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SURFACE-SLIP EQUATIONS FOR MULTICQMPONENT,
NONEQUILIBRIUM AIR FLOW*

RoopN. Gupta**

Carl D. Scottt

. -
-
-
.-
-
....

-
-
-
-
....

and

James N. ftbsstt

SUMMARY

Equations are presented for the surface slip (or jump) values of spe­
cies concentration, pressure, velocity, and temperature in the low-Reynolds­
number, high-altitude flight regime of a space vehicle. These are obtained
from closed-form solutions of the mass, momentum, and energy flux equations
using the Chapman-Enskog velocity distribution function. This function
represents a solution of the Boltzmann equation in the Navier-Stokes ap~

proximation. The analysis, obtained for nonequilibrium multicomponent air
flow, includes the finite-rate surface catalytic recombination and changes
in the internal energy during refl~ctlon from the surface. Expressions for
the various sl ip quantities have been obtained in: a form which can readily
be employed in flow-field computations. Aconsistent set of equations is
provided for multicomponent, binary, and single species m~xtures. Expres~

sion is also provided. for the finite-rate species-concentration boundary
condition for a multicomponent mixture in absence of slip.

I NTRODUCTI ON

... For an accurate prediction of the aerothermal environment of a space

vehicle entering the earth's atmosphere in the high-altitude low-Reynolds­

number flight regime (Ref. 1), the multicomponent, nonequilibrium gas

chemistry as well as the wall slip and catalysis effects, must be evaluated •

*The authors are grateful to Dr. Fred G. Blottner (of Sandia National
_ Laboratories, Albuquerque, NM) for many useful discussions pertaining to

the mass flux expressions contained in Appendix B.
**Old Dominion University, Norfolk, VA
tJohnson Space Center, Houston, Texas

ttLangley Research Center, Hampton, VA.
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Such flow fields are of particular interest for aeroassist and space shuttle

vehicles. This study was undertaken to obtain the boundary relations that

incorporate the effects of slip, multicomponent diffusion, wall catalycity,

and changes in internal energy of the molecules (during reflection from the

'surface) for application to flow-field calculations under the general as­

sumption of local thermodynamic equilibrium.

Scott (Ref. 2) first presented the wall boundary conditions for a

multicomponent mixture with diffusion and wall-catalysed atom recombination.

In obtaining these boundary conditions, he used a first order velocity dis­

tribution function at the edge of the Knudsen layer next to the wall, where

the continuum model of the gas breaks down. These boundary conditions,

obtained from the kinetic theory considerations, provide solutions at the

top of the Knudsen layer that would match the solution of the Navier-Stokes

equations in the bulk outer flow. Hendricks (Ref. 3), using Scott's formu­

lation, obtained simplified expressions for engineering applications with

some corrections to Scott's expressions. Hendricks' analysis, however,

contained some gross errors in obtaining the engineering expressions. This

paper reanalyses the wall boundary equations by using the approach of refer­

ence2 and provides appropriate relations for the various quantities with

surface slip in a form which can readily be employed for flow-field computa­

tions. An effort has also been made to reconcile the differences between

slip expressions employed by the different researchers. The present analy­

sis provides a consistent formulation for the slip equations for a multi­

component, binary, and single species mixture. Expression is also provided

for the finite-rate species-concentration boundary condition for a multi~

component mixture (in addition to that for a binary mixture) in the absence

of slip. This may be of interest for the shuttle flow-field calculations

based on multicomponent diffusion (Ref. 4).
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The main· difference (among other details) between the results contained

in reference 5 and the present work is that the various internal degrees of

freedom for a molecule were considered frozen during reflection from the

surface in reference 5, whereas, they are allowed to change in the present

analysis.*** Further, the results are provided in both spherical and body­

oriented coordinate system.

ANALYSIS

The slip conditions are taken to exist across the Knudsen layer, which

-- is on the order of one mean free path in thickness as sketched in Figure 1.

The analysis outlined here follows the approach of References 2 and 5. It

-
-
-
-
-
-
-
-
-
-

is based on $hidlovskiy·s (Ref. 6) assumption that the distribution function

near the wall can be described to first-order accuracy by the so-called

Navier-Stokes approximation. However, a deviation is made from the proce­

dures of Shidl ovski y in that a ChaJlTlan-Enskog type di stribution function for

a multicomponent mixture obtained by the variational method of Hirschfelder,

Curtiss, and Bird (Ref. 7) is used. The Chapman-Enskog distribution

function allows accounting for diffusion. The analysis contains the follow­

ing assumptions:

(i) The energy and momentum accommodation coefficients (i.e. a

and a, respectively) have the same value.

(ii) The fluxes of mass, momentum, and energy across the Knudsen

layer are assumed constant. This is consistent with the

assumption of negligible variation of the velocity distri­

bution function through the Knudsen layer.

***Since the assumption of local thermodynamic equilibrium is employed, only
those internal energies are considered which equil ibrate readily with the
translational energy.

3
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(iii) The internal energy associated with the rotational and

vibrational modes readily equilibrates with translational

energy.

The interaction model at the gas-solid interface, with the various

fluxes sketched in Figure 1, can be mathematically stated for dissociated

air as provided through the following equations.

For a recombining atom:

- (1 )

-
-
-

For a molecule gaining from the corresponding atom recombination:

For all other atoms and molecules (surface is assumed to be noncata-

- lytic with respect to them):

-
-

(3)

-
-

where Fi denotes a convective property such as mass, momentum, or energy.

Summing over all the species, we obtain from Eq. (1), (2), and (3), the

following expression for the net flux of momentum or energy:

-
-

NS
L
i=1

F· =1

NS NS
L F~ + L (1-8 i)

i=1 i=1

NS
F~ + L

1 i =1
wa .F. •

1 1
(4)

4
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That is, the net flux at the outer edge of the Knudsen layer equals the

incident flux, plus the specularly reflected flux (incident minus the frac-

_ tion that sticks) at the wall, plus the diffusely reflected flux (those that

accommodate to the wall) from the wall .

Each species is treated separately in the mass balance equations.

Therefore, Eqs. (1), (2), or (3) are employed depending on the species being

considered. In Eq. (1), the diffusely reflected flux consists of those

~ atoms that are accommodated to the wall minus those that recombine. For the

-
-

molecules in Eq. (2), the diffusely reflected term is present along with the

source term resulting from the appropriate atoms recombining on the surface.

VARIOUS FLUXES AND THE DISTRIBUTION FUNCTIONS

- The interaction model of Eqs. (1) through (4) is employed to obtain the

siip boundary equations at the gas/solid interface. Through Eq.(1), the net

-- fluxes of species, momentum, and energy at the outer edge of the Knudsen

-
-
-
-

layer are equated to the difference between the incident and reflected

fluxes at the wall. These fluxes are assumed to be constant across the

Knudsen layer and are obtained from moments of the distribution function.
i +

For a convected property ~ (v) such as mass, momentum, or energy for the

ith species, the net flux of that property normal to the wall at the outer

edge of the Knudsen layer, for exanple, is

- (5 )

-
-
...,

where Vi" is the normal component of the molecular velocity and f~ is the

velocity distribution function at the edge of the Knudsen layer.

Similar integrals are obtained for the incident and reflected fluxes by

5·
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integrations over appropriate half-spaces in molecular velocity:

Incident fl ux:

-
-

-
-
-

Specularly reflected flux:

F~ :: C J~ C V~ ,i (V) .f~ (Vx' -VY, Vz)d3 vi

0; ffusel yrefl ected fl ux :

(6 )

(7)

(8 )

-
-
-

where f~ is the Maxwellian velocity distribution function.

The velocity distribution functions used in integrals contained in

relations (5) through (8) are those for a nonuniform multicomponent mixture

perturbed out "of equilibrium:

- (9 )

-
-

where f(O)i(V) is the Maxwellian distribution function for the ith species

given as

-
-
-

-{m i /2kT)V,2
e

6

(10)



Here k and 1, are the dummy indices for three coordinate directions and

the summations with index j represents summation over all the species.

The summation convention for repeated indices is used. The coefficients

A~, B~, and c~(I,) are functions of the dimensionless velocity:

--
-

-
-
-

and

. '\ (1 T) . avOk NS. ( .) •= _ Al a n _ B1 _ + n L C1 J dJ
k aX kt ax j=1 k kk 1,

= J:~T v~

(11)

(12)

(13)

(14)

(15)

-
-

-
-
-

where aiD' ail' biD' and ci~j) are constants determined from the varia-,

tional problem in the first approximation for a mixture as given in ref. 7

and 6kR, is the Kronecker delta such that

6kl, = I , i f k =1,

!SkI, = 0, if k 1: 1,.

7
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These constants are functions of the collision integrals and are related to

the transport properties. The simplified form of these constants is pro­

vided in Appendix A of this paper. More details can be found in Appendix A

of Ref. 2, or ir Ref. 7. The diffusion vector d~ in Eq. (11) is related

to the diffusion velocity of the jth species and is defined after neglecting

the external forces as (Ref. 7):

.....

-
-
-

n. m. 3
J J~ _ (.tnp)

p 3xk
(16)

-
-

-

,-

where v~ is the mean of total velocity v~ =vQk + ~ of the jth

species averaged over the distribution function and v~ is the thermal (or

peculiar) velocity, also introduced in Eq. (5). The thermal velocity v~

of the jth species averaged over the distribution function is known as the ' ~

diffusion velocity ~:

8
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{17}

-

-
-
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-

A simplified expression for the diffusion velocity in terms of transport

properties is provided in Appendix A.

