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A COMPARISON OF THE EFFICIENCY OF NUMERICAL METHQDS
FOR INTEGRATING CHEMICAL KINETIC RATE EQUATIONS

K. Radhakrishnan?
NASA Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

A comparison of the efficiency of several algorithms recently developed for the efficient numer-
ical integration of stiff ordinary differential equations is presented. The methods examined include
two general-purpose codes EPISOCE and LSODE and three codes (CHEMEQ, CREK1D and GCKP84) developed
specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems
drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently avail-
able for the integration of combustion kinetic rate equations.

An important finding is that an iterative sclution of the algebraic energy conservation equation
to compute the temperature can pe more efficient than evaluating the temperature by integrating its
time-derivative.

INTRODUCTION

Many practical problems arising in chemically reacting flows require the simultaneous numerica
integration of large sets of chemical kinetic rate equations. Examples of such problems include the
development and validaticn of reaction mechanisms, combustion of fuel-air mixtures, and pollutant
formation and destruction. The rate equations for chemical species constitute a set of coupled first
order ordinary differential equations (ode's) of the type

dni

T - fi (nk, T) i, k=1-NS
(1)
n1(t = 0) = ni'o

T(t =0) = T0

where, n; is the mole number of species i (kmole i/kg mixture), T is the temperature and NS 1is
the tota] number of species involved in the reaction; the initial values nj g (i =1-NS) and
Top and the function f; (i =1 - NS) are given. ’

The initial value problem may be stated as follows. Given, (i) at time t = 0, initial values
for nj (i =1 - NS) and temperature, (ii) the pressure, and (iii) the reactign mechanism; find the
mixture composition and temperature at the end of a prescribed time interval~®,

Multi-dimensional modeling of reactive flows requires the integration of the system of ode's
given by equation (1) at several thousand grid points. In addition, at each grid point, the solution
to equation (1) may be required several times per numerical simulation. To make such caiculations
practicable, it is necessary to have a very fast batch chemistry integrator.

The major problem associated with the numerical solution of the system (1) of equations by clas-
sical methods (such as the popuiar explicit Runge-Kutia method) is as follows. These equations are
often characterized by widely varying time constants. To insure stability of the numerical solution,
classical methods are restricted to using very small steplengths which are determined by the smallest
time constants. However, the time for all chemical species to reach near-equilibrit values is

1 Work partially funded by NASA Grant NAG3-147.

2 NRC-NASA Research Associate; on leave from The University of Michigan, Dept. of Mechanical
Engineering and Applied Mechanics, Ann Arbor, Michigan 48109.

3 In this paper attention is restricted to adiabatic, constant pressure (hence, isenthalpic),
exothermic chemical reactions.

Approved for public release; distribution unlimited.



determined by the largest time constant. As a result, the computation time required to solve a
practical chemical kinetics problem by classical methods can become excessive.

In the present study we examine several techniques that have been proposed for the integration
of differential equations with widely different t}Te onstants. The codes examined in this work in-
clude the general-purpose ?Q?es EPISO?E ’qd LSODE -3 aa? the special-purpose (for chemical kinetic
caiculations) codes CHEMEQ'®™’/, CREKID'°~//  and GCKP84(8° . In addition, the explicit fourth-order
Runge-Kutta-Merson differential equation solver (IMSL Routine DASCRU) is used to illustrate the prob-
lems associated with the solution of the system (1) of ode's by a classical method. These codes are
summarized in Table I. The above codes are applied to two test problems drawn from combustion kinet-
ics and details of the computational work (including computer time), required by these methods are
presented. In this paper, the total computer time required by each code to solve the test problems
is used as a measure of its efficiency.

Discussions with Prof. D. T. Pratt of the University of Washington were most helpful.
Dr. A. C. Hindmarsh of Lawrence Livermore Laboratory provided copies of EPISODE and LSODE.

TEST PROBLEMS

The algorithms summarized in Table I were applied to two test problems drawn from: combustion
kinetics. Both problems describe adiabatic, constant pressure transient batch chemicil reaction and
include a1l three regions of interest to a combustion researcher -- induction, heat release, and
equilibration.

Test problem 1, taken from Pratt(10), describes the ignition and subsequent combustion of a
mixture of 33 percent carbon monoxide and 67 percent hydrogen with 100 percent theoretical air, at a
pressure of ten atmospheres and 1000 K initial temperature. It is comprised of 12 reactions "“J?“
describe the time evolution of eleven species. Test problem 2, taken from Bittker and Scullin( .
describes the ignition and subsequent combustion of a stoichiometric mixture of hydrogen and air, at a
pressure of two atmospheres and 1500 K initial temperature. It involves 30 reactions which describe
the time evolrti?n of fifteen species. The reaction mechanisms for both test problems are given in
Radhakrishnan{1l), Both test problems were integrated over a time interval of 1 ms in order to
obtain near-equilibration of all chemical species.

