@ https://ntrs.nasa.gov/search.jsp?R=19850013263 2020-03-20T18:57:06+00:00Z

”M////w O o € e S

NASA-TM-85820 19850013263

NASA Technical Memorandum 85820

SURFACE-SLIP EQUATIONS
FOR MULTICOMPONENT
NONEQUILIBRIUM AIR FLOW

s S
v et PR
ey

R.N. Gupta, C.D. Scott, and
J.N. Moss

MARCH 1985

I_"'\ "\qr'
(VIO

LANGLEY RESEARCH CENTER!
LIBRARY, NASA )
HAMPTON, VIRGINIA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665






TABLE OF CONTENTS

Page

NOMENCLATURE - - et ettt ee et e e e e e e e veiee idi
SUMMARY .« v e eeeeeeeensenneenssesncensennneonsans e 1
INTRODUCTION . « v v e e eeeeeses s s eeseesssssessnnnaraseeessnnnnns 1
ANALYSIS e v v e eeeeeeeseess e asaaeessesssrsaaeee e, 3
VARIOUS FLUXES AND THE DISTRIBUTION FUNCTIONS.....evvvvvnnnenssensn 5
THE BALANCE AND SLIP EQUATIONS. .« s vvnnnnnnnnnnaeeesessaseseseeenn 9
SIMPLIFICATIONS FOR A MULTICOMPONENT MIXTURE.......... e 19
CONCENTRATION SLIP BOUNDARY CONDITION FOR A FULLY CATALYTIC
AND A NON-CATALYTIC SURFACE. ..+ eszuenensnserensnnesanennesenenens . 23
SIMPLIFICATIONS FOR A BINARY MIXTURE. ... eeoenernrnennnneneenennnne. 25
SIMPLIFICATTONS FOR A SINGLE SPECIES MIXTURE. ... .euvvvvrreeeennnnss 32
NO-SLIP BOUNDARY CONDITIONS FOR THE SPECIES CONCENTRATION.......... 34
DISCUSSTON AND CONCLUSIONS .« v vnn e s vnnenesseranesssnnaasesnnnnnnn 38
REFERENCES. ....vvun.. P s 40
APPENDIX A: CONSTANTS APPEARING IN THE DISTRIBUTION FUNCTION

AND DIFFUSTON VELOCITY IN TERMS OF TRANSPORT ‘

PROPERTIES. e vovesvrrsnensssnsnnsnnnonseeennnnnn, 41
APPENDIX B: EVALUATED EXPRESSIONS FOR THE FLUXES OF MASS,

MOMENTUM, AND ENERGY FROM INTEGRALS OVER THE

DISTRIBUTION FUNCTION. - s vuenennnenemmeee s, 45
APPENDIX C: SLIP BOUNDARY CONDITIONS GIVEN BY DAVIS FOR A

BINARY MIXTURE. ... vvrvnnoneesesssnnemenione e, 54
APPENDIX D: SLIP CONDITIONS IN THE BODY-ORIENTED COORDINATE

A2 T 57
APPENDIX E: SLIP CONDITIONS IN THE SPHERICAL COORDINATES.......... 79
APPENDIX F: INTEGRALS REQUIRED FOR OBTAINING VARIOUS FLUXES....... 85

#
i N§$=2/573



TABLE OF CONTENTS - Concluded

LIST OF FIGURES
Figure | Page
-1 The Knudsen layer showing general fluxes and coordinate
axes. The temperature as a function of normal distance
is schematically overlayed.......... ceerrseaataans teesanes cos 36

D1 Coor?inate configuration for a Body (Symmetric about its ,
VS K- I Ceeeesreneesatectsttacansesronaseroans ceeeeersnan 57

El Coordinate configuration........ Cetressescransaannns Ceesesnee 79

s »
“4



i i i
As Bygs Ck(J)

a0 2ip bigs clf)

NOMENCLATURE

Coefficients of the velocity distribution
function for ith species

Distribution function coefficients defined in
ref. 5 for ith species

Speed of sound, ,,if RTw

Mass fraction of species i

Specific heat at constant pressure of species 1
Frozen speggfic heat at constant pressure of the
mixture, : C1 C1

Multicomponent diffusion coefficient for species
pa-ir ll-ill and lljll

Binary diffusion coefficient

‘Thermal diffusion coefficient

Diffusion vector of jth species

- Total energy flux, ET + eM

Energy flux from translational energy

Internal energy that readily equilibrates with
translational energy

General flux of property such as mass, momentum,
or energy

Distribution function of ith species

Equilibriun (or Maxwellian) distribution function
of ith species

NS
Enthalpy, Z_h, C,

i=l i i )
Enthalpy of species i

Thermal conductivity of mixture

Boltzmann constant

iii



Wall catalytic recombination rate constant for

species i _
Multicomponent Lewis number, Cp P Dij/K

Binary Lewis number, C_op Z%j/K

P
Binary Lewis number, C_ » DAM/K

p
Mass flux

Mach number, U,/a,

Mass of ith species

Mass of a mixture molecule
Number of chemical species
Number density of species i

Total number density

Coordinate measured normal to the body in the
body-filled coordinate system (Appendices C

and D)

Prandtl number, Cpu/K
Momentum f1ux

Pressure

Partial pressure of species i
Wall heat-transfer rate

Gas constant

Radius measured from axis of symmetry to a point

on the body surface
Reynolds number, ' p, U, ry/U.q¢

Universal gas constant

Radial distance from body center (Appendix E)

Body nose radius of curvature (Appendix D) or

radius of sphere (Appendix E)

Distance measured along the body surface
(Appendix D)

iv



T ' Temperature

u, Free stream velocity

u Velocity component along the body surface
(Appendices C and D)

Vﬂ _ Thermal (or peculiar, or molecular) velocity of
the ith species

Vﬂ Diffusion velocity

Vok Bulk or mass averaged -velocity

Wok Nondimensional mass averaged velocity,,V/%é; Vok

w§ Nondimensional thermal velocity, ;%? Vg

W; Molecular (or atomic) weight of species i

W  Molecular weight of mixture

X - Coordinate parallel to body (Fig. 1) |

y 1 Coordinate pefpendicu1ar to body {Fig. 1j.

b4 _ Coordinate parallel to body (Fig. 1) -

@ | Energy accommodation coefficient

B Body angle defined in Fig. D1

Sy Kronecker delta

€ Reynolds number parameter, [uref/p,u,rN]llz

Y3 | Recombination coefficient.(or, fraction of
incident atoms that recombine at surface)

Y " Ratio of specific heats

K Sufface curvature

A Mean‘free bath

M | - Viscosity of mixture

¢ " " Perturbation part of distribution function

¢i(V) General property of ith species such as mass,

momentum and energy



s Circumferential angle (Appendices D and E)
p | Density

8, 8, Accommodation coefficient (or fraction of

incident particles that stick)

Affixes (Used both as subscripts and superscripts)

iy J ' Species indices
sjv Edge'of Knudsen layer
K S wall
Subscripts
YA; | ' Atom
e . Equilibrium value
_M‘ Molecule
i, Specie indices
ko £ Coordinate indices
q | ‘ Specie index
ref | Reference quantity
Xy Yy Z | Component directions
y ' Normal component
s ¥, 2 " Tangential components
© : | Freestream value
Superscripts

- Dimensionless quantity; also used locally
+ ' Incident flux

4 / » Specularly reflected flux

vi



SURFACE-SLIP EQUATIONS FOR MULTICOMPONENT,
NONEQUILIBRIUM AIR FLOW*

Roop N. Gupta**

Carl D. Scottt
and |

James N. Mosstt
SUMMARY

Equations are presented for the surface slip (or jump) values of spe-
cies concentratioh, pressure, velocity, and temperature in the low-Reynolds-
number, high¥a1titude flight regime of a space vehicle. These are obtained
from closed-form solutions of the mass, momentum, and energy flux equations
dsing the Chapman-Enskog velocity distribution function. This function
represents a solution of the Boltzmann equation in the Navier-Stokes ap-
proximation. The analysis, obtained for nonequilibrium multicomponent air.
flow, includes the finite-rate surface catalytic recombination and changes
in the internal energy during reflection from the surface. Expressions for -
the various slip quantities have been obtained in a form which can readily
be employed in flow-field computations. A consistent set of equations is
provided for multicomponent, binary, and single species mixtures. Expres-
sion is also provided for the finite-rate species-concentration boundary
condition for a multicomponent mixture in absence of slip.

" INTRODUCTION
aFdr an accurate prediction of the aerothermal environment of‘a space
vehicle entering the earth's atmosphere in the high-altitude low-Reynolds-
‘number flight regime (Ref. 1), the multicomponent, nonequilibrium gas

chemistry as well as the wall slip and catalysis effects, must be evaluated.

*The authors are grateful to Dr. Fred G. Blottner (of Sandia National
Laboratories, Albuquerque, NM) for many useful discussions pertaining to
the mass flux expressions contained in Appendix B.

**01d Dominion University, Norfolk, VA
tJohnson Space Center, Houston, Texas
ttLangley Research Center, Hampton, VA.



Such flow fields are of particular interest for aeroassist and space shuttle
vehicles. This study was undertaken to obtain the boundary relations that
incorporate the effects of slip, multicomponent diffusion, wall catalycity,
and changes in internal energy of the molecules (during reflection from the
" surface) for application to flow-field calculations under the general as-
sumption of local thermodynamic equilibrium,

Scott (Ref. 2) first presented the wall boundary conditions for a
multicomponent mixture with‘diffusion and wall-catalysed étom recombination.
In obtaining these boundary conditions, he used a first order velocity dis-
tribution function at the edge of the Knudsen layer next to the wall, where
the continuum model of thé gas breaks down. These boundary conditions,
obtained'from the kinetic theory considerations, provide solutions at the
top of the Knudsen layer that would match the so1ution‘of the Navier-Stokes
equations in the bulk outer flow. Hendricks (Ref. 3), using Scott's formu-
.Tatioﬁ, obtained simplified expressions for engineering applications with
some corrections to Scott's expressions. Hendricks' analysis, however,
contained some gross errors in obtaining the engineering expressions. This
paper reanalyses the wall boundary equations by using tﬁe approach of refer-
ence 2 and provides appropriate relations for the various quantities with-
surface slip in a form which can readily be employed fdr flow-field computa-
tions. An effort has also been made to reconci]e.the differences between
slip expressions employed by the different researchers. The present analy-
sis-prdvides'a consistent formulation for the slip equations for a multi-
cbmponent, binary, and single species mixture. Expreséion'is also provided
for the finite-rate species-concentration boundary condition for a mu]tif
component mixture (in addition to that for a binary mixtufe) in the absence
of slip. This may be of interest<for the shuttle flow-field calculations

based on multicomponent diffusion (Ref. 4).



