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I.

Since 1979 there has been a number of papers on evaluation of energy

release rate for thermoelasticity and corresponding J-integral. Two main

approaches are developed to treat energy release rate in elasticity. The

first is based on direct calculation of potential energy rate with respect to

clack length (1). The second makes use of Lagrangian formalise (Mother's

theorem) (2). The direct method was extended to the problems of

themoelasticity by Wilson and Yu (3), K. Kishimoto, S. Aoki, and M. Sakata

(41 and Gurtin (S). A useful discussion on the extension of the approach to 	
s^

thermoelasticity was presented by McCartney (6].

The second approach was elaborated by Atkinson and Smelser (7) and
	 :f

discussed in 181. In elasticity the energy release rate is expressed as a

path independent integral. The path invariancy of the similar integrals for

thermoelasticity is discussed in aforementioned papers.

In 13, 41 the J-integral consist of two parts: first is a common for

elastic problems integral along a path and the aecond includes a nonvanishing

integral over the volumr. ( area for two dimensional applications).

Path independent integral introduced in (5) has limitations in path

invariancy as was noticed in (7): the integration paths should start and end

at certain points. It is not discussed in (S) whether the integral represents

any energy release rate.



Another path independent integral expressed in terms of energy-momentum

tensor has been derived in (7). The derivation follows the Lagrangian

formalism of (2) and essentially depends on Lagrangian chosen. A comparison

of this integral and that obtained in present paper (see also (61) indicates

that an entropy term is omitted.

In this paper we consider translational and expansional energy release

rates employing the formalism of irreversible thermodynamics and Crack Layer

Approach. A damage zone usually precedes and surrounds a propagating crack.

A system of a crack and the associated damage is treated as a crack layer (CL)

(9). The damage parameter for simplicity is defined as an areu of

discontinuity surfaces per unit volume. A part of the CL within which the

rate of damage accumulation is positive, (p > o) is defined as an active

zone. The CL theory thus models fracture propagation as the active zone

movements: translation and rotation as a rigid, isotropic expansion and

distortion for a small active zone. There are potential energy release rates

corresponding to each of these elementary movements. Energy release rates

corresponding only to the active zone translation, the .) -integral, and

expansion, the N-integral are considered here. The rate of the damage density

resulting from these two movements of active zone is ;10,111.

	

P =-v,ap- ^ xK app	
(1)

where v  and a stands for the rates of translation in direction tangent to

the crack path and expansion, respectively, and Z is a position vector with

	

respect to the center of isotropic expansion. 	 ..

Potential energy release rate P associated with damage growth is

•	 anp =	 a	
(2)
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where V is a potential energy density and integral is taken over the active

zone. Upon substitution of (1) this relation takes the form

P = -,,, a^ a, v -	 Yk a dv	 (3)S P	 ^ ^
where k = 1,2

The first integral in the right -hand side of (3) is a translational energy

release rate (J-integral), the second one is an expansional energy release

rate W integral).

2. Translational Energy Release Rate in Thermoelasticity

The stress tensor jrand the absolute temperature T constitutes a

conventional set of parameters for a thermoelastic medium. This set, extended

by adding the damage parameter p is chosen as a system of thermodynamic

state parameters	 J

TA

The corresponding thermodynamic potential is a Gibbs' free energy density

which is usually designated in continuum mechanics as the potential energy

density

Then, the following constitutive equations for thermoelasticity are held:

ar = -s
(5)aT o'.aNsr

3
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I

where S is the entropy. and fX is the total strain tensor. According to Sq.

(3).
I

a^	
i

Jap	
(7)

V

Since (4)

â  aKp = aK^'- ^"' aK o'^^- a T &T 	 (8)
P	 aa^^	 a

Using local constitutive equations ( S) and (6) this expression can be

rewritten as

an aKp = akf -a;(0C ^ K^ s aKr << 	 (9)
^p

Hero, f is the strain energy density, or the specific Helmholtz free energy,

and u  the component of the displacement vector.

For d being a linear coefficient of thermal expansion the specific

entropy for theemoelasticity

8 ' CC Gkk
	

(10)

Substituting (9) and (10) into expression (7) for J 1 and using Gauss theorem

we finally arrive at the integral

^1
J1 -	 ( f nl - Ti j nj u i.1 )dl +^d Okk 0, 1 dv	 (11)

r	 V

eN



Here, n3 is J - th component of the unit normal to ar. integration path

I J 8 = T - To , where To is the absolute temperature for the initial

equilibrium state of the system when the strain is everywhere zero. The first

I^ term in (11), i.e., integral along the path r repeats that for elastic case

with the fields f, 9  and ?i corresponding to the thermoelastic equilibrium.

The second term, i.e., the area integral, cannot be in general converted into

a line integral. However, such a conversion can be easily done for linearly

varying temperature field.

3. Expansional Energy Release Rate

Expression for the K-integral follows from the second part of the

right-hand side of (3):

M '=
ap

r1 Xk ^Kp JV
V 

Using the same approach like in the previous section the expression for this

integral is obtained in the following form.

M = ^ XK ^'I K f ^; 40 Xk	 P-1 (:(	 9 + X O( elm) Q V	 (13)

V

where i, J, k and J = 1,2.

The position vector Xk is taken with respect to the center of isotropic

expansion.

The K -integral consists of two parts similarly to the J-integral (11): one

is a line integral and another is an area integral.

(12)

J

4. Disctasion

Since p is not zero within the active zone V
A
 only the following integral

over an arbitrary area V Vg is reduced to

i
t

S

}



a P
JV	

aP
JV

V 3A 
P	

A

It leads to the following relations

^^ O, d v =	 a v^^ ^^	 (15)
a P	 app

V 'q	 VA

and

at xKaK dv = i xka^ dv	 (16)ap	 ^	 ap	 p
V A	 VA

These imply the invariancy of J- and H-integral with respect to the domain

of integration V VA' As it was shown above the area integral can be

decomposed into the linear and area integrals. The linear integral formally

coincides with that for the elastic case, however, for thermoelasticity it is

not path independent. Only the sum of the linear and area integrals in (11)

and (13) obeys the conservation law.

The expressions (11) and (13) agree with corresponding integrals of [12]

and differ from all the rest mentioned above expressions for Energy release

rate.

. a
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