Figures 1 and 2 present the variations with time of the temperature and the chemical species
mole fractions for tesg problems 1 and 2, respectively. These solutions were generated with LSODE
using a low value (107°) for the relative error tolerance.

EVALUATION OF TEMPERATURE

0f the codes tested, only CREK1D and GCKP84 were written explicitly for the integration of exo-
thermic, non-isothermal, combustion rate equations. These therefore have built-in procedures for
calculating the temperature. For the other codes, the temperaturs was computed using one of two dif-
ferent methods, labelled as methods A and B, and described below.

In method A, the temperature was calculated from the mole numbers and the initial mixture en-
thalpy using the enthalpy conservation equation

g "ihi = ho = constant (2)

where, h; is the molal-specific enthalpy of species i (J/kmol) and hy is the mixture mass-specific
enthalpy (J/kg). The algebraic equation (2) was solved for the temperature using a Newton-Raphson
iteration technique with a user-supplied relative error tolerance, ERMAX. In this method, the tem-
perature is not an explicit independent variable so the number of inaependent ode's is equal to the
number (NS) of species and the Jacobian matrix (Jjj = 2rj/an;; i,j =1 - NS) is of size NS x NS. The
integrator therefore tracks only the solution for ghe specieg mcle numbers.

4 The following convention was adopted in naming these other codes: those using temperature method
A were given the suffix A (e.g. LSODE-A, EPISODE-A, etc.) and those using temperature method B were
given the suffix B (e.g. CHEMEQ-B, DASCRU-B, etc).



In method B, the temperature was treated as an additional independent variable and evaluated by
integrating its time-derivative obtained by differentiating equation (2) and given by

NS

(3)

N
n.c
121 £

where, ¢ is the constant-pressure specific heat of species i (J/kmol K). This increases the
number o?’]ndependent ode's to NS+1, and the computation of the Jacobian matrix (of size NS+1 x NS+1)
involves the calculation of 2NS+1 additional terms. In this method, the integrator tracks the solu-
tions for both the temperature and the species mole numbers.

RESULTS

The numerical techniques summarized in Table I were applied to the two test problems discussed
above. All codes were run on the NASA Lewis Research Center's IBM 370/3033 computer using single-
precision accuracy, except GCKP84 which was in double precision. A typical computational run con-
sisted of initializing the species mole numbers, temperature and CPU time. The integrator was then
called with values for the necessary input parameters”. On return from the integrator the total
computer time (CPU) required to solve the problem was calculated. In addition, the following per-
formance indicators were recorded: total number of steps (NSTEP), total number of functional (i.e.
derivative) evaluations (NFE), and total number of Jacobian matrix evaluations (NJE, = O for CHEMEQ
and DASCRU).

Figures 3 and 4 present the computational work (expressed as the CPU time in seconds required on
the NASA Lewis Research Center's IBM 370/3033 computer) plotted against the relative error tolerance,
EPS, for test problems 1 and 2, respectively. Note that for EPISODE, EPS is a mixed relative and
absolute error criterion -- relative for species with initially non-zero mole numbers and for temper-
ature (method B); and absolute for species with initially zero mole numbers. Also shovn on figures 3
and 4 are the CPU times required by the explicit Runge-Kutta method for one value of EPS. For this
study, the value of ERMAX (the relative error allowed in the Newton-Raphson iteration procedure used
in method A to solve the algebraic energy equation) was set equal to EPS, to make comparisons between
methods A and B meaningful. For the same reason, with LSODE-B, the absolute error tolerance for the
temperature was set equal to zero.

To facilitate comparisons of efficiency, the values for the performance parameters NSTEP, NFE,
and NJE are presented in Tables II and III for test problems 1 and 2, respectively. For each method
(except DASCRU) and problem, these values correspond to the value of EPS that resulted in the least
CPU time to solve the problem.

For test problem 1, very small values for EPS had to be used for EPISODE (fig. 3). For values
o EPS > 5x107°, EPISODE predicted little or no change in the composition and temperature after 2"
elapsed_time of 1 ms. Similar remarks apply to test problem 2 (fig. 4), for which values of 10~
and 10-3 had to be used for EPISODE-A and EPISODE-B, respectively. Although the runs with EPISODE-B
and EPS > 5x10~4 were successfully completed, the solutions (especially for minoE species) were
significantly different from those given in figure 2. With GCKP84 and EPS = 107¢, the solution for
test problem 1 exhibited serious instability and so this run was terminated. A more ff&ailed discus-
sion of the accuracy of the cndes tested in this study can be found in Radhakrishnan(11),

Figures 3 and 4 and Tables Il and III illustrate the difficulty associated with using a classical
method (in this case the explicit Runge-Kutta method) to integrate combustion kinetic rate equations.
The CPU times required for the two test problems are approximately 1 and 16 minutes respectively.

