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Abstract

A spectral algorithm for simulating three-dimensional, incompressible,

parallel shear flows is described. It applies to the channel, to the parallel

boundary layer, and to other shear flows with one wall-bounded and two

periodic directions. Representative applications to the channel and to the

heated boundary layer are presented.
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Nomenclature

^

i unit vector in x-direction

k normal wavenumber in model problem

p pressure

t time

u streamwise velocity

v normal velocity

w spanwise velocity

x streamwise coordinate

y normal coordinate

z spanwise coordinate

kX scaled streamwise wavenumber

kz scaled spanwise wavenumber

mp pressure gradient exponent
^

Ukx,k z velocity after transforms in x and z

_kx,m,k z velocity after transforms in x, y, and z

Cp specific heat

F velocity function in Falkner-Skan equations

Fw suction parameter

H temperature function in Falkner-Skan equations

I identity matrix

Nx number of grid points in x

Ny number of grid points in y

Nz number of grid points in z

Re Reynolds number

ii



T temperature

Tm Chebyshev polynomial of degree m

Tw wall temperature

streamwise wavenumber

spanwise wavenumber

B pressure gradient parameter
P

6k,£ Kronecker delta function

6* displacement thickness

K conductivity

boundary layer similarity variable

Prandtl number

p density

kinematic viscosity

0 scaled temperature

T heating parameter

temporal frequency

At time-step

Ay grid spacing in normal direction

subscripts

k component for normal wavenumber k

e right-hand side of linear equations

free stream values

0 equilibrium values

£ iteration parameter

iii





INTRODUCTION

The development of accurate and efficient spectral methods has made

feasible the reliable, three-dimensional simulation of the early stages of

transition in parallel shear flows. Orszag and Kells I pioneered the numerical

work on channel flow. They demonstrated that linearly stable two-dimensional

Tollmein-Schlichting waves can exhibit a strong secondary instability to

three-dimensional disturbances of the Benney-Lin 2 type for Reynolds numbers as

low as i000. Wray and Hussaini 3 presented compelling evidence for the use of

the parallel flow approximation in their Blasius boundary-layer simulation.

Their calculation reproduced the essential features of the Kovasznay, et al. 4

experiment up to the two-spike stage. The presence of strong secondary

instabilities in several other linearly stable, parallel flows has been

demonstrated by Orszag and Patera. 5 An extensive comparison of numerical

simulation with the channel flow experiments of Nishioka, et al. 6 has been

made by Kleiser and Schumann. 7

The calculations cited above all employed algorithms which use direct

methods for solving the implicit equations resulting at each time-step from

the spatial discretization. The same is true for a recent novel spectral

algorithm for curved channel flow. 8 The cost of these direct solution methods

is increased substantially by the addition of even minor geometric terms or

the temporal variation of the viscosity which is essential for assessing the

more subtle effects of heating. This is a major consideration which has led

us to develop an algorithm which resorts to iterative methods for the solution

of the implicit equations.

This paper is devoted to a description of an algorithm for transition

simulation which is based on iterative methods. It shares some common
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features with a method developed by Morchoisne. 9 The description focuses on

the controlled boundary-layer algorithm since this problem is more involved

than the channel and has not yet been simulated numerically.

BASIC EQUATIONS FOR THE PARALLEL BOUNDARY LAYER

Mean Flow

We require the incompressible boundary-layer equations that include the

effects of pressure gradient, suction, and/or heating. Viscous dissipation is

neglected, and the pressure gradient and suction distributions are chosen

compatible with similarity solutions. The Falkner-Skan equations I0 are

-- F.2) I
(_F")" + mp(l - + _ (mp + I)FF" = 0, (I)

1

(_H')" + o _ (mp + I)FH" = 0, (2)

with the boundary conditions

F(0)= Fw

F'(O) = 0

F'(_) = i (3)

H(0) = i

H(_) = 0.
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A prime denotes differentiation with respect to the similarity variable

n= Y_/_ x-

The free-stream velocity u is proportional to xmp.

The fluid properties are scaled with respect to their free-stream values

(with p. = i):

= _(r)l_

= K(T)I_

= _ Cp(T )/_ .

The dimensional velocities and temperatures are related to the similarity

variables via

u = u F(n)

v =-_ _ [_F'(_) - (mp+l)F(n)]

T = (T - T )H(n)_ _ + TW

The parameter mp is related to the conventional pressure gradient

parameter Bp by

Sp
m -
p 2- 8 "

P

The wall suction is controlled by Fw and the heating effects by T and Tw-

The Reynolds number is based on free-stream velocity, viscosity, and the
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displacement thickness 6* of the uncontrolled boundary layer:

_ u x
m .

6* = 1.72

The results in this paper pertain to water boundary layers, for which the

appropriate empirical formulas II are

B(T) = 1.002 er(T)

r(T) = -2.303 JI.370 + 8.36 x 10-4(T-293)J(T-293)/(T-164)

K(T) = -9.901 + 0.1002 T - 1.874 x I0-4T 2 + 1.040 x 10-TT 3

C (T) = 41.84 x [2.140 - 9.68 x IO-3T + 2.69 x 10-5T 2 - 2.42 x I0-8T3]. (4)P

All the results below are for a free-stream temperature T = 2930K.