THE BALANCE AND SLIP EQUATIONS

Based on Eqs. (I) through (4)t the balance equations for the ith

species for fluxes normal to the surface of the species mass Miyt the normal

component of momentum Piy' the tangential component of momentum Pil It and

the energy E. are obtained as follows:. ly

(a) Species mass flux

For a recombining atom

-
MAy =aA M: + (aA - 'Y A) ~ A =0, N

For a molecule gaining from the corresponding atom recombination

(IS)

- :J. 111
'YA~ M=02,N2 (19)MMy = aM MM + aM t-M + .,

- For all other atoms and molecules

-
Hi =a. M~ 111 (20)y 1 , + aiMi

--
(b) Normal momentlJ11 fl ux-

NS NS
p~ +

NS- L P. = L· (2 -e .) L a. P~ = P (21)
i=1 ly i=1 1 1 i=1 1 1 Y

-
9-



(c) Tangential momentum flux
NS
L P. =

i =1 1 II
NS +
I ei Pill;=1

(22)

(d)
tEnergy fl ux

- NS NS T .
Ey = L Eiy = L Eiy + L eiy Miyi=1 i=1 i- diatomic

mol ecules
NS

e i EiT+ +
NS

E Tw s += L L . e . + 4 eieiMi- 1 ii=1 i =1 1
diatomic
mol ecul es- L+ w w (23)e . ei Mii 1

diatomic- molecules

-
-
-

where ei is the internal energy of ith species that readily equilibrates

with the translational energy E~ under the assumption of local thermo­

dynamic equi 1ibri urn. For exampl e,

-
rotatione i =

-
-

-
-
-

In writing the energy flux balance of Eq. (23) it has been assumed that

there is no change in internal energy during specular reflection.

In obtaining Eqs. (18) through (23) we have used the following.

relations

tThe energy bal ance is based on the assumption that the various energies
considered readily equilibrate with the translational energy.

10



Mt of. t of.
= - M. Pill = - Pilli 1

,
i....o

E~ E~ P~II :: 0, and of. t
:: - , Piy :: Piy1 1

Because it is assumed that the atoms are consumed at the wall by catalytic

recombination in Eq. (18), the net mass flux MAy*O. Similarly, the net

,mass flux MMy ~ 0 in Eq. (19). However, Miy :: 0 in Eq. (20) for the

atoms and molecules for whom the surface is assumed noncata1ytic.

-
-

-
-
-
-
-
--
-
-

-

By substituting Eqs. (5), (6), (7) and (8) with the definition of
i +

, (V) .as mass for Eqs. (l8) through (20), as normal component of momentum

for Eq. (21), as tangential component of momentum for Eq. (22) and as energy

for Eq. (23), respectively, and carrying out the integrationst , one obtains

equations re1 ating the sl ip properties to wall properties and gradients at

the edge of Knudsen layer. All accommodation coefficients 6 i are' assumed

to be equal to 6.

Number density (or concentration) slip (obtained from mass flux balance):

2[1 +
1

M. 2'11'm.
-21. 1

S 2 kT '
ni (24)- ::

nW

G;Y + ~ T
si

Pressure slip (obtained from the flux balance of normal component of momen-

tum)

tThe mass, momentum, and energy fluxes in terms of evaluated integrals over
the distribution function are given in Appendix B.

11



- Velocity slip (obtained from the. flux balance of tangential component of

manen t lJ1I )
,...

. 3v 3v
s { ...~ (2-e~" (_Ox + _OY)va = '"'" -J '"x 2e s 3y 3x s

-
-

+.!.
2

NS
L p~ [ atnT

i=1 ax
1 NS (') ,

(a iO - -2 ai 1) - n L c, J dJ] }
j=1 ,0 x s

-
-
-
,-
-
,....

avo av
vosz = {Yif (2-e )\.1 (---=. +-2l)

. 2e S ay . az s

1 NS T 1 -_ NS (J') J'
I;' s [_atn (a ) I;' d ] }

+"2" i~l P; az ;0 - "2 ai 1 - n j~l cia z s

(26)

12
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NS ~./ L (pS. ~)
i=1 1 2kT

S

Temperature slip:

W
3/2 2-8 NS 3/2 NS "i

( 2kT) =[- 2"V'i"' (-) (r Ei ) + (2kT) I -J
s 28 i=1 Y w i=1 ~

s
NS ".

I[ r .2.. {
i=l~

(27)

(28)

-
-
-

-
-
-

-

Equations (24). through (28) differ from the corresponding expressions

provided in Ref. 2 due to small errors and also due to the differences in

the inteiact10n model enployed at the gas-solid interface.

The constants aiO. ail. biO • and c~5) (also known as the Sonine ex­

pansion coefficients) appearing in Eqs. (24) through (28). may now be ex-

pressed in terms of the transport properties as given in Appendix A. Using

these relations along with the various flux expressions of Appendix Band

also expressing dk in terms of the gradient of mass fractions 3Cj /3y as

given in Appendix A (by neglecting diffusion due to pressure gradients and

external forces). the following equations are obtained after some algebraic

simplifications:§

§The approximations made in the expressions for ail and biO are given in
Appendix A.

13
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Number density (or concentration) slip

S~e as Eq. (24).

Pressure sl i p

e avO avo avo 2 2-e 1 aT NS ~m.
ps ={__ [lJ (---!. + -2. - 2 --.1.)] + - (-) [- L "iKi ~] s

3 ax az ay s 5 ...;:if = ay i =1 2kTn

-
-
-
-
-
-
-
-
-
-
-

Velocity Sl i p

NS = ac NS
- C. L (~ ~)] } / L n~ .. 1i1i7

J q=1 m ax s i=1 1 V"'1
q

vr 2 avo avo 1 1 aT
voS ={ ~ (~) [~ (_z + --!)] + _ [_

z . 2 e \[kf ay az s 5 nkT az

'(29)

(30)

14



-
NS NS NS ae.

XL"; ~ K;J s - " L~ L 0.. [2s . 1 .1 . 1 1J- j=1 1= J= aZ
j*i

NS = ae NS.. m --9.) ] } / L "~F·- e. L (31)
J q=1 az s . 1 1 1- mq 1=

Temperature slip

-

m.e. W M. ...~ 2-6L (1 1 J ....:.!.. _Y: (-J
2n= i kTw m

1
• 2ns e

s diatomic
mol ecul es

x

diatomic
molecules

1 . t:!kTs
+- r -

4 1 m.
diatomic 1

molecules

......

-
-

/ {_-vii" (2~) (1:. K aT_~
e 2 p ay 4

-m p.
(._:') e~ (..2l + I)}
m. 1 s

1 Pi

NS M
iL -::-1'-)

i=1 ii mi s

-

-
-

+.!.
4

NS lkTs ms P.L (-) e. (3..2l + I)}
;=1 m. m. 1 s

1 1 p.
1

.- .-

(32)

15
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where the mass fraction Ci and the mass of a mixture molecule mare

- defined, respectively, as

-
-
-

C" =n.m./p, ,
and

NS -1
m =(I CJ./m.)

j=l J

Equations (24), (29), (30), (31), and (32) differ from Eqs. (25) through

(28) of Reference 3. For dissociated air, the gas-surface interaction model

employed in Reference 3 appears to be inconsistent. Further, the diffusion

-- vector d~ appears to have been incorrectly evaluated in Reference 3. If

one carries out the simplifications in Eqs. (23), (24), and (28) of Refer-

eflce 3 (which contaiii the Dinaroy ciSSUlIlptiun) through the evaluation of

-- ~ (nj!n) in terms of mass fractions as given by Eqs. (35), (36), and (39)
'Oy
of the same reference, erroneous results are obviously obtained because-

-
-
-
-

NS
.I {'OCJ./'Or)s (which is zero by definition) is contained as a factor in
J=l
several of these equations.

For the first-order recombination at the surface, the following

-
(33)

-
-
-

where the minus sign indicates that the flux is in the direction opposite to

the outward normal and the expression for the rate constant kwA with

16
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ttdiffusion and slip is (Ref. 2).

..

-

(34)

-
-
-
-
-
-

Here YA is the recombination coefficient.

For a fully catalytic wall (YA=1), the maximum value of the rate

constant kwi is limited by the surface -temperature. The reaction rate con­

stant for a fully catalytic wall with the gas phase in chemical equilibrium

is often assumed to be infinity for the sake of simplicity.

Employing Eq. (33), the net mass flux Miy appearing in Eqs. (24) and

(32) may be defined as

(.35aj

-
-
-

MMy = k
wA

nAw.m
A

; {A = 0 for M= 02
A = N for M= N2

For all other atoms and molecules,

M. :: 0
'y

(35b)

(35c)

-
-
-

Equation (24), with Miy defined by Eqs. (35a) through (35c), gives

ttAs shown in ref. 2, by neglecting slip but keeping diffusion, a slightly
different form of Eq. (34) is obtained:

2YA jji;Tw
kwA = (-) -

2-YA 2'11'mA

17
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the number density ratio n~/n~. However, to obtain n~ from this ratio,

an expression for n~ is required.

The net mass flux of 0 and N atoms to the surface, MAy' ;s also

equal to the rate of consumption of these atoms at the wall from surface

recanbination:

..

- A = 0, -N (36a)

- and the corresponding net mass flux of . Ol and N2 molecules will be

zero. 1h us,

For a11 oth~r species, the net mass fiux to the sUiface may oe assumed to be

-
-
-

{A =0 for M= 02
A = Nfor M=N2 (36b)

(36c)

-

-
-

Substituting values of the net and incident fluxes Miy' M~y from Appendix

B in Eq. (36), the following expression is obtained (after we neglect

thermal diffusion):

18



-
which may be used to obtain n~.§ Here w~ is the source term defined as:

.. -
-

(38a)

For Oz. and N2. molecules

- 1Ps .. _~s {A=OforM=02
M A' A = N,for M= N2 (3Eb)

- For all other species

- 1P~ = 0, (3&)

-
-

SIMPLIFICATIONS FOR A MULTICOMPONENT MIXTURE

Equations (24) (29), (30), (31), and (32) for multicomponent gas flows

can be simplified if one makes the following assumptions:

-
-

(i) All the diffusion coefficients, D. 0' for a multicomponent gas have
'J

§If no assumption is made about Dij , Eq. (37) would give an expression for
(ac;/ay)s for all the species:

aC. NS = ac
[-:!. - C. r (!.- -3.) ]
ay J q=1 m

q
ay s

m F NS(~) A r OS 0

= 2k T j=1 Aj
ms s J*A

= - 2"Vi

The source term ~i in this expression, however, may be simplified to yield
an expression for C~ (or n~) for the recombining atoms only:

..

-

-
-

-

- 19



tthe same value so that 0ij =012' 012 is the same as the

binary diffusion coefficient D12 •

(ii) The normal momentum flux to the pressure ratio, PiylPi is the

same for all species and equal to that of the mixture. This also

....