The use of this technigque would make multidimensional modeling of practica' combustion devices prc-
hibitively expensive

Examination of figure 3 shows that the difference in computational work required by methods A
and B is small for test problem 1, with method B being more efficient. For tes. problem 2 (figure
4), the difference is small for large values of EPS. But for small values of EPS the difference is
more marked, with method A being significantly superior to method B. A comparison of figures 1 and 2
shows that the temperature-time profile is steeper for test problem 1 indicating a stronger coupling
between the species and the temperature. This may explain why the inclusion of the temperature as an
additional independent variable works well for test problem 1. But for test problem 2 the additional

5For a detailed discussion of the parameters required as input by each code see Radhakrishnan(11),
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work in computing the temperature rate and the temperature dependent terms in the Jacobian matrix
does not lead to increased efficiency.

Figures 3 and 4 and Tables Il and I11 show that LSODE and CREKID are superior to the other codes.
Although GCKP84 takes significantly fewer steps than CREK1D, LSODE and EPISODE, it requires longer
CPU times. This implies that GCKP84 requires much more work per step. However, as shown in reference
9, GCKPB4 is an efficient code for performing a wide variety of chemical kinetics calculations, For
test problem 2, EPISODE is superior to the other codes. However, in using EPISODE, a word of caution
is in order. The computational work can be strongly dependent on the value for the initial steplength
(HO) selected by the user. An incorrect quess for HO can make EPISODE prohibitively expensive to use.

Table IV illustrates this behavigr for tsst problem 2. Note an order of magnitude increase in the CPU
time for a change in HO from 10~/ to 10~°. Although not shown here, the solution was also found

to be adversely affected by an incorrect choice for HO. In addition, some values of HO resulted in
problems with solution instability.

A1l codes used in the present study automatically select a steplength during the course of the
integration. Some of the codes (GCKP84, DASCRU and EPISODE) required a user-supplied initial value
to be tried. The other codes automatically selected the value for the initial steplength. The size
of the step successfully used by the code indicates both the efficiency of the code and regions where
difficulties due to stiffness arise. Figures 5 to 8 present plots of the steplength used by each code
through the course of each problem.

Figures 5 and 8 illustrate the small steps that classical methods have to use to inzure solution
stability. For both test problems, the explicit Runge-Kutta technique uses small stepleng*hs to track
the solutions through induction and heat release. Ouring equilibraticn the steplengths continue to
remain small, thus requiring prohibitive amounts of computer time. The difficulties with CHEMEQ
(figures 6 and 8) include the selection of a very small initial steplength, the continued use of small
s‘eplengths because of the very small increases allowed after satisfactory convergence, and its in-
anility to select a suitable steplength during equilibration. Much computer time is wasted in the
search for an appropriate steplength. In addition, this search is restricted to very small values
for the steplength. These factors make CHEMEQ very expensive to use.

We note that all codes use small steplengths during induction and early heat release. In these
regimes the species and temperature change rapidly (see figs. 1 and 2). Most of the species and
temperature have positive time constants indicating that the differential equations are unstable.
Hence, the steplengths are constrained to small values.

For test problem 1, CREK1D, GCKP84 and LSODE select steplengths of comparable magnitude, except
immediately after ignition (t = 1072 s), when GCKP84 selects much larger steplengths (fig. 5).
Although EPISODE uses larger steplengths in the post-ignition regime than the other codes, its diffi-
culty in tracking the solution during induction makes it less efficient. The selection of a new step-
length after every step results in EPISODE using larger step’engths in the post-ignition regime than
the more conservative LSODE. For test problem 2, except at small times when EPSIODE selects larger
steplengths, GCKP84 consistently uses larger steplengths than the other codes (fig. 7), thereby re-
quiring far fewer steps. For longer, post-ignition times, the steplengths selected by CREKID. LSODE
and EPISODE are of comparable magnitude. However, at times preceding ignition (t = 3x107° s),
EPISODE selects much larger steplengths than the other codes and is hence more efficient. CREK1D'S
inefficiency stems from its inability to select a suitable steplength at small times. Much effort is
wasted in repeated attempts at selecting a larger steplength. This is reflected by the large number
(138) of Jacobian evaluations requircd by CREKID. In contrast, EPISODE and LSODE require only about
30 Jacobian evaluations.