The numerical solutions of equations (1)-(3) were obtained by a fourth-

order compact finite difference scheme, 12 with a typical accuracy of 7

significant digits.

As noted in the introduction, the parallel flow assumption has been used

in this work: having fixed a reference location x in the streamwise direction

we presume that the streamwise velocity u(y) and the temperature T(y) are the

same at all x and that the normal velocity v(y) is zero. This "mean flow" is

not a solution to the Navier-Stokes equations. For consistency, then, we

imagine that the Navier-Stokes equations also include a small forcing term so
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that the "mean flow" is an equilibrium solution to the full nonlinear

equations.

In the remainder of this paper, the fluid equations will be used in

dimensionless form, and the overbars on _ and _ will be dropped. Velocities

are scaled by u , lengths by 8 , and densities by p= . The temperature

variable e is, as usual,
T - T

0 =
T - T
W

The parameters which define a particular case, then, are the Reynolds number

Re, the pressure gradient parameter Bp , the suction parameter Fw, and the

heating parameter r = Tw/T =.

Linearized Equations

Initial conditions for the numerical simulations are based on solutions

to the Orr-Sommerfeld and Squire equations for small amplitude velocity

perturbations. Temperature fluctuations have been ignored in these linearized

equations, but the effect of the mean temperature upon the viscosity and mean

flow profiles is included. Velocity perturbations are taken to be of the form

^ °

u(x,y,z,t) = u(y)e 1(cLx + Bz - mt)

for real = and B. The Orr-Sommerfeld and Squire eigenvalue problems are

solved by a Chebyshev tau method. 13 The Chebyshev expansions are in terms of

the computational variable _, which is related to the physical variable y by

the algebraic mapping
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1 + _ (5)
Y=Ye

2Ye
l+

Ymax

The parameter Ye is roughly twice the normal distance at which u = 0.5, and

Ymax is the upper boundary in the physical domain. A typical choice for Ymax

is 15, which is roughly 5 times the boundary-layer thickness. The variable

has the usual Chebyshev distribution in [-i,i]:

_i = cos --N ' i=0,1,...,Ny.
Y

Roughly half the points fall within the displacement thickness, and two-thirds

are within the boundary-layer thickness.

Between 50 and 70 Chebyshev polynomials are used for the solution of the

linear eigenvalue problems. The major source of error is inaccuracies in the

numerical solution of the mean flow. Nonetheless, the eigenvalues and eigen-

functions are reliable to 5 or 6 digits.

Navier-Stokes Equations

The nonlinear simulations are performed for the equations

^

ut + m_x u = -VP + V • (_V_u)+ fi (6)

+ u • ve = v • (Kve)+ g (7)et

v • u = 0 (8)
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I iml2 and thewhere the vorticity _ = V x _, the total pressure p = p + _

boundary conditions are

u=0 u = 1

at y = 0, at y = _. (9)
O=0 e= 1

The forcing functions are given in terms of the mean flow variables by

_u0

f = _ _y (P0_-_-)

(lO)

B _eo

g : - Tf (% T )"

They ensure that the mean flow is a stationary solution of Equations (6) -

(8).

NUMERICAL METHOD

Discrete Equations

The nonlinear three-dimensional calculations reported below are based on

the algorithm described for two-dimensional flow in Reference 14. The spatial

dlscretization is Fourier-collocation in x and z and Chebyshev collocation in

y. The temporal discretization is backward Euler for the pressure, Crank-

Nicolson for the normal diffusion and conduction terms, and third- or fourth-

order Adams-Bashforth for the remaining terms in Equations (6) and (7). The

continuity equation is enforced as a constraint at the new time level.
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The primitive variables have two series representations which will be

useful in this discussion. The first is

N N
x z

---i i ^ ^

t i(kxX + k z)

^

u(x,y,z,t) = Ukx'kz(Y't)e z (ii)
k = -N /2 k = -N /2
X X Z Z

^ 2_

where kx = L-- kx ' _ 2_z = _ kz' and Lx and Lz are the lengths of the
x z

(periodic) domain in the x and z directions, respectively. The second

involves the additional series

N

^ £
U_x'kz(Y't) = m = 0 Ukx'm'kz~(t) Tm(_) , (12)

where _ is related to y by Equation (5). Henceforth, the subscripts kx, m,

and kz will not be written explicitly unless necessary. The collocation

points in the periodic directions are

2_i

x. - i = 0,1, ,Nx-11 N L ' "'"
x x

(13)

2_k
Zk = N L ' k = 0,1,...,Nz-I.

z z

A staggered grid is employed in the normal direction. Velocities and

temperatures are defined at the points

_j = cos _-- , j : 0,Z,...,Ny (14)
Y
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and the pressures at

= cos_(j+i/2)
_j+i/2 N , j = 0,1,...,Ny-l. (15)

Y

The continuity equation is enforced at the latter points and the remaining

equations at the former ones. The staggered grid avoids artificial pressure

boundary conditions, precludes spurious pressure modes, and facilitates the

solution of the algebraic equations which arise from the implicit terms in the

time discretization.