-
- implies that the normal shear stress T •yyl for species i is the

-
-
-
-
-

same as that for the mixture (Tyy)'

(iii) The rotational and vibrational states are fully excited so that

the internal energy ei for the air molecule may be taken as

equal to 2kT/mi •.

t This is a somewhat stronger assumption. Because 0i· are concentration de­
pendent, whereas Dij are virtually independent of coMposition. The multi­
component diffusion coefficient 0ij is related to the binary diffusion
coefficient Dij through the follow'ng relations (see Ref. 7):

where quantities Kti are coefficients in a matrix which is the inverse of
the matrix with the ~llowing coefficients:

-
-

Ci NS
-+Mj 1
Dij ;\
o

(i;l:j)

( i=j)

-
-
- ..

-
-

One can see, therefore, that by employing 012 (which is same as D12 )
for all the species in a mu1ticomponent gas mixture, considerable saving is
obtained in computational effort and time without losing the general flavor
of mu1ticomponent diffusion. This is particularly true if the dissociated
air consists predominantly of nitrogen molecules and oxygen atoms. The
shuttle entry conditions fall into this category. Simple and multicompo­
nent diffusion gave same results in "An Experimental and Analytical Study
of Slip and Catalytic Boundary Conditions Applied to Spheres in Low
Reynolds Number Arc Jet Flows, II by CarlO. Scott, p'roceedings of the 9th
International Symposium on Rarefied Gas Dynamics, Gottingen, JUly 15-20,
1974, pp. 0.14-1 to 11.
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These assumptions retain the major effects of multicomponent fluxes on

various slip quant~ties and provide considerable saving in computational

effort required for the analysis of a flow problem (ref. 2 and footnote on

page 20). With these simplifications, Eqs. (24), (29), (30), (31) and (32)

yield:

-
Concentration slip

.... n~,
n"!,

P
/ (.1. +1)

ps
(39)

- Pressure slip

1

nkTw w

e

3" kTw w
2

e----

-
-
-

1 ~ T NS n. K• 2( 2 ) DS
x [ a\,," ... t='l. } / {~ _ -6, :...l.2.-

'J2kT ay i~1 ---r VmiJ s 2 -y:;r V2kTs

-
aC. NS:=I ac

x [2 + (1-C.) L (~ ---1)] }
ay , q=1 mq a y s

(40)

-
-
-

Velocity slip

-
-

NS aC• NS aC,. NS s
+ns D~2 1: \{iii; [~+ (I-C.) L (~-~]s}/.L n,... Iffi,. (41)

i=1 ' ax ' q=1 mq ax ,=1 V"';
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(42)n~ .. Iiii:"
1 ~"'i

aVQYJ] s + l [ 1 ~ ~S ~ .. rm:]
az 5 kT az i =1 n ~ III; S

= aC NS
c~~] }/ l.
mq az s i=1

vS ~ { (if (2-e) [lJ (avaZ +
az 'J "2 e 'fki' ay

NS aC. NS
- S 1

+ ii D12 l.~ [- + (l-C.) l.
s i =1 1 az 1 q=1

-
-

-
-
-
-
-

Temperature sl ip

T NS
s ~{_Yif l.

T = 1=1w ns

~
kTS

x l. ­
i m.

diatomic 1
molecules

M.
1y- .-

m;

. M. P
Yif 4 ...2l. + .!. C2. + 1)

= 1 m 2 s
ns diatomic i p

mol ecules

or, ; f the internal energy is frozen 'during refl ect10n from the surface (see

Eq. (28) of Ref. 5, for exampl e) ,

Ts -v:rr NS Miy +.!.
P NSJ2kTs "s C~}~ { - l. (..r + 1)- l. - C-)

Tw = i~1 m1 2 pS 1=1 mi mins

(2-<)) {~ ~ aT 5 NS M.
/[-fi L. ( _ 1Y ')}--e 2 p ay 4 i=1 ii m. s.

1

+ _1 (3 Py + 1) ~Sf¢'2kTs (ms, s]
4 ps- i;1 --;-- ;: C1

1 1

1 Py NS JkTs ms s 1
+- (3 -+ 1) l. -C-) C. +-

4 pSi== 1 mi mi 1 2

(43b)

22
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(43a)

-m
(~) C~]

mi

1 M.
-- l. ...2l}. m. sn 1 1.

diatomic
mol ecules

P ~kT(2+1) L -2
s i m·

p diatomic 1

molecules

NS r"
l. C~1YJ

1=1 n m;
5- -
4

/ [-"Vi" C
2-6 J {.!:.~~
e 2 p ay

-

-

-
-

-

- .

-

-

-
-



-
- Equation (37) may also be simplified to yi,eld an explicit exp~ession for n~:

-
-
-

aC. 1 1/1.
(~) s + - (--.2.) s

n~
Ps ay m; D12

J (44)=-[1 +
1 m. NS = aCq1

L (~ -)
q=1 mq

ay s

, where

s lkTs P
1/Is

YA 1 mAnA
( Ay + 1) . A =0, N (45a)a_-

A yr = ,
(2-y A) 2ns . rnA pS

A

\

the species to equal unity. It may be mentioned here that the mass of the

;th species,m i , is related to the molecular (or atomic) weight, Wi'

~hrough the relation

1/1~ =0 for all other species (45c)

It is suggested here that the concentration for the major species(for

exanple, nitrogen) be obtained by requiring the Sll11 of concentrations of all

where k is the Boltzmann constant and R is the universal gas con­

stant.

(46)

(45b){ A =0 for M =' 02
A = N for M = N2

- -
W' R. i

". S = ,10 S •'I'M - 'I' A t

-
-

-

-
-

-
-

CONCENTRATION SLIP BOUNDARY CONDITION FOR A FULLY CATALYTIC
AND A NONCATALYTIC SURFACE

Equation (44) gives slip values of the concentration n~ for a finite

- catalytic surface. for a fully catalytic (Y A = 1) surface one generally

-
23-



- assumes complete recombination of atoms at the surface. There is a slight

discrepancy in this assumption because the maxim~ recombination rate is

- 1imited by the surface temperature as discussed earl ier [See the dfscus~i on

-

.....

following Eq. (34)]. Thus, for a fully catalytic surface, equation (44) or

(41) should be employed with YA =1.

For a noncatalytic surface (Y A =0), Eq. (45) gives 1jI~ =0 for all

the species. For this case, Eq. (44) becomes

.....

.....

-

3C •
. (--2..)

P S
n~ :I ..2 [1 + 3Y ]

mi NS m 3Cn,
1: (- ~

q=1 m 3y S
q

which may also be written as

(47a) .

-
-

aCi(-)
3y s

NS :I 3C
:I ;.. (I-C~) L (!!!.... --9.)

q=1 may S. q

(47b)

-
-
-

Summing the above equation over all the species gives

NS :I 3C
1: (.!!!- ~ :I 0

q=1 m ay S
q

(48)

- for a noncatalytic surface. Therefore, Eq. (47a) is not an appropriate

boundary condition. I-bwever, employing Eq. (48) with Eq. (47b) yields:

-
-
-

3C.
(--1..) :I 0

3y S
(49)
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-

....

which may be used as the boundary condi.tion for a noncatalytic surface with

a multicomponent gas mixture.

SIMPLIFICATIONS FOR A BINARY MIXTURE

At lower altitudes with the flow in slight nonequilibrium (i .e. when

the Reynolds nlll1ber parameter £2« 1), the derivatives of various quantities

with respect to x and z and some other higher order terms like aVOy/ay

may be dropped through an order of magnitude analysis (see Ref. 9, for exam­

ple). Further, the dissociated air may be considered as a binary mixture

(i.e. consisting of atoms and molecules only, see Ref. 8) at these altitu­

des. If an assumption is also made that the internal energy of the mole­

cules remains frozen during refl ect;on from the surface, Eqs. (39) through

.... (45) can be simplified further to the forms given hp.re.



-

"-
,-

Vel acity Slip

(52a)

-
-
-
-
-
-
-
-
-

av .
v~ ={~1f (2-e~ (~...2!]}

z 2 a \Pf ay S

/ {( vmA -.,,11\.1) n~ + ~S "mM} (53a)

/ { _-vi" (2-e~ [ .!. (K aT~
a 2 payS

-

-
-

m 3/2 m 3/2

X [{ 1- 2 (2.) } c~ + 2 (~ ] }
mM mM

(54a)
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-
or t with frozen internal energy during surface reflection t

--
-
-
-
-
-
-

m 3/2 ~.2kT y nA
w

mA
+ (~) ] + --!. (A ) (1--H

mM mA 2" mMs

/ { _.y:;- (2-6 ) [~(~ ~)
6 2 P 3y s

m 3/2 m 3/2

x [{ 1 - (~ } C: + (~) ] }
mM mM

(54b)

- In Eqs. (54a) and (54b)t n~ is obtained from nl by using Eq. (50).

Express ion for n~-
-
-

p s [(!. + .!- _.!-) aCA

mA m mA mM 3y

-
-
-
-
-

which may also be written as

(55a)
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s
nA mA = Cs =

A
s

DAM (55b)

as can readily be seen from Eq. (55b).

For a noncata1 ytic surface (Y A-= 0), pressure and temperature sl i p Eqs.

