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CHAPTER 1

INTRODUCTION

An 1important class of Shuttle deployed payloads consists of canti-
levered beam-like structures with massive tip bodies. This report pre-
sents analytical dynamics models for the planar motion of such Orbiter-
payload systems (Figure 1.1). The models are specifically intended for
use 1n stability studies of the Orbiter flight control system. Well
established engineering approximations are invoked in the interests of
simplicity and tractabilaity. The format 1s a stepwise progression of
mechanics problems each providing useful results and insight and forms a

basis from which to address more complicated situations.

The payload beam-like structures are taken throughout to be long
slender uniform beams capable of transverse bending only. A sequence of
classical beam vibration eigenvalue problems are examined, namely: a
cantilever with tip mass, a cantilever with tip body and an unconstrained
beam with rigid bodies at each end, In each case the frequency equa-
tions, eigenfunctions and orthogonality relations are derived. The anal-
ytical treatment permits the free vibration characterization in terms of
a minimum number of dimensionless parameters. As a precursor of the
ultimate problem, the forced vibration of a cantilevered beam with tip
body subject to base acceleration 1is studied. The exact solution to the
nonhomogeneous partial differential equation with time dependent boundary
conditions 1s presented. Natural "modal parameters" are defined and
important identities in terms of these quantities derived. An approxi-

mate solution using the assumed modes method proves revealing and serves
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Figure 1l.1. Representative cantilevered beam-like structures
with tip bodies.




to check the exact solution. Finally, the planar dynamics of an elastic
beam with rigad bodies affixed to the ends 1s addressed. This model of
the Orbiter-payload system 1s capable of arbitrary motion in the plane
accompanied by small elastic deformations