U_{G S}\)
4) Measurement of \(S(0)\)
5) Magnetic field "IN"
6) Measurement of \(S(B)\)
7) Magnetic field "OUT" Bualuation: \(b\left(x_{0}\right)\) 8) New depth? 9) yes 10) no 11) End

Figure 3.1.1: Flow diagram of the measuring cycle


Figure 3.1.2: Model of measuring device

The measuring device consists of:
- Adjustable direct voltage sources for the work points \(U^{G S}\), \(U_{D S}\)
- Alternating voltage source ugs
- Voltage meter for determining alternating voltage
- A device for neutralizing and determining channel current \(\mathrm{i}_{\mathrm{ds}}\)

To reduce errors the alternating current \(u_{g s}\) in accordance with equation (2.4.12) is set at approximately
\[
\begin{equation*}
\mathbf{u}_{\mathrm{gs}}=50 \mathrm{mV} \tag{3.1.6}
\end{equation*}
\]

In the starting range of a MESFET transconductance has a value of about:
\[
\begin{equation*}
\mathrm{S}=1 \mathrm{mS} \tag{3.1.7}
\end{equation*}
\]

Using equation (3.1.2) these two values produce a current:
\[
\begin{equation*}
i_{d s}=50 \mu \mathrm{~A} \tag{3.1.8}
\end{equation*}
\]

Such a small current can no longer be measured accurately enough with a conventional ampermeter to permit its use in the measuring procedure. Further, a special filtering technique is required in order to separate the current \(i_{d s}\) from the equal portion \(I_{D S}\) and to reduse the noise effects. For this reason, a lock-in amplifier is installed in the measuring room.

The technical realization of the measuring device has the following configuration:


Figure 3.1.3: Technical realization of the measuring device

Application of load resistance \(R_{L}\) becomes necessary, since the lock-in amplifier can measure only voltages. Over the lnad resistance \(R_{L}\) falls away voltage
\[
\begin{equation*}
\mathbf{U}_{\mathbf{L}}=\mathbf{i}_{\mathbf{d s}} \cdot \mathbf{R}_{\mathbf{L}} \tag{3.1.9}
\end{equation*}
\]

The setting of \(R_{L}\) is so small that the current \(i d s\) is not dimintubled.
3.2 Measuring equipment and voltage supply
3.2.1 Lock-in amplifier

The "Dynatrac 393" lock-in amplifier is the central measuring instrument of the measuring device. An evaluation of the physical measuring principle is possible only using this type of measuring technique. The following figure shows a detail of the application range of this measuring instrument.


Figure 3.2.l: Application range of the lock-in amplifier Key: 1) Lock-in amplifier 2) Sine generator 3) Measuring part 4) Reference in 5) Signal in 6) Exit 7) Noises

In the measuring instrument a comparison between the reference signal and the measuring signal takes place according to \(\quad 43\) the following principle:

The phase regulating cycle in the lock-in shift phases the reference signal \(S_{R}(t)\) until the product
\[
s_{R}(t-\tau) \cdot s_{a}(t)
\]
reaches a maximum. At the maximum state of the product both signals have the following per unit time course:


Figure 3.2.2: Comparison of reference and entrance voltage of the lock-in amplifier

Over a full period the product totals:

In the process, all portions fall out
\[
\frac{1}{T} \int_{t}^{t+\tau} p_{n}(\mu-\tau) \cdot p_{a}(\mu) d \mu
\]
--whose mean value over \(T\) is different from zero (equal portion). --whose frequency is a multiple of the basic frequency (harinonic distortions).

Further, the signal/noise power ratio is optimum, since, analogous to the technique of the appropriate filter, signal portions with the highest correlation to the reference voltage demonstrate a maximum upward integral total. Ideally, white noise will be eliminated.
\(\angle 44\)
The output of the lock-in amplifier is a normalized direct voltage of the form:
\[
\begin{equation*}
U_{L}=F\left\{\frac{s_{R}(t-\tau) \cdot v_{a}(t)}{s_{a}(t)}\right\} \tag{3.2.1}
\end{equation*}
\]

The signal dimension \(s_{a}(t)\) is composed of the equal portion \(I_{D S}\) \(R_{L}\) and the alternating portion \(i_{d s} R_{L}\). In practical use there occur alternating currents of
\[
3 \text { to } 300 \mu \mathrm{~A}
\]
which must be measured with an accuracy of approximately 1\%. Further, the channel resistance \(R_{K}(d)\) lies in the range of approximately 30 to 100 ohms. The author is unaware of any conventional measuring instrument which is capable of this measuring task under the given circumstances.

The lock-in amplifier cannot measure direct currents, which is the reason that a load resistance \(R_{L}\) was applied in the drainsource cycle. Analogous to equation (2.4.12) \(\mathrm{R}_{\mathrm{L}}\) brings about an additional error at:
\[
\begin{equation*}
f_{R_{L}}=\frac{1}{2} \cdot \frac{R_{L}}{R_{K}(\delta)} \tag{3.2.2}
\end{equation*}
\]
\(R_{L}\) is kept at such a dimension ( 1 ohm), that the error does not generally go over \(2 \%\). The current \(i_{d s}\) can be produced from
\[
\begin{equation*}
i_{d s}=\frac{\mu_{L}}{R_{L}} \tag{3.2.3}
\end{equation*}
\]
with sufficient accuracy. \(U_{L}\) is the decrease in alternating voltage, which causes \(i_{d s}\) on the load resistance \(R_{L}\).

The exit of the lock-in amplifier is a direct voltage proportional to \(\mathrm{U}_{\mathrm{L}}\) :
\[
\begin{equation*}
U_{L}=\frac{\left|\mu_{L}\right|}{S_{E}} \cdot 10 \mathrm{~V} \tag{3.2.4}
\end{equation*}
\]
\(S_{E}\) is the entrance sensitivity set on the lock-in. It covers the value ranges:
\[
0.1 \mu V<S_{E}<3 V
\]

The measurement accuracy is given by the producer at:
1\% Amplifier errors
0.05 */K Temperature drift

The filter selectivity amounts to \(12 \mathrm{~dB} / \mathrm{d}_{\mathrm{oc}} \mathrm{tave}\).
3.2.2 Keithley digital multimeter

The measuring room contains two Keithley digital multimeters, the model "177 Microvolt DMM" and "179 TRMS DMM". Both models are compatible with IEC-Bus.

Model 177:
Assignment: Measuring alternating voltage of gate \(u_{g \rho}\) and IBC-Bus cut-off position
Error: \(\quad 0.9 \%\) (at 50 mV )
Entrance: \(\quad 10^{6}\) ohms/ 75 pF
Model 179 TRMS: \(\angle 46\)
Assigment: Measuring exit direct voltage of lock-in and IEC-Bus cut-off position
Error: \(\quad 0.05 \%\) (at 10 Volt DC)
Entrance: \(\quad 10^{6}\) ohms/ 75 pF
3.2 .3 Voltage supply

According to Figure (3.1.2), the direct voltages \(U_{G S}\) and \(U_{D S}\) are needed along with the alternating voltage of the gate ugs. The alternating voltage generates a sine oscillator in the Bynatrac 393 lock-in amplifier.

Sine oscillator:
Frequency: 0.1 to 10 KHz (here 1 KHz )
Exit: \(\quad 0\) to 1 V at 1000 ohms
Error: \(2 \%\) harmonic distortion, drift (see Chapter 4.1.4)

The IBC-Bus compatible two -channel voltage source "Rhode \& Schwarz NGPS" serves as the direct voltage supply. The following data are valid for the "LOW" range.

Direct voltage source:
Voltage: \(+/-16.835 \mathrm{~V}\)
Current: 100 mA ( 130 mA current limit)
Error: So small that the direct voltage supply can be considered ideal
3.2 .4 Test circuit \(\quad \angle 47\)

The technical measuring circuit calls for a load resistance \(R_{L}\) in the drain-source circuit and a switch for the feed -in of the gate voltage \(U_{G S}+u_{g s}\). Since load resistance \(R_{L}\) (l ohm) is very small, already small overvoltages lead to high currents and with them to destruction of the structural element. The cause of such voltages are:
- manual errors
- switching the voltage sources on and off

The following construction was developed for the protection of the test and as technical measuring wiring:


Figure 3.2.3: Test circuit
The \(R-C\) combination \(R_{V} C_{K}\) provides for feed of gate voltage \(U_{G S}+\) \(u_{g s}\). RV prevents a short circuiting of the alternating voltage \(u_{g s}\) over the direct voltage source \(U_{G S}\). The condensor separates the direct voltage from the alternating voltage generator. An \(R-\) Zener breakdown is installed at the gate entrance \(\mathrm{U}_{\mathrm{GS}}\). \(\quad 48\)


Figure 3.2.4: Acceptable value range of the gatewource vütage

The circuit causes the voltage \(U_{A}\) established from \(U_{Z}\) to \(U_{F}\) to be equal to the actual voltage at the gate. Voltages which lie above this value range are short circited. The measuring range of \(\mathrm{U}_{\mathrm{GS}}\) looks like this:
\[
\begin{equation*}
+0.5 \mathrm{~V}<\mathrm{U}_{\mathrm{GS}}<-5 \mathrm{~V} \tag{3.2.5}
\end{equation*}
\]

This condition is satisfied when \(U_{F}=0.6 \mathrm{~V}\) and \(U_{Z}=5.6 \mathrm{~V}\).
A further protection precaution is the relay \(K_{1}\). It is turned on directly by the measuring program and first establishes the \(\quad \angle 49\) voltages at the drain and gate when the start-up process has been completed. After every measurement the relay once again separates the test from the voltage supply.

These precautions are necessary and effective to protect the test against voltage peaks, which occur during switching, particularly when turning off the direct voltage source, and can lead to destruction of the test.

The test circuit is the distributor position for the entire measuring construction. It is essentially responsible for the ease in inspecting the measuring room. This is made clear by the following figure:


Figure 3.2.5: The test circuit in the block circuit of the measuring device Key according to number: 1) Test wiring 2) Voltage source 3) Entrance 4) Exit 5) Lockin amplifier 6) Test 7) Control voltage 8) Relay box
3.3 Magnetic field regulating circuit

Figure (3.1.3) shows the most detailed description of the technical realization of the measuring device to date. Nevertheless, the central calculation control (Chapter 3.4) and the adjustment of the magnetic field are lacking.

It is, however, precisely the adjustment of the magnetic field which is of particular importance in constructing the measuring room. The exact measurement of magnetic flow density is quite involved. Furthermore, there are certain requirements which must be maintained:
-- Adjustment of a variety of magnetic field sizes during a measuring cycle
-- The most exact adjustment possible
-- Fully automatic performance of the adjustment procedure by means of a terminal

In Chapter (2.4) we called for technical measuring control of the vadidity of the initial equation
\[
\begin{equation*}
S(B)=\frac{S(0)}{1+6^{2} B^{2}} \tag{3.3.1}
\end{equation*}
\]

This control should take place through verification of the linear connections
\[
\begin{align*}
& b \cdot B=\sqrt{\frac{s(0)}{s(3)}-1}  \tag{3.3.2}\\
& m \cdot x=y \tag{3.3.3}
\end{align*}
\]

In order to obtain the settings of both magnetic field L51 values ( \(B=0, B=B_{0}\) ), which suffice for evaluation of equation (3.3.1), many (in practice \(n=5\) to 10 ) varied magnetic field values are set and used to measure the corresponding transconductances \(S\left(B_{k}\right)\).