The main difference (among other details) between the results contained
in reference 5 and the present work is that fhe various internal degrees of
freedom for a molecule were considered frozen during reflection from the
surface in reference 5, whereas, they are allowed to change in the present

analysis.*** Further, the results are provided in both spherical and body-

oriented coordinate system.

ANALYSIS
The slip conditions are taken to exist across the Knudsen layer, which
is on the order of one mean free path in thickness as sketched in Figure 1.
The analysis outlined here follows the approach of References 2 and 5. It
is based on Shidlovskiy's (Ref. 6) assumption that the distribution function
near the wall can be described to first-order accuracy by the so-called
Navier-Stokes approximatioﬁ. However, a deviation is made from the proce-
dures of Shidlovskiy in that a Chapman-Enskog type distribution function for'
a multicomponent mixture obtained by the variational method of Hirschfelder,
Curtiss, and Bird (Ref. 7) is used. The Chapman-Enskog distribution
function allows accounting for diffusion. The analysis contains the follow-
ing assumptions:
(i) The energy and momentum accommodation coefficients (i.e. «
and 8, respectively) have the same value. |
(ii) The fluxes of mass, momentum, and energy across the Knudsen
layer are assumed constant. This is consistent with the
assumption of negligible variation of the velocity distri-

bution function through the Knudsen layer.

***Since the assumption of local thermodynamic equilibrium is employed, only

those internal energies are considered which equilibrate readily with the
translational energy.



(iii) The internal energy associated with the rotational and
vibrational modes readily equi1ibrates with translational
energy.

The interaction model at the gas-solid interface, with the various
fiuxes sketched in Figure 1, can be mathematically stated for dissociated

air as provided through the following equations.

For a recombining atom:

+ + '
Fo = Fa + (1-8,) Fy +.(85-v,) FX ; A =0,N (1)

For a molecule gaining from the corresponding atom recombination:

- | a v et oW v W s
Fy = B+ (L0y) Fyg royfy + vafg s M2 0, Ny

—~
(3%
~

“For all other atoms and molecules (éurface is assumed to be noncata-

lytic with respect to them):
v 4 '

where Fi denotes a convective property such as mass, momentum, or energy.
Summing over all the species, we obtain from Eq. (1), (2), and (3), the
following expression for the net flux of momentum or energy:

NS NS ‘ NS NS

T OF.= § Ft o +) (1) FLo+ 7 R M (a)
E R £ U £51 R L
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That is, the net flux at the outer edge of the Knudsen layer equals the
incident flux, plus the specularly reflected flux (incident minus the frac-
tion that sticks) at the wall, plus the diffusely reflected flux (those that
accoomodate to the wall) from the wall. ‘

Each species is treated separately in the mass balance equations.
Therefore, Egs. (1), (2), or (3) are employed depending on the species being
considered. 1In Eq. (1), the diffusely reflected flux consists of those
atoms that are accommodated to the wall minus those that recombine. For the
molecules in Eq. (2), the diffusely reflected term is present along with the

source term resulting from the appropriate atoms recombining on the surface.

VARIOUS FLUXES AND THE DISTRIBUTION FUNCTIONS

The interaction model of Egs. (1) through (4) is employed to obtain the
siip boundary equations at the gas/solid interface. Through Eq.(1), the net
fluxes of species, momentum, and enefgy at the outer edge of the Knudsen
lTayer are equated to the difference between the incident and reflected
fluxes at the wall. These fluxes are assumed to be constant across the
Knudsen layer and are obtained from moments of the distribution function.
For a convected property ¢i(§) such as mass, momentum, or energy for the

ith species, the net flux of that property normal to the wall at the outer

edge of the Knudsen layer, for example, is
Fo=L L2 vye'( £ (D) &V (5)

where V;' is the normal component of the molecular velocity and f; is the
velocity distribution function at the edge of the Knudsen 1ayer.

Similar integrals are obtained for the incident and reflected fluxes by



integrations over appropriate half-spaces in molecular velocity:

Incident flux:
B Lo Lovge () £ v (6)
Specularly reflected flux:

4 o oo o i i i
o= Lo 15 LV o (D) fglve, v, v)&v! (7)
Diffusely reflected flux: :

=L Sy Lvye'® @ @' (8)

where f; ‘is the Maxwellian velocity distribution function.
The velocity distribution functions used in integrals contained in
relations (5) through (8) are those for a nonuniform multicomponent mixture

perturbed out of equilibrium:

= £O W) (10’ () (9)

(0)1

where f (V) is the Maxwellian distribution function for the ith spécies

given as

372
. m, -(m,/2kTW 2 -
f(o)‘(V) = 1‘_‘“_‘3,2 e " ! N (10)
(2rkT) '



and

o (V) =

the summations with index j

The summation convention for repeated indices is used.

i i i(2)
Ak' Bkz’ and Ck

and are defined as

i
ck(J)

where 3500 3i1» biO’ and Cio

- . 9V
pf 3(0nT) _pf Ok L 2 C1(3) 4
k 3 0 K

are functions of the dimensionless velocity:

. m, j
kT
- 5 2 i
= [ap+ ail('z—‘”i)] W
i1 2

big (W W, "3 Wi Sie)
)

30 “k

(J)

(11)

" Here k and 2 are the dummy indices for three coordinate directions and

represents summation over all the species.

The coefficients

(13)

(14)

(15)

are constants determined from the varia-

tional problem in the first approximation for a mixture as given in ref, 7

and ¢

ke is the Kronecker delta such that

(]
i

g = Lo if ko=

O
¢

o = 0 if k# L.



These constants are functions of the collision integrals and are related to
the transport properties.. The simplified form of these constants is pro-
vided in Appendix A of this paper. More details can be found in Appendix A
of Ref. 2, or ip Ref. 7. The diffusion vector di in Eq. (11) is related
to the diffusion velocity of the jth specieé and is defined after neglecting

the external forces as (Ref. 7):

J
dy

n n. n. m,
] 3
= () (e - 19 (enp) (16)
axk n n P axk

where nj ‘and mj are, respectively, the number density and mass of the

Jjth species, n is the total number density n = Z nj, p 1is the total

mass density p =] njmj, and p is the total pressure p = ) Py A
| ] | J -
simplified form for dg is provided in Appendix A.
The total mass averaged velocity VoK (i.e. the kth component)

appearing in Eg. (11) is defined as

NS .

1 -j

Vo = —— ) n.m; v
Ok o j=1 Jd 'k

where Vg is the mean of total velocity vg = Vg * Vﬂ of the jth

species averaged over the distribution function and Vi is the thermal (or

peculiar) velocity, also introduced in Eq. (5). The thermal velocity Vi

of the jth species averaged over the distribution function is known as the

.

diffusion ve]dcity e

[ ]
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A simplified expression for the diffusion Ve]ocity in terms of transport

properties is provided in Appendix A.

THE BALANCE AND SLIP EQUATIONS

Based on Eqs. (1) through (4), the balance equations for the ith

species for fluxes normal to the surface of the species mass Miy’ the normal

component of momentum Piy’ the tangential component of momentum

the energy Eiy are obtained as follows:

(a) Species mass flux

For a recombining atom

- ¥ ) -
MAy =0, My + (8, - 1) MX : A=0, N

For a molecule gaining from the corresponding atom recombination

= + w L] -—
Muy = O My * Oy My + YaM 5 M=0, N

For all other atoms and molecules

_ + W

y

(b) Normal momentum flux

NS NS . N
. 3 2-0 A 8. P, =
121 iy 121 @05) 7 1£1 i1y

P1||’ and

(18)

(19)

(20)



(c) Tangential momentum flux

NS NS
R = 6. P, 22
121 i j=1 1 il (22)
T
(d) Energy flux
NS NS T
= : . = + . M.
diatomic
molecules
NS NS
T+ s Tw Syt
a i{gl 8, E; + iz=1 6, E, .+_ 21 6 ;e 3M;
diatomic
molecules _
+ W W
boae @
diatomic '
molecules

where e, is the internal energy of ith species that readily equilibrates

with the translational energy EI under the assumption of local thermo-

dynamic equilibrium. For example,

rotation _ KT
i m;
In writing the energy flux balance of Eq. (23) it has been assumed that
there is no change in internal energy during specular reflection. *
In obtaining Eqs. (18) through (23) we have used the following

relations

tThe energy balance is based on the assumption that the various energies
considered readily equilibrate with the translational energy.

10



+ + + +

S B 1 Il
4 L ¥ _ 1
E, = -E Pi|| = 0, and Piy = Piy

Because it is assumed that the atoms are consumed at the wall by catalytic
recombination in Eq. (18), the net mass flux MAy¢0. Similarly, the net
‘mass flux MMyf# 0 in Eq. (19). However, M. =0 in Eq. (20) for the

i
atoms and molecules for whom the surface is as:umed noncatalytic.

By substituting Eqs. (5), (6), (7) and (8) with the definition of
¢1(V) -as mass for Eqs. (18) through (20), as normal component of momentum
for Eq. (21), as tangential component of momentum for Eq. (22) and as energy
for Eq. (23), respectively, and carrying out the integrations*, dhe obtains
equations relating the slip properties to wall properties and gradients at
the edge of Knudsen layer. All accommodation coefficients 6i are assumed

- to be equal to 6.

Number density (or concentration) slip (obtained from mass flux balance):

1 W
211+ =~ WY
S 2 w
i, nit T  (24)
W P T
n; dy g s
H

Pressure slip (obtained from the flux balance of normal component of momen-

tum)

tThe mass, momentum, and energy fluxes in terms of evaluated integrals over
the distribution function are given in Appendix B. )

11



v av v
Pg = {‘?- [u ( X+ 2. Oy)]s
3 ax 3z 3y
NS

28 oT ) W
+V"—;r - [k;; 12-1 " a10-—-a11)]5+ 2 P

NS o s

o , .24 (3) 4

-t o d

1 NS
with viscosity u = 'E. kT 121 ny by

Velocity slip (obtained from the flux balance of tangential éomponent of

momentum)
av v
s 2-9 Ox Oy
Vo, = 1 W (=) u + —)
0x 2 S ay ax S
NS NS
1 s aanT 1 = (3) 4
+= I eyl (ayg-=as,) = n I cid/ dv]}
2 =l i Tax i0 2 il j=1 i0 "x's
R (26)
. p —
= AT
s
v v
s 2-9 0z Oy
Vo, = (V7 () w ( + )
NS NS
1 S aLnT _1 _ & (j) J
fr Lh (e g e -0 Lo gl

12



7305 [ (27)

Temperature slip:

3/2 ;2 NS o
(1) = [- 297 (22 (1 e,) + (1) T
| 20 i=1 i=1 \/m_l
NS n? 1 avOx aVOZ avo
NI —{1+2by(—+—=-2-} (28)
i=1 my 4 X 9z 2y

Equations (24) through (28) differ from the corresponding expressions
provided in Ref. 2 due to small errors and also due to the differences in
the interaction model employed at the gas-solid interface.