Chebyshev interpolation is the natural process for transferring variables

between the grids of Equations (14) and (15). For example, consider the

velocity component u. Let uj, for j = 0,1,...,Ny, denote its values at the

points (14). The Chebyshev coefficients are given by the usual quadrature

rule

N N

Y Tm(_ j
~ 2 _ .-i 2 - -i m_j
u - _ _ uj ) = c u cos- m = 0 1 ,Nym N c 3 - j j N ' ' '''"

ymj=0 N cy m j=0 Y
(16)

where

_ 12 m=0orN

c = Y

m i i _m<N .
Y

The interpolated values of u are

N -i N -i
Y Y

Tm(_j+i/2) _ (_+i/2)ITmuj+I/2 = Um = L c°s N ' J = 0,1,...,N -i. (17)
m=0 m=0 Y Y
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[Note that TN (_j+i/2) = 0 for j=0,1,...,Ny-l.] The Fast Fourier Transform
Y

(FFT) may be used to evaluate both sums (16) and (17). The less familiar sum

in Equation (17) over the odd cosines may be handled by the technique

presented in Appendix C of Reference 15.

The temporal discretization of Equations (6)-(8) leads, after a Fourier

transform in x and z, to an implicit system of the form

^ ^y+ ^xTqn+l ^
n+l i + ik = u

u - (bu )y e

v^n+l - (bV^y+l)y + yqy+l = V^e at _j

w^n+l - (bW^y+l)y + i zTq n+l = We (18)

^ y, _ y,vn i ^ _j+i/2
_n+l ^ + ^n+lmik - - ik T*w = 0 at (19)

x y z

along with Dirichlet boundary conditions on the velocities. An * denotes the

t), where the last term
n

complex conjugate. The coefficient b = At Bavg(Y,
is

the average value of _n(x,y,z,t) at fixed y and t. The pressure has been

included in terms of the scaled variable
= i--_)P, where T is a complex

constant whose role is explained below. Similarly, the temperature equation

is

_n+l m (d_n+l)yy = _e at _j (20)

I n

subject to Dirichlet boundary conditions, where d = _ At _avg(y,t). The

right-hand-sides of these equations contain the explicit terms in the temporal
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discretization. Let

^n+l ^n+l ^n+l_
U = (u0 , uI ,...,uN .,

Y

^n+l ^n+l ^n+l
Q = (ql/2'q3/2'''''qN-1/2)

Y

and define V, W, and 0 similarly to U. Let Db and Dd be diagonal matrices

with the elements of b and d on their respective diagonals. Let the effect of

Equations (16) and (17) on U be denoted by A+ and the reverse interpolation

procedure (for Q) by A0. Finally, let M denote the matrix which represents

Chebyshev differentiation in the y direction. Then Equations (18) to (20)

reduce to the algebraic set

^

(I - MDbM)U + ikxYAoQ= Ue

(I - MDbM)V + _MAoQ = Ve (21)

^

(I - MDbM)W + ikzTAoQ= We,

-ikxY*A+U - y*A+MV - ikzY*A+w = 0 (22)

(I - MDdM)e = ee (23)

where the first and last rows of (21) and (23) are replaced by the boundary

^ ^

conditions. Clearly, the equations for each pair (kx,k z) are independent.

Moreover, Equation (23) is not coupled to Equations (21) and (22) and thus may

be solved separately. The matrices A_, A+, and M are full. Except in special

cases the direct solution of these equations is not practical.
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The iterative solution of Equation (23) is straightforward: simply

precondition the system by a finite-difference approximation on the Chebyshev

grid 16 and apply a standard iterative method 17 such as Richardson, 16 Chebyshev

acceleration, 16 minimum residual, 18 or even multigrid. 19 The finite-

difference system is tridiagonal and positive definite.

The key to this algorithm is the solution of the system (21)-(22). A

simplified model problem, discussed in the following sub-section, is

instructive.

Model Problem Discussion

Suppose that the boundary conditions in the normal direction are periodic

instead of Dirichlet and that the viscosity, i.e., b, is constant. Replace

the Chebyshev discretization with a Fourier one, on, say [0,2_]. Then the

vertical collocation points are

= 2_j j=0,1,...,Ny-IYj N
Y

2_(j+i/2)

Yj+I/2 - N j=0,1,...,Ny-l.
Y

The fully discrete equations may be cast in a form analogous to (21)-(22),

where now

M = C_DC0

MDbM = bC_D2C0

(24)

A0 = C_C+
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A+ = C_C0

and

1 -ikyj j= O,l,...,Ny-i
(C0)k,j - e ,

_y k= -Ny/2, -Ny/2+l, ...,Ny/2-1

1 ikyj+i/2
(C+)k, j - e

Dk, % = ik_k, ,Ny£, k,£ = -N /2, -N /2+i,... /2-1.Y Y

Thus, we have for the spectral equations

^

[I - bC_ D2 C0)U + ik yC_ C+ Q = ux e

[I - bC_ D2 C0)V + yC_ DC+ Q = V (25)e

D2C0 ^[I - bC_ )W + ik _C_ C+ Q = Wz e

-ikx y*C_ C0 U - y*C_ D*C 0 V - ikz y*C_ CO W = 0. (26)

This can be written as the system

LX = B (27)

where, for instance, X = [U, V, W, Q). Now let Uk = CO U, Qk = C+ Q

= RX, and _ = RLR* where
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C 0 0 ! 1

0 Co 0

R= 0 0 C0

0 0 0 C+ .