After the completion of a cycle, \(n\)-value groups of the form:
\[
\mathbf{k} ; \mathbf{B}_{\mathbf{k}} ; \mathbf{S}\left(\mathbf{B}_{\mathbf{k}}\right)
\]
are available. Thefe data are evaluated by means of a linear regressior (see Chapter 4.1.3.2) to à line equation according to equation (3.3.2).

This cycle must be repeated for every point on the mobility profile. For a complete profile the result is between 50 and 200 magnetic ficld adjustments, which by manual adjustment would require an operator to be present in the measuring room throughout the entire measuring time: Furthermore, such adjustment is very tiring. The error boundary acceptable for the adjustment value is subjective and different for every adjustment.

For this reason the following "digital" magnetic field regulation is set for the measuring device.


Figure 3.3.1: Block circuit for digital magnetic field regulation
Key: 1) Output voltage source 2) Bl Hall probe 3) Bus coupler 4) CBM terminal

\subsection*{3.3.1 Magnetic field regulating circuit instruments}

The regulating circuit consists of three groups:
Group A: Generating elements
Al: Bruker magnet \(B-E\) 10B8
A2: Systron Donner Power Supply M7060-30
Group B: Measuring instruments
Bl: Hall probe
B2: Tesla meter Systron Donner 3102 A
Group C: Adjustment parts and regulators
Cl: Commander Systron Donner Pl
C2: Instrument coupler ICS 4880
C3: Terminal CBM 4032
The elements of group \(A\) produce a relatively homogenous magnetic field up to maximum of \(B_{\text {max }}=1\) tesla in an air gap of approximately 6 cm width. Group \(B\) facilitates measuring the actual value of \(B\). It consists of a Hall probe, which transmits
a magnetic field proportional Hall probe to the second instrument of the group, the tesla meter. This instrument is calibrated on the Hall structure and converts the Hall voltage into a value of the magnetic flow depth. Magnetic field measurements are generally much more difficult and imprecise than electric measurements. Nonetheless, the combination used in this measuring room are considered quite good. The practical precision with which the line equation (3.3.2) can be satisfied has helped reduce the justifible prejudices against magnetic field measurements. For this reason, the error boundary of the producer can be incorporated:
\[
\begin{equation*}
f_{T}=1 \% \tag{3.3.4}
\end{equation*}
\]

Group consists of converters Cl, C2 and the logical element of a computer terminal. Cl converts a decimal number from 0 to 9999 into a control voltage \(U_{S t}\) of 0 to 10 V . USt controls the voltage source A2 from 0 to \(100 \%\) of its maximum voltage. The smallest magnetic field variation amounts to \(0.01 \%\) corresponding to 0.1 mT. This ensures that the adjustment of every B-value is "ideally" possible. C2 allows the IEC-Bus terminal to read the digital tesla meter results.
\(\angle 54\)
3.3.2 Magnetic field regulation

The elements of Group \(A, B\) and \(C\) are connected to a regulating circuit.


Figure 3.3.2: Magnetic field regulating circuit Key: 1) Calculator 2) Disturbance dimensions

The figure shows a technical regulating representation as the schematic form of a single regulating circuit. The assignment and function of the terminal, the analogous/digital converter (A/D converter) and the \(D / A\) converter especially are strongly schematicized. Blocks \(A, B, C_{S}\) and \(C_{R}\) correspond to the
component groups listed in Chapter (3.3.1) with the conversion factors:
\[
f_{A}, f_{B}, f_{C_{S}}, f_{C_{P}}
\]

The dimensions with (*) are digital. Considering the great effort required for a technical regulating consideration of the "dead periods" using data recording and A/D and/or D/A \(\angle 55\) conversion, dynamic regulation is abandoned. Since \(A / D\) and \(D / A\) conversion can be considered ideal, the problem of conversion will not be dealt with henceforth.

There are two steps in the construction of regulator circuit in accordance with Figure (3.3.2)
1. Assumption of transfer factors \(f_{A}\) and \(f_{B}\), which are given in the process and are immutable
2. Calculation and realization of the transfer factors \({ }^{f} C_{S}\) and \({ }^{f} C_{R}\) according to the points given in 1. \({ }^{2}\)
Regarding 1.):
The transfer function \(f_{B}\) describes the technical measuring composition and conversion of the actual value of \(B\). Since no problems with the \(A / D\) conversion or technical measuring errors are observed here:
\[
\begin{equation*}
f_{B}=1 \tag{3.3.6}
\end{equation*}
\]

Transfer function \(f_{A}\) describes the conversion of the dimension \(U_{S t}\) into an actual value of \(B\) :
\[
\begin{aligned}
& \mathbf{f}_{A}: U_{S t \rightarrow B} \\
& B=f_{A}\left(U_{S t}\right)
\end{aligned}
\]

Function \(f_{A}\) was assumed by technical measurement in \(\angle 56\) the measuring room:


\section*{Control voltage}

Figure 3.3.3: Transfer function of instrument group \(A\) Regarding 2.):

The processes on the regulator circuit are differentiated according to times:
\(t<t_{1}:\) Control
\(t>t_{1}\) : Regulation
\(t_{1}\) : Conversion time of real value of \(B\) in the first, errorridden actual value of \(B\)

In accordance with Figure (3.2.2) the following relationship is valid for \(t<t_{1}\) :
\[
B=B_{S} \cdot{ }^{f} C_{S} \cdot f_{A}+Z
\]

The term \(Z\) is an additional disturbance dimension, which must be stabilized. The pure control already works optimally, whenever the following is valid:
\[
\begin{equation*}
B=B_{S}+Z \tag{3.3.8}
\end{equation*}
\]

By means of comparison the dimensioning specification is attained:
\[
\begin{equation*}
f_{C_{S}}=\left(f_{A}\right)^{-1} \tag{3.3.9}
\end{equation*}
\]

Transfer function \(f_{A}\) as well as its inversion are not analytical functions. For this reason a solution of equation (3.3.9) was found by integrating pairs of value from Figure (3.3.3) into the statement:
\[
\begin{equation*}
{ }^{f_{C_{S}}}(B)=a_{1} \cdot B+a_{2} \cdot B^{2} \tag{3.3.10}
\end{equation*}
\]

The results are:
\[
\begin{align*}
& \mathrm{a}_{1}=8.606 \cdot 10^{-3} \mathrm{~V}(\mathrm{mT})^{-1}  \tag{3.3,11a}\\
& \mathrm{a}_{2}=1.394 \cdot 10^{-6} \mathrm{~V}(\mathrm{mT})^{-2} \tag{3.3.1lb}
\end{align*}
\]

At \(t=t_{1}\) the real value of the magnetic flow depth was converted into an actual value:
\[
\begin{equation*}
B=B_{S}+Z \tag{3.3.12}
\end{equation*}
\]

The switch in Figure (3.2.2) is reversed; the regulator circuit is closed. The assignment of part \(C_{R}\) takes the dimension placed at the entrance:
\[
\Delta B=B_{S}-B
\]
and generates a correction dimension from it:
\[
{ }^{{ }^{f} C_{R}}: \quad \Delta B \rightarrow \Delta U_{S t}
\]

The following condition must be satisfied:
\[
f_{A}\left(U_{S t}+\Delta U_{S t}\right)=B+\Delta B
\]

Function \(f_{A}\) is linearized at the working point:
\[
\begin{equation*}
f_{A}\left(U_{S t}+\Delta U_{S t}\right) \approx f_{R}\left(U_{S t}\right)+\Delta U_{S t} \cdot \frac{\partial f_{A}}{\partial U_{S t}} \tag{3.3.13}
\end{equation*}
\]

Now the observations from equation (3.3.7) to (3.3.11) are applied to the changes \(B, U_{S t}\) :
\[
\begin{equation*}
f_{c_{R}}=\Delta B \cdot \frac{\partial f_{A}^{-1}}{\partial B} \tag{3.3.14}
\end{equation*}
\]

Integration into equation (3.3.10) results in
\[
\begin{equation*}
{ }^{f_{C}} C_{R}=\Delta B \cdot\left(a_{1}+2 a_{2} \cdot B\right) \tag{3.3.15}
\end{equation*}
\]
with \(a_{1}\) and \(a_{2}\) in accordance with equation (3.3.11).
With that the regulator circuit is completely dimensioned. Conirol and regulator functions \(f_{C}\) are realized by placing the functions into the licasuring program of the computer in accordance with equations (2.3.15) and (3.3.10).

Regulation is considered complete when regulator error
\[
\Delta \mathbf{B}=\mathbf{B}_{\mathbf{S}}-\mathbf{B}
\]
falls below a certain level (l to 3\%). The following figure shows the per unit duration of the dimensions affected by regulation:


Figure 3.3.4: Time plan of the magnetic field regulation \(W_{1}\) : Waiting time for adjustment of the magnetic field value \(W_{2}\) : Assumption of the measured value of \(B\)

The other waiting times ( \(A / D\) conversion) can be omitted because of \(W_{1}\) and \(W_{2}\).
3.4 Measuring room automation \(\quad \mathbf{6 0}\)

In the previous chanter a portion of measuring room automation, the magnetic field regulation, was described in detail. As we saw there, the following points indicate the need for automation.
-- The amount of operator time is considerably reduced, since plotting of a highly solvable nobility profile can take many hours.
-- Work in the measuring room is very monotonous. This leads to a reduction in attention and to error conditions.
-- Data recording, data assurance, and evaluation are assumed by a computer.
-- The ability to reproduce measurement results is considerably increased.

The two last points increase measuring room measurement precision and dependability. The computer can calculate even monotonous mathematical algorithms, leading to a reduction in errors which is absolutely necessary for the measuring procedure (Chapter 4.1.3).

The measuring program can be structured as follows:


Without operator

Figure 3.4.l: Structure of computer controlled measuring program

Upon data input, all variable parameters on the special test are determined. After completion of this phase, the terminal should have received all necessary information and the measuring room should be fully prepared to allow the second phase to proceed without an operator. An interruption of the measuring program should occur only when
-- Boundary data is surpassed
-- Errors occur in the measuring construction
-- The adjustment of measuring instruments must be corrected manually

The last point refers to the limitations of automation. In the case of the measuring device, this situation occurs upon correction of the entrance sensitivity of the lock-in amplifier. If transconductance in the channel radically decreases to SI, then the entrance sensitivity of the measuring instrument must be reset. Complete automation is possible only if all instruments utilized in the measuring room can be controlled centrally from the terminal. A programable lock-in amplifier does not exiat at the present time.

Development of automation in the measuring room for magneto-transconductance-mobility-profiling has progressed in \(\quad \mathbf{6 2}\) proportion to the availability of measuring instruments which may be adapted to the IEC-Bus. In developing programs, particular emphasis has been placed on avoiding a complete interruption of measurement, with the terminel containing directions for resumption of the measuring procedure.

Example: Initial voltage of the lock-in \(U_{L}\) falls below \(20 x\) of total oscillation!
The technical measuring error threatens to become too large.
1. The computer stops the measurement just before taking in a new mobility number in order to avoid errors caused by measuring range shifts during an evaluation.
2. Computer instruction: "Correction of lock-in entrance sensitivity!"
3. The operator corrects the measuring range.
4. Computer asks: "Sensitivity jV?" Operator inputs corrected value.
5. Measuring program continues!