(51) and (54b) are further simplified, wit~ the help of Eq. (56a), to:

For a fully catalytic surface (Y A = 1), Eq. (55b) gives. appropriate

value for the concentration SliP.t The relevant boundary condition for a

noncata1ytic surface (y A =0) will be-
-
-
-
-

(3CA ~ = 0
3y s

(56a)

-
-
-
-
-
-
-

-
-

Pressure sl ip

(57 a)

Temperature slip (with frozen internal energy during reflection from the

suface)

(58a)

."
tSometimes in the literature C~ is prescribed as zero for a fully cata­
lytic surface. Strictly speaking, this will be true only when the
Reynolds number parameter £2 (Ref. 8) is approximately zero (close to the
chemical equil ibriun condition at low altitudes). This can easily be seen
by nondimensiona1ising equation (55b) in a way similar to equation (28d) of
reference 8. Thus, the recombination rate coefficient YA and density (as
measured through £2), both control the recombinati on rate an,d not YA alone.
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Equations (52a) t (53a) t (57a) t and (58a) (with the noncata1ytic surface

assumption in Eqs. (57a) and (58a)) can be rewritten as:

Velocity slip

-
-

(52b)

(53b)

-
-
-

Pressure sl i p

(57b)

Temperature slip

-
-
-
-

where "s ·Fs" =---------
({RiA -.\fiiiMJ n~ +~ "s

( 1~
511'

(58b)

= (~3/2 {( 1 _ 1 1 C + I} ] -1 . ( 128) (-!-)
C1 3/2 3/2~ A 3/2

rnA ~ "'M l50rr Y-l

-
-
-
-

(~) ( y )

7511' - 1y-

- 29
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-

,-
-

=

=

=

5rr
~

( 2-e~ = 1.2304 (2-6~-
16 a a

15

~
(2-6 ~ 1. 1750 (2-61- =

16 a a

75rr ~ (2-6 ~ = 2.3071 (2-6
1128 2" 6 6

-
-

The concentration slip condition consistent with Eqs. (52b), (53b),

(57b), and (58b) 1s

-
-

(56b)

-
-

The range of val ues of AI., B1, and 0. 1s as given below for a mixture of

oxygen atoms and molecules and y =1.4 (ref. 8):

The minimll1l val ues for Al and Cl occur at nA= 0.5 PimA' whereas the

maximlJll value for Bl occurs at this value of nA.

The expression (52b), (57b), and (58b) reduce to those obtained in Ref.

8tt if one asslJIles the values for AI' B1 , and C1 to be unity and a non

-
-
-
-
-

1.0039 < Al <

0.9507' < B1 <

0.9056 < CI <

1.0186

13 KA rr ~ KA KM
(0.9507)x(~A - +~:; -)/(- +-)

4 mA 2 mM mA mM

0.9507

ttseeAppendix C for the dimensional form of the sl ip boundary conditions
given in Ref. 8.
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(59)

-

-
-
--
-
-
-
-

-
-
-
-

-

catalytic surface boundary condition as given by Eq. (560). The concentra­

tion slip boundary condition provided in Ref. 8 is:

CS = CS + (2-Y A) J&mA
A Ae 2:y kT

A s
which is the same as Eq. (55b) obtained here except for the additive term

Cs tttAe. It is obvious that the temperature slip boundary condition of Eq.

(2.8b) obtained in Ref. 8 is valid, strictly speaking, for a noncatalytic

surface only and is not consistent with the concentration slip boundary

condition of Eq. (2.8c) (reproduced here as Eq. (59)) obtained for a finite

catalytic wall. As a matter of fact, the velocity and temperature slip

boundary conditions of Ref. 8 are similar to those of Ref. 9,§ where these

slip conditions are provided for a perfect gas (or single species mixture).

The inconsistencies in the boundary conditions used in Refs. 10 and 11

are similar to those of 'Ref. 8, namely, the pressure and temperature slip

ttt It appears that Eq. (2.8d) of Ref~ 8 for the concentration slip has been
formulated for small deviations from the chemical equilibrium condition
(i.e. the Reynolds number parameter £2 «1). Thus, when flow goes to
chemical equilibrium (with e2 • 0), one obtains from Eq. (2.8d) the
equilibrium value for the concentration i.e. CA =C~, which would be
zero for the oxygen atoms for surface temperatures of 2000·K or less.

§There appears to be some error with the form of Eqs. (2.7c) and (2.7d)
given in Ref. 9 if one employs the definition of dimensionless heat-trans­
fer rate 'q' in these equations from Eq. (2.4b) of the same reference.
(The Reynolds number parameter, e2 , is missing in Eqs. (2.2b) and (2.4b)
for dimensionless shear stress and heat-transfer, respectively, of the same
reference. These have been corrected in Ref. 8.) The resulting pressure
and temperature slip expressions will contain the dimensionless viscosity
coefficient '~I without the Prandtl number, see Ref. 10 and 11, for exam­
ple. This is in contradiction to Eq. (2.8c) of Ref. 8, which contains
dimensionless 'K' in place of dimensionless I~I. For a perfect gas,
,employing '~I in place of 'K' in, the pressure and temperature slip equa­
tions will result in no error. However, for real gas flows, the pressure
and temperature slip values will be in error by the factor of ~/K. The
present analysis indicates that Eq.(2.8c) of Ref. 8 is of the "correct"
form for a single species mixture.
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values are in error by a factor of dimensionless viscosity to the thermal

conductivity ratio I\.I/K I • References 10 and 11 also employ the single

spec~es formulation for obtaining the velocity, temperature and pressure

sli p val ues and the concentration sl i p expression in these references is

that obtained for a binary mixture (Ref. 8). The coefficients appearing in

the slip equations of Ref. 11 may be obtained by multiplying al, bl, and

cl (coeffi cients of Ref. 8) given here by 16/Sir. The factor 16/5 is same­

times rep1 aced by 11' •

SIMPLIFICATIONS FOR A SINGLE SPECIES MIXTURE

Eqs. (39) through (42) and Eq. (43b) may be simplified for a single

species mixture to the expressions obtained in Ref. 6. For small jump (or

slip) conditions thp.se simplifiel'i equations may be written as (\'1ith 0-: A = 0

and M. :I 0 for a single species mixture):ly

Density sl i p

-
-

~ =mliS ~Tw {1 +[
p :I =w Tw m n s

(60a)

- Pressure· slip

-
-

:I {l _ [ .( 2~)
e

-
-
-

av . . a v av 1
x(~ +~ - 2 ~) ]}-

ax az ay s
(6Ia)
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Velocity sl ip
av av

:II (2-6 ) (5n' j A (~ +.-9!) +~~ 1f RT (~ aT~
e 16 Say ax s 32 2 s. T ax s

(62)

av av
:II (2-6) (~ A (~+ .-9!) +~ ~ 1f RT (~ aT)

e 16 Say az S 32 2 s T az S-
-

-
Temperature slipt

T 1 P 1 3..L :II _ (2. + 1){ [ - _ + _
Tw 2 pS 2 4

P _1

(2. + 1)] -(~ (~)(~ aTJ ])
ps 128 e T ay s

(63)

(64a)

- where we have used the following relations between the coefficients of vis­

cosityand thermal conductivity and the mean free path for perfectly elastic

sphericaJ molecules (ref. 12).

- ~P-PAlJ :II (65a)
16

-
K 15 k (65b):II - - lJ

4 -- m

- The expression for lJ given earlier, following Eq. (25), for a single spe­

cies mixture is modified to:-
-

-
-
-

1
lJ = nkTbo

2

If, now, an assumption is made that the slip values are small, equations for

the density, pressure, and temperature slip are simplified to:

. tSi nce the temperature sl ip expression contained in Ref. 6 is for a gas
consisting of perfectly elastic spherical molecules, the gas does not
possess any. internal degree of freedom. Therefore, we have obtained the
temperature s1i P equat ion from Eq. (43b).
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Density slip-
-
-

R A av av av
- w {I 5 (if s (.~ +~ - 2 ~) s}
- Ts - 24 '\j 2: '\jRTs ax a z ay

(60b)

-
-

Pressure sl i p
s

L = 1 + (2-8) (15) (~
pw e 16 T

A av av av
aT) _ ~ rr ~ (._~ +~ _ 2 ~) (61b)
ay s 12V"2...p<r; ax az ay s

-
-

Temperature sli p
T P
s . = _~ (-!

Tw 4 pS

or,

P 2
+ 1) + ~ (-! + 1)

8 pS

P
+ -!. (2. + 1)( 75rrH 2-eH~ aT)

2 s 128 e T ay s, p

(64b)

-
- (64c)

-
In obtaining Eq. (64c) from (64b) , we have used Py/ps. 1 in the second­

order terms (i .e. 2nd and 3rd terms on right side of Eq. (64b)). Equations

(61b), (62), (63), and (64C) are the slip equations given in refs. 6 and

- 12.

NO-SLIP BOUNDARY CONDITION FOR THE SPECIES CONCENTRATION-
-
-
-

MUlticomponent Mixture. The no-slip boundary condition for the species

concentration without any assUmptions may be obtained from Eqs. (44) and
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(45). In the absence of slip, the Knudsen layer thickness shrinks to zero

.. and the values at the top of the Knudsen layer become the wall values (see

ac. 1
(---2..) +_

Pw ay W m.
[1 + 1

(67a)

(66)

A=0, N.,

1/1.
(.2...)w
D12 ]

NS m acn .L (-~)
q=1 m ay.w

q

with

Fig. 1):

-

-

-

.....

...

- {A = 0 for M=02 •
A = Nfor M=N2 ' (67b)

.....
1/1~ =0 for all other species (67c)

.....

-
-
-
-

where we have neglected the higher order shear (i.e. Py/pW. 1).

It is suggested here, again, that the concentration for the major

specie (for example, nitrogen) be obtained by requiring the sum of concen­

trations of all the species to equal unity.

For the recombining 0 and N atoms, Eq. (66) may further be simpli­

fied to:

-
-

wnA= (68)

-
The recombination rate constant kwA in Eq. (68) has been defined as (Ref.

2)

.....

-
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- F~ incident flux=,
r- t :I specularly reflected flux.- i.....

diffusely reflected fluxF~
:I,

-
-
-
I....

-

---TCy) ----.

Continuum region (Main Flow)

Knudsen layer
Corder of one
mean free path)

-~.~ TCy)

y

-

-
I....

Figure 1. The Knudsen layer showing general fluxes and coordinate axes.
The temperature as a function of normal distance is schematically
overlayed.
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(69)

-
-
-
-

without slip and higher order shear.

For a noncatalyticwall (with YA = 0), Eq. (49) gives

(70)

for all the species of a multicomponent mixture.

Si nary Mixture. For a two-species mi xture of atoms and mol ecul es, Eq.

(55b) gives

for a surface with finite catalycity and-
-
-

CW =A

aCA
x ( DAM -)

ay w

ac~
(---:J =0
ay w

.(71)

(72)

-
-

-
-
-

for a noncatalytic surface. Eqs. (71) and (72) are employed in Ref. 4.