" The constants 3500 241> biO’ and cgg) (also known as the Sonine ex-
pansion coefficients) appearing in Eqs. (24) through (28). may now be ex-
pressed in terms of the transport properties as given in Appendix A. Using_
these relations along with the various flux expressions of Appendix B and
also expreSsing dk in terms of the gradient of mass fractions acj/ay as
given in Appendix A (by neglecting diffusion due to pressure gradients and
external forces), the following equations are obtained after some algebraic

§

simplifications:

§The approximations made in the expressions for ajj and bygq are given in
Appendix A.

13



Number density (or concentration) slip

Same as Eq. (24).

Pressure slip

-t (0 o, oy 22y e B [T
3 ax 3z 3y S 5 ¥ = 3y i= 1 2KT
NS [m
8 W 8 2-8 i
+= pH{=+2 (=) 1
2 2 . vi sl \ KT
NS oC NS = aC
x § nj[‘_l,.cj D I (29)
j=1 3y g=i m, oy
J#i
Velocity Slip
av av
T 29y ru 0x Oy, 1,1 aT
v = — s + ) T | —— —
Ox {‘j-;(e)\[fﬁ(ay 2x]S 5 = X
NS NS NS  aC
X 2 f K -n m ) Di.—=
115 s 121 ' =1 13[ 3x
J#i
an(; acq) } NS )
- C, —_— /) n.\/m. (30)
J g=1 mq X ]S j=p PV _

14



NS . NS NS 3y
xIongm Kl -dg I m I oy (L

j=1 i=1 Jj=1 9z
j#i
NS = aC NS '
ST ) VR L HN [ 6y
Jg=1 m oz i=1
q
Temperature slip
W
Sl Py oow 0 MMy w2
T = =1 m = i kT. m, 2n_ ©
W Ng i 2n¢ diatomic woo S
molecules
S = W S
m.e.” M, kT m (e;-e;)m.
1 S 3 i i
x ] ( ‘1,1 ) =L "‘z ) — (-"_—S-J ¢; [——]
3 L& 8 3 . [ < 1
diatomic ! diatomic ! ! w
molecules molecules
P. NS [2kT m P,
x(Jl+1)+% b / D) ¢ (L)
s i= m. m. S
NS M
- 9
fl-ve (@G Ka.s vy
G 2 p 3y 4 i=1n m;
NS  [2kT. m P,
+ 1 1 S (5 C (3 Y + 1)} (32)
4 =1 m; m, p?

15



where the mass fraction Ci and the mass of a mixture molecule m are

defined, respectively, as

Ci = nimi/p

and

NS N
m = (jzl Cj/mj)

Equations (24), (29), (30), (31), and (32) differ from Eqs. (25) through
(28) of Reference 3. For dissociated afr, the gas-surface interaction model
employed in Reference 3 appears to be inconsistent. Further, the diffusion
vector di appears to have been incorrectly evaluated in Reference 3. If
one carries out the simplifications in Egqs. (23), (24), and (28) of Refer-

ence 3 {which contain the binary assumptionj through the evaluation of

.3.(nj/n) in terms of mass fractions as given by Egs. (35), (36), and (39)
y

of the same reference, erroneous results are obviously obtained because

NS ,
Y (3C:/3r)_. (which is zero by definition) is contained as a factor in
=1 ¥ s

several of these equations.
For the first-order recombination at the surface, the following

relation between the atom.mass flux MAy and the wall number density "X

may be employed

where the minus sign indicates that the flux is in the direction opposite to

the outward normal and the expression for the rate constant kwA with

16



diffusion and slip is (Ref. 2).7"

kTw
k .= ¥ (34)
wh A anA '

Here YA is the recombination coefficient.

For a fully catalytic wall (YA= 1), the maxiﬁum value of the rate
constant kwi is 1imited by the surface temperature. The reaction rate con-
stant for a fully catélytic wall with the gas phase in chemical equilibrium
is often assumed to be infinity for the sake of simplicity.

Employing Eq. (33), the net mass flux M, appearing in Eqs. (24) and

y
(32) may be defined as

y W
MAy - Kya nNp Mas A=0, N (35a)
- W, A=0forM=20;
My = Kun A ™5 4 2 N for M = N (35b)

For all other atoms and molecules,
Miy =0 (35;)

Equation (24), with Miy defined by Eqs. (35a) through (35c), gives

TTAs shown in ref. 2, by neglecting slip but keeping diffusion, a slightly
different form of Eq. (34) is obtained:

2y kT
Koy = ()
WA 2y, \ 2mm

A A

w

17



w?

the number density ratio n?/n?. However, to obtain n? from this ratio,

. s . .
an expression for ny is required.

The net mass flux of O and N atoms to the surface, MAy’ is also
equal to the rate of consumption of these atoms at the wall from surface

recombination:

\ . = N . |
May = Yy 5 A =0, N  (36a)

and the corresponding net mass flux of 0z and N2 molecules will be

A

- - v 0 for
My =~ Ya"ay {4 = N for

o

M
M

SZ ~(36b)

For all other species, the net mass fiux tc the surface may be assumed tG be

zero. Thus,

myfo (36¢)

+
y Miy
B in Eq. (36), the following expression is obtained (after we neglect

Substituting values of the net and incident fluxes Mi from Appendix

thermal diffusioh):

' s

NS aC NS = aC Vs

PR S Y S G|} JEA (37)
. ij J S v
j=1 3y =1 m_, 3y m.
j#1 q !

18



which may be used to obtain n?.§ Here w? is the source term defined as:

L8
¢S . Ya l. malty 2kTs : PAy ‘1) (383)
A (Z'YA] YT 235 my pi

For & and N molecules

S, _ 45 . (A=0forM=0,
bt N form- N (380)
For all other species
¥ =0 (38)

~ SIMPLIFICATIONS FOR A MULTICOMPONENT MIXTURE

Equations (24) (29), (30), (31), and (32) for multicomponent gas flows

can be simplified if one makes the following assumptions:

(i} All the diffusion coefficients, Dij’ for a mylticomponent gas have

S1¢ no assumption is made about Dij’ Eq. (37) would give an expression for
(aci/ay)s for all the species:

(aci] [mi) { NS [acj NS = acq] 5 NS
——) e @ (= I, D [—-cC —_ *_4/ L )
ay 'S T = 13 3 J Di3C5)s
A TR

The source term ¢1 in this express1on however, may be simplified to yield
an expression for CA (or ”A) for the recombining atoms only:

' 5
myn 2y m m NS aC, NS = 3C
=22 2w (B (D A oy - s (R0
P Ta z 2k T j=1 ay g=1 m_ 3y
S J#A q
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the same value so that Dij = Dlz,T D2 s the same as the

binary diffusion coefficient Dlé.

(i1) The normal momentum flux to the pressure ratio, Piy/pi is the
same for all species and equal to that of the mixture. This also

implies that the normal shear stress Tyyi for species i 1is the

same as that for the mixture (ryy).

(111) The rotational and vibrational states are fully excited so that

the internal energy e, for the air molecule may be taken as

equal to ZkT/mim

TThis is a somewhat stronger assumptioh. Because Dj; are concentration de-
pendent, whereas Dij are virtually independent of coﬁpos1t1on. The multi-

component diffusion“coefficient D.. 1is related to the binary diffusion
coefficient Dij through the following relations (see Ref. 7):

DU ='I?fj - (M‘i/Mj) T(-ﬁ

where quantities K are coefficients in a matrix which is the inverse of
the matrix with the f0llowing coefficients:

’ IR (54)
ij = Py g 1
g e

= 0 (i=J)

One can see, therefore, that by employing D (which is same as Dp2) ,
for all the species in a multicomponent gas mixture, considerable saving is
obtained in computational effort and time without losing the general flavor
of multicomponent diffusion. This is particularly true if the dissociated
air consists predominantly of nitrogen molecules and oxygen atoms. The
shuttle entry conditions fall into this category. Simple and multicompo-
nent diffusion gave same results in "An Experimental and Analytical Study
of Slip and Catalytic Boundary Conditions Applied to Spheres in Low
Reynolds Number Arc Jet Flows," by Carl D. Scott, Proceedings of the 9th

International Symposium on Rarefied Gas Dynamics, Gottingen, July 15-20,
1974, pp. D.14-1 to 11.
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L2

These assumptions retain the major effects of multicomponent fluxes on
various slip quantities and provide considerable saving in computational
effort required for the analysis of a flow problem (ref. 2 and footnote on
page 20). With these simplifications, Egs. (24), (29), (30), (31) and (32)
yield: |

Concentration slip

S
n; M 2rm p
1. =2 [1 +.;. 1y .ﬁ'l] _T_"i /(L +1) (39)
W W ’ S
nj Ny my "] N 's p
Pressure slip
S v av v
LANE R N 0x "0z, 00y 42 (28 _L
w { 35 KT L 3 X 3z~ ay)]S 5 ( w) ﬁkT
P W W W

x [+ (1-cp) I (- =31 | (40)

5 29y u Vox, oy, 11 a1 BN
vox = - (B [ (2 My ow 2 (2 T 1Ty
2 8 kT ay  ax 5 kT ax i=1 n
= s NS 8C1 ( ) NS = 8C1 / NS s (a1)
+n m + (1-C —_— ) n;ym. (41
12 I v
s i= ! [ax_ z=1 (m ] )]S} 121 LA



v dv S n;K
vs ,{\l’fr_'_ (29) v ( 0z , Oy) +1 7 13T i™
0z 2 o {ﬁ?? Is 5 [kT 3z 1§1 ‘J-

y 9z
= s NS\[__ 3C1. NS = 8Cq NS . _ ‘
PR PN [—+(1-C) T (——] /T nigm (42)
AR TS AL P T g=l m, 9z R T EEL L
Tempefature slip |
T NS M. M. .
SR I AN N P I S LEX +1)
T n, =Lomy S, mg 2 .S
S s diatomic P
molecules
l7'5 s .1 Py s
x 1 — (DG += (Z+1) ] —) 5l
1 m, 2 S
diatomic P
molecules
NS M M.
-8 1 K23 5 :
AS NGNS URSE I S G S B F
] 2 pa 4 ji=1 n my ] i i
diatomic
molecules
P NS [XT. m KT, m. o
+23 Xy ] — (3 +—0~+U ) _3.@3c3
4 S i=1 mf m; 2 3 i m. m;
P P diatomic (43a)
molecules

or, if the internal energy is frozen during reflection from the surface (see

Eq. (28) of Ref. 5, for example),

T NS M P NS [2kT_ m
S e oy Ty Ll (Y /.-._5(-5-) c3}
Tw ;s j=] my 2 ps i=1 m; m,

, : NS M. .
fl-ve (B8 L K s ()
8 2 pay 4 9=l nm :

(43b)

P NS [KT. m :
+L (3 L+ g — (I ]
4 p i=1 m, m, g
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ith species, m

Equation (37) may also be simplified to yield an explicit expfession for n::

3C, "
(s + = (s
P y m,
n$ = S[1+ i1z g (44)
m; NS 5 aC
q
@=L My 0y
where
3 s Ay .
vp = (—+1) 5 A=0,N (45a)

02
2  (45b)

w? = 0 for all other species - ' ~ (45¢)
It is suggested here that the concentration for the major species (for

example, nitrqgen) be obtained by requiring the sum of concéntrations of all

'thé species to equal unity. 'It may be mentioned here that the mass of the

i is related to the molecular (or atomic) weight,' wi,

through the relation

3

i
W

(46)

|

where k is the Boltzmann constant and R 1is the universal gas con-

stant.