After a permutation of the rows and columns of _, we obtain a block diagonal

matrix with blocks

_k _ = Bk (28)

% = [Uk, vk, wk, qk ),

/l+bk 2 0 0 ikxY_

l+bk2 0 iky | (29)

_k = _ _^ 0 l+bk2 ik_y
_-ikxY* -iky* -ikzy* 0 /.

Consider now a finite-difference approximation to this model problem. Let E

denote the foward shift operator subject to periodic boundary conditions.

Then Equations (21)-(22) become

1

[I b (E - 21 + E-I)]u + ik y _ (E + I)Q = U
(Ay)2 x e

[I b (E - 21 + E-I)]v +_y (E - I)Q = V (30)
(Ay)2 e

1

[I b (E - 21 + E-I)]w + ik y _ (E + I)Q = W
(Ay)2 z e'

^ 1 y* -1 ^ 1
- ikxY*_ (I + E-I)u (I - E )V - ik y* (I + E-I)w-= 0. (31)z
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Denote the matrix which represents the left-hand-side by H. This system can

be reduced to block-diagonal form by the same transformation that was used for

the spectral operator. The result can be written

/1+bk2s 2 0 0 ikxYa

l+bk2s 2 0 ikys i (33)

Hk =_ ^_ 0 l+bk2s2 ik_ya

\-ikxY*a -iky*s -ikzy*a 0 /

where

sin(kAy/2) (34)
s = (kAy/2) '

a = cos(@) . (35)

The relevant range is ]kAy] < _.

If a and s were identically one, then the preconditioning would be

perfect. In any case, the derivative terms cause no serious problem

for (2/_) < s < I. It is the averaging operator a which is a source of

potential difficulty. As IkAyl . n, the averaging becomes useless. We

^

anticipate difficulty only in circumstances for which kx and/or kz are large

relative to the reciprocal of the grid spacing in y.

A preconditioned Richardson iteration for Equation (27) reads

X . X - _ H-I(B - LX) (36)
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where _ is an iteration parameter. The choice of _ and indeed the convergence

properties of this scheme depend upon the eigenvalues of H-IL. A (complex)

Chebyshev acceleration of the basic Richardson scheme can be devised provided

that all the eigenvalues of H-IL have positive real parts. 20

The eigenvalues of the model problem are especially easy to obtain:

since H and L were block-diagonalized by the same transformation, we need only

compute the eigenvalues of _kl_ k for k=l,2,...,Ny/2. Some results are shown

in Figure i. In these calculations k has been set to zero. Similar
z

^ ^

calculations for both kx and kz non-zero lead to qualitatively similar

results. Figure l(a) portrays the easiest of these 6 cases for the iterative

scheme. Most of the eigenvalues are near unity, and they are located near the
^

real axis between i and _/2. The eigenvalue spread in part (b) for k = 30 is
x

much larger. Nevertheless, the real parts of the eigenvalues are safely

greater than zero. A comparison of parts (b), (c), and (d) reveals that for

fixed kx the eigenvalue spread is reduced as the vertical resolution is

increased. The heuristic explanation for this welcome behavior is that as Ny

increases, the eigenvalues of the first derivative operator become more

important than those of the averaging operator. In actual numerical

simulations the number of points in the x and y directions is likely to be

nearly the same. Part (d) corresponds to the worst case that would arise in a

643 calculation. Parts (e) and (f) show the eigenvalue spectrum for a

situation in which the viscosity is quite considerable. The major difference

from the previous cases is the presence of additional eigenvalues along the

real axis as large as _2/4. This is characteristic of preconditionings of

second-derivative spectral operators.
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Clearly, the major shortcoming of this particular preconditioning is its

treatment of the averaging operator. If the 2/3 rule is used to de-alias the

collocation approximation in the normal direction, then the averaging operator

is well-behaved. In this event, IkAy[ _ 2_/3, so that 1/2 _ a < i. For the

case shown in Figure l(b), the largest 6 eigenvalues disappear. With the use

of the 2/3 rule, this case becomes quite manageable.

In the next sub-section, we present numerical evidence that the model

problem predicts very well the eigenvalues of the system of real interest.

Already the model problem suggests that the major shortcoming of the

preconditioning is its treatment of the averaging operator. Fortunately, the

model problem provides a ready tool with which to check the effectiveness of

alternative preconditionings.

A Minimum Residual Iterative Scheme

The actual system that must be solved is given by Equations (21) and

(22). It clearly can be written in the form of Equation (27) by an obvious

adaptation of the notation of the previous sub-section. Likewise, let H

represent the finite difference counterpart of L on the Chebyshev staggered

grid.