Appendices 0 and E give the slip and no-slip boundary conditions (pre­

sented in the text earlier), in the dimensionless form for the body-fitted

and spherical polar coordinates, respectively, for a planar flow. The

various integrals employed for evaluation the net, incident, and specularly

reflected fluxes defined through Eqs. (5) to (7), respectively, are given in

Appendix F.
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- DISCUSSION AND CONCLUSIONS

The present analysis provides a consistent formulation for the slip

equations for a multicomponent, binary, and single species mixture reacting

catalytically on the surface. The cI ifferences between the sl ip expressions

obtained by various researchers have been reconciled and implication of

various assLl1tptions (some of them inconsistent) 'contained in those express-

- ions is discussed. The sl ipequations have also been obtained in body-fit;.

-
-
-
-
-

ted and spherical polar coordinates in a form which can readily be employed

in the flow-field calculations.

Usually, the equation for pressure slip is not required as a boundary

condition, but is needed to obtain the surface pressure. The temperature

slip equation given here is for a constant surface temperature, which ;s

provided as a· boundary condition. For an adiabatic surface, however, the

slip temperature, Ts ' may be obtained by equating the wa1i heat-transfer

rate to zero i.e.

.-
-

( 3T
q = K - -w 3y

NS 3v
L j i hi + lJ V ~) =0

i=1 Ox 3y s

-

where the expression for mass flux ji is provided in Appendix B and the

- higher order terms have been dropped. The temperature slip equation will

now be required to obtain the wall temperature, Tw•

An expression has also been obtained for the finite-rate species-con-

-
-
-
-

centration boundary condition for a multicomponent gas mixture without sur­

face slip. This boundary condition in the literature (Ref. 4) has generally
."

been specified by assuming the dissociated air as a binary mixture.
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However, the binary mixture formulation does not provide boundary conditions

for the recombined molecules (on surface) such as ~ and N2 in a multicompo­

nent mixture; it gives boundary conditions only for the recombining atoms.

To assess the importance of various terms in the general boundary con­

ditions suggested here, a study is being undertaken in which the flow prop­

erties and boundary conditions would be varied systematically. The boundary

equations form a simultaneous set, which is being coupled with a flow field.

calculation procedure in the stagnation region. These equations would

finally be coupled with the viscous shock-layer code developed by Moss (Ref.

13) for the detailed flow-field calculations. The boundary equations

obtained in the present work should provide a more realistic set of boundary

conditions for a multi-component mixture for low-Reynolds-number slip flows

as well as no-slip flows.

In conclusion, the boundary slip expressions obtained here are closed

form solutions of the mass, momentum, and energy flux equations using the

Chapman-Enskog velocity distribution function. This function represents a

solution of the Boltzmann equation in the Navier-Stokes approximation.
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APPENDIX A

CONSTANTS APPEARING IN THE DISTRIBUTION FUNCTION
AND DIFFUS ION VELOC lTV IN TERMS OF TRANSPORT PROPERTIES

Th So · . ff . . t b d ( j) .e nlne expanslon coe lClen s aiO ' ail' iO' an ciO appearlng

in the general velocity distribution function are found by a variational

technique in which they are solutions to sets of simultaneous equations.

References 2 and 7 provide the coefficients in terms of solutions to these

set of equations. lhese solutions are expressed in terms of the collision

integral$ g~~,t). Reference 7 also pr.ovides the transport properties in

terms of the Sonine expansion coefficients. lhus, in place of evaluating

these coefficients in terms of the collision integrals, they may be

expressed in terms of the transport properties. lhe various relations

are:



Twhere 0i (~), K(~), lJ(~), and 0ij(~) are the multi-component thermal

diffusion coefficient, thermal conductivity, coefficient of viscosity, and

the multicomponent diffusion coefficient, respectively. The argument ~ is

the nt.mber of terms used in the Sonine expansion. Except for oJ, letting

~ = 1 gives quite good results for K, lJ and 0ij. When ~ = 1, however,

coefficients oJ vanish. Hence, in order to get the coefficient of thermal

diffusion, it is necessary to take at least two terms in the Sonine expan­

sion (i .e. ~ = 2). If the argLlTlent does not appear with a coefficient (ex­

cept for aiO)' it is considered to have one term in the Sonine expansion.

The diffusion velocity for ith species in terms of the transport co-

efficients is obtained as (see ref. 7)

-

-
-
-
-
-
-
-

pn. f;;kT (.)o.. (~) = _1 _ c'oJ (~)
1J 2ii m. m. 1

. J 1

- NS
v~ = ( "2) L m.0.. d~ - _1_ o"!' aR. nT

n P J.-1 J 1J n.m. 1 aX
ki - 1 1

(A4)

(AS)

-
-

where the diffusion vector d~ for the jth. species is defined after ne­

glecting the external forces as (see Eq. (16) in the text):

-
-
-

(A6)
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Eq. (A6) may be simplified to obtain

dj -
p2 [-1.

aCj NS
(.1.

aCq- L (A7)k - -- C. -)]
=2 m. ax J q=l mq aXkn J m k

-..
SIMPLIFIED EXPRESSIONS FOR COEFFICIENTS ail AND biD- Since ail and biD can not be obtained directly from equations (A2)

- and (A3), we introduce the following assumptions for the mixture thermal

-
conductivity and viscosity; respectively,

-
-

NS n.
K All L

,
K.

i=l n
,

NS n.
lJ All L

,
-lJ·= ,

i=l n

(A8)

(A9)

-
-

Equations (A8) and (A9) are approximate forms for the more exact formula of

Wilke (see ref. 14). These equations imply that

n.
=J 41 ij All 1
n

(AID)

-
-
-

in the Wilke's relation. This is approximately true for air.

Thus, with the help of Eqs. (A2), (A3), (A8), and (A9) we may obtain

the following approximate expressions for ail and biD' respectively,

--
-
-

4- -
5

n. K.~.., 1 1-- -n k 2kT
(All)
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-

For accurate evaluations of ail and biD' cumbersome expressions of the

type of Eq. (7.4-49) of ref. 7 are required to be solved.,
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APPENDIX B

EVALUATED EXPRESSIONS FOR THE FLUXES OF MASS~

MlJ1ENTLM, AND ENERGY FRlJ1 INTEGRALS OVER
THE DISTRIBUTION FUNCTION

The fluxes of mass, momentum, and energy (i.e. of a property ~(V))

are given in terms of integrals over the velocity distribution function

...
f(V) in the "Analysi s·· section of main ,text. Here we give eval uated foms

for these fluxes obtained from integration over the distribution functions.

The various integrals needed in these evalulations are provided in Appendix

F.

(i) Expressions for Mass Flux of Species

Net

-
-

k = x, y, z (B1 )

-
-

Incident

-
-
-
-
-

+

Specularly Reflected

( B2)

( B3)
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Di ffusely Refl ected
w

w mi ni
M. =---

1 2-v7"

2kTW 1/2
( ) ( B4)

-
-
-

It may be mentioned that M. as obtained here is similar to the mass flux
ly

(ii) expression of Ref. J&:

(ii) Correlation with Blottner's Expression (Ref. 15) for Mass Flux

If the thermal diffusion term is n.eglected in Eq. (B1) and

substitutions are made for c~~) and d~ from Eqs. (A4) and (A7), Eq. (B1)

may be simplified to obtaint

-
-

'ar.:\\ ;.)/

-
where Wi is the molecular (or atomic) weight of the ith species and is

related to the mass of the ith species, mi' through the relation

-
mi _ k
---

R
(B6)

-
-

Here k ; s the Boltzmann constant and R is the universal gas constant.

Equation (B5)- may al so be wr,itten as

-
-

(B7.a)

or, with the introduction of the multicomponent Lewis number, Lij , defined

tIt may be noted here that Di;= O. see reference 7 for details. 46
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as

L•• :I P C D••f K =p Pr D1.J./lJ'
1J P 1J

Eq. (B7a) may be rewritten as

NS W. W. NS ac ..
j. =L- L [..-2.. L .. - -!- L L;q Cq] (--:!)

1 Pr j:l1 Q 1J Wj ~ ; ay
( B7b)

-
-
-
-
-
-
-

or,

or,

or,

ac.
x -L)

ay

( B7c)

( B7d)

(B7e)

....

-
-
-
-

where .

W. W. NS
Ab;. =Le. - [...!...- L·. +(1 -....:.' ~ . C]

J 1 lJ 1 l. 1 q q
W. ~;Q . J

L,.• :I L.. (C., M., M., L .. J
J lJ 1 1 J lJ

§See Eqs. (7), (8a), and (8b) of reference 15.

( B8)
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If the binary Lewi s nllllbers Lij are asslllled to be the same for all the

~ species, then

""" * *L.. :I L.• :I L. j (C., M
1
·, M

J
.)

lJ lJ 1 1

:I

and Eq. (B8) for L\bij becomes

-

(BID)

(B9)

ac.
2)
ay

:I *L\b ..
'J

:I * W. * W. NS *
dbfj ' Lef - [~Lfj + (1 - w;J Ji Liq Cq]

and the mass flux Eq. (B7e) now becomes
aC i NS

j i :I - (~) (Lei - + I
Pr ay .....

J.,.l

-

-
-

-
-

Fur~her, if the binary Lewis numbers, L;j' are constant for il.11 the

species, the term

-
-

~S Eb*,.J. ac j
j:f:: i a y

-
is zero in Eq. (BID). Therefore,

-

NS aCjNS W
I Le; - :I I [.2-

j:f:: i ay j:f:: i Q

* Wi NS * ac.
LiJ· + (I - -) I L,.q cq] (.2)

wj q:f::i ay
(Blla)

- .