CONCENTRATION SLIP BOUNDARY CONDITION FOR A FULLY CATALYTIC
' AND A NONCATALYTIC SURFACE

Equation (44) gives slip values of the concentration n? for a finite:

cata1ytic surface.A For a fully catalytic (YA = 1) surface one generally
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assunes complete recombination of atoms at the surface. There is a slight
discrepancy in this assumption because the maximum recombination rate is
limited by the surface temperature as discussed éarlier [See the d18cussion
following Eq. (34)]. Thus, for a fully catalytic surface, equation (44) or
(41) should be employed with Yp < 1. |

| Fbr a nonqata]ytic surface (YA = 0), Eq. (45) gives w? =0 for all

the species. For this case, Eq. (44) becomes

aCi
o T |
ny==[1+ m Y - y - (47a)
m. = 3 ‘ _ - !
‘ D=3
q=1 'mq 3y S
which may also be written as
aC S = aC_
(D, =-a<h I (- 9, (47b)
oy . - g=1 mq 3y .

Summing the above equation over all the species gives

NS = aC o
1 (= ;—335 =0 . (48)
q mq Y :

for a noncatalytic surface. Therefoke, Eq. (47a) is not an Appfopriate

boundary condition. However, employing Eq. (48) with Eq. (47b) yields:

aCy |
(;—-Js =0 (49)
y |
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which may be used as the boundary condition for a noncatalytic surface with

a multicomponent gas mixture.
SIMPLIFICATIONS FOR A BINARY MIXTURE

At lower altitudes with the flow in slight nonequilibrium (i.e. when
the Reynolds number parameter €2<< 1), the derivatives of various quantifies
with réﬁpect to x and 2z and some other'higher order terms like avqy/ay
may be dropped through an order of magnitude analysis (see Ref. 9, for exam-
ple). Further, the dissociated air may be considered as a binary mixture
(i.e. consisting of atoms and molecules only, see Ref. 8) at these.altitu;
des. If an assumption is also made that the internal energy of the mole-
cules remains frozen during reflection from the surface, Eqs. (39) through

(45) can be simplified further to the forms given here,

Concentration slip

S
n 2~y T
AL (LA X (50)
W 2 Ts
A
Pressure Slip
_p_s_a{“4(2-e) 1 (. oy
" 5vw 9 nKT,, \/2kT 3y
S S ' S
CA Ka  (1-Cp) ‘4 2.9, DaM
[ + K } /{1~ (5=
\[mA \/mM ™ 8 \/ 2kTs
- \/m -\/m aC
xm (LA By (51)
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Velocity Slip

[ {(\y =\My) ny + n ymd  (53)

Temperature Slip

T AT, m m3’2 my, 372
S22 ) a-e @ g r2( D)
Tu My ™ gt L

2kTw Y N W

p ay*s
AT, vun KT, m
+L4M_ AN+/$(@
m mA I'llA
m 372 m. 372 : N
x[(1-2(B rcf v2(H N - (54)
My ™™
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or, with frozen internal energy during surface reflection,

T kT, m my 3/2
e = 1= D g
T mA mA mM
my 3/2 ‘2kTw YAnAw ' ma
+( ]+ (— ) (1- 3}
MM MA 2, “‘M_
-9 T
J{-vw (2 24
. G 2 P a3y
om kT Y, n" KT m
+5_a-A / w(“‘,A)+/ > (2)
4vr .mM m.A 2}ns | Ma my
m. 3/2 m. 3/2
x[(1-(B 1 c¢g+D 1 o (54)

M
- In Eqs. (54a) and (54b) nX is obtained from n, by using Eq. (50).

Expression for na
p oC
S s 1 1 A
- RN (CIEE TS . .
' n aC
kT A 1 A
"YA( ( )+ )]s
— 2mm P dy
A °Dam A
- aC
. 1 A
/(L -2 (D]
_ mA mM sy
which may also be written as

27



N, m -2« 2rm aC
AR =D 2 o (D (55b)
P ZYA kTS 3y

For a fully catalytic surface (YA = 1), Eq. (55b) gives appropriate
value for the concentration s]ip.* The relevant boundary condition for a

noncatalytic surface (YA = 0) will be
(—I) =0 | (56a)
ay
as can readily be seen from Eq. (55b).

For a noncatalytic surface (YA—= 0), pressure and temperature slip Egs.

(51) and (54b) are further simplified, with the help of Eq. (56a), to

Pressure slip

2 é , = )
pS W 4 (2-6) m 8T A MJ

=p+5w' e’\[zkr \["“ Ny

Temperature slip (with frozen internal energy during reflection from the

suface)

2-9 K aT
T=T +V'_ {— e
(— )k ,__.a—-}
a ;5 ;3 { i/z ) i/z) Ci ' _-13754] (58a)
- A ™ ™

TSometimes in the literature C, 1is prescribed as zero for a fully cata-
lytic surface. Strictly speaking, this will be true only when the
Reynolds number parameter €2 (Ref. 8) is approximately zero (close to the
chemical equilibrium condition at low a1t1tudes) This can easily be seen
by nondimensionalising equation (55b) in a way similar to equation (28d) of
reference 8. Thus, the recombination rate coefficient y, and density (as
measured through €2), both control the recombination rate and not YA a]one.
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Equations (52a), (53a), (57a), and (58a) (with the noncatalytic surface

assumption in Eqs. (57a) and (58a)) can be rewritten as:

Velocity slip

1 u ~8v0x1

s .
va = A a [ (52b)
Ox 19 T = Is
A lm \jkT oy
s\N''s
v | :
1 u 0z
v A a [ ] (53b)
0z 1Y T 'TF s
. ﬁ rﬁs kT 3y
Pressure slip
- . ) |
p% ="+ 8y by (1 [ [ k21, (57b)
? kT ay
Temperature slip
Y1 K ) n ;
T T g (X (2 2 —-T-/—_]S . (58D)
S W 7 k kT 3 B
VT
where A = S 5 (%E]
) S = Ll
(\,mA -.\/mM) Ny +yMy N
—
{T.A__. CA KA . mM CM KM
= m = m S -—
B, = m A m M ( 64) ( Y )
afa, fufnyg M ¥l
s
"My My |
= 3/2 1 1 1 -1 128\, v
= - ) udntag | (RSN
6x 0 s ) G ) (R
&’ M 1



8

Sm  [w 26y _ 29
aQ = —_— - = = 1.2304 (—
1 T "2 (=3 (&=

8 - 8
15 \F 2-0 2-8
b, = =200 (£ =1.1750 (228
1 TRE ( - ) ( - )

2-6
G = = 2.3071 (——
1 T (= (==

The concentration slip condition consistent with Eqs. (52b), (53b),
(57b), and (58b) is

3C
(-3, =0 (56b)
2y

The range of values of A1, Bl, and C1 is as given below for a mixture of

oxygen atoms and molecules and Yy = 1.4 (ref. 8):

1.0039 < Al € 1.0186
K
0.9507 < B; « (0.9507)x(\j—3_: _f‘_+\[_3t f_“__/(__ + M
4 my T2
0.9056 < C1 € 0.9507

The minimum values for A and (1 occur at np = 0.5 P/mA, whereas the

maximun value for B1 occurs at this value of na.

The expression (52b), (57b), and (58b) reduce to those obtained in Ref.

™ if one assunes the values for A, B, and C; to be unity and a non

see Append1x C for the dimensional form of the s]1p boundary conditions
given in Ref. 8.
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catalytic surface boundary condition as given by Eq. (56b). The concentra-

tion slip boundary condition provided in Ref. 8 is:

aC

2=y 2rm
¢S = ¢S+ (—2D) A py A (59)
A Ae 2vp ’ kT AM e
which is the same as Eq. (55b) obtained here except for the additive term
Cze.fif It is obvious that the temperature slip boundary condition of Eq.

(2.8b) obtained in Ref. 8 is valid, strictly speaking, for a noncatalytic
surface only and is not consistent with the concentration slip boundary
condition of Eq. (2.8c) (reproduced here as Eq. (59)) obtained for a finite
catalytic wall. As a matter of fact, the velocity and temperature slip
boundary conditions of Ref. 8 are similar to those of Ref. 9,§ where these
slip conditions are provided for a perfect gas (or single species mixture).
The inconsistencies in the boundary conditions used in Refs. 10 and 11

are similar to those of Ref. 8, namely, the pressure and temperature slip

fTTIt appears that Eq. (2.8d) of Ref. 8 for the concentration slip has been
formulated for small deviations from the chemical equilibrium condition
(i.e. the Reynolds number parameter €2 << 1). Thus, when flow goes to
chemical equilibrium (with €2 = 0), one obtains from Eq. (2.8d) the
equilibriun value for the concentration i.e. Cpo = Cpas Which would be
zero for the oxygen atoms for surface temperatures of 2000°K or less.

§Ther‘e appears to be some error with the form of Egs. (2.7c% and (2.7d)
given in Ref. 9 if one employs the definition of dimensionless heat-trans-
fer rate 'q' in these equations from Eq. (2.4b) of the same reference.