This small example may clarify the procedure of logical measuring room supervision. We now turn to the complete data technical cabling of the measuring room.


Figure 3.4.2: Entire block circuit of measuring room (Key on following page)
```

Key to Figure 3.4.2: 1) Hall probe 2) Test
3) Magnet 4) Output voltage source 5)
Voltage source 6) Test circuit 7) Relay
actuator 8) Lock-in amplifier 9) In
Reference 10) Bxit 11) CBM terminal 12) CBM
CBM diskette drive assembly

```

\subsection*{4.1 Brror observation}

In our introduction to the measuring room in Chapter (3) it already became evident from the choice of modern and highly precise measuring instruments that the measuring procedure is highly sensitive to errors. Here we deal primarily with the imprecisions of measuring instruments and their influence on errors in the results investigated. An essential difficulty in constructing the measuring room consists of minimizing errors caused by the measuring instruments. This task has been solved on an engineering level, that is, the dominant error influences here have been reduced to a level equal to those of other errors.

\subsection*{4.1.1 Sources of errors}

Basically all of the instruments involved in the measuring room may cause errors. In order to attain more meaningful observation of errors, we direct our attention to the essential parameters and their errors. These parameters are contained in the initial equations:
\[
\begin{equation*}
S(B)=\frac{S(0)}{1+6^{2} B^{2}} \tag{4.1.1a}
\end{equation*}
\]
\[
S=\frac{\mu_{L}}{R_{L} \cdot \mu_{g S}}=\frac{U_{L} \cdot S_{E}}{R_{L} \cdot \mu_{g S} \cdot 10 \mathrm{~V}}
\]

Both of these equations result in the evaluation equation of the measuring procedure which occurs independently of the error-laden dimensions occurring in the measuring room:
\[
\begin{equation*}
b=\frac{1}{B} \cdot \sqrt{\frac{U_{L}(0)}{U_{L}(B)}-1} \tag{4.1.2}
\end{equation*}
\]

The goal of error observation is to minimize the error boundary of \(b\), and, if possible, to record it in numerical values. Working from equation (4.l.2) we shall limit ourselves in the following to error observation in:
-- \(U_{L}: \quad\) Lock-in initial voltage
-- B: Magnetic flow depth
Sources of error for these parameters are:
-- Lock-in amplifier
-- Hall probe/Tesla meier
The error influence of the voltage sources for \(U_{G S}\) and \(U_{D S}\) can be ignored. The same is true for all digital operations of the computer and the converters. Because of reference voltage drift these will be considered by themselves in Chapter (4.1.4).
4.1.2 Brror sensitivity
\(\angle 66\)
Up to the first term, a Taylor succession serves as a starting point for the influence of perameter errors on end results:
\[
\begin{equation*}
b=b_{0}+B \cdot \frac{\partial b}{\partial B}+U_{L}(0) \cdot \frac{0 b}{\partial U_{L}(0)}+U_{L}(B) \frac{\partial b}{\partial U_{L}(B)} \tag{4.1.3}
\end{equation*}
\]

The partial derivatives can be obtained with equation (4.1.2). Here, for relative error:
\[
\begin{align*}
\frac{b-b_{0}}{b_{0}}= & -1 \cdot \frac{\Delta B}{B} \\
& +\frac{1}{2} \cdot \frac{\Delta U_{L}(0)}{U_{L}(0)-U_{L}(B)} \cdot \frac{U_{L}(0)}{E_{i}} \\
& -\frac{1}{2} \frac{U_{L}(0)}{U_{L}(0)-U_{L}(B)} \cdot \frac{U_{L}(B)}{U_{L}(B)} \tag{4,1,4}
\end{align*}
\]

This equation has the form:
\[
\begin{equation*}
f_{b}=\sum_{i=1}^{3} E_{i} \cdot f_{i} \tag{4.1.5}
\end{equation*}
\]
\[
\begin{aligned}
& \mathbf{E}_{i}: \text { Sensitivity factor } \\
& \mathbf{f}_{\mathbf{i}} \text { : Relative parameter error }
\end{aligned}
\]

Relative parameter error \(f_{i}\) corresponds to measuring instrument tolerance, while \(E_{i}\) gives the influence of parameter error on the error in the end result. Since all of the sum terms can have different signs (ideally being normally distributed), the amount of the error can be assumed.
\[
\begin{equation*}
f_{b}=\sqrt{\sum_{i=1}^{2}\left(E_{i^{\prime}} f_{i}\right)^{2}} \tag{4.1.6}
\end{equation*}
\]
\(\angle 67\)

Under these circumstances an error estimation of \(f_{b}\) results, in which it is shown that error sources cause a total error of
\[
\begin{equation*}
f_{b} \leqslant 0.15 \tag{4.1.6}
\end{equation*}
\]

Equation (4.1.7) can be satisfied with the smallest effort, when:
\[
\begin{align*}
& \left|E_{1} \cdot f_{1}\right|=\left|E_{2} \cdot f_{2}\right|=\left|E_{3} \cdot f_{3}\right| \\
& E_{i} \cdot f_{i}=\frac{f_{6}}{\sqrt{3}}=0,0866 \tag{4.1.8}
\end{align*}
\]

All error factors in equation (4.1.4) must satisfy this condition. For the term which describes the influence of the magnetic field, this boundary, affected by sensitivity factor \(E_{1}=1\), is bound to the condition that the error of the tesla meter and the Hall probe not exceed 8.66x. The measuring instrument producer lists the tolerance as 1x.

The second term of the equation (4.1.4) is described by:
\[
\begin{aligned}
& E_{2}=\frac{1}{2} \cdot \frac{U_{L}(0)}{U_{L}(0)-U_{L}(B)} \\
& f_{2}=\frac{\Delta U_{L}(0)}{U_{L}(0)}
\end{aligned}
\]

The error \(f_{2}\) is dependent upon the amplitude of the lock-in. The measuring program guarantees that the lock-in be driven in a suitable measuring range and that
\[
\begin{equation*}
f_{2}=0.01 \tag{4.1.9}
\end{equation*}
\]
not be exceeded. Sensitivity factor \(E_{2}\) depends on magnetic \(\quad 68\) field. If \(f_{2}=0.01\), an unbalanced equation can be set for \(\mathbb{E}_{2}\) :
\[
\begin{equation*}
E_{2}=\frac{1}{2} \cdot \frac{U_{L}(0)}{U_{L}(0)-U_{L}(B} \leqslant 8,66 \tag{4.1.10}
\end{equation*}
\]

The unbalanced equation (4.1.10) can be satisfied only at sufficiently high values of the magnetic flow depth. Inversely, an adjustment specification can be derived with this unbalanced equation.

The following model calculation serves to this end:
\[
\begin{aligned}
\mathrm{b} & =4000 \mathrm{~cm}^{2} / \mathrm{Vs} \\
\mathrm{U}_{\mathrm{L}}(0) / \mathrm{U}_{\mathrm{L}}(\mathrm{~B}) & =1.1
\end{aligned}
\]

Solution of this evaluation equation according to \(B\) and integration of the unbalanced equation (4.1.10) results in:
\[
\begin{align*}
& B=\frac{1}{6} \cdot \sqrt{\frac{U_{L}(0)-U_{L}(B)}{U_{L}(B)}}  \tag{4.1.11a}\\
& B \geqslant 0,630 \mathrm{VS} / \mathrm{m}^{2} \tag{4.1.11b}
\end{align*}
\]

The third term
\[
E_{3} \cdot f_{3}=-\frac{1}{2} \cdot \frac{U_{L}(0)}{U_{L}(0)-U_{L}(B)} \cdot \frac{\Delta U_{L}(B)}{U_{L}(B)}
\]
con be treated analogously to \(E_{2} \quad f_{2}\) and also leads to the unbalanced equation (4.1.10) because of the same sensitivity factor. The different signs of the terms \(E_{2} \quad f_{2}\) and \(E_{3} \quad f_{3}\) has the effect that the error influences caused by the lock -in amplifier are markedly reduced. The error.valua given in equation (4.1.7) thus represents a high upper limit.

Result:
-- The error is less than or equal to 15\% because of the measuring instruments and the measuring setup.
-- Measurements in small magnetic fields (300mT) lead to large mistakes.
-- The general adjustment specification can be given under he condition \(\mathrm{E}_{2,3}\) < 8.66:
\[
\begin{equation*}
B \geqslant 1 / 4 b \tag{4.1.12}
\end{equation*}
\]

not attainable with measuring construction

Figure C.l.l: Adjustment specification for the magnetic field on the basis of acceptable errors and average mobility

The 15\% error boundary which can be reached with the present methods is too high to be satisfying. Physical errors would also have to be added to this value. For this reason steps must be taken which reduce error or at least offiset errors.

The procedure described in Chapter (2.4.3) lends itself to \(\angle 70\) this goal.


Figure 4.1.2: Error offset by line approximation
Mobility no longer results from a two-point measurement ( \(\mathrm{S}(0)\), \(S(B)\) ), but rather from a successive measurement
\[
S(0), S\left(B_{1}\right), S\left(B_{2}\right), \text { to } S\left(B_{n}\right)
\]
4.1.3 Statistical procedure

In Chapter (4.1.2) error for a single point in Figure (4.1.2) was estimated with the help of the concept of error sensitivity and with measuring instrument precision boundaries. These observations were meaningful and necessary. They indicated sensitive places in the measuring procedure and provided a preliminary adjustment specification for the magnetic field. Nevertheless, a universal error index is not possible since sensitivity factors are especially dependent not only upon the tests but also the working point.

Already at the end of Chapier (4.1.2) a solution was suggested for reducing errors by line offsetting. The evaluation of the data made possible by such a balance becomes optimal with statistical methods:
-- Input data control
-- Statistical error balancing using a linear regression

Physical errors caused by parasitic resistances cannot be determined. If, however, the graph in accordance with Figure (4.1.2) deviates greatly from a straight line, this is indicated by large errors, which result from
-- The drift of the structural element
-- Reaching the physical boundaries of the measuring procedure
With that, the validity control of the evaluation equation recommended in Chapter (2.4.3) is carried out.
4.1.3.1 Control of input data
\(\angle 72\)
The measuring value reacts to a change in setting dimensions by a transient process in the new stationary end value.


Figure 4.1.3: Transient process of measuring value after changing the setting dimension Key: 1) Setting dimension 2) Measuring value

Input data control should
-- Increase the precision of input data by establishing median values from many measuring values
-- Eliminate measurement before a stationary end value has been attained, by controliing the spread of measuring values around the median value

A storage bank is filled with k-measuring values of the same dimension. The measuring values are recorded at intervals \(T\) and deposited in the uppermost storage position of the bank. The lowermost (oldest) measuring value drops out.