-
-
-
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or, Le. = ­1

NS
L

j* i

W.
1

=
W

ac.
(--.l.)
ay

(B11b)

Thus, Eq. (B10) gives the mass flux due to concentration gradients only with

*Ab ij and Lei defined through Eqs. (B9) and (B11b), respectively.
* ,To utilize Eqs. (B9) and (BUb), Lij are still to be evaluated

through complex matrix inversions (ref.' 15). If we now make a little

(B12b)
NS W.
L (..2.

j=l Wj

(same for all the species),

and Eq. (B11b) becomes
NS wac.
L {( 1- ....!.) -l}] (B12a)

.j* i w~ ay
oJ

*stronger assumption such that L;j = L12 ,= Le
. *we obtain a much simpler expression for Ab ij

Wi ac; 1
Lei:ll Le [- - (1 - ciH-)-

~ ay

or,

-

-
-

-
--
-

=*- Simil arly the expression for Ab ij may be obtained from Eq. (B9) as

- :II * W. w.
Abi j :I Le i - Le [..2. + (1 - ..2.) (I-C.)] ( B13)

Q W
j

1

-
-

aCi aC
iIt maybe noted that for the case when _ =0, the tenn Lei _ in Eq.

ay ay

(B10) vanishes and Eq. (B12b) is not required. Further, employing a

constant value for the Lewis number, Le (= p Pr D12/J,l), does not imply Lei

to have a constant value.

It shoul d be pointed out here that for the case when L ij is the same

- 49
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for all the species we have used the condition

NS = * aC j
L Ab' k -. = 0

Jl:i 1 ay

=*(and not just Ab ik = 0 as employed in ref. 15) to obtain Eq. (B11b) Tor

Le.. The present formul ation appears to provide a more consi stent
1

expression for Lei.

Finally, Eqs. (810), (812b), and (813) for a binary (two species)

mixture give

-
-

}J
ji = -­

Pr

aCiLe (-l ; (Fick's law for mass-flux)
ay

Lei =Le

(814)

(815)

-
-

-
-
-

(iii) Expressions For Normal Momentll11 Flux

Net

s biO avOx . avOz
Pi = p. [1 +-(-+--

y 1 3 ax az

= p~ [1 + T1 ]
1 yy S

(816)

(817a)

(B17b)

-
-
-

where Tk are terms in the stress tensor for the ith species.
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Incident andSpecul arly Reflected

1 b,o avO avo avo
P~ = P: = p~ [_ + -2- (-2. +~- 2 --1.)
'y ,y , 2 6 ax· az ay

. 1 at nT(1 = NS (') ,
+ _ _ aiO - - a'l) - n ~ c'oJ dJ ]

-v:;- ay 2' -vi' j~I' Y s

'Diffusely Reflected

w 1 w
Piy :II 2 Pi

(iv) Expre.ssions For Tangenti al Momentll1l Fl ux

Net

.' , s b;O .a v av
Piz =- Pi [-2 (--9!. +~) ]ay az s

(818)

( 819)

(820)

(821)

Incident and Specul arly Refl ected .

-
-

.; tP :II _ P :II

ix . ix
1-

'Vi'

-
-
-

-

= NS
+ !. atnT (aiO - 1 a"I) -.!! r cP) dJ]

2 ax 2 2 j=1 '0 x s
(822)
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(B23)

• 5 kTs= q·k + - (-) M1· k1 2m•
1

-
-
-
-
-
-
-
-
-

-

-

-

Diffusely Reflected

p~ =p~ =0
1X 1 Z

(v) Expressions For the Energy Flux

Net

(2kTp/2 3.tni a. + M. J. •
m 3x 11 1k s '

i k

niK. ~T.• (1 _0]

, qik =- -==--n 3x sk .

Incident and Specularly Reflected

~ :& - E~ :& -

(B24)

k = x, y, Z (B25a)

(625b)

(626)
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\...

01ffuselyRefl ected

(827)
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APPENDIX C

SLIP BOUNDARY CONDITIONS GIVEN BY DAVIS FOR A BINARY MIXTURE

In this appendix, the dimensional form of the slip boundary conditions

obtained by Davis (Refs. 8 and 9) is provided for the purpose of comparison

with the slip expressions obtained in the main text for a binary mixture.

The dimensionless form of the surface slip conditions provided in refs.

8 and 9 are

Concentration slip (ref. 8)t

....
2 - YA (FDlsff aCACS f!f (Cl)A = CAe + e2 _ ( ) - - (-)s- 2 R YA Ps Ps an

- Velocity slip (ref. 8)

-
- US = e2 al

P

sIF ( au) s (C2')

ps Ps an

-
Pressure slip (ref. 9)tt

....

- -s
+ e2 bl Ksf (aT Js (C3)p :I Pw

is ps an-
....

-
-

tHere the dimensionless quantities are denoted with a i·bar'. See Appendix
Dfor details of nondimensionalization and the coordinate system.

ttFor the reasons explained in the main text, we have employed 'f' in place
of 'ii' in this expression.
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Temperature slip (ref. 8)

-
-

(C4)

-
-
-
-

With the help of the nondimensionalizing quantities given in refs. 8 and 9t

the following dimensional forms of Eqs. (Cl) through (C4) are obtained:

Concentration slip

(CS)

Velocity slip

-

-
-

(C6)
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*'~ where n is the coordinate normal to surface (see Fig. 01 in Appendix 0)
= =and nand m are the number density and mass of a mixture molecule,

- respectively. The constants aI, bl, and CI are defined as:

-

-

-

-
-
-
-
-
-

-

_ 5rr
~ (~) 1. 2304 (~)al - (-) =

16 2 e e

bl = 15 Jf(~ 1.1750 (~)- =
16 2 6 6

75n' r; (~) 2.3071 (2-6)c1 = - =
128 6 6
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APPENDIX 0

SLIP CONDITIONS IN THE BODY-ORIENTED COORDINATE SYSTEM

In this Appendix we obtain the slip conditions for an axisymmetric body

* *in the body-oriented, coordinate (s , n ) system. The coordinate configura-

tion for such a system is given in Fig. 01. The equations of this Appendix

contain simplifications similar to those given for a multicomponent mixture,

following Eq. (38c) of the main text.

*n , v

....

-
-
-
-

*Rl=R+n cose --..I

--- --

R

*_~ S, U

__ Body Axis

-
-
-
-

-

Figure 01. Coordinate Configuration For A Body (Symmetric About Its Axis)

*By employing the metric coefficients (see ref. 16) of hI = 1 + n K and

~ = 1, equations (39) through (45) give the following slip equations in the

bOdy-oriented coordinate system.
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Concentration slip

sni

n"!
1

::I 2 [1 +.!.
2

M.ly
w

ni mi

(01)

..

where (from Eqs. (35a) through (35c)) we define M. as:ly

-
-

., A ::I 0, N (02a)

-
- For all other atoms and molecules

(02b)

-
-

Pressure sl i p

M. =aly (02c)

1=1

-
-

NS n.K• e 2( 2-e )
x 1: 1::1

1 ~] S + p~ / { ~-
n 2 2·-v:;r

-
-
-
-

-

Velocity slip

+ .1

*1+n K

~)]
* sas

(03)
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-
+1. [ 1

S kT
1 aT

* *(1 +n I() as

.....

-
i....-
-

-

NS ac. NS = ac
s L ~ [_1 1 + (1-e i ) L m 1 ---9.] }+ ns D12 --.....

i=1 i (1+n*1() as q=1 mq * * s(I+n I() as

NS
/ L n~ vmi (D4)

i=l 1

..r.;- M. 1 P
"'" L ..21.. + - (.J.. + 1)
= i m. 2 pSns 1

diatomic
mol ~cule~

1 M. 1 p NS J2kTS ms~ -2!} +_ (3..1..+ 1) SL . -(-) Ci·= 1 m. - s 4 pS i=l m· m·n diatomic 1 . 1 1

mol ecules

- =
+.!.

P J2kT m
(2.+ 1) L ---!. (.2) C~] (OS)

2 pS i m. midiatomic 1
mol ecules
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If the internal energy (comprising of rotational and vibrational energies in

this case) is considered frozen during reflection from the surface, the

following form of the temperature slip equation is obtained (see Eq. (28) of

Ref. 5):

......

......

-
-
......

-

Ts ={ .. Yii'
NS Miy 1 P
L + (.1 + 1)- -

Tw = 1=1 mi 2 pSns

=.NSJkTS
m

x L - (2) Cf}
1=1 m. mi1

( 2~1 [1 (!5. aT) 5
NS M.

I r-~ \ ( lY1 1
'. ----:' l- -*J s ·- - , ~_l

a 2 p an 4 i';1 n mi~ s

=
+.!.

p NSR m
(3..l..+ 1) L ~ (~) c~]

4 ps i=1 mi mi
,

Equation sfor ni

(06)

-
....

-
I-
-
-

where

[1 + (07)
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s
111 A =-

p
(~+ 1)

ps
A

., A=0, N (D8a)

{A =0 for M =02.
A = N'for M =N2'

(D8b)

.....

-

s
111; =0 for all other species

p
In Eqs. (01), (05) ,(06) and (D8a) the ratio y is defined as

ps

(D8c)

-
-

P b
OY =[1+- (

ps 3

1 au

* *1+n Ie as

- 2 ~)]
* san

(D9)

-
-

and b
O

is reiated to viscosity, ~, through the relation

(D10)

- which has been obtained from (A3) by assuming b iO to be the same (bOl for

all the species.-
-

Equations (01) through (08) may now be nondimensional i zed by using the

following relations (refs. 8 and 13):

- u v T Tu =- , v =-, T = --
U u U~/Cp ,00

T
ref00 00-

-
-
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p:l P - P - lJ lJP = lJ :I =, - ,
Poo~ Poo lJ (Tref) lJ ref

Cp h kwiC :I n :I Kw;:I, - ,p
Cp,oo U2 Uoo00

* *
K= K S:I !.... n n, , - -,

Cp ,00 lJ ref r
N

r N

- • M•
I(' = I('rN "It :I !!... "Riy = ly, ,

r N wn. rn.U- 1 1 00

- 1/1 • kWAf i
1

'K. •~ -
rnA D /rN

wA U
12 00-

- Introducing the nondirnensional quantities as defined here, the following

equations are obtained from Eqs. (0-1) through (0-8):

(011)

-
-
.....

A =0, N (012a)
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CW

{A =0 for M =O2 •- MMY kwA (~) (012b):::
A =N for M =N2 '

CW
M-

Miy :II 0 for all other atoms and molecules (012c)-,*

- Pressure slip

{p _ €2 [~ 1.1 ( 1 .
w 3 1+iliC

- -
~ - 2 av)] s
as an

-
-
-
-

NS W.
x L (2.)3/2 c~ ~Jl

1:111 Wi

-
-

4 2 Le t1../ { 1 _ _ (~) e2 ( S )

-v:;r e ' Prs

-
-

(013)

..... where we have asslJlled that Pr ,. Pri and C
p

; /R; ::: (y - 1) /y

-
.....