(The Reynolds number parameter, €2, is missing in Eqs. (2.2b) and (2.4b)
for dimensionless shear stress and heat-transfer, respectively, of the same
reference. These have been corrected in Ref. 8.) The resulting pressure
and temperature slip expressions will contain the dimensionless viscosity
coefficient ‘'u' without the Prandtl number, see Ref. 10 and 11, for exam-
ple. This is in contradiction to Eq. (2.8c) of Ref. 8, which contains
dimensionless 'K' in place of dimensionless ‘'u'. For a perfect gas,
employing 'u' in place of 'K' in the pressure and temperature slip equa-
tions will result in no error. However, for real gas flows, the pressure
and temperature slip values will be in error by the factor of u/K. The
present analysis indicates that Eq. (2.8c) of Ref. 8 is of the "correct"
form for a single species mixture.
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values are in error by a factor of dimensioh]ess viscosity to the thermal
conductivity ratio ‘'u/K'. References 10 and 11 also employ the single
species formulation for obtaining the velocity, temperature and pressure
s]ip values and the concentration slip expression in these references is
that obtained for a binary mixture (Ref. 8). The coefficientslappearing in
the slip equations of Ref. 1l may be obtained by multiplying a1, b1, and

¢; (coefficients of Ref. 8) given here by 16/5;. The factor 16/5 is some-
times replaced by «.

SIMPLIFICATIONS FOR A SINGLE SPECIES MIXTURE

Egs. (39)'through (42) and Eq. (43b) may be simplified for a single
speciés mixture to the expressions obtained in Ref. 6. For small jump (or
slip) conditions these simplified equations may he written ac (with Ta " )
and Miy = 0 for a single species mixture):

Density slip

P = v v 21
s .00 =f" 1+ \F + 22 M7 (e0a)
P .5 s 24 ﬁRT ax 3z oy s

Pressure slip

pS 2.9, 15 (A 3T 5 [r *s
— = {1-[ (= = (& D += |- =
pw ] 16 T a3y 12 2VRE
v . VA |
x (X e 02, Oy - (61a)
aIx = 3z ay
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Velocity slip

v v
oot (E) (I (& . ¥y + 2 [Ter (L 40, (62)
9 16 oy X 32 ¥ 2 T ax

s (gﬁg (ﬂ) (aVOz avOy) 15 m A BT)

v = A + J . - — RT — — (63)

0z o 16 S ay 2z 5 32 V2 ST az8

Temperature slip

v 1,% 1.3 Py T5n 26 A Ty 147
=== (Z+{[->+= (= +1)] {— (== S} (64a)
Tw 2 ps 2 4 pS 128 8 T 3y

where we have used the following relations between the coefficients of vis-

cosity and thermal conductivity and the mean free path for perfectly elastic

spherical molecules (ref. 12).

e /2:: RT oA (65a)
16

15

K =_=
4

u (65b)

34 ~

The expression for u given earlier, fol]oWing Eq. (25), for a single spe-

cies mixture is modified to:

=1

1
H = - kao
2.

If, now, an assumption is made that the slip values are small, equations for

the density, pressure, and temperature slip are simplified to:

’fSince the temperature slip expression contained in Ref. 6 is for a gas
consisting of perfectly elastic spherical molecules, the gas does not
possess any. internal degree of freedom. Therefore, we have obtained the
temperature slip equation from Eq. (43b).
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Density slip

9 3
s . T_W{l-_i [ s Vox, Moz, v03’)5} (60b)
C TS 24 V2 VRK X 3z dy
Pressure slip
S av av
p" y
Temperature slip
T P P ) p -
Sl (a3 (et LX) Z:“ _2:_"_(*T‘”)S (64b)
9 3
Tw 4 ps 8 ps 2 ps 8 y
or,
% +(2-9)(751r o e
Tw 128 ay 48 V2 RT,
av oV av
x ( Ox .. 0z _ 2 Oy) (64c)
ax. 92 dy S

~In obtaining Eq. (64c) from (64b), we have used Py/pS = 1 in the second-
order terms (i.e. 2nd and 3rd terms on right side of Eq. (64b)). Equations
(61b), (62), (63), and (64C) are the slip equations given in refs. 6 and
12.

NO-SLIP BOUNDARY CONDITION FOR THE SPECIES CONCENTRATION

Multicomponent Mixture. The no-slip boundary condition for the species

concentration without any assumptions may be obtained from Eqs. (44) and
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(45). In the absence of slip, the Knudsen layer thickness shrinks to zero
and the values at the top of the Knudsen layer become the wall values (see

Fig. 1):

ac, V.
(=, + = (D,
Py dy © my Dy
ny = — [1+ ] (66)
m NS oC
i (o 9,
=1 = 3y
q
with
2y myn 2T
oA 1 AR W5 A=0,N (67a)
(Z‘YA) n 2 Ny My
W _ W, A=20forM=20, ,
VA a oy for M oa Ny - (67)
w: = 0 for ail other species (67c)

where we have neglected the higher order shear (i.e. Py/pw ~ 1).

It is suggested here, again, that the concentration for the major
specie (for example, nitrogen) be obtained by requiring the sum of concen-
trations of all the species to equal unity.

For the recombining O and N atoms, Eq. (66) may further be simpli--
fied to:

_ aC NS = aC
ny e (Ao, (— (1) I (& =1}, (68)
KyA dy g=1 My Y

The recombination rate constant kwA in Eq. (68) has been defined as (Ref.
2)
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F; = incident flux

';:11‘ = specularly reflected flux

gw = diffusely reflected flux
1

Figure 1. The Knudsen layer showing general flu
The temperature as a function of norm
over}ayed.

r——-—T(y)
Continuum region (Main Flow)
F Fl Ts |

S e | P at T R
 Knudsen layer ‘ was // -

(order of one ' w / y A

mean frge path) Fi 1 / |

=

xes and coordinate axes.
al distance is schematically
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2v kT
K = Ay | (69)
‘YA 2ﬂmA »

without slip and higher order shear.

For a noncatalytic wall (withv Yp = 0), Eq. (49) gives
(B, =0 - (70)

for all the species of a multicomponent mixture.

Binary Mixture. For a two-species mixture of atoms and molecules, Eq;'

(55b) gives

oC
¢ s L x (0 D), BRNE2Y
Kya Yy
for a surface with finite catalycity and
aC
(=8, =0 (72)
dy

for a noncatalytic surface. Egs. (71) and (72) are employed in Ref. 4.
Appendices D and E give the slip and no-slip boundary conditions (pre-
sented in the text earlier), in the dimensionless form for the body-fitted
and spherical polar coordiﬁates, respectively, for a planar flow. The
various integrals employed for evaluation the net, incident, and specularly

reflected fluxes defined through Egs. (5) to (7), respectively, are given in

Appendix F.
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DISCUSSION AND CONCLUSIONS

The present analysis provides a consistent formulation for the slip
equations for a multicomponent, binary, and single species mixture reacting
catalytically on the surface. The differences between the slip expressions
obtained by various researchers‘have been reconciled and implication of
various assumptions (some of them inconsistent) contained in those express-
jons is discussed. The slip equations have also been obtained in body-fit-
ted and spherical polar coordinates in a form which can readily be employed
in the flow-field calculations. |

Usually, the equation for pressure slip is not required as a.boundary
condition, but is needed to obtain the surface pressure. The ﬁémperéfure
slip equation given here is for a constant surface temperature, which is

provided as a boundary condition. For an adiabatic surface, however, the

slip'iemperature, T

s> may be obtained by equating the wali heat-trahsfer

rate to zero i.e.

NS . v
qw=(K?.l- ) Jihy g, ® =0
y i=1 ! X 3y S

where the expression for mass flux :ji 1s‘provided in Appendix B’and the
higher order terms have been dropped. The temperature slip equation_wi]]
now be required to obtain the wall temperature, Tw‘
An expression has also been obtained for the finite-rate species-con-
centration‘boundary condition for a multicomponent gas mixture without sur-
face slip. This boundary condition in the literature (Ref. 4) has generally

been specified by assuming the dissociated air as a binary mixture.
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However, the binary mixture formulation does not provide boundary conditions
for the recombined molecules (on surface) such as 0, and N, in a multicompo-
nent mixture; it gives boundary conditions only for the recombinfng atoms.
To assess the importance of various terms in the general boundary coh¥ |

ditions suggested'here, a study is being undertaken in which the flow prop-
erfies and boundary conditions would be varied systematically. The,boundary
equations form a simultaneous set, which is being coupled with a flow field.
calculation procedure in the stagnation region. These equations would
finally be coupled with'the viscous shock-1ayer'code developed by MoSs‘(Ref.
13) for fhe detailed flow-field calculatiohs. The bounqéry equétions
obtained in the present work shou1d provide a more realistic set of boundary
conditions for a multi-component mixture for low-Reynoldsfhumber slip flows
as well as no-slip flows. o

n conclusion, the boundary siip expressions obtained here afe'ciosed
form-solutions of the mass, momentum, and enefgy flux equations{dsing the
Chapman-Enskog velocity distribution function. This function represents a

'solution of the Boltzmann equation in the Navier-Stokes approximation.
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APPENDIX A

CONSTANTS APPEARING IN THE DISTRIBUTION FUNCTION
AND DIFFUSION VELOCITY IN TERMS OF TRANSPORT PROPERTIES

The Sonine expansion coefficients ;9 341> biO’ and cgg) appearing
in the general velocity distribution function are found by a variational
- technique in which they are solutions to sets of simultaneous equations.
References 2 and 7 provide the coefficients in terms of sofutions to these
set of equations. These solutions are expressed in terms of the collision

(s,2)

integrals gij . Reference 7 also provides the transport properties in
terms of the Sonine expansion coefficients. Thus, in place of evaluating

these coefficients in terms of the collision integrals, they may be

expressed in terms of the transport properties. The various relations

are:
(i) for 354 —
n. m, k
0] (€) = 1 24(8) (A1)
2 m.
i
(ii) for a5,
NS
Ke) = - 2k 1 n, (L oy (e) BN(Y)
4 sl m,
(i1i) for b10
) NS
u(g) = -5- kT ig'l "1’ bio(g) (A3)

(iv) for ng)

In the distribution function used here the Kernel igJ)_ Egk)
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en . kT .
0;4(6) = = /—- cid)e) (a4)
_ 2n mj ms

where DI (), K(), u(g), and Dij(E) are the multi-component thermal
diffusion coefficient, thermal conductivity, coefficient of viscosity, and
the multicomponent diffusion coéfficient, respectively. The argument £ s
the number of terms used in the Sonine expansion. Except for DI, letting
£ =1 gives quite good results for K, u and Dij‘ When & = 1, however,
coefficients DI vanish. Hence, in order to get the coefficient of thermal
diffusion, it is necessary to take at least two terms in the Sonine expan-
sion (i.e. &€ = 2). If the argument does not appear with a coefficient.(ex-
cept'for aio), it is considered to have one term in the Sonine expansion.
The diffusion velocity for ith species in terms of the transport co-

efficients is obtained as (see ref. 7)

(AS)

where the diffusion vector di for the jth . species is defined after ne-

glecting the external forces as (see Eq. (16) in the text):

n. n.m. é '
33 2 (anp) (A6)
o} 3Xk

i M
d = (——_._—) + (
k 3xk n

Siij &
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Eq. (A6) may be simplified to obtain

8C NS aC
3. ) (L 9] (A7)
RO g=1 mq 8%y

u lv—-

SIMPLIFIED EXPRESSIONS FOR COEFFICIENTS a1 i0

Since iy and bio can not be obtained directly from equations (A2)

AND b

and (A3), we introduce the following assumptions for the mixture thermal

conductivity and viscosity; respectively,

N .
Ko T = K , . (A8)
izl n v
NS ni '
u - z "‘;'U.i (Ag)
n

Equations (A8) and (A9) are approximate forms for the more exact formula of

Wilke (see ref. 14). These equations imply that |

NS

1

::ul S
Ca.

b5 1  (A10)

in the Wilke's relétion. This is approximately true for air.