Figure 4.1.4: Storage bank for \(k=4\)
The following are formed from measuring values in the bank:

\section*{-- The median value}
-- The quadratic deviation from the median value, the variance:
\[
\begin{equation*}
V=\sum_{i=1}^{k}\left(\bar{x}-x_{i}\right)^{2} \tag{4.1.13}
\end{equation*}
\]

If the variance is too high, then the transient process is not complete and a new measuring value is taken into the pile. This procedure continues until the variance falls beneath a certain level chosen so that the spread around the median value is amaller than the error tolerance of the measuring instrument. Assuming normally distributed measuring values:
\[
\begin{equation*}
\bar{x}-\frac{\sigma}{\sqrt{k}} \leq U \leq \bar{x}+\frac{\sigma}{\sqrt{k}} \tag{4.1.14}
\end{equation*}
\]
\(\overline{\mathrm{x}}\) : Median value
u : Statistical threshold value
o : Standard deviation
] : True value
The equation indicates in which interval around the median value the true value is to be found. According to German regulatory document DIN 55032 error ahould be estimated so that, with 95\% confidence, the true value will not deviate more than
\[
\pm \frac{\sigma}{\sqrt{k}} \cdot u
\]
from the true value. For this situation / 14/:
\[
\begin{equation*}
u=1.96 \tag{4.1.15}
\end{equation*}
\]

If we now set the following in the first approximation (ideal for \(k \rightarrow \infty\) ):
\[
\begin{equation*}
\sigma \approx \sqrt{\sum_{i=1}^{k}\left(\bar{x}-x_{i}\right)^{2}} \tag{..1.1.16}
\end{equation*}
\]
a limit is reached with equations (4.1.14) and (4.1.15):
\[
\begin{equation*}
f_{x}=\frac{\bar{x}-U}{\bar{x}}=\frac{1,96 \cdot \sigma}{\bar{x} \cdot \sqrt{k}} \tag{4.1.17}
\end{equation*}
\]

\section*{Remarks:}

The approximation in equation (4.1.16) is relatively rough for sample test numbers \(k=4-6\) used in the measuring device. Thus, it is not to be expected that error can be estimated accurately with equation (4.1.17). This procedure primarily provides datacontrol. Formation of the median value causes an error offset in measuring values and, for this reason, substantially improves the precision of the data input.
4.1.3.2 Error offsetting using a linear regression L75

The input data prepared in accordance with the previous chapter allow us to make a diagram on the basis of Figure (4.1.2) The points have the coordinates:
\[
\begin{aligned}
& \left(B_{k} ; \sqrt{\frac{s(0)}{S(B)}-1}\right) \\
& \left(x_{k} ; y_{k}\right)
\end{aligned}
\]
\[
\mathrm{k}=1,2, \ldots . . ., \mathrm{n}
\]

A balancing line can be made using these points in a linear regression.
\[
\begin{equation*}
y=a_{0}+a_{1} \cdot x \tag{4.1.18}
\end{equation*}
\]

A description of this procedure will be omitted here. Please refer to literature /lit.

\section*{Results:}

Mobility can be found from the slope of the straight line:
\[
\begin{equation*}
\mathbf{a}_{1}=\mathbf{b} \tag{4.1,19}
\end{equation*}
\]

The procedure produces two error criteria:
1. Zero position error an

Ideally the balancing line goes through origin. If ap deviates substantialiy from 0 , then we must assume drift attainment of the measuring procedure validity boundary. \(\quad / 76\)
2. Coefficient error \(\Delta_{1}\)

With a statistical confidence of 95\%, the error determines the error interval acound \(a_{1}\) where the true value of \(b\) lies.

Both of these criteria determine the error index in the measuring room expression:
\begin{tabular}{cc} 
Errors & B/M \\
\(\boldsymbol{\gamma}\) & \(\boldsymbol{\%}\)
\end{tabular}

The left-hand value is defined as the percent of intervals around the median value \(a_{1}=b\) :
\[
\begin{equation*}
f_{b}=\frac{\Delta a_{1}}{a_{1}} \cdot 100 \tag{4.1.20}
\end{equation*}
\]

The right-hand value means:
\[
\begin{equation*}
f_{0}=\frac{a_{0}}{a_{1}} \cdot 100 \tag{4.1.21}
\end{equation*}
\]

It indicates the zero point error in relation to the slope. This somewhat unusual definition became necessary because, unlike the foregoing error criterion, this one lacks a true reference dimension. Taking the absolute value alone is not permissible, since the dimension order of the zero point error is more difficult to recognize.
4.1.4 Drift occarences \(\angle 77\)

The linear regression procedure can be optimized primarily by increasing magnetic field settings for every point of the mobility profile. The degree of freedom of approximation increases and error offsetting improves. This possibility does not fail due to pure time expenditure, but rather as a result of the drift in the measuring equipment and the test itself.

The following considerations are aimed at eliminating drifts in the measuring room. The drift of the test cannot be influenced. It is indicated under the foregoing conditions in the error criteria according to equation (4.1.21).

The following table shows which drifts occur in the measuring device. The time period corresponds to seven magnetic field measurements per line approximation.
\begin{tabular}{|c|c|c|c|}
\hline Parameter & \begin{tabular}{c} 
1) \\
Driftzeit \\
\(s\)
\end{tabular} & \begin{tabular}{c} 
2) \\
Ist \\
\(\%\)
\end{tabular} & \begin{tabular}{c} 
D ift \\
\(\%\) \\
\(\%\)
\end{tabular} \\
\hline\(U_{L}\) & 245 & 0,34 & 0,1 \\
\(B\) & 35 & 0,3 & 1 \\
\(U_{G S}\) & 245 & 1 & 1 \\
\(U_{D S}\) & 245 & 1 & 1 \\
\(U_{g S}\) & 245 & 1,0 & 0,1 \\
\hline
\end{tabular}
\(\angle 78\)

Table 4.l.5: Uncorrected drifts in the measuring construction
Key: 1) Drift time 2) Actual * 3) Ideal *
Actual values were attained from measurements in the measuring device. Ideal values are chosen so that drift does not go above the error boundary of the parameter error. The values \(U_{L}\) and \(u_{g s}\) exceed permitted drift. It was found that the drift of \(\mathrm{U}_{\mathrm{L}}\) (initial voltage of the lock-in amplifier) primarily is determined by the drift of \(u_{g s}\). For this reason it is necessary only to make a correction in the alternating voltage of the gate.

Transconductance is calculated from:
\[
\begin{equation*}
S=\frac{U_{L} \cdot S_{E}}{R_{L} \cdot \mu_{g s} \cdot 10 \mathrm{~V}} \tag{4.1.22}
\end{equation*}
\]

Before the correction it was assumed that the value of \(u_{g s}\), set only one time, remains constant for all transconductance calculations during the measuring period. As such, the drift of \(u_{g s}\) had a direct and very sensitive influence on the measurement results.

Correction: For every transconductance measurement \(u_{\text {gs }}\) and \(u_{L}\) were recorded simultaneously. The voltage source continues to exhibit a drift, however, its influence is corrected by technical measuring.

This precaution necessitates additional installation of a second digital multimeter compatible to the IEC-Bus, but it 79 eliminates virtually the entire drift of the measuring device.
\begin{tabular}{|c|c|c|c|}
\hline Parameter & \begin{tabular}{c} 
Driftzeit \\
\(s\)
\end{tabular} & \begin{tabular}{c} 
Ist \\
\(\%\)
\end{tabular} & \begin{tabular}{c} 
Soll \\
\(\%\)
\end{tabular} \\
\hline\(U_{L}\) & 245 & 0,033 & 0,1 \\
\(B\) & 35 & 0,3 & 1 \\
\(U_{G S}\) & 245 & 1 & 1 \\
\(U_{\text {DS }}\) & 245 & 1 & 1 \\
\(U_{g S}\) & 0 & 1 & 0,1 \\
\hline
\end{tabular}

Table 4.l.6: Corrected drifts of the measuring device Key: 1) Drift time 2) Actual * 3) Ideal \%

The values in the table are related to seven magnetic field measurements. Since the ideal values are well satisfied, even a considerable increase in magnetic field settings on the side of the measuring device is not critical. The number of magnetic field settings can be governed completely by the type and quality of the test. In the case of tests with minimal mobility, they ought to be as large as the drift allows.
4.2 Technical boundaries of the measuring procedure

The measuring technique represented here has two limitations in practical use:
-- Transconductance of the test decreases so much that the entrance sensitivity of the lock-in amplifier is exceded.
-- Charge. carrier mobility b is so small that the magnetic transconductance change can no longer be evaluated.

A numerical indication of the limiting values
\[
\mathbf{s}_{\mathbf{S}}, \quad \mathbf{b}_{\mathbf{S}}
\]
essentially depends on which error boundary is allowed. Since evaluation involves an error indication for every value, the operator may determine these limitations. Here we shall describe the causes and relationships of the limits and, finally, orientation values will be given.

\section*{Regarding the transconductance boundary \(\mathbf{S}_{S}\) :}

At the setting "max output stability", the lock-in amplifier has an initial sensitivity of \(100 \mu \mathrm{~V}\) at full force. The smallest permissible value amounts to \(20 \%\) of the full oscillation.
\[
\begin{equation*}
u_{L}=20 \mu v \tag{4.2.1}
\end{equation*}
\]

From this value the \(S_{S}\) for \(u_{g s}=50 \mathrm{mV}\) can be attained:
\[
\begin{equation*}
S_{S}=400 \mu \mathrm{~S} \tag{4.2.2}
\end{equation*}
\]

If the measuring device was put into operation approximately \(/ 81\) approximately one to two hours before the measurement, then the lock-in amplifier can be operated at the "normal" setting as well. As a result, initial sensitivity increases by factor of 100. At this low voltage, however, even the lock-in technique can no longer separate the noise portion with sufficient certainty so that the oscillation swings easily. A lower limitation which can still be evaluated by technical measuring is indicated with:
\[
\begin{equation*}
S_{S}=20 \mu S \tag{4.2.3}
\end{equation*}
\]

Regarding the mobility boundary bS
Equation (4.1.4) exhibits an additional term
\[
\begin{equation*}
f_{L}= \pm \frac{1}{2} \frac{U_{1}(0)}{U_{L}(0)-U_{L}(8)} \cdot \frac{\Delta U_{L}}{U_{L}} \tag{4.2.4}
\end{equation*}
\]
which describes the error portion of the lock-in amplifier. With help of the equation
\[
\begin{equation*}
b=\frac{1}{B} \cdot \sqrt{\frac{U_{L}(0)}{U_{L}(B)}-1} \tag{4.2.5}
\end{equation*}
\]
a limit \(b_{S}\) can be indicated. The error portion of the lock-in is set at 20\%. The measuring instrument tolerance amounts to:
\[
\frac{\Delta U_{L}}{U_{L}}=0,01
\]

With these conditions the following is attained for equation (4.2.4):
\[
\begin{equation*}
\frac{U_{L}(0)}{U_{1}(0)-U_{L}(B)}=\frac{4}{1} 0 \tag{4.2.6}
\end{equation*}
\]

The initial lock-in amplifier voltage decreases by \(2.5 \%\) in the magnetic field. This small change is the useful information!
\[
u_{L}(0)=1.025 u_{L}(B)
\]

With this the following is approximately true for equation (4.2.5):
\[
\begin{equation*}
t=b_{S} \cdot \frac{1}{B} \cdot \sqrt{\frac{1}{40}} \tag{4.2.7}
\end{equation*}
\]

For a strong magnetic field \((B=900 \mathrm{mT}\) ) the iower limit of \(b\) is expressed by:
\[
\begin{equation*}
\mathrm{b}_{\mathrm{S}}=1760 \mathrm{~cm}^{2} / \mathrm{Vs} \tag{4.2.8}
\end{equation*}
\]

Measurements on test III-49 (see Figure (5.1.1) to Figure (5.1.3)) verify this value. The graphic representation of the profile shows, however, that even below this value a mobility profile with a steady course can be obtained. Error offsetting of the linear regression assures that error in the end result lies below occassionally high parameter errors. Since the values spread widely, the necessary statistical certainty of \(95 \%\) can be maintained only in a relatively large error interval.