The eigenvalues of some channel flow cases are shown in Figure 2. There

are no significant differences between these results and those for the model

problem. The eigenvalue distribution for the boundary layer is slightly

broader than for the channel. See Reference 14 for some boundary layer

eigenvalues.

A useful alternative to the Chebyshev iterative method discussed in the

preceding sub-section is a class of variational iterative methods. 18 The
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simplest such scheme is called the minimum residual (MR) method. The

preconditioned version begins with an initial guess Xo, the initial

residual R° = B - LX ° and the initial direction Qo, determined by HQo = Ro,

and proceeds according to

_£ = (R , LQ£)/(LQg,LQ£)

X£+1 = X£ + _£Q£

(37)

R£+1 = R£ - _£LQ£

HQ£+1 = R£+1 •

Like the Richardson scheme, this method requires one evaluation of the

spectral operator (for LQn) and one solution of the implicit flnlte-difference

system (for Qn+1 ) per iteration. A sufficient condition for convergence is

that the symmetric part of LH-I be positive definite. The constant y that

appears in Equations (21) and (22) is used to ensure that this condition is

met. (One can easily show that y has no effect upon the eigenvalues of H-IL,

but that it does influence the symmetric part of LH-I.)

Let us return momentarily to the model problem. For y = I, the extreme

eigenvalues of the symmetric part of LH-I are 1.59 and 0.71 for the case shown

in Figure l(a) whereas they are 18.8 and -15.6 for Figure l(b). The MR method

will clearly fail for the latter case. However, for y = I k + 2 thesez

latter eigenvalues improve to 2.55 and 0.43. The importance of y is

evident. It is even more important when there is appreciable diffusion.

The y=l extreme eigenvalues are 474 and -471 for Figure l(f). The choice
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2m _ k2 ^2 k2
y = [i + dk ]/ + k +ax x g max '

where kmax = Ny/2 leads to 2.98 and 0.98. This scaling is based on balancing

the norms of the diffusion and gradient operators. The principle applies to

the actual channel and boundary layer problems as well.

There is clearly the prospect of future improvements in the

preconditioning and scaling. One intriguing scheme is suggested by the

observation that if a non-staggered grid were used for the pressure, then the

preconditioning problems would shift from the averaging operator (which would

become the identity) to the first derivative operator. Perhaps one should

employ a scheme which alternates iterations on a staggered grid with ones on a

non-staggered grid.

The preconditioning matrix H is block-tridiagonal. Note that Equation

(27) can be separated into 2 independent real systems. Although we have no

proof that the linear system HQn+I = Rn+ I from Equation (37) can be inverted

without pivoting, we have yet to encounter a case which requires it for

numerical stability, provided that the equations are ordered as suggested in

Reference 14 and scaled as suggested above. We have, of course, made

comparison with calculations performed with and without pivoting. We have

also made several production runs in both 32-bit and 64-bit arithmetic and

found 5 digit agreement. Furthermore, substantial round-off errors arising

during the solution of the linear equations should prevent the iterative

scheme from converging and this has not been observed. (The MR method, when

convergent, has the property that the residual can be reduced to an

arbitrarily small level, regardless of the precision of the machine.)
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Time Discretization

This algorithm does not resort to splitting. 1 Although a splitting

scheme would permit a simpler iterative method, this approach appears

inadvisable for a general code in view of the demonstration by Marcus 21 for

Taylor-Couette flow that the standard splitting scheme produces errors that do

not vanish as At tends to zero.

The Crank-Nicolson treatment of the mean vertical diffusion term is

standard and is essential for practical calculations at low Reynolds number.

If needed, a semi-implicit treatment of horizontal diffusion can be readily

incorporated into the algorithm. Moreover, the mean streamwise advection may

also be treated semi-implicitly.

A backwards Euler treatment of the pressure appears to be all that is

warranted. This variable merely serves as a constraint for enforcing the

incompressibility condition. The pressure term has the character of an

advection term with an infinite speed. The potential hazards of Crank-

Nicolson for advection terms are well-known. We ourselves have encountered

some difficulty with the use of Crank-Nicolson on the pressure in problems

characterized by rapid decay of the interesting components of the solution.

One such case is the Stokes layer in channel flow with one oscillating wall.

The computed velocity decays properly but the pressure does not. It quickly

attains an amplitude which does not vary with time and it changes sign every

time step. No such difficulty arises when the backward Euler scheme is used

for the pressure. Moreover, the velocity agrees with that of the former

calculation. We have made numerous comparisons of the two pressure treatments

in more conventional problems in which the solution grows or only slowly

decays. In no case has there been any detectable difference in the
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velocities. Evidently, the overall time accuracy of the algorithm is not

degraded by the backward Euler pressure scheme.