-
,-

Velocity 51 i p

( 1) (~
N5~::: sL ~ C·

. 1 W ',::: i
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x (~ __K'_U_

an l+nK
+ --!..- ~) +.!. 1 (Y) ( 1 1 ~)

1+nK" as s 5 f1.Pr s y-1 s T (1+nK') a~s

-
-
-
-
-
-

-S .

NS W S lJ i + Le s NSPi ~ aC. NS = 1 aC
x t (2.)3/2 Ci - L - {- ~ +(l-C i ) L (!..-) (-i)} ]

i=1 Wi iTs t1. Prs i=1 Q 1+iiiC as q=1 Wq (1+nK') as ss _

(014)

Temperature Slip

T - = W
-T

s ={ - G.
2

.( ~~) erS

1
lliy ci (W

S
) + ~l Miy ci (-WS.I~]

w '-l2 pf s 1= Wi
diatomiC. 1
mol ecul es

-
-

=
1 P NS W 3/2

+ - (.1. +' 1) [L (..!)
2 pS i=1 Wi

S \' (W S,3/2
C.+ L. -)

1 i W.
diatomic 1
molecules

C~]}
1

-
-
-
-
-
-

w Ws + _1 Py NS Ws 3/2 sr. l1i y Ci (-)} (3 - + 1) L (-) Ci
1 Wi 4 pS i=1 Wi

diatomic·
mol ecules

64



-
-

-

p

+ ~ ( ~ + 1) ~ (~) 3/2 C~
P diatomic Wi

mol ecul es

Or, with frozen internal energy during reflection from surface,

(015)

-

- NS
-~ (~) L

2~ Pf S 1=1
"M1y C~

NS Ws 3/2 S
L (~ Ci }

;=1 W.
1

-
/ [ _ fT"2 (2-e~ {..=..:-( 1 )

"J ., e ~ MlPr
'" CD • CD S

-
-
-
-
-

Equation for nS
1

(016)

-
-
-
-
.....

ac. WA{---l + _ f.}.
an W ' s

i= 1 +------
'. fS (Q ~)

1 - sq= wanq

{A = 0 for i =(h •
A = Nfor i =N2 '

(017)
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p

x (2. + 1) c~ ; A =0, N
ps

-
-
-
-

where

--=-
2rr Yoo WA Too

(D1aa)

-
-
- and

~ :II _ ~ • {A = 0 for M=02
M A' A =N for M=N2

~ :II 0 ,for all other species

(D1ab)

(DISc)

-
-
-

x ( 1
1+ n K

'-au _ 2 a~

as an s
(DIg)

- or,

fl :II 1 + ~ II S e2 ( __1__

ps 3 Ps 1 + nK
~ _ 2 av )
as an s

-

-

(Reynolds number parameter)
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CplJ
Pr = _ (Prandtl nunber)

K

PCp D12Le = (Lewis nunber)
K

(Mach nlII1ber)

and

(Recombinati on rate
constant)

- For a noncatalytic surface (YA = kwA =0), eqs. (018a) through (DISC) give

~ =0 for all species. For this case, Eq. (017) becomes

-

-
-

Equation (020), similar to Eq. (47b), gives

(020) .

(021)

-
-
-

which may be employed as the boundary condition for a noncatalytic surface

with a multicomponent gas mixture (with the binary assunption for diffusion
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coefficients). For a fully catalytic surface. employing YA=1 and using

Eqs. (018a) through (018c) in Eq. (017) would yield the appropriate

concentration slip.

If the multicomponent diffusion coefficients are retained without the

binary assumption the underlined terms in Eq. (013) are to be replaced by

- NS L ij aCj NS Q ac
- j~l [- - Cj r - -i]s- Le alf q=1W an

j:f: i q

-
and the underlined termsin Eq. (014) are to be replaced by

-
-

NS
- 1:j=l

j:f:i

1
{ "1 - -\{ +n K J

where the multicomponent Lewis number.
-
-

Simplifications For A Binary Mixture

L
ir

is defined as
P Cp Dij

K

-
-
-
-
....

-

When all the species in a gas mixture can be considered as atoms and mole­

cules only (see ref. 8). Eqs. (011) through (018) may be further simplified.
sWith the assumption of Py/p • 1. Eqs. (011) through (018) fora binary mix-

ture yield:
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Concentration Sl ip

-
-
- (022)

Velocity sl i p

- (025)

-

-

where we have again employed the equation of state given earl ier and negl ec­

ted higher order shear, conduction, and diffusion terms. In obtaining

Eq. (025) we have al so used the approx imation:
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-

x =
S 1/2

[ CA (WM - WA) + WA]

[C~ (~ - {W;.) +~A]

.. 1

"-

-

To be more exact one may keep this factor in Eq. (025).

Temperature slip

-
-
-

1 K 2 13 pw i'wA
I{- 1 -- - (-=-) Xl

4 2 a ... 1
v Ps Ps

where

CW

A }
(C~ + 1)

(026)

- Xl =

-

-
-
....

....

3/2 3/2 3/2
[CA(WM - 2 WA ) + 2 WA ]

1
and - , Xl , 1 for 0, CA' 1 and diatomic molecules (WM=2 WA). In

2

obtaining Eq. (026), we have employed the equation of state and WM =2WA•

With frozen internal energy during reflection from the surface, the

temperature slip equation becomes
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-
......

(aJJ
an s

-
-

CW
A

---}
(C~ + 1)

~]

-
- where

CW

{ A } ]

. (C~ + 1)

(027)

-
-

X2 :I

[CA(WM- WA) + WA]3/2

3/2 3/2 3/2
[CA (WM - WA ) + WA ]

-
-
-
-

For diatomic molecules (WM:I 2 WA), X2 may be taken as unity for

0< CA< 1. Equation (027) employs ~ = 2W A•

Equation for C~

(028)

-
-
-
-

Equation (28), for a noncatalytic surface with y :I
A gives

(029)
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,....
whereas .using Y A = 1 in Eq. (029) and in the expression for kwA:

(030)

-
-
-

.-

.-

. .....

_.

-

would yield the appropriate ~oncentration sl i p for a fully catalytic sur­

face.

With the following (somewhat incon:s~$tent) asslll1ptions, Eqs.(023),

(025), (027), ·and (028) may be simp1ified·to those obtained in refs. 8 and

11:

(i) tn pressure slip Eq. (023), Pr :: 1 is employed along with approxi-

mations

4 (..!...) s .. 3
5 y-1

and

(ii) In velocity slip Eq. (025) the following assumption is made for the .

mixture molecular weights

.. 1
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-

-

-
-
-

(i i i)

(iv)

In temperature sl i p Eq. (027) an assumption is made for the surface

to be noncata1ytic so that kwA = O. In addition, Prandt1 number

(Pr) is taken unity and it is assumed that

1 (-!-)s" 15
2 y-l 8

No assumption is required in the concentration slip Eq. (028). But

it may not be appropriate to employ (Ref. 11) this equation for all

the species of a mul ticomponent mixture •. Thi s equation is appli c­

able to concentration slip of recombining atoms only in a binary

(two-species) mixture (Ref. 8) of atoms and molecules.

-
-
-

No equation has been obtained in reference 8 or 11 to correspond to Eq.

(022) to obtain wall values of the species cOQcentration (C~) from th~

values at the edge of the Knudsen layer (C~).

Slip Expressions For A Single Species Mixture

For a single species mixture (Y A =0), the following slip expressions are

obtained:

- Density Sl i P

- Ps ·ft (031)
• TsPw-
-
-
- 73



Pressure Sl iP
-
-
-

(032)

-
-
-

Velocity Slip

IC U )

1+ri" iC

(033)

Temperature Slip [For a gas consisting of molecules only (i .e. diatomic

perfect gas)]
-
-
-

(-L.-) (~)
:; -1 s a

-
e: 2 ~s

Pr ...J- ­s 'I PsPs

(a:11
an s

(034)

-
-

1where we have used Xl = -, or with frozen internal energy during
2

reflection from the surface,

-
-

(~)s (2-a~
y-1 a

-
e: 2 ~s

Prs VP if
s ~

(a~
an s

(035)

Equations (032) (033) and (035) are the ones employed in References 8 and 11

with Pr = 1.-
-
...

-
-
-

No-Slip Species Concentration Boundary Condition

Mult icomponent Mixture

The no-slip boundary condition may be obtained from Eqs. (017) and

(018). in the absence of slip, the Knudsen layer thickness shrinks to

almost zero, the values at the top of the Knudsen layer become the wall
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::r.JIt ~ t' A ;: 0 fOt~ ~1 ~ n..
'M = - 'A ; A = N for M = N~

-

-
-
-
-
-

values (See Fig. 1):

ac. W
A{ ---!.. + :r:- }an ~ 'l'i w

c~ =1 + -----,--

rs (L ~
q=1 Wq an w

where

my WAT
lID lID

A = 0, N

{ A = 0 for i = 02.
A =N for i =N2'

(036)

(037 a)

(037b)

-
~i =0 for all other species (037c)

-
where we have neglected the higher order shear (i.e. Py/pw. 1).

For the recombining 0 and N atoms, Eq. (017) may also be written as

-
- NS Q aC . ~ A Q Pr -

/ { L (- ~ + (..!....) (-.!) (-~w (~w }
q=1 Wq an W e;2 WA Le lJ

(038)

-
-
-

-The recombination rate constant ~A in Eq. (037a) and (038) has been

defined as (Ref. 2)
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.... 1
M

00

(039)

-

without slip and higher order shear.

For a noncatalytic wall (wi th YA = kwA =0), Eq. (021) gives

(040)

....

for· all the species of a mul ticomponent mixture with the binary asslJllption

about the diffusion coefficients.