These observations can be used to indicate the technical boundaries:
\[
S \geqslant 0.02 \mathrm{mS}
\]
\[
\mathrm{b} \geqslant 1760 \mathrm{~cm}^{2} / \mathrm{Vs}
\]
4.3 Setting recommendations for parameter measurements

The parameter settings
\[
\mathbf{u}_{\mathrm{gs}}, \mathrm{U}_{\mathrm{DS}}, \quad \mathrm{~B}
\]
essentially determine measuring precision of the end result. They should be set so that the physical errors and the technical measuring errors maintain the same dimensions. This brings about end results with minimum errors and little effort. Occasionally, both of these error sources cannot be reduced simultaneously, so that the setting recommendations provide a suitable compromise between:
2. \(\quad u_{\text {gs }}\) minimum
2. \(U_{D S}\) minimum
3. \(B^{\text {equally distributed }}\)
4. B maximum
5. \(U_{L}\) lock-in at full amplitude
*Section 4.3 is included at the very end of the original text, with page numbers as indicated herein.

The compromise between 3. and 4. is found with equation (4.1.11). There the lower limit of \(B\) is:
\[
\frac{1}{4 \cdot b}
\]
b: Estimated value of mobility
This condition is quite astutely described. In practice the following demand proves to be sufficient:
\[
\begin{equation*}
B \geq \frac{1}{7 \cdot b} \tag{4.3.1}
\end{equation*}
\]

The estimated value of \(b\) can be taken from expected test data;
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Test } & \(\mathrm{b} / \mathrm{cm}^{2} / \mathrm{Vs}\) & \(\mathrm{Bm}_{\mathrm{min}} / \mathrm{mT}\) \\
\hline Epitaxy & 3000 & 480 \\
Diffusion & 2500 & 580 \\
Ion implantation & 4000 & 360 \\
HETERO & 6000 & 240 \\
\hline
\end{tabular}

Table 4.3.1: Estimated value of mobility in various tests

The remaining value range of \(\mathrm{Bm}_{\mathrm{m}} \mathrm{n}\) up to 999 mT is carried out in similar fasion. However, it is not practical to set b-values under 500 mT .

The compromise between 1., 2. and 5. is found when the values of \(u_{g s}\) and UDS bring about full amplitude in the lowest range of the lock-in. The following table shows the relationship between transconductance test dimensions as well as \(S_{E}\) (entrance sensitivity of the lock-in amplifier) and \(\mathrm{u}_{\mathrm{gs}}\).
\[
\begin{equation*}
S=\frac{S_{F} \cdot \frac{U_{L}}{10 V}}{\mu_{g s} \cdot \overline{R_{L}}}=f\left(u_{g S}, S_{E}\right) / \mathrm{mS} \tag{4.3.2}
\end{equation*}
\]
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{gathered}
\mathrm{u}_{\mathrm{gs}} \\
\mathrm{mV}
\end{gathered}
\]} & \multicolumn{2}{|r|}{Sensitivity} & \\
\hline & \(10 \mu \mathrm{~V}\) & 30 NV & \(100 \mu \mathrm{~V}\) \\
\hline 30 & 0.06-0.39 & 0.18-1.18 & 0.61-3.94 \\
\hline 40 & 0.05-0.30 & 0.14-0.89 & 0.45-2.95 \\
\hline 50 & 0.04-0.24 & 0.11-0.71 & 0.36-2.36 \\
\hline 60 & 0.03-0.20 & 0.09-0.54 & 0.30-1.97 \\
\hline 70 & 0.03-0.17 & 0.08-0.51 & 0.26-1.69 \\
\hline 80 & 0.02-0.15 & 0.07-0.44 & 0.23-1.48 \\
\hline 90 & 0.02-0.13 & 0.06-0.39 & 0.20-1.31 \\
\hline & \multicolumn{3}{|c|}{\(S_{u}-S_{0}\)} \\
\hline
\end{tabular}

Table 4.3.2: Calculable transconductance range with dependency of \(u_{g s}\) and \(S_{E}\)

Transconductance boundaries are defined so that:
\[
\begin{align*}
& S=S_{U}: U_{L}=2 V \\
& S=S_{0}: \quad U_{L}=13 V \tag{4,3.3}
\end{align*}
\]
\(\mathrm{U}_{\mathrm{L}}\) : Exit direct voltage of the lock-in amplifier
With program "B-transconductance measurements" we establish a transconductance profile
\[
\mathbf{S}=\mathbf{S}\left(U_{G S}, U_{D S}\right)
\]

From this profile we seek the measuring series \(S\left(U_{G S}, U_{D S}=\right.\) const.), which at the smallest possible UDS and \(u_{g s}\) fits into value range ' \(S_{u}-S_{o}\) ' of Table (4.3.2).

For partial measurements
\(\begin{array}{ll}-- & u_{g s} \text { at the gate contact }\left(U_{G S}\right\rangle 0 \\ -U_{D S} \text { on the substrate }\left(U_{G S} \underset{\sim}{\sim} U_{T}\right)\end{array}\)
must be chosen to be very small. Otherwise both voltages should be of the same amplitude (standard value).

This chapter contains a selection of messuring results made with the MAGNBTO-TRANSCONDUCTANCB-MOBILITY-PROFILING procedure. MESFBTS of various technologies were investigated with a wide value range for chargf carrier mobility.

The mobility profiles represented are complemented by remarks on the technology of the etructural element and the measuring parameters. The selection of measuring results covers the characteristic strengths and weaknesses of the measuring procedure.
5.1

Diffused MESFETs
The active layer is produced by diffusion in semi-isolating GaAe. Diffusion time and temperature are decisive technological data for the concentration of the charge carriers. A look at the comparison between measured reaulte and technology of two diffused MESFBTs which were investigated clarifies the influence of technology on the structural element.
a) III-49

The measuring results are represented in Figures (5.1.1) to (5.1.3)

\section*{Technical measuring remarks:}

Charge carrier mobiliçy lies in the lower boundury range at approximately \(1700 \mathrm{~cm}^{2} / \mathrm{Vs}\). Nevertheless, a steady mobility profile was obtained. The b-value of \(U_{G S}=-1.7 \quad \mathrm{~V}\) falls out of the path. In Figure (5.1.2) the triangles represent magnetic field settings for this value and illustrate that apparently drift occurrences lead to this measuring error. The error course of this profile (see Figure 5.l.3), like all the other profiles, agrees well with the expected values. The very high values in the proximity of the boundary layers indicate the boundaries of the measuring procedure. They have their basis in high drift occurrences (boundary layer effects) and lower mobility values.
b) \(1 \mathrm{II}-78\)

The measuring results are represented in Figure (5.1.4).
This profile represents a portion of the entire range. Both profiles will be compared following the figures.


Figure 5.l.l: III-49 Mobility profile


Figure 5.1.2: Line approximation of agood and an erroneous measurement

Test
Data input Measuring time
Sensitivity
Magneti field MT 100 UV Alternating voltage \(50 \mathrm{MV} / \mathrm{IKHZ}\) U(DS) . 1 V


Figure 5.l.3: III-49 Tabulated mobility profile
TEST:
III-78-a
10.4


Figure 5.l.4: III-78 Mobility profile
\begin{tabular}{|c|c|c|}
\hline & III-49 & 111-78 \\
\hline \(\mathrm{N}_{\mathrm{D}} / 10^{18} \mathrm{~cm}^{-3}\) & 1,5...2.5 & 0,6..0,7 \\
\hline \(\mathrm{T}_{\text {Diff }}\) & \(800^{\circ} \mathrm{C}\) & \(900{ }^{\circ} \mathrm{C}\) \\
\hline \({ }^{\text {Diff }}\) & 10 min & 36 min \\
\hline A) Gateabsenkung & B) gering & C) groB \\
\hline \(\mathrm{b}_{\text {max }} / \mathrm{cm}^{2} / \mathrm{Vs}\) & 1800 & 4000 \\
\hline \(f_{\text {max }}\) & 15 GHz & 21 GHz \\
\hline
\end{tabular}

Table 5.1.5: Data comparison for two diffused tests Key: A) Gate decrease B) Small C) Large

The different concentrations can be attributed to diffusion data in connection with the gate decrease. The decline in \(\angle 8\) mobility at the gate contact has different causes in the tests:

III-49: Surface effects
III-78: Steady increase of the disturbance concentration
The data of III-78 are unusual for a diffused MESFET and particularly in relation to its high mobilit \(\quad\) nd high boundary frequency very interesting. According to th t structions of the producer of the structural element, the progress of the charge carrier concentration can be closed upon depletion of the doping material source during layer production.
5.2 Epitaxial-MESFETS
a) I 208-b

This structural element was produced with liquid phase epitaxy (LPE). The measuring results are repregented in Figures (5.2.1) and (5.2.2).

\section*{Technical measuring remarks:}

In spite of the sioall number of four \(B\)-values per line approximation, a very precise mobility profile could be obtained (Figure 5.2.1). A comparison of the error criterion "B/M" with test III-49 clearly shows that the diffused MESFET exhibits a higher drift and that, at nearly identical test mobility, this drift is responsible for the poorer results of the diffused tests. In observing the absolute values of the error criterion "errors in percentage" it should be remembered, that the statistic errors have been evaluated there. A physical error of 5\% maximum would have to be added in.

The error boundary increases sharply at \(I\) 208-b in the \(/ 89\) proximity of SI. This allows us to conclude that there are technological difficulties in the boundary surface.
b) ALF 1003/1

This MESFET, produced in gas phase epitaxy (VPE), was investigated as an example for an industrial model.

In Chapter (5.1) both of the diffused tests III-49 and III-78 were introduced. At absolute value and course the profile of the I 208-b has e mobility profile similar to that of the III-49. This is also true for tests ALF \(1003 / 1\) and III-78. In the tests mentioned last, the decline of mobility at the gate contact can be attributed to the steady increase of charge carrier concentration in both cases. The other tests each exhibit high concentrations, which lead to a decrease of charge carrier mobility.

TEST \(\quad \mathrm{I}-208 \mathrm{~B} 8.5\)

DATA INPUT
MEASURING TIME
SENSITIVITY
MAGNETIC FIELD/MT
AITEERNATING VOLTAGE

BI208B 28.03 T
85 MINUTES
30 UV
\(601 / 900 / 100\)
\(50 \mathrm{MV} / 1 \mathrm{KHZ}\)
.05 V


Figure 5.2.1: I 208-b Tabular mobility profile


Figure 5.2.2: I 208-b Mobility profile


Figure 5.2.3: ALF 10003/1 Mobility profile

The construction of a hetero-MESFET differs considerably from the homogenougly doped structural elements considered thus far. The following figure shows a cross sectional yiew of the structural elemert:


Figure 5.3.1: Structure of a hetero-MESFET

The active layer was produced using molecular ray epitaxy. The literature /l7, 18, 19/ discusses the functioning process of the structural element. The most important characteristic is the formation of a "two-dimensional electronic gas" in the upper boundary layer of the undoped ( \(p^{-}\)) GaAs. This produces a very high mobility at simultaneously high charge carrier concentration in a very thin layer. The basis for the high mobility is the very low concentration of ionized disturbance place atoms and the homogenous grid structrue which results from it.