Many transition and turbulence simulations have used second-order Adams-

Bashforth (AB2) for the advection term. Both this method and explicit second-

order Runge-Kutta (RK2) methods for a Fourier spatial discretization of

advection suffer from weak instability. For a given spatial grid the fully

discrete equations have a parasitic solution with a positive growth rate which

is proportional to At (in terms of the physical time). This means that the

computed solution is destined to blow up if integrated long enough. The

useable time interval can be increased by reducing At, but this can be

burdensome for long time integrations.

Higher-order time-stepping methods have the advantage of asymptotic

stability as well as improved accuracy. A practical advection stability

condition has the form

luAX Ay Az (38)At < c + _[_--)max +_----
[ max max

where c is a CFL parameter. The formal limits on c are 0.23 for AB3, 0.13 for

AB4, 0.55 for RK3, and 1.27 for RK4. In terms of execution time for a

calculation operated at the stability limit, AB3 is favored over RK3 and RK4

over AB4.

The Navier-Stokes algorithm with a conventional third-order advection

scheme requires storage for I0 variables. (The pressure is needed only at the

latest time level.) Williamson 22 has catalogued numerous low storage Runge-

Kutta schemes that, when modified to the present application with its

additional implicit terms, require storage for only 7 variables. For the

equation
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u =F+G,
t

where the terms in F are treated by RK3 and those in G by Crank-Nicolson,

such a scheme reads

H1 = AtF °

1 1

= + HI + At(G + G )ul Uo _ 6- o i

5

H2 = AtF 1 - _ HI

(39)

15 5

u2 = Ul +]-6H2 +7 At(GI + G2)

153

H3 = AtF 2 - I-_H2

8 1
u3 = u2 +]'_ H3 +_ At(G2 + G3)

where uo = un and u3 = un+l. The inclusion of G makes this scheme formally

second-order accurate for advection. However, in our own calculations for low

viscosity flows we have found it to have errors at most 50% greater than those

for a true third-order advection scheme. Moreover, the errors decrease by a

factor of 8 when At is halved, even down to an accuracy level of 6 significant

digits. The scheme (39) is to be preferred when storage is at a premium or

the I/0 costs are substantial.
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Implementation

Both the channel and boundary-layer versions of this algorithm have been

implemented on a Control Data Corporation Cyber 175. The channel code has

recently been made operational on the Control Data Corporation VPS 32 (a

vector processor which is architecturally similar to a two-pipe Cyber 205, but

expanded to over 16 million 64-bit words of memory).

No special coding was used for the scalar Cyber 175 code, except for the

assembly language FFT's. The code has been used for calculations on

collocation grids as large as 16 x 32 x 8. A typical channel application

requires 3 msec per time step per grid point for a convergence criterion on

the iterative scheme sufficient to ensure that the velocity field is

divergence free to better than I part in 1010 . (If the 2/3 rule is used to

de-alias the horizontal directions, then this time is reduced substantially--

roughly by half--since most of the CPU time is spent in solving the implicit

equations.) The run time does depend on the amplitude of the disturbances.

It varies by perhaps a factor of 2 in either direction from the figure cited

above. The boundary-layer code, with fixed temperature, takes perhaps 20%

more time per step.

The VPS 32 code has been implemented entirely in Cyber 200 Fortran. The

FFT's were written by the authors using the guidelines given by Temperton. 23

They currently incorporate radix 2 and radix 3. Vectorization of the implicit

equation solution was achieved by solving for many pairs (kx' kz )

simultaneously with no pivoting. Typically 1/4 of all the pairs were solved

for at a time. On a 323 grid the vector lengths for the block-tridiagonal

inversions and for many parts of the residual calculation are only 136. The

VPS 32 requires somewhat longer vectors to operate near its peak capacity.
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For a 643 grid, however, the vector length is over 500, which is much more

acceptable. A typical calculation on a 323 grid requires 2.5 sec per step,

whereas the corresponding 643 calculations take I0 sec per step. This

increase in time by a factor of 4 rather than 8 is indicative of the improved

performance of the VPS 32 as the vector length increases. (With aliasing

control these times are halved.)

We have also implemented a version of this code which uses finite

differences in the normal direction. It takes 0.5 sec per step on a 323 grid

and 3 sec per step on a 643 grid. These calculations proceed at a sustained

speed of over 90 MFLOPS in 64-bit arithmetic. Clearly, the CPU time penalty

for spectral resolution in the normal direction is not unduly severe.

APPLICATIONS

Channel Flow

The usual scaling for the channel is employed. Lengths are scaled by

channel half-width and velocities by the centerline velocity of the mean

flow. A uniform density of unity is presumed. The Reynolds number is based

on channel half-width and the mean centerline velocity.

Parallel shear flows admit one set of linear waves which are solutions to

the Orr-Sommerfeld equation and another set which are solutions to the

unforced Squire equation. The linear waves for the channel can be further

delineated into wall modes and center modes. The former have phase speeds of

roughly 0.3, and their most significant details are located near the walls.

The Orr-Sommerfeld wall modes are, of course, the familiar Tollmein-

Schlichting (TS) waves. Although the Squire wall modes (SW) are themselves



-25-

linearly stable, weakly nonlinear theories have indicated that they may

interact with TS waves, even some linearly stable ones, in such a way as to

trigger instability. The center modes, both the Orr-Sommerfeld ones (OSC) and

the Squires ones (SC), have phase speeds roughly 0.9, and their energy is

concentrated near the center of the channel.