Thus, with the help of Egs. (A2), (A3), (A8), and (A9) we may obtain

the following apprdximate expressions for ail and biO’ respectively,

n, K., [m,
i

1 (A11)
k N 2T

=
o
[}
1
o |
::;Ill—a
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3
e

2
n, b~ S . (A12)
i 7i0 kT i

:'nl

For accurate evaluations of a4 and biO’ cumbersome expressions of the

type of Eq. (7.4-49) of ref. 7 are required to be solved.
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APPENDIX B

EVALUATED EXPRESSIONS FOR THE FLUXES OF MASS,
MOMENTWM, AND ENERGY FROM INTEGRALS OVER
THE DISTRIBUTION FUNCTION

The fluxes of mass, momentum, and energy (i.e. of a property ¢(V))
are given in terms of integrals over the velocity distribution function
f(V) in the "Analysis" section of main text. Here we give evaluated forms
for these fluxes obtained from integration over the distribution functions.
The various integrals needed in these evalulations are provided in Appendix

FD

(1) Expressions for Mass Flux of Species

Net
' 5
m: n 2kT. 172 NS : .
My ® —— (—9 [ {2 D)} agg+n ) <) dl].
2 m. 3x j=1
i k
K =x, ¥, 2 (B1)
Incident
. 3
m; n 2kT bin 9V v v
M; R S )1’2[ 1+ 30 7Tox Yoz _, Oy)]s
2 Vw m, 6 X 3z 3y
1
+ ?Miy (B2)

Specularly Reflected
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I

Diffusely Reflected

) (84)

It may be mentioned that Miy as obtained' here is similar to the mass flux

v(ji) expression of Ref. 14.

(i) Correlation with Blottner's Expression (Ref. 15) for Mass Flux

If the thermal diffusion term is neglected in Eq. (Bl) and

substitutions are made for cgg) and d‘lj( from Eqs. (A4) and (A7), Eq. (B1)

may be simplified to obtainf

oW, gs [acj NS oacy .
joz M = ¥V D[ - —_ +B%)
W TS B Uy e Wy 3y

where wi is the molecular (or atomic) weight of the ith species and is

related to the mass of the 1ith species, ms, through the relation

m,
1

W

(86)

!J:Jll'

Here k is the Boltazmann constant and R is the universal gas cqnstant.

Equation (B5) may also be written as

Wy NS NS 3y
J; = - I (055 -=— 1 DjqCql (= (B7a)
§=1 i e "y

or, with the introduction of the multicomponent Lewis number, Lij’ defined

It may be noted here that Djj= 0. See reference 7 for details. 46



as

Lij =p Cp Dij/-K =p Pr Dij/u’

Eq. (B7a) may be rewritten as

# NS wi wi NS 3Cj
him o L=ty = 1 Lt () (o)
" NS wi w1. NS 8CJ.
or, -ji = ] ["'— L'ij + (1' ""‘) ) Li C] (“"‘-) (‘B7C)
Pr F#1 g Wyt o@i 1T oy
(29 (g L] ey - [ty o (- 1y )
or, Ji == (— (le; —+ Le; = |—1L.. +(1-—] ) L, C_
i Pr L # i i i J wj o i 9 g
3C.
x —3 (87d)
3y
b aC, I
or, Jj= (=) (key — + I &by — (B7e)
» Pr 3y i 3y
where.
o (- 7 e
Ab,. = Le, = [—— L;. + {1 - — . C (B8)
ij i a ij wj ey iq ~q

§

In general”,

.§See Egs. (7), (8a), and (8b)-df reference 15.

47



If the binary Lewis numbers Iﬁj are assumed to be the same for all the

species, then

% _ %*
and Eq. (B8) for Zb1J becomes
~ W, W. NS
Kb:j = Lle, - [ L:j v (1-0 1 L:q Co] (89)
ﬁ Wj q#"
and the mass flux Eq. (B7e) now becomes
aC NS _ ., aC,
iy = - (X (Le, T4y Zbij N (B10)
Pr oy #i oy

Further, if the binary Lewis numbers, Lij’ are constant for all the

species, the term

is zero in Eq. (B10). Therefore,

NS W W NS

Dote, 4. P taa-ty Pl @
#io ey g g TR A 3y
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‘o

NS W, W. NS ac,
I = U+ -7 L, cl(=d
i M @i 9T ay |
or, le; = - (811b)

‘ ' aC,
1
(—)
3y

Thus, Eq. (B10) gives the mass flux due to concentration gradients only with

' Ab:j and Lle; defined through Egs. (B9) and (Bllb), respectively.

* . .
To utilize Eqs. (B9) and (Bllb), Lij are still to be evaluated
through complex matrix 1nversions (ref. 15). If we now make a little
*
stronger assumption such that Lij = Lyp .= Le (same for all the species),

i *
we obtain a much simpler expression for Abij and Eq. (Bl11lb) becomes

| W, 3C; 1 NS Wy 9
Le-i = Le ["—" = (1 = Ci)('—'—) Z {(1" - —'}] (Bl2a)
& 3y J#i W, 3y
L] J
or,
. o 8aC, 0 NS W, aC |
le; = Le [+ (1)) ()~ ] (£ 4 (BL2b)
] oy j=1 W. oy

= % . ‘
Similarly the expression for Abij may be obtained from Eq. (89)‘as

- W, oW,
Bbyy=ley -te [+ (1- D (1c)] (B13)
i W
‘ 3C, _ ' . 3C, _
It may be noted that for the case when —— = 0, the term Lei —L in Eq.
5y 3y

(810) vanishes and Eq. (B12b) is not required. Further, employing a
constant value for the Lewis number, Le (=p Pr Dlz/u), does not imply Lei

to have a constant value.

It should be pointed out here that for the case when Lij is the same
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for all the species we have used the condition

NS _ . oC.
Kb:k J=0
J#i oy

. = %
(and not just Ab1k = 0 as employed in ref. 15) to obtain Eq. (811lb) for
Lei. The present formulation appears to provide a more consistent

expression for Lei.

Finally, Eqs. (B10), (B12b), and (B13) for a binary (two species)

 mixture give

3C,

iy = - XoLe( i) ; (Fick's law for mass - f1ux) (B14)
Pr 3y . - ,
Le, =Le (815)
z % ' ' .
Abij =0 (B16)

(iii1) Expressions For Normal Momentum Flux

Net
b v AV, v
y 3 ax 9z 3y
- i -
p; [1 + Tnys (Bl7b)

where 1;2 are terms in the stress tensor for the ith species.
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Inéident and Specularly Reflected

b, v v v
ot =pt - pS [_1_ + 10 ox . _0z _, O.Y)
ooy 2 6 . ax . 3z 3y
+ L ?_R'_'.‘.I(a -l a )-.:.Zsc(j)d‘]] (318)}
e ey 00 g e 10 Ty s
Diffusely Reflected
R | W 1 w
Piy =E P3 . (B19)
(iv) Expressions For Tangential Momentum Flux
Net
s P Yox L2V S
Pix = - P] [—T + 2] - (B20)
dy Ix _
S biy 3V dv -
P. = - ps i0 ( 0z . Oy (B21)
iz i [ 5 ay 32 ls]
Ihcidenv-t and Specularly Reflected
' ' . ' b, VA, v
P+1x a - Pfix = 1 p? (- Wox - V¥ i0 | 0x . Oy).
| v S 4 ay ax
JloaanT 0 1,40 ZNS gy | (822)
2 ax i0 5 Tl 2 j=1 i0 “x's
by 3V 3V
vo_ ot . 1 s i0 0z Oy
Piz = - Piz v p1[ - Wop - VT 2 ay * az)
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1 aenT 1 n (§) 43
it (a4 "3 30/ oy S0 dyls (823)
Diffusely Reflected
W oW A
P =P =0 (B24)

(v) Expressions For the Energy Flux

Net
kT m.n B
5 5 i kT LnT
Eqp = = (—3) [—— (&D172 a;+ M. ]. 3 k=x,y,z (B25a)
g e 2 e e, 1 ils |
kT ' n.K.
_e L5 %s e oM e _
=0 ¥ 'Z-(T) Mik 5 Y4k [T ;';-]S (B25b)

Incident and Speéular]y Reflected

( S
' . m 4 3 x 3z dy s
+1 ¢ | ~ (B26)
2
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Diffusely Reflected
. o »
S myn, ( 2kT
2Vr m;

Ei =

i
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APPENDIX C

SLIP BOUNDARY CONDITIONS GIVEN BY DAVIS FOR A BINARY MIXTURE
In this appendix, the dimensional form of the slip boundary conditions
~ obtained by Davis (Refs. 8 and 9) is provided for the purpose of comparison
with the slip expressions obtained in the main text for a binary mixture.

The dimensionless form of the surface slip conditions provided in refs.

8 and 9 are

Concentration slip (ref. B)T

s .
Ca = S (1)
Ve1ocity $iip (ref. 8)
- 2 au
u = €¢ g ( )S (CZ)
an
t+
Pressure slip (ref. 9)
(c3)

1Here the dimensionless quantities are denoted with a 'bar'. See Appendix
D for details of nondimensionalization and the coordinate system.