The mobility profile could be determined only insufficiently using integral measuring methods. Thus the Hall measurements yielded a charge carrier mobility of \(4500 \mathrm{~cm}^{2} / V \mathrm{~s}\). With the \(\angle 93\) following measurement the actual mobility and its course are recorded for the first time and with it a technical measuring substantiation of the "electronic gas":


Figure 5.3.2: D-6-9a Mobility profile

The research on this structure has not yet been developed very far. This measuring procedure may contribute a great deal to the further development and understanding of the structural element.

Remarks on the measuring technique
In Figure (5.3.1) the profiles of two measurements have been superimposed. The high degree of agreement proves that the measuring procedure can be reproduced successfully. Median deviance between the measurements amounts to 2.3\%. Maximum deviance (at SI) amounts to 9\%.

6
Summary \(\angle 95\)

This measuring procedure enables us to make an actual determination of local mobility in the channel. This procedure is applicable to all current technologies of short-channel-

MBSFBTs and provides up to \(b \approx 1000 \mathrm{~cm}^{2} / \mathrm{Vs}\) useful data.
Technological inferences regarding surface disturbances, grid voltage, and quality of the boundary layers are made possible by means of comparison with other parameters in the channel.

Measuring parameters \(U_{G S}\) and \(u_{g s}\) make it possible to set and cancel depth and layer thickness. This is not possible with any other procedure. As a result of this study, profiles of high precision over the entirety of the channel have been made available. The measuring results for both course and absolute value stand up against results of other works (/ \(1,4,5 /\) ). Furthermore, this study provides the first mobility profile of modulation doped hetero-structures measured using this procedure. The results provide a very good look at the functioning processes and quality of this new type of structure.

Other focal points of this study lie in the areas of
-- Measuring room automation.
-- Error control and prevention
Measuring room automation has grown with IEC-Bus compatibility of measuring equipment and instruments. Further progress in this direction is possible only if a lock-in amplifier is developed whose initial sensitivity can be controlled directly by the measuring program. The measuring room can be serviced by a trained lab assitant.
\(\angle 96\)
The author knows of no publications which deal with error observations of the measuring values. The error criteria developed in this study provide results which agree very closely with theoretically expected procedures. From the observations of statistical and physical errors, a value of
\[
\mathrm{f} \leq 10 \%
\]
can be given as an error orientation for moilities over 3000 \(\mathrm{cm}^{2} / \mathrm{Vs}\).

Appendix
```

100 rem \#\#H

```

```

120 rem \#\#\#
130 open4,4:open16,16:chs=chr\$(147):printch\$iprint:print

```


```

160 print" data input: ":printaprint
170 print:input" date ";das
180 print:input" test ";pn\$

```

```

200 input" starting value v "iga:input" end value v "ige
210 input" atepwidth v "igs:gfeint((ge-ga)/gs)+2:gn=0
220 gezget.001tgs:if gfく! then gosub 1030:gotcl90

```


```

250 input" startins value mt ";ba:input" and value mt ";be

```

```

270 if bf<l then gosub $1030: g o t 0240)$
280 if gftbì300 then gosub 1060: gotol90
290 if be. 1000 or bais 1000 then gosub 1090:goto240
300 print:input" u(ds) v ";ud
310 if uds. 3 then gosub 1090 goto 300

```

```

330 input" frequency khz ";
उ40 input" amplitude mv ";a:afs=str\$(a)+"mv/"tstro(f)+"khz"
350 print:print" measuring range $": p r i n t "-\infty-e_{-}^{-}$
360 input" stansitivity uv "ise
370 input" sevoltmeter v ";bribr=2ciono/br
380 input" ac-voltmeter mv "iarsar=20000/ar
390 printeths:print:print:print" aagnetic lield normalization ":gosub 1120
400 dim $5(g f, b f), a s(!52): W W=0: t i \leqslant=" O O \rho O 00^{\prime \prime}: p r i n t "$ measurement"
410 for gaga to ge step gs:gaint (10000*gt.5)/10000:gosub 620:rem ris apge Bource
420 gn=gn+1:bn=0:print:print" u(gs):"igi" v"iprintiprint
4.30 for $b=b e+b s$ to ba step -bs
440 bn=bn+1
450 if bnil then gosub 1300 iprint" ";b, rem b-adjustment. ,
4b0 if bn=1 then print" b /mt", "s /ms":print:print" o",
470 gosub 830:rem k-dmm 1 (i) 24
480 if bnil or $5 g n((1 J-r) t(r-2))=1$ then 530
490 print:print:print" korrektur der lock-in eingangsempfindm . lichkeit"
S00 print:print:input" sensitivity uv ";se

```

```

520 got.0 470
s30 next b

```

```

550 print\#4, "s3vOOO10nr":print:print:nent g
Esi) m\$=ti*:print\#1S, "b日"

```

```

580 print:print:print":.atore delete i":inputmes
590 if mes="s" then gosub 1860:gotobioirem B(x)0 store
600 if mesi? "l" then 580
610 closeb;close4:closel6:end

```
```

620 rem \#\#\# r:w voltagn @ource \#GW
630 open18,9
640 uas="ual"+str*(g):ub*="ubl"+str$(ud):print"18,was:print|l日,ub*
650 wz=60:gosub 790
660 inputMI日,aus:an=len(aus):if an=24 then an=an-1
670 ua = val(rights(aus,an-3)):ub = val (rights(aus,an-15))
600 if ua<>g or lib <.und then print "voltage source an" :gosub750:gotob40
690 print"1b,"a8"
700 closel8:return
710 rem ### input loop '1 㭌#
720 get jb:getj*:get j*:get j*:js=""!print:print" 'j/n'?"
730 get js: if js="" then 730
740 print,j*:return
750 rem ### input loop 2 ###
760 get js:get j*:get j$iget j*:j*m"":print:print" 'j'?"
770 get j*: if j*<>"j" then 770
700 print,j*:return
790 wt=ti :rem \#\#\#\# waitingloop \#\#\#
000 if wt+wz > ti then 000
810 return
820 rem \#\#\#
830 rem W\#\#meacuring valuc formkeithley multimeter
E40 open7,24:open20,10i j=0:wz=300:gosub 790
850 input\#20,ws: if st<>0then 850
860 input,\#7,2%: if st<``othen 860
870 j=j+1:ifws="over"then print:print"overflow":stop
880 if zs="over"then print:print"overflow":stop
890 r5=r4:r4=r3:rJ=r2:r2=r1:r!=val (w*)/br
900 z5=24:z4=23:zJ=z2:z2=z1:zl=val(zs)/ar:wzz150:gosub 790:if j<6 then 850
910 if j>15 then printiprint" ideal value dmm not convorgent ":jag:stop

```


```

940 if zq=0 then 960
950 if z/sqr(zq/4)<xz then 85's: rem xz : 95%wk. for fi 0.3%
960 if rq=0 then 990
97(1 ra=sqr(rq/4):r%=r/ra
980 if r%<<r then B50% rem xr: 95%wk. for f{ 0.2% etatement from laplace
990 s(gn,bn)= r/z$se/10zrz=int(1000$s(gn,bn)+.5)/1000
1 0 0 0 ~ p r i n t , r z ~
1010 if s(gn,bn)>s(gn,l) then print, "drlft orror" :stop:b=0:gn=gn-1:g=g-gs
1020 close7:close20:return
1030 rem \#\#\# sr crror infut 1 \#\#\#
1040 print:print" consult inetructions ":print:wz=60:gosub 790
1050 return
1060 rem \#\#\# sr error input 2 \#\#\#
1070 print:print" amount of met, timo high . ":print:wzab0igosub 790
1080 return
1090 rem \#\#\# gr error input. 3 \#\#\#
1100 print:print" measuring range exceeded ":priṇt:wz=60:gosub 790
1110 return

```
1120 rem \＃\＃\＃manuring ränsa，\(b, d \equiv f(b)\) ..... ＂\＃\＃
1130 printiprint＂max＇mus value for b＝tu（max）＂iprint
\(1140 \mathrm{mb}=1000 \mathrm{sif}\) ber95 then \(\mathrm{mb}=100\)
1150 print：printsprintsprint＂eeanuring range teale witer open＂
116d printiprintiprintiprint＂b（inax）＝＂imbi＂mtesia ..... ＂：gosub 750
1170 d\＄a＂0nco＂：print \(44,5 d \$+d \$+c \$+14+r\) s
\(1180 \mathrm{Wz}=60\) ：gosub 790
1190 print＂16，＂b7＂：gosub 790ıprint＂16，＂b7＂：gosub 790
1200 if dsa＂0000＂then printM16，＂ab＂：gosub 790：print＂16，＂ab＂：gosub 790
1210 printw4，sds＋＂c999＂＋c\＄＋1s＋rs
1220 printchs：print＂talker＂sprintiprint＂taste inhibit on ？＂：gosub ..... 750
1230 printchsiprint：print：print＂b＝＂imb；＂mtesla nver voltage source＂

1250 printehs：print：print＂taste inhibit out \(\mathbf{7 " ~}^{190 s u b} 750\)


1280 deffn ur \((y)=a 1+21 a 2 t y\)
1290 return
1300 ram \＃\＃\＃ b－adjustment\(1310 d 0=f n\) us（b）
1320 open12，12：d1＝d0
\(1330=\) ？
1.340 d \(\$=r i g h t s(" 00004+5 t r s(d)), 4)\)
1350 aasmad\＄＋ds＋c\＄＋1\＄＋rs
\(1360 \mathrm{j}=0\) ：print \({ }^{2} 4\), aas
\(1370 \mathrm{Wz}=(1-\operatorname{sgn}(z)) * 240+120\) ：gosub 740
1380 input \(12, b s: i f\) st 〈〉 0 then 1380
1390 if len（b \(\$\) ）is then 1330
1400 w \(2=10:\) gosub 790
1410 erserights \((b \$, 4)\)
1420 e＝val（ers）／dotmb／d 00
14.30 el \(\$=1\) eft \(\$(b s, 1\) en（bs）－s）
1440 if el\＄z＂ee＂or els＝＂be＂then e＝e ：goto 1470
1450 if el\＄＝＂eee＂or els＝＂bee＂then e＝－e ：goto 1470
1460 if els＝＂e＂or els＝＂b＂then e＝e＋1000 igoto 1470
1470 if els＝＂e＂or els＝＂6＂then print，，＂overload＂：goto 750
1480 e4＝e3：eJ＝e2：e2＝el：ei＝e：j＝j＋1：if \(j\) く 5 then 1380
\(1490 \mathrm{bb}=(e 1+e 2+e 3+e 4) / 4: \quad b q=(e 1-b b) \ddot{2} 2+(e 2-b b) \ddot{2} 2+(e 3-b b) \ddot{2} 2+(e 4-b b) \ddot{2} 2\)
1500 ab＝sar（ba／3）：
1510 if abs（bt） f ．（o2sint then 1130