Because of the avaiiability of experimental 6 and computational 7 results,

an obvious test case is Re = 5000. Table I summarizes the properties of

several linear modes. Columns 4 and 5 list the real and imaginary parts of

the temporal eigenvalues _, as determined by the numerical solution of the

linear elgenvalue problem. The last column in Table I lists the growth rates

estimated from numerical simulations using as initial conditions just the mean

flow plus a linear mode at 0.001% amplitude, where the elgenfunctions are

normalized so that they have a maximum streamwlse velocity component of I.

The calculated growth rates were obtained from a least squares fit to the

perturbation kinetic energy over the time interval [0,50]. These particular

calculations used Ny = 48 and the AB3 scheme with At = 0.I00. This seems to

be adequate evidence for the consistency of the present semi-implicit,

unsplit, collocation, staggered grid spectral algorithm.

The time history of the kinetic energy in selected harmonics is displayed

in Figure 3 for a more interesting calculation. This Re = 5000 run on a

16 x 32 × 16 grid began with the two-dimensional TS wave of Table I at 5%

amplitude and the usual Benney-Lin combination of two oblique TS waves at a

combined amplitude of 0.1%. The lowest harmonics retained in the calculations

were 1.12 in x and 2.00 in z. The time step was At = 0.05. The individual

harmonics are labeled by integers which denote the wavenumbers relative to

those of the three-dimensional TS waves. The modal energies are measured
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relative to the energy in the mean flow and include contributions from

symmetrical components; e.g., the (i,-i), (-1,1), and (-I,-1) components are

included in the harmonic labelled (i,i). Nonlinear effects produce the

familiar secondary instability which is indicated by the growth of the (1,1)

mode.

Heated, Parallel Boundary Layer

The controlled, incompressible boundary layer has not yet been explored

by three-dimensional numerical simulation. The principal LFC techniques can

be incorporated into the parallel boundary layer approximation as described in

the second section. We report here some of the tests of the present algorithm

which were performed with the low resolution Cyber 175 code with temporally

frozen temperature.

The case Re = 8950 has been singled out in the past for investigations

based on linear theory. II The strongest instability occurs for _ = 0.158266,

= 0 and has a complex frequency m = 0.036797 + i 0.003550. Each of the

principal LFC techniques can completely stabilize flow at this Reynolds

number, at least linearly. Table II lists the amount of control required to

reduce the growth rate of the strongest instability to roughly 0.0001. This

table includes the wavenumbers and frequencies of the least stable (two-

dimensional) waves, as well as the frequency of the three-dimensional wave

with _ = _. The last column is indicative of the accuracy of the numerical

simulations. It lists the growth rates estimated by a least squares fit to

*Bushnell, D. M., M. Y. Hussaini, and T. A. Zang, "Sensitivity of LFC
Techniques in the Nonlinear Regime," to appear.
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the perturbation kinetic energy for a calculation starting with an initial TS

wave of 0.01% amplitude and lasting until t = 500. The time-step was At = i

and the vertical resolution was Nz = 40. The integration time covers well

over two periods of each wave. The discrepancy between the growth rates

estimated from the simulation and those predicted by linear theory is of the

same order as the accuracy of the latter.

Figure 4 demonstrates that the heated boundary layer is susceptible to

the secondary instability. This calculation was performed on a 16 × 32 × 8

grid with a time step At = 0.5. The usual initial three-dimensional Benney-

Lin mode had an amplitude of 0.01% and the two-dimensional TS wave started at

the 5% level. The time histories of the harmonic components are very similar

to those for the secondary instability of the channel wall modes.

Numerous other examples for both the channel and the boundary layer may

be found in reference 24.

CONCLUDINGREMARKS

This paper has been devotedto a detaileddescriptionof a fully spectral

algorithm that we are presently employing to investigate stability and

transition in controlled, parallel boundary layers. This method is

particularlywell-sultedto accountingfor the subtle, time-dependenteffects

of heating and of temperature fluctuations upon the viscosity and

conductivity.

This algorithmmay be extended to other applicationsas well. It can,

for example, be used for large-eddysimulationsor for other simulationsof

turbulence which employ a spatially and temporally varying eddy viscosity.