T*For the reasons exp1a1ned in the main text, we have employed 'K' in place
of "' in this expression.
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Temperature slip (ref. 8)

(C4)

With the help of the nondimensionalizing quantities given in refs. 8 and 9,

the following dimensional forms of Eqs. (Cl) through (C4) are obtained:

Concentration slip

s s 2-YA\ errmA aCA
CA"CAe*(zy '\jkT (Dpw —s | (C5)
A S an
Velocity slip
u
uS = a S ( 1 du ) (C6)
NN
s nVm 3n
Pressure slip
~ - .
p=p,+ b (12D -T"L(K _T.*)S (c7)
Y s 3n
Temperature slip
-- a =
T=T +q (Ehr & L3 0 (c8)
W 7 kKT o yF S ‘
Y 9 m
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*
where n is the coordinate normal to surface (see Fig. Dl in Appendix D)
and n and ; are the number density and mass of a mixture molecule,

respectively. The constants a;, by, and ¢; are defined as:

a = (3 \/g. (2 = 1238 (Y

16 0 )
15 17 2-9 2-9
by = =2 — (£2) = 1.1750 (&5
v 7 9 (=3
7% [r 2 2-8
C, = - - () = 2.3071 (==
Y128 42 (- (<
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APPENDIX D

SLIP CONDITIONS IN THE BODY-ORIENTED COORDINATE SYSTEM
In this Appendix we obtain the slip conditfons for an axisymetric body
in the body-oriented coordinate (s*, n*) system. The coordinate configura-
tion for such a system is given in Fig. D1. The equations of this Appendix
contain simplifications similar to those given for a multicomponent mixture,

following Eq. (38c) of the main text.

' *
n,v
*
S,u
'-. ’p

R1=R+n*coss SRV

— — Body Axis

VS e

Figure D1. Coordinate Configuration For A Body (Symmetric About Its Axis)
*
By employing the metric coefficients (see ref. 16) of h, =1 + n « and

he = 1, equations (39) through (45) give the following slip equations in the

body-oriented coordinate system.
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Concentration slip ,
S .
n’ M. 2rm, T P
Ui [1+1 _1¥ / Ll /_"i /(L + 1)
n? 2 n? my kTw TS Ps

where ( from Eqs. (35a) through (35c)) we define Miy as:

. w . (A=0forM=0p,
My = Xwa "a ™ ’{A=NforM=N2’

For all other atoms and molecules

Miy =0
Pressure slip
S 6 1 ] 3 -8 ]
e -3 Y. 2 V*ns+3(f,_) L U
1+n « 35 ) 5 Vm kT 54
NS n.K.
x 1 S Nm e & oML A2R)
2 2 ™
i=l
NS aC ' = 3C
i
x LoV [— v aepl B Dl
! an . q mq an

Velocity slip

S 2-0 ] . 5
u={/"5-( ) (AL .1 2y
o V kT an 1+n « l+n ¢ 3s

(1)

(D2a)

(D2b)

(D2c)
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[

NS n_.K,
1 1 aT
1 = 1 = 4l
5 kT (1+n*K) as i=1 § |
sl a1 Ty
+n_D My [ + (1-€) P
s 12 L i as T og= s
=1 (I+n'x) 3s g=1 mq (1+n «) BS*
NS s
rLom vy ' o8
Temperature slip
T NS M, M. P
S oL .¥ oy dy ¥ e iy L1 yagy
T, ﬁs il m, = i my 2 pS
diatomic
molecules
kT m P NS [T m
x 3 S () c':ﬁ+_1. (L+1) 7§ |—(3 C?}
i mom, 2 s i=lyf mo m
diatomic P 1 1
molecules
28y 1 kK aT 5 ¥ My
JERLNE-RS I R
0 2 p an 4 =] "m1
1
:
diatomic
molecules
p kT, m |
1
+ 2 (L+1) ) 2 (D) C?] (D5)
2 s 1 m. m.
P diatomicy '
molecules
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If the internal energy (comprising of rotational and vibrational energies in
this case) is considered frozen during reflection from the surface, the

following form of the temperature slip equation is obtained (see Eq. (28) of
Ref., §5):

NS M.
BN R A N FARPUNS S Gl A )
Tw ;s =l my 2 pS

NS M,

fl-ve (2 Rany L8 vy

9 2 p an* 4 i=]1 n my

1 .y v ;
+= (32+1) ¥ ¢il (06)
4 s i=1
P
3
Equation for n;
3C, Vs
i 1 i
__;JS + :_.(___JS
p an m D
n%e 21 o (07)

m NS = 3C

i m q
(9

q=1 My on

where
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S p
by = - (A +1) 5 a=o0,N (D8a)
Pa
S = _ ¢S A=0forM=02.
¥ A Nfor M- N (08b)
w: = 0 for all other species (D8c)
P
In Egs. (D1), (D5), (D6) and (D8a) the ratio —¥ is defined as
| pS
P b -
Y o149 ¢ 1* a_‘i;.-z?-!:)]s (D9)
ps 3 l+n ¢ 3s an
and bo is related to viscosity, wu, through the relation
=L fkro | ~ (D10)
H > 0 ‘

which has been obtained from (A3) by assuming bi0 to be the same (bo) for

all the species.

Equations (D1) through (D8) may now be nondimensionalized by using the

following relations (refs. 8 and 13):

u - v - T T
Vo, T= - - s
er Uno Uoo/cp,@ ref

U=
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Pl P u(Tref) ref
C k
T= P ., 7 = h , Kye AR
P C K Wiy
p’@ (-] -]
* J
g= _XK , §=5., w="_,
Com Vres N "N
# M.
K = Kry R=2_, N, = 1y
N r iy_ W
N ni m]q”
e T
M D,/ N «

Introducing the nondimensional quantities as defined here, the following

equations are obtained from Eqs. (D-1) through (D-8):

Concentration slip

o
B . '[1+%n,wr1y &, (011)
w —
Gy °s '
where
My = -k 3 A=0, N (D12a)
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C
T . Ay . (A=0 for M=0,.
cW ,
M
ﬁiy = 0 for all other atoms and molecules | (D12¢)
Pressure slip
. au v
PP, -2 (2w (Lo M2y

Sty ey et

vr e - Prg 2ot Ts (i)
NS W aC,; B aC
S Y M ot R B S 6. M| B S I
i=1 q‘ an q wq an

where we have assumed that Pr « Pri and Cpi/Ri = (? - 1)/?

Velocity STip

Mwu
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aC1 NS = 1 acq
41y = (ML (3} ]
3% q=1 wq (1+n) 3
(D14)
Temperature Slip
T o NS W | W
_§_={-/_’_'_( )L MY (D) o+ W, cf (=
T, 2" PF [1'=1 vy ’(wi) ); vy 1("‘1)]
_ diatomic.
molecules
P NS W W
1 372 3/2
v+ (X1 =) ¢S+ () C?]}
2 s j=1 wi i W.
P diatomic !
molecules

N, 5 5, NS W
(23 (D, -3 1 owm, (D

ws an 4 55 i=]1 w1

PPs

) W , P NS W 372
=0T My o e ey 1T 4

== s i=l W,

PLs diatomic L P 1

molecules
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1y W..3/72
+ (L +1 S S
AL NG
diatomic i
molecules

Or, with frozen internal energy during reflection from surface,

—de

b
]
—
+
-t
b
won
o
—h —h
o
e

(D15)

(D16)

(017)
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L

and

or,

S = =
erA = - YA ( 1 \ w" TS !_S_) (fr_)
3 (2vp) €2M, | HT, U T, W, Le®
Py s
x (L +1) Chk s A=0, N
oS
= - . [A=0 forM=20
W:i V: i {A =N for M =Nz
Tp‘is = 0  for all other species
P P Yo T, = W
R A i WA (halid I (R PP
=g - W
oS p 3 T P T W,
1 au 3 Vs
x ( = -2
l1+nk 3s Y i
T - -
Bape2 52 L% %
ps 3 P l+nk 3s an
Wy = my Rk
" .
€2 = ref (Reynolds number parameter)
) r
o o N

(D18b)

(D18c)

(D19)
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Cu
Pr _E_. (Prandtl number)

Le

(Lewis number)

U
M = .—  (Mach number)
a@

and

(Recombination rate
constant)

For a noncatalytic surface (YA = .EQA = 0), eqgs. (D18a) through (D18c) give

$§ = 0 for all species. For this case, Eq. (D17) becomes

aC NS W aC
i S S q
—) . =~ (1-C3) — (D20) -
(a‘ﬁ)s i qgrl(w an )s
q
Equation (D20), similar to Eq. (47b), gives

—— z () DZl
(=D, ©21)

which may be employed as the boundary condition for a noncatalytic surface

with a multicomponent gas mixture (with the binary assumption for diffusion

67



coefficients). For a fully catalytic surface, employing Yp < 1 and using
‘Eqs. (D18a) through (D18c) in Eq. (D17) would yield the appropriate
concentration slip. |

If the multicomponent diffusion coefficients are retained without the

binary assumption the underlined terms in Eq. (D13) are to be replaced by

NS

R R o RS ol B
=1 Le om @1 W, am s
Jri a9

and the underlined termsin Eq. (D14) are to be replaced by

_ NS Lij { 1 GCj e ‘NS Fl- 1 ,8Cq i}
=1 Le (l1n <) 5% Y =l W_ (1+nc) 3s s
Jri : _ g

where the multicomponent Lewis number, Lij’ is defined as

. p C Di‘

L

Simplifications For A Binary Mixture

When all the species in a gas mixture can be considered as atoms and mole-
cules only (see ref. 8), Egs. (D11) through (D18) may be further simplified.

With the assumption of Py/pS ~ 1, Eqs. (D11) through (D18) for a binary mix-
ture yield:
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Concentration Slip

(D22)
Pressure Slip
P -
: is s —S wA Sy —S ‘ '
x(—)3/2 [Cy iy + (%72 (1- Cp) uyl (D23)
A"A . A’ M
W W
A M
where we have used the equation of state
) T W
o M ol W

and neglected the higher order shear terms as well as diffusion terms.

Velocity slip

(D25)

where we have again employed the equation of state given earlier and neglec-
ted higher order shear, conduction, and diffusion terms. -In" obtaining

Eq. (D25) we have also used the approximation:
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S 1/2
[CA (wM - wA) + wA]

[Ch Wiy - V) +\W,]

X = s ]

To be more exact one may keep this factor in Eq. (D25).

Temperature slip

- = 1 [7 Y 2-8, g2 ‘Is af
To=[T, \}Exl( l}s( ) (—) (=]

where

' 372
[Cy(Hy = Wy) + W]

Xy =
372 3/2 3/2
[CA(WM -2 NA ) + 2 NA ]

1
and 5 <x1 <1 for 0<Cy< 1 and diatomic molecules (Wy = 2 Wy).

(D26)

In

obtaining Eq. (D26), we have employed the equation of state and HW = ZNA.

With frozen internal energy during reflection from the surface, the

temperature slip equation becomes
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.

5 7 28, FuA Py CX '
/1-= xe (=) { } (D27)
P VB7g  (G+ )
where .
- 3/2
e LAty - )+
2 NI 372,
"CA ‘wM - NA ) + wA 1
For diatomic molecules (wM = 2 wA), X2 may be taken as unity for
0< Cpf 1. Equation (D27) employs Mw = 2wA.
Equation for CZ
2.y 2 - T aC
A
¢y = (—D (5 (D, B [ (=, (028)
2 wA TP sTref 2N
Equation (28), for a noncatalytic surface with Y * T(-wA = 0, gives
aCA
(= =0 (D29)
an
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11:

whereas using Yp s 1 in Eq. (D29) and in the expression for kwA:

(D30)

would y1e1d thé appropriate concentration slip for a fully catalytic sur-
face. | | "

with_the following (somewhat inCOnéjstent) assunptions, Eqs.-(023),
(025), (D27), -and (D28) may be simplified]td those obtained in refs. 8 and

(1) In pressufe'slip Eq. (023), Pr = 1 is employed along with approxi-

mations

nj|e
B aamn N
=<}
' =|
—

(L

and

| W

S S =S A Sy, —S —

D (G (2 (- Q)R - T
A p M

(i) In velocity slip Eq. (D25) the following assumption is made for the

mixture molecular weights

”:m
' g

L =]
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(ii1)

In temperature slip Eq. (D27) an assumption is made for the surface

to be noncatalytic so that E@A = 0. In addition, Prandtl number

(Pr) is taken unity and it is assumed that

bl

(

.15
s ~ =

N

-1

<

No assumption is required in the concentration slip Eq. (D28). But
it may not be appropriate to employ (Ref. 11) this equation for all
the species of a mU]ticomponent mixture. . This equation is applic-
able to concentration slip of recombining atoms only in a binary

(two-species) mixture (Ref. 8) of atoms and molecules.

No equation has been obtained in reference 8 or 11 to correspond to Eq.

(D22) to obtain wall values of the species concentration (C:) from the

values at the edge of the Knudsen layer (CS).

A

Slip Expressions For A Single Species Mixture

For a single species mixture (YA = 0), the following slip expressions are

obtained:

Density Slip

b‘ (D31)

© ©
S|

73



Pressure Slip

7

Velocity Slip

- ) (D33)

Temperature Slip [For a gas consisting of molecules only (i.e. diatomic

perfect gas)]

" o, 2 ¥ |
T =T, + L J— (X 29) : S.AD (03
¥-1° " o Pre an

where we have used x; = %., or with frozen internal energy during

reflection from the surface,

- - - _ 2 l..l- -
T =T, + L J" (X, (&Y = .2, (03)
y-1° an

0 Pr prs—

Equations (D32) (D33) and (D35) are the ones employed in References 8 and 11
with Pr =1,

No-S1ip Species Concentration Boundary Condition

Multicomponent Mixture

The no-slip boundary condition may be obtained from Eqs. (D17) and
(D18). 1in the absence of slip, the Knudsen layer thickness shrinks to

almost zero, the values at the top of the Knudsen 1ayer beéome the wall
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values (See Fig. 1):

aci WA
Y T il
W oo i A=0for i=202.
=1+ % 7 aC bl N for 1= N (036)
1(7—#‘)”
=Y
where
2v T I
e - (A () — " (D, B, q
2‘YA e2M_ Y, WA T, Wy Le m
Aso0, N  (037a)
S . {A=0for M= 0
4$: wx i {A = Nfor M =Nz (D37b)
$} = 0 for all other species (D37c)

where we have neglected the higher order shear (i.e. Py/pw = 1).

For the recombining O and N atoms, Eq. (D17) may also be written as

aC NS = 3C
.y _A L)
ATl qz=1(wq v
Ns'a aC X W -
/ LA | WAY Wy (Pry (P D38
{ qal(wq a’ﬁ)"‘+( ~ (wA) (Le)‘”(i)‘”} | (D38)

The recombination rate constant IQA in Eq. (D37a) and (D38) has been
defined as (Ref. 2) |
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2 W, T
Rt (25 e (039)
-YA © Yo wA )
without slip and higher order shear.
For a noncatalytic wall (with Yp ® E;A = 0), Eq. (D21) gives
aC1 .
(—, =0 (D40)
am

for -all the specieé of a multicomponent mixture with the binary assumption

about the diffusion coefficients.

Binary Mixture

For a two-species mixture of atoms and molecues, Eq. (D28) gives

—  aC
W g2 ley . (u A , .
“a” KA Gv G (o)

Which may also be obtained from Eq. (D38) for a surface with finite
catalycity. I@A in Eq. (4la) is again obtained from Eq. (D39). For a
noncatalytic surface with E;A = 0, Eq. (D41) gives

aC
(=B, =0 | (042)

an
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" Eqs. (D4l) and (D42) are obtained in ref. 4. However, ref. 4 employed Eq.

(D30) in place of Eq. (D39) for obtaining the reaction rate constant, Koae

As obtained in ref. 2, Eq. (D30) is more appropriate when slip and higher

order shear are included -in the flowfield analysis (e.g. under rarefied or

low density cond1t1ons)

If kwA is substituted from Eq (D39) in Eq (D41a), we may also
obtain.

(D41b)

- (D43)

Eq. (D41b) compares with the corresponding equation of kef; 8, if one
keeps in mind that the diffusion coefficient FD (of Ref. 8) in the absence

of slip is related to the present variables by the re]at1on

It may be seen from Eqs. (41la) or (41b) that the gradient (aCA/aﬁ)w is
governed by the rat1o kwA/e2 or YA/e Therefore, for'surfaces which are
almost noncata]yt1c, th1s ratio would be of the order of one for large

values of the Reynolds number‘parameter (1/€2). This would imply that a

77



surface, regardless of its catalycity, would produce a larger effect
on the concentration gradient for high density rather than low density
conditions.
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APPENDIX E

SLIP CONDITIONS IN THE SPHERICAL COORDINATES

For analyzing the flow in the stagnation region of a body, it is conven-

ient to use the spherical polar coordinates (r,)

for the two-dimensional

flow. The following relations exist between the spherical polar and the

: * %* . ’
body-oriented (s , n ) coordinates over the spherical portion of a body

Figure El.

Coordinate Configuration
* %*
rsin¢ =R +n cosB

* * 1
rErytn =ry (1+n x) B =A7ﬁ

*
rd =s . p=90-9¢

N
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or, in the non-dimensional form,

F=?N+F=,1+n ; k=1 > (E2)

where we have used nose radius, "N to nondimensionalize all the distances

(see Appendix D).

Using the relations given by (E2) in Eqs. (D11) through (D19), we can
obtain the slip equations in the spherical polar coordinates for a multicom-
ponent mixture. Once again,'these equations employ the simpnlifications

_given for a multicomponent mixture, following Eq. (38c) of the main text.

Concentration Slip

S -
C: ) W T
i (Ml W, v, () (D
c¥ 5 2 d o Tw
R s
T (1) . (£3)
p° | |
where

=|
1]

Ay - EQA ; A=0, N _ (Eda)
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= = A A=0forM=0,
MMy wA (E‘)w > {A =N for M = Ng’ (E4b)
M
ﬁi y =0 for all other atoms and molecules (E4c)
Pressure Slip
-G — 2 2 — (1 3y av
p = { - € - ¥ (—" -2 J]
P [ 3 ¥ 9 s
+ €2 [ 2 (2-9\( Y-\ ( 1 \ ZTrEfTS w°° (_]:_ i)
5vi 6 y-lS MPr = ;T T aF °
NS W_ - L Le_M Yo T R
- . e & - . e o @ W <
« LDV Gl M- 2 (52 e (=2 )\/ — ()
1 Wi " ] 'Prs | 2 Tr‘ef Ts P
Ns W, acC. NS = aC. |
x 1 [ = vacy) I (L 9 . (es)
=1  §, oF ®1 W, oF
Velocity Slip
M u —
E ez (—2) (L. 3
- ar r
Ps :
1 v 11 Ty (1T, ¥ 5325—15
Pl Wy 4L (9, (L Ty, 1 (e o5 2
Yy 5 M, Pr. Y- Fae ° =1 W, g
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- (9 § L.
J PLs diatomic
molecules

P diatomic !
molecules

¢+ I (E‘-S—) .S
i i W Gl

(E6)

diatomic
molecules

3/2

]
diatomic !

molecules
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or, with frozen internal energy during reflection from surface,

(E8)

(E9)

T [ NS W p
S e -JL ) I m, (DI (S
¥ 2 J== i=] W,i 2 .S
W Pfs P
2-0 g2 1 u Y ref
/[-,/'1-( ) { ( ) (B¢ (94 (=)
2 9 x, MgPrs P S y-1S T,
W ST 5 P, NS W
Je=NCu R TG S W]
s ar PP 1=1 W;
p NS W s,
s 3 ci.‘]
4 ps j=] w1
aC W, .
o s
S al i . {A=0fori=0
NS ﬁ ac * YA =Nfori=Ny®
Dy
q=1 wq ar
where

=0

Sy (Pry ¢ B
G (24D

A=20,N

P
(£+1) ¢ s
p

(E10a)
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- —s A=0 for M=0 .
b= =va 5 {aanfor Man; (E100)
-8 . ’
¥; = 0 for all other species - (El0c)
and
P P Wl — W
Lo Y oaf1s 2 ) (29 () 2
pS P 3 Toef P W,
x (Sl -2 ] (€11)
rig- ar ~-

In obtaining these various equations, the following form of the equation of

state has been employed:

(E12)

Similar to Appendix D, Egs. (E3) through (E1l1) méy further be simpli-

fied for a binary mixture and for a single species’mixture.
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APPENDIX F

INTEGRALS REQUIRED FOR OBTAINING VARIOUS FLUXES
In order to obtéin the normal fluxes of mass, momentum, and energy, it
is necessary to evaluate various integrals over the velocity space of the
distribution function. These integrals involve terms that are various
velocity moments of the'distribution function. The integrals are provided
for the net, incident, and specularly reflected fluxes. These integrals are

basical]y the same as those provided in Reference 2 except for some

corrections and additibns.

F1. Integrals Over the Entire Velocity Space (For Net Quantities)

L oL wye‘”zdwao

L L W weVouso ey
1 372
= 7% ']zy
2

o o0 P W2

CLLowee®eu-o

00 o o 2
crr wywiwje‘“d?'wo

o0 -] a0 -2

LLL wuwelouso sy
5 3/2 '
- i=y
4 o
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Integrals Over the Lower Half Velocity Space (For Incident Quantities) |
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w e w3,
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Integrals Over the
Reflected Quantities
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(-wy) appearing in the integrals emphasizes that the sign of the thermal
velocity component normal to the surface, Vy (and consequently that of wy)
changes in the distribution function f+s upon reflection from the surface.
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