\(1530 \mathrm{rf}=\mathrm{abs}(\mathrm{b}-\mathrm{bb}) / \mathrm{b}\) ）：if rfi .01 and z \％othen 1590
\(1540==z+1: i f z>10\) thenz＝5：printiprint＂idenl value unotainable wistop
1550 dd＝int \((d)-(b b-b):\) fnur \(((b+b b) / 2)+.5)\)
1560 if dd＞9999 then dd＝9999
1570 if ddi 1 then \(d d=5\)
1580 dl＝dd：goto 1340
1590 closel2：return
```

1600 rem \#\#W siorn *W
1510 printchs:print:print": lood tuble of contente ";goto 1840
1620 printiprint "openink of docummnt"
1630 print:print"\"orgmore than 30 blocke froa7" *:gosub 710
1640 if js="n" then pririt "now diskette" stop
1650 print" from taít number and knowledge input naw document nama"
1660 print:print"name= 斿.............$15)"
16%0 print; input"dorument na=a"; dns
1680 if len(dn*)>15 then print'"documant name longar than lG characters":goto 1650
1690 n$="ß"+ln$+":"+dn$+",s,w"1oper,100,8,10,n$
1700 f2=14:jf bf:144, then 42mbf
1710 dim ss(f2)
1720 s%(1)=das:s$(2)=pn$:5*(3)=str$(ga):s$(4)=5tr*(ge):s%(5)=5tr$(05)
```


```
1750 for m=! to 14
1760) print#100,5$(m); chr$(13%}
1770 next
1780, for n=1 to gf
1790 for m=1 to bf.
```

```
1810 next m
1820 next n
1830 close lo0sreturn
1840 rem ### lood table of contents ###
1850 k=0:dim a&(152)
1860% print:print:print:print:print
1070 input"laufwerk o/i ";lns
18gọ printch*:print:print:print" plenmewait 30 seconde "
1890 open15,8,15
1900 print#15,"m-e"chr$(212)chr$(237)
1910 opgn2,8,D,"*"+1n$+":"+"b*"
1920 get#2,as:get#2,a$
19301=1
1940 get#2,as:get#2,ab
1950 a=0
1960 get#2,as:if as<)"" then a =asc(as)
1970 get\2,a\leqslant:if a$<`""" then a =a+256$asc(as)
1980 a$(1)=str$(a)+""
1990 get*2,a$:a$(1)=as(1)+a$:if a$く\"" and l<>1 then k=1
2000 get年2,as:a$(1)=a$(1)+as
2010 if as < ' "" then 2000
2020 if k<>1 then 1=1+1; goto 1940
2(1%0 close2:closel5
2040 rem #### monitor verw.,n of tabla of contunts b ###
2050 print chs
2(160) for n=0 to l
2070 printa$(n)
20日0 next
2030 goto 1620
```
\(\$ S_{0}$ printiprintiprint"choicn of meinurins procronsibn"
150 print:print" collect table of contante of diakette " 8 gostib 1010
170 printiprintiprintsprintiprint
180 input" 2 document name" $d^{d n}$ :
190 ntsinst": "tonst", s, $\mathrm{r}^{\prime \prime}$ iopen 90, B, 9, ns
200 printchs:print:print" "ioad protocol boad"
210 for $m=1$ to 14
220 input 190 , si?(m)
230 next


260 print" tant "isis(2):printiprint"alternating valtago "isls(12)
270 printiprint" bexf(u(gs)) /cm2v-1s-1Hiprintiprint
280 print,"u(ds) = ";sis(11);" v"iprint
290 printiprint" if aessurina progreasion correct ": gosub 930

310 closeqniprint:print" new mensuring progresion" :gosub 930:if jsw"j" then lto
320 goto 920

340 dim $x(f 1)$ : din $y(f 1)$ irem for ploter
JEO dim $s(g f, b f), b(g f, 3): t=395 /(b f-1)+179$; rem opprox. threchold valun $5=95 \%$ bs
360 for $\mathrm{gn}=1$ t.o gf
370 for bn $=1$ :5 bf

390 next bn
400 nest gn
410 close90
420 for $\mathrm{g}=\mathrm{m}: \geq \mathrm{Z}$
430 if sign,: $=$ ihen $49(1$
440 for bn $=2 . \quad 2 f$
450 if $s$ (gn,: then 470
$460 \mathrm{~s}(\mathrm{gn}, \mathrm{bn} ;=1 \quad:(\mathrm{gn}, 1) / \mathrm{s}(\mathrm{gn}, \mathrm{bn})-1)$
470 next bn
480 next gn
490 ga=val(51
500 bamval(sit tbewval(sls(B)):bs=val(sl\$(9)):bnwo
510 for grga \(t\) step gs
\(520 \mathrm{~g} \cap=\mathrm{gn+1:xc} \quad \mathrm{~s}=\mathrm{U}: \times \mathrm{s}=0: \times y=0: b n=1\)
530 for b=be 1 ‥ step -bs

550 next \(b\)

\(570 \mathrm{sq}=\mathrm{b}(\mathrm{gn}, 2) \mathrm{z} 2\)
5il) for b=be to ba. step -bs
\(590 b n=b n+1: 5 q=5 q+(5(g n, b n)-b(g n, 2)-b(g n, 1) * b / 1000) \Delta 2\)
big next b
\(610 \mathrm{sa}=5 q \mathrm{r}(5 q /(b f-3))\)
\(620 b(g n, 3)=t * 5 a * \operatorname{sqr}((b f-1) / n n) / b(g n, 1): b(g n, 2)=100(i * b(g n, 2) / t(g n, 1)\)
6.30 next 9
640 print:print," .table" , "plotter":gosub 950
650'if j\$="p" then gosub 1310:goto920

```
 1300 rem sr #### digi plot ###
 1310 print:print:print" function:"iprint" CCCCCCCC":print
 1320 input"be=f(u(gs)) - sqr() =f(b) - u&b ";dws
 1330 if dw$\>"u" and dws:`"b" and dw&<>"&" then 1320 1340 x 1*400:yl=200:y2m1500:rem diagran orisin coordinatos. 1350 nx=4iny=5idx=225:dym180; rem length and nusber of axin asctions 1360 sd=!50:sg=3:sp*sg+1:hb=50:7: rem sdiabst. d-s / sg:s.gr./hb:s-breite 1370 printchs:print:print" maximus value of be" 1380 input" cm2/vs "iumsum=int((um-1)/1(000+1):1000:bm=um/10000 1390 if dw$="b" then 1460 1400 printchs:printiprint" axis ncale for u(gs)":print 1410 print".5 0 -.5 ...-1.5 v 0.5":print" 1 0 -1 ...-3 v 1.0" 1420 input" ";uw 1430 print:print:print" axis acale for u:print 1440 print" be(max) =";um;"cm2/vs"iprint" be(min) = O; 10%;2000...cm2/vs" 1450 input" be(min) cm2/vs ":uusud=(um-uu)/ny 1460 printeh:iprint:print" diagram drawing " 1470 input" entor new data "inds:if nd$\>"n" and nds(`"d" then 1460
1480, if nds="n" then 1520
1490 if dw$="b" then 1510
 1500 gosub 1850nif dw$="u" then 1520:ren gosub diagramm be=f(u(gs))ä
1510 gosub 2020:rem diagramm sqr()=f(b)
1520 gosub 1800: rem marker choice
1530 if dw5="b" then 1640:rem omission of be=f(u{gs))-data
1540 eloseb:openb,5:rem-data in be =f(u(gs))
1550 for gn =1 to gf
1560 x=dx-int((ga+(gn-1)*gs)\#dx/uwt.S):y=int((1e4kb(gn,1)-uu)*dy/ud+.5)
1570 if y=0 then 1610
1560) if }x<0\mathrm{ or y<0 then stop:gotol610
1550 if x>n:*dx or y>ny*dy then stop:gotu 1610
1600 print\#6, "M"+5tr$(x+x1)+","+str$(y+y2):print\#6,mn$.
 1610 next gn
 1620 print"6,"H":close6:if dw$="u"' then1790
1630 print:print:print" gqr()=f(b) data ":gosub 1800:rem marker -choise
1640 close6:opent,5:printch$:rem sqr()=f(b)
```

```
 1660 print:print"u(gs)= ";ga;" bis ";gé;"v";5pc(20);"stnp width ";gs;" v"
 1670 print:input" u(gs) =ca v"ig
 16&U' gn=int((g-ga)/gs+1+.5):g=(gn-1)*gs+ga:print:print" u(gs)= ";g;"v"
 1690 print:print," wert ok":gosub 'i-ticif j%i>"j" then l650
 1700 for bn=2 to bf
 1710 x=int((be-(bn-2)*bs)*dx/250+.5):y=int(s(gn,bn)*ny*dyfbm+.5)
 1720 if x<0 or y<0 then stop:gotol760
 1730 if %.> nx*dx or y>ny*dy then stop:goto 1760
 1740 if }x>0\mathrm{ and }y=0\mathrm{ then }176
 1750 print#6,"M"+5tr$(;+x1)+","+str$(y+y!):print#b,mn$
1760 next bn
1770 print"6,"H":closeb
1780 printeh\&:print:print" neues u(gs) ":gosub 930:if j\$="j" then 1630
1790 closeb:return
ready.
```

1800 rem *\#\# marker \#\#\#
1810 print:print"marke:":print" punkt (1)":print" rhombus (7)"
1820 print" square (3)":print" triangle (4)"iprint"double cone(5)"
1830 print" octagon (b)":input" ";mns:mnv="Iv"+mn*
1840 return
1850 closeb:opent, 5: rem \#a\# bee f(u(gs)) diagramm \#\#\#
1860 uos="M"+str\$(x1)+", "+strs(y2):print Wo, vos


1890 for $n=0$ to $n x$
19(10) print\#b, "M" + str $\$(x 1+n t d x-h b *(1+a b s(s g n(1-n))))+", "+s t r \$(y 2-5 d / 2)$
1910 print\#6, "P"+stre((1-n)*uw)
1920 next $n$
1930 print\#6, "M"+str\$(x1+nx*dx-10*hb)+", "+strs(y2-sd)
1940 printH6, "S"+str\$(sp):printH6, "F U(GS)":print\#6,"S"+strs(sg):print\#ó, "P/V"
1950 for $n=0$ to $n y$
1960 print\#6, "M"+strs(x1-6*hb) +", "+strs (y2+n\#dy-sp\$3)
1970 print\#6, "C" + str $\$(u u+n \# u d)$
1980 next $n$
1990 print\#6, "M"+strs(x1-7*hb)+","+strs(y2+ny*dy-10*hb)
2000 print\#6, "Q1":print\#t,"S"+str\$(sp+1):print\#6,"Pb":print\#b,"S"+str(sg)
2010 print\#6,"P/cm2/Vs":print\#6,"00":print\#6, vos:cl oseb:return
2020 closeb:openb,5:rem \#\#\# sqr( ) $=f(b)$ diagramm \#\#\#
2030 bo $\$=" M "+s t r(x)+1)+"+s t r \$(y 1):$ print\#b, bo $\$$


2060 for $n=0$ to $n x$

2080 print\#6,"F"+5tr\$(n*250)
2090 neint $n$
2100 print. $6, " M "+s t r \$(x 1+n: \% * d x-104 n b)+", "+s t r \$(y 1-s d)$
2:10 print\#6,"S"+str\&(sp):print\#6,"PE":print\#b,"S"+strs(sg):print\#6."F/mTesla"
2120 for $n=0$ to $n y$
2130 print\#6, "M"+str $\$(: 1-6 * h b)+", "+5 \operatorname{tr}(y 1+n * \delta y-5 p * 3)$
2140 print\#6, "F"+strs(n*m/ny)
2150 nert $\pi$
2160 ren root sign