Moreover, it may also be appliedto compressibleflow problems.
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Table I. Some Channel Modes for Re = 5000

Mode a 8
r _i _ilcalc

TS 2-D 1.12 0.00 0.315563 -0.002783 -0.002783

TS 3-D 1.12 2.00 0.364473 -0.076227 -0.076234

SW 3-D 0.56 2.00 0.125129 -0.069908 -0.069889

OSC 2-D 1.12 0.00 1.067058 -0.052467 -0.052466

OSC 3-D 1.12 2.00 1.066915 -0.051005 -0.050997

Table II. Some Controlled Boundary-Layer Modes for Re = 8950

Control Mode e 8 _ m.
r i mi[calc

8 = 0.55 TS 2-D 0.167675 0.00 0.037384 0.000095 0.000096
P

TS 3-D 0.167675 0.167675 0.040948 -0.001012 -0.001028

Fw = 0.895 TS 2-D 0.162057 0.00 0.036207 0.000093 0.000093

TS 3-D 0.162057 0.162057 0.039742 -0.000968 -0.000993

T = i.i0 TS 2-D 0.149937 0.00 0.029337 0.000093 0.000097

TS 3-D 0.149937 0.149937 0.032106 -0.000798 -0.000793



-33-

6 I I ul I

k=l b=O k=30 b=o

u= N=16 -N=16

2 -
>.. o
cI:
:7 o
,'-, 0
cI: o

-2- _ _ o _

a b
-6 I I n l I

G I I I I

k=30 b=O k=30 b=O

u, _ N=32 - N=64 -

o
o

2 - - _
>.. o

oz
_ 0

5- o
_ o

o
o

c d
-6 I I I I

6 I I I I

k=l b=l k--30 b=l

4 N--16 - - N=64 -

n.."

-=o _oo
T5--

e f
-6 I I I I

0 2 _ 2 4 6
REQL REQL

Figure I. Eigenvalue_ of H] I L for the model problem. Here k denotes the
value of k and k = 0.

x z



-34-

3 I I I I

k=l b=O k=30 b=O o

2-N=16 - - N=16 -

o

>.. o
n'_ o
(I o

_ o

_ o

o

_2 ....

O

-3 I I I I

:3 I I I I

k=30 b=O k=30 b=l

2- N=32 - -N=16 -
o
o °°
0

! - 0 - -- --

o
¢Y o

z 0 I

_ o oN o
-1_ O - - -

o oO
o

-3 I I I I
0 1 2 3 0 1 2 3

REAL REAL

Figure 2. Eigenvalues^ of H_I- L for channel flow. Here k denotes the
values of k and k .

X g



0 I I I I

--2 --
(i,0)

_1_ --

(2,0) _ .....

l.U

-8 _- =_Z_-l_--_---_ (2,i) _-J_- --

IS - (o,i) __-____-/
c_-10r- _--___ - '

/ /
-12 -- ..../ -

_iu___---- (2,2)

-le I I I I
0 I0 20 30 u_O SO

TIME

Figure 3. Harmonic history for a Re = 5000 channel flow simulation starting with a
5% two-dimensional TS wave and a 0.1% combination of 2 three-dimensional

TS waves. The harmonics are labelled by their respective streamwise and

spanwise wavenumbers relative to those of the three-dimensional TS wave
with _ = 1.12 and B = 2.00.



0 I I I I

-16 I I I
0 50 l O0 150 200 250

TIME

Figure 4. Harmonic history for a Re = 8950 heated boundary layer simulation

starting with a 5% two-dimensional TS wave and a 0.01% combination of 2

three-dimensional TS waves. The harmonics are labelled by their

respective streamwise and spanwise wavenumbers relative to those of the
three-dimensional TS wave with e = 0.150 and B = 0.150.









I. Re;xxt No. NASA CR-172561 2 Government Aac_,on No. 3. R_,p,ent's_lo_ No.

ICASE Report No. 85-19

4 Titleand Subtltle 5 Report Data

A THREE-DIMENSIONAL SPECTRAL ALGORITHM March 1985

FOR SIMULATIONS OF TRANSITION AND TURBULENCE 6.Pe_ormingOr_n;zationCo_

7. Author(s) 8. Performi_Or_n[zation Report No.

Thomas A. Zang and M. Yousuff Hussaini 85-19
10. W_k Unit No.

9. Perf_mlngOrganizationNameand Addre_

Institute for Computer Applications in Science 11. _ntract or Grant No.
and Engineering

Mail Stop 132C, NASA Langley Research Center NASI-17070

Hampton, VA 23665 13. Ty_ o| Re_ and P_i_Cz)ver_

12. S_nsorlng A_ncy Name and Addr_s
Contractor Renort

National Aeronautics and Space Administration 14. S_nsnringA_ncyCode

Washington, D.C. 20546 505-31-83-01

15. _pplementary Notes

Langley Technical Monitor: J. C. South, Jr.

Final Report
Presented at the AIAA 23rd Aerospace Sciences Meeting, January 14-17, 1985, Reno, NV

16. Abstract

k spectral algorithm for simulating three-dimensional, incompressible, parallel

shear flows is described. It applies to the channel, to the parallel boundary

layer, and to other shear flows with one wall-bounded and two periodic directions.

Representative applications to the channel and to the heated boundary layer are

presented.

17. Key Words (Suggested by Author(s)) 18. D;stribut;on Statement

spectral methods 34 - Fluid Mechanics & Heat Transfer
transition
laminar flow control Unclassified - Unlimited

19. S_urity _a_if.(ofthlsre_rt) 20. SecurityClassif.(ofthis _) 21. No. of Pa_s 22. _ice
Unclassified Unclassified 40 A03

For sale by the NationalTechnical InformationService,Springfield. V,p..inia 22161 NASA-Langley,1985