The results discussed above indicate that the size of the steplength to be used is regime depen-
dent: during induction and heat release, when the solution changes rapidly, small steplengths have to
be taken to insure stability. During equilibration, however, when the solutions are more stable,
larger steplengths can be used. These features should be exploited by and incorporated into special-
purpose algorithms for the integration of combustion kinetic rate equations.

CONCLUSIONS

A comparison of the efficiency of several algorithms (GCXP84, CREK1D, LSODE, EPISODE, and CHEMEQ)
utilized for the numerical integration of stiff ordinary differential equations arising in combustion
chemistry has been made. To test these algorithms, two practical problems from combustion kinetics
were selected: one involving eleven species and temperature with twelve reactions, and the other
involving fifteen species and temperature with thirty reactions. Both problems included all three
regimes of combustion: induction, heat release and equilibration.



This study has shown that the fastest package for integrating combustion kinetic rate equations

available today is LSODE. This merits special note because LSODE was developed as a multi-purpose
stiff differential equation solver, with no one particular application as its objective. EPISODE and
CREK1D are attractive alternatives. However, an inaccurate guess for the initial step-length to be
tried by the integrator can make EPISODE prohibitively expensive to use. It can also result in in-
correct and unstable solutions. Some experimentation with different values for the initial steplength
may be necessary to obtain its optimum value. The code CREK1D needs further refinement in the area

of steplength selection before significant improvements in its speed can be realized.

An important conclusion from this study is that the use of an algebraic energy conservation
equation for calculating the temperature does not result in significant inefficiencies. On the
contrary, this method can be more efficient than evaluating the temperature by itegrating its time-
derivative.

Nomenclature
cp,i constant pressure specific heat of spccies i, J/kmol K
h; molal-specific enthalpy of species i, J/kmol
ho mass-specific enthalpy of mixture, J/kg
n; mole number of species i, kmole i/kg mixture
t time, s
EPS for all methods, except EPISODE, local relative error tolerance; for EPISODE: relative error

tolerance for species with initially non-zero mole numbers and for temperature, and
absolute error tolerance for species with initially zero mole numbers
ERMAX relative error tolerance for .lewton Raphson iteration for temperature

HO initial steplength to be attempted by integrator, s

NFE total number of functional (i.e., derivative) evaluations

NJE total number of Jacobian matrix evaiuations

NS number of distinct chemical species involved in the chemical reaction

NSTEP total number of steps required to solve the problem

T temperature, K
Yi mole fraction of species i
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TABLE II. - COMPARISON OF WORK REQUIRED
FOR TEST PROBLEM 1

Method |EPS NSTEP | NFE | NJE | CPU(s)
GCKP84  |5x10-3 53| 170|30 | 0.846
CREK1D 102 ga | 280|32 .227
L SODE-A 102 93| 155|26 .357
LSODE-B 102 92 | 14425 .344
EPISODE-Al 1076 272 | 506 | 46 .894
EPISODE-B| 1076 234 | 44137 .708
CHEMEQ-A | 1072 | 7198 |14881| 0 |15.1
CHEMEQ-B | 10°2 | 8041 |[16589| 0 |15.5
DASCRU-A | 104 | 10700 [59365| 0 | 55.5
DASCRU-B | 104 | 10718 [59760| 0 | 48.7

TABLE III. - COMPARISON OF WORK REQUIRED
FOR TEST PROBLEM 2

Method  |EPS NSTEP | NFE | NJE | cPU(s)
GCKP84  |5x10-3 59 171 | 31 1.73
CREKLD 103 140 439 | 138 1.04
L SODE-A 10-2 98 157 | 32 .682
LSODE-B 102 88 144 | 27 .617
EPISODE-A| 1074 90 167 | 31 .584
EPISODE-B|5x107° 97 209 | 29 .669
CHEMEQ-A | 102 | 9038 | 18779| o 37.7
CHEMEQ-B | 1072 | 9139 | 18990| o 36.3
DASCRU-A | 1074 | 81457 | 567490 | 01078
DASCRU-B | 104 | 98594 | 596130 | 01026
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TABLE IV. - EXAMPLE OF EFFECT OF
INITIAL STEPLENGTH (FD) ON WORK
REQUIRED BY EPISUDE-A (EPS = 107°)

FOR TEST PROBLEM 2

HO(s) | NSTEP | NFE | NJE | CPU(s)
10-5 129 237 | 33| 0.786
106 129 231 | 31| .783
107 126 225 | 36| .791
10-8 1168 | 2355 | 353 | 7.91

10-9 1170 | 2394 | 362 | 8.04

10-10 133 231 | 32| .772
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