2180 y $:=y 1+n y 1 d y-12$ ihb: $y 4=(59+1): 4$

2200 print\#6, "1"+str $\$(x 3)+", 0,1+5 t r(-2 \#): 3)+", "+5 t r \$(y 4)$




2250 print\#6, "M"+strs(int (x2-x4/2+.5)) +", "+str $\$(y 3+4 * y 4+5 * h b): p r i n t \# 6, " P-1 "$
2260 print\#6,"OO":print\#t, bosiclose6:return

```
 100
 110 rem ***
 110 rem ###
 s=füu(gs),u(ds) #̈
 ###
 120 rem ###
 130 openib,16:ch$=chr$(147):printch$:printsprint"16,"bB":f2=0
 140 print" constants "iprintiprint
 150 print:input" date ";da$
160 print:input" tast ":pn$
170 print:rl=1.l:prdit' load renistance ,/ohm ";rl
180 print:print" u(as) ":print"-----------------------
190 input" starting value /v ";ga:input" end value iv ";ge
200 input" 'step width , /V ";gs:gf=int((gerga)/gs)+1
210 if g4<1 then gosub 1230:gotol80
220 if(gam.7)*(ge-.7)<0 or (ge+5.5)* (ga+5.5)<0 then gosub 1290:gotolg*
230 print:print" u(ds) "&print"-----------------------
240 input" atarting value /v ";da:input" end value /V ";de
250 input" atepwidth /V ";dt:df=int((de-da)/dt)+2
260 if df<l then gosub 1230:goto.230
270 if df >9 then gosub 1260:goto230
280 if gf$df.200% then gosub 12b0;gotol80
290 if abs(da):5 or ats(de)>5 then gosub 1290:90to 230
Z(M) print:print"alterneting voltage ":print"------------------------
3i0 input" frequency /kizz ";f
320 input" amplituoe/mv ";a
3\Xi0) print:print"vensuring range ":print"--------------------
340 input" sensitivity/uv ";se
350 input" voltmeter de / v ";br:br=20000/br
Ib0 input" voltmeter ac /mv ";ar:ar=20000/ar
370 dim s(gf,df):dim sd&(gf+1):ge=ge+.001#as:de=de+.001tdt
380 printchs:print:print:print"
measurement running "
390 ma=ti;gn=0:dn=0: rem reasurement atort
400i for d=da to de step ot
410 print:print:print"u(ds) u(gs) " s":print
420 dn =dn+1:gn=0,
4.50 for g=ga to ge step gs
440}gn=gn+
450 gosub 800:gosub 1050
460 rem r$s ac&de-dmm
47U nest g
480. nerit d
490 print#16,"b8"
EOO ms=(ti-ma)/b0:mm=int(ms/60):m$=str$(mm)+" min"+str每(int(ms)-60*mm) +" sec"
5l0 print:print:print" end of measurement/ expression".
```



```
530 f2=f2+1:if f2 =2 then print#6;print#6;print䊾,""b= 1000 mt":goto 630
540 open6,6
550 print#b,,
560 print#6,"" ======================""print#b;print#b:print#6
570 print#6,,"test ";pn$:print䊉
580 print#b, " load resiatance . ";rl;" ohm"
```



```
600 print#b,;"sensitivity ";se;" uv"
b10 print#b,,"measurins time . ";ms
620 print#b:print#b,," s=f(u(gs),u(ds)) / ms":print#bssds(0)=" u(gs)A""
6.0 fl=3:fm=3:n=-1:print#6,spc(24);"u(ds)"
640 for g=ga-gs to ge step gs
650 gn=gn+l:if gn.\O then gd%(gn)=right%(" "+str$(g)+" A" ".10;
660 dn=0
670 for d=da to de step dt
680 dn =dn+1:if f2=2 and gn=0 then 710
690 if gri=0 then sdf(gn)=sd$(gn)+right$(") "+str&(d)+" ",8)1g0t0710
```

```
700 sds(gn) = sds(gn)+rights(" "+strs(s(gn,dn))+" ",0)
7 1 0 \text { next}
720 fl=fl+1:fm=fm+1:if fl<S then 760
730 if fm=5 then s3smleft$(sl$+52$+52%,len(sd$(i)))
740 if fm<`5 then s3$=right$(" A ",10)
750 fl=1:printM6,53*
750 print#b,sd$(gn)
7 7 0 \text { next}
780 if f2=1 then print, magnetic field gosub 430:if j$="j" then 380
790 closeb:printchs:print:print:print:print," ende "fend
800 rem ###
gi0 rem ### rks voltage source ###
820 rem #**
830 open18,9
840 ua$="ual"+str$(q);ubs="ubl"+str$(d):print#18,ua$:print#18,ub*
850 wz=60:gosub 1020
860) if gn$dn<>1 then 910
870 input#18,r$:rn=len(rs):if rn=24 then rn=rn-1
880 ua=val(right$(r$,rn-3)):ub=val(right$(r$,rn-15))
890 if ua<%g or ub<`d then print"voltage source on ":gosub 970:goto840
900 print*16,"a8"
910 close10:printd,a: :return
920 rem input loop | !
930) getjz:get js:get j*:get j*:get j$; j*=""
940 print:print" 'j/n`?"
950 get j6: if j$="" then 950
9 6 0 ~ r e t u r n ~
970. rem input loop 2
980 getjs:getj*:getj*:getj*:getj$:j$=""
990 print:print" 'j' ?"
1000 get js: if j&<>"j" then 1000
1 0 1 0 ~ r e t u r n ~
1020 wt=ti :rem waiting loop
1030 if wt+wz > ti then 1030
1040 return
1050 rem #####nacuring valuc of ac & de keithley dmm's ###
1060 open7, 24:open20,10:j=0:wz=300:gosub. 1020
1070 input#20,ws: if st<<0then 1070
1080 input#7,z%: if st`>Othen l080
1090 j=j+1:ifw$="over"then print:print"overflow":stop
1100 if z$="over"then print:print"overflow":stop
1110 r4=r.3:r{=r2:r2=r1:rl=val(ws)/br
1120 z4=23:zJ=22:z2=%1:zl=val(z*)/ar:0w=150:q0sub 1020:if j`5 then 1070
1130) if j%l0 then print:print" ideal value not convergent "ij=5:stof
```




```
1160 if 2q=0 then 1180
1170 if z/sqr(zq/3)<89 then 1070: rem 89: 95%wk.for f< 1%
1180 if rq=0 then 1210
1190 ra=sqr(rq/3):ry=r/ra
1200 if r*<89 then 1070; rem 89 : 95%wk. for fo 1% (sat= von laplace)
1210 s(gn,dn)=int,.00%se#r/rl/z/10+.5)/100:print,s(gn,on)
1220 close7:closejurynturn
1230 rem ### 5r error input 1 #妌
1240 print:print" consult instructions "sprint:wz=60:gosub B10
1250 return
1260 rem ### 5r error input . 2 ### (
1270 print:print" emount measuring value too high ":print:wz=60:gosub ع10
1280 return
1290 rem ### sr error input 3 ###
1300 print:print" measuring range exceeded ":print:wz=60:gosub 810
1310 return
```


## REFERENCES

1. Jay, P. K. and R. H. Wallis, "Magneto transconductance mobility measurements of GaAs MESFETs", LEEE Elektron Device Letters Vol. E, No. 10, October 1981.
2. Kuhrt, $F$, and H. J. Lippmann, "Hallgeneratoren Eigenschaften und Anwedungen", "Characteristics and Applications of Hall Generators", Springer, Berlin, 1981.
3. Jay, P. R. and R. H, Wallis, "Comparison between microwave parameters and magneto tranconductance mobility measurements on submicron GaAs MESEETs", Inst. Phys. Conf. Ser. No. 63, Chapter 9, Paper presented at Int. Symp. GaAs and Related Compounds, Japan, 1981.
4. Sites, J. R. and H. H. Wider, "Magneto resistance mobility profiling of MESFRSs channels", IEEE Tran. Electron Devices ED-27, pp. 2277-22E1, 1980.
5. Pucel, R. A., and C. F. Krus\% "Simple method of measuring drift-mobility profiles in thin semiconductor films", Electronic Letters, May 13, 1976, Vol. 12, No. 10.
6. Tansley, T.L., "AC-profiling by SCHOTTKY gated clover-leaf", J. Phys. E. Scientific Iastruments, 1975, 8, pp. 52-54.
7. Muller H., F. H. Eisen, and J. W. Mayer, "Anodic oxidation of GaAs es a technique to evaluate electrical carrier concentration profiles", J. Klectrochem. Soc., 1975, 122, pp. 651-655.

日. Jay, P. R., I. Crossley, and M. J. Cardwell, "Mobility profiling of FET structures", Electron. Lett., Vol. 14, 1978, pp. 190-191.
9. Immorlica, A.A., D. R. Decker, and W. A. Hill, "A diagnostic pattern for GaAs FeT material development and process monitoring", IEEE Trans. Electron Dev., Vol. ED-27, No. 12 , 1980 .
10. Jay, P. R., P. Lepoivre, C. Rumelhard, and G. Aperce, "Numerical simulation of the effect of mobility profiles on the microwave response of submicron gaAs MESFETs", §emiinsulating III-V materials, Evian, 1982, Edited by Sherif Makram-Ebeid, Brian Tuck Shiva Publishing Limited.
11. -----------, "Deep levels and electron mobility near the active layer-substrate interface in GaAs-MESFETs".
12. Fukui, H., "Determination of the basic device parameters of a GaAs MESFET", The Bell System Technical JOurnal, Vol. 58, No. 3, March, 1979.
13. Siemans AG, "Bauelemente: Technische Erlauterungen und Kenn daten fur Studierende", "Structural elements: Technical remarks and data for students", Bereich Bauelemente Produktinformation, Munich, $19{ }^{\prime \prime} 7$.
14. Brauch, Dreyer and Haake, "Mathematik fur Ingenieure", "Mathematics for Engineers", B.G. Teubner Verlag, Stuttgart, 1977, Fifth Edition.
15. Bronstein, and Semendjajew, "Taschenbuch der Mathematik", "Pocketbook for Mathematics", Harri Deutsch Verlag, 1977, 17th Edition.
16. Information sheet ALF 1003/1
17. Dambkes, Heime, Plog, and Weimann, "Influence of contact and properties and dopant concentrations on quasi two-dimensional electron gès field-effect transistor characteristics", Manuscript, "Active microwave semiconductor devices", Maidenheać, 1983.
18. Dambkes, "Field-effect transistor with quasi two-dimensional electron gas channels", Annual Report 1982, Department of HLT, University of Duisburg, 1893.
19. Loreck, Dambkes, Heime, Plog, and Weimann, "Low frequency noise in AlGaAs-GiaAs 2-D electron gas devices and its correlation to deep levels", 7th Int. Conf. of Noise in Phys. Systems, Montpellier, 1983.
20. Follinger, 0., "Regelungstechnik", "Regulation technology", AEG Telefunken, 1980.


[^0]:    *Numbers in the margin indicate pagination in the original text.