Bi nary Mi xture

For a two-species mixture of atoms and molecues, Eq. (028) gives

-

(le) . (~
Pr w p w

aCA(-)an w
(D41a)

-
which may also be obtained from Eq. (038) for a surface with finite

catalycity. kwA in Eq. (41a) is again obtained from Eq. (039). For a

noncatalytic surface with KwA • 0, Eq. (041) gives

(042)
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. Eqs. (D41) and (D42) are obtained in ref. 4. However. ref. 4 employed Eq.

(D30) in pl ace of Eq. (D39) for obtaining the reaction rate constant. kwA •

As obtained in ref. 2. Eq. (D30) is more appropriate when slip and higher

order shear are included in the flowfield analysis (e~g. under rarefied or

low density conditions).

If kwA is substituted from Eq. (D39) in Eq. (D41a). we may also

obtain

-
-
-

(D41b)

where we have used the equation of state

- Tw Wepw 1 i \... l ~ . .--

- M2 - =
Pw .. ·Y.. T.. Ww

(043)

- Eq. (D41b) compares with the corresponding equation of ref. 8. if one

. keeps in mind that the diffusion coefficient FD (of Ref. 8) in the absence- of slip is related to the present variables by the relation

-
-

( Le~w
Pr

-
• -
." -

-

It may be seen from Eqs. (41a) or (41b) that the gradient (acA/an)w is

governed by the ratio kwA/€2 or y A/€2. Therefore. for· surfaces which are
. .. .

almost noncatalytic. this ratio would be of the order of one for 1arge

values of the Reynolds number parameter (1/€2). This would imply that a
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surface, regardless of its catalycity, would produce a larger effect
on the concentration gradient for high density rather than low density
conditions.
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APPENDIX E

SLIP CONDITIONS IN THE SPHERICAL COORDINATES

For analyZing the flow in the stagnation region of a body, it is conven­

ient to use the spherical polar coordinates (r,,) for the twO-dimensional

flow. The following relations exist between the spherical polar and the

* *body-oriented (s, n) coordinates over the spherical portion of a body
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-

or, in the non-dimensional form,

r sin ~ = R + n cos ~

-
-
-

r=rN+n =1+n; K=1

~ = s ; ar =an; a, =as

(E2)

-
-
-
-

where we have used nose radi us, r N, to nondimensional i ze all the distances

(see Appendix D).

Using the relations given by (E2) in Eqs. (011) through (019), we can

obtain the sl i p equations in the spherical pol ar coordinates for a mu1 ticom­

ponent mixture. Ohce again t these equations employ the simplifications

given for a multicomponent mixture, following Eq. (38c) of the main text.

- Concentration 51 i p

c~
(~ 1

W . T 1ft,
=2 [1 + Moo R"iy 21rY (~) (~)- -

c"! 2 00 Q. T, Ps 00 w 1s

-
-
-
-
-
-
-

where

M = - kWA ; A ~ 0, N
Ay

., (E3)

(E4a)
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-
MM =- y {A =0 for M=O2

A =Nfor M=N2; (E4b)

-
-M1y =0 for all other atoms and molecules (E4c)

- Pressure Sl 1P

- -ps = {p - e2 [ ~ lJ (!... ~ - 2 ~) ]
w 3 r: a. ar: S

-
(2-(~)( y~ (1 ~

5y:;r e y-1 S t1. Pr S
(2:~)
T 3r- s

-
-
-
-

.NS J_W1' [a C1• NS -W· aC
x L. + (I-C i ) L (~ .-9..)] }

1;;1 ~ 3-r q=1 War S
~ . q

(ES)

+...!... 3 v ~ + 1 _1_
r aep S 5 M Pr

~ S

(au _ u
ar r

- Ty~ ~
( 1 )

NSj0:1" S
L ~ Ci1=1 W.

1

Velocity ·Sl ip

M ;
(~ S ~

-

-
-
-

-

"

r

-
-. 81



-
'- Le s NS ft 1 3Ci NS 3C

+ L { - - + (1-C.) L (!!....~)}] (E6)
ttL Prs i=1 Ws r 3lfJ' 1 q=1 Wq, r3lfJ s- •

- , Temperature :51 i p
-
W

~i y C~ (2.)]
Wi

L
;

diatomic
molecules

- -
Ts fi" P w NS

= { - '1:; (-) ( L
- 2 ~ i-I
..Tw '\j p~ s

-
-

-
-

== -
P NS W W

+ 1 (..r + 1) ( L (...;) 3/2 CS + L (...!) 3/2

t~]}-
2 pS i-I Wi

i i W.
d,iatomic 1
mol ecul es

"- ,- - T ' ,;

( 1 ) 0:.) s (...L) s ( 'ref) j 2.
te12Pr - - T -• SPy -1 •. ps

=NS W
J "Miy C~ (~)
1=1 Wi

P W
(-1.. + 1) L (...!) 3 /2 C~]

s i W.
P diatomic 1

mol ecules

l

(E7)

1 P NS Ws 3/2 S
+ ~ (3 -1.. + 1) L (-) Ci

4 pS . 1 W.1= 1

-w
L 'R; y Cf (.~.)}
i W

diatomic ;
molecules

+~
2

-
-
-
-
-
-

-
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-
-

or, with frozen internal energy during 'reflection from surface,

-
-

-
-

=
X(~~(3~S ~( ~)

NS W
- L "Miy C~ (..!.) }

\is 3r 4~ ;=1 WiPsPs

-
1

P NS W
.+ (3 ...1.. + 1) L (2.)3/2 C~]-

4 pS 1=1 W. 1,
(E8)

-
_.

-
-

oC
i

W
A

.
{ - + - if·}

3F W. 1 s
C~"1 +----,--

1 fS (t. OCq~
q"l Wq or S

where

{A :=I 0 for i =~.
A = Nfor i =N2 ' (E9)

-
" -
"

-
-
-

:=I :=I

W T W - P
OD s (i) (Pr~ s( ~s (-f + 1) c~ ,

2Ir y. WA T. WAle IJ P

A .. 0, N (EIOa)

83



-
-
-

-
-

;;;-5M -:-S {A = 0 for M=O2
." ... 1/1 A; A = N for M == N2

~ = 0 for all other species
1

(EIOb)

(EIOc)

(Ell)

-
-

In obtaining these various equations, the following form of the equation of

state has been employed~

-
-

1
=-

Pf
(E12)

-
-
-
-

-
-

Similar to' Appendix 0, Eqs. (E3) through (Ell) may further be simpl.i­

fied for a binary mixture and for a single species mixture.
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APPENDIX F

INTEGRALS REQUIRED FOR OBTAINING VARIOUS FLUXES

In order to obtain the normal fluxes of mass, momentum, and energy, it

is necessary to evaluate various integrals over the velocity space of the

distribution function. These integrals involve terms that are various

velocity manents of the distribution function. The integrals are provided

for the net, incident, and specularly reflected fluxes. These integrals are

basically the same as those provided in ~ference 2 except for some

corrections and additions.

Flo Integrals Over the Entire Velocity Space (For Net ()Jantities),

-
-
-

c c c
3/2

'If

i * Y

i =Y

, 2
W WW e-W d3 W:I 0
Y ij

-
-
-
-

I

-,.

~

-

c c c
t' t' t'
JIIII JIIII JIIII

CC f': _w2
e d3 W:I 0

5 3/2
a _11'

4

i * y

i :I Y
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3/2

'If i 'I: Y

i 'I: j

c c c 3/2
'If

_W2
W W. W. Wl e d3 W= 0
Y 1 J

C J.: J.: WY Wi 14+ e_W2 d3 W= 0 i 'I: Y

= 35'1f3/2 i = Y
8

J.: .r: c
Co C J.:

-
-

-

-

-
-

-

-
F2. Integrals Over the Lower Half Velocity Space (For Incident Quantities)

W e -Wl d3 W= _ 'If

Y 2-
-
-
-

00 0 00

L L L W W.y 1

_W2
e d3 W= 0

= .!.'lf3 / 2

4

i 'I: Y

i =Y

"\

-
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i:l: //:1: y

i=//*y

i = j :I: Y

i = j =y

i :I: j and

i or j:l: II

i :I: Y

i :I: j, i or j :I: Y

i :I: j

=- -
4

= - -
2

3=- -'II' i=y
2

1 3/2
= -'II' i =j :I: Y

8
3 3/2

= _'II' i=j=y
8

Wl e-W2 d3 W= 0 i :I: Y
5 3/ 2 '

= _'II' i =y
8

W W W 1.0 e -W2 d3 W= 0
y II i w-

_ 3Jr
- --

4

I.t. _W2 3W w' e d W= - 3JryJ.: J.: J.:

J.: C J.:

Co , Co

J '
Ii.r

L
i 1

'-
\ '

U

1 •i.-

t I

L
~ ,
Iw

I :

~

1.;

l
'-'

~

! ,
...,;

'i ,,
~

1
~

L
f

l
'I

i L
II
I

I
I;

'-

-
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! I:...
ao 0 ao

L J.. J..
-W2e d3 W = 0

35 3/2
=_'J1'

16

; "/: Y

i =y

•
F3. Integrals Over the l,pper Half Velocity Space '(For Specularly

Refl ected Qu ant; tl es) . •

\
I

l-

\.

L
_W2

Wy Wi e d3 W=0
-W2 1 3/2

W (-W) e d3 W= - _ 'J1'
Y Y 4

i "/: Y

C Lao C wy W2 -W2 3e d W= 'J1'

C Lao J.: wy W; Wj e_W2 d3 W=0

'J1'=
4

i "I: j

; = j "/: Y

L

L

; "/: j and

; or j 'I: II

\I .....,

I ,

I ,
l..

t
I'-
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_w2 1
W (-w) ~ e d3 W=- _ "If 3 12
Y y"1 8

i :/: j, i or j :/: Y

i :/: Y

I...

C f,oo Co ~ Wi WZ
_W2

ed3 W= 0

C Joo C w (-w)2 WZ e-w2 d3 W= 3rr
0 y Y 2

i :/: Y

- _W2
WY W+ e d3 W= 3 "If

i:/: II:/:y

i = II :/: y

i :/: Y

{.....

(,-
1

i,
W,

l..

~w

\
i-

3/2
"If

(-Wy) appearing in the integrals emphasizes that the sign of the thermal

velocity component normal to the surface, vy (and consequently that of Wy)

changes in the distribution function f~ upon reflection from the surface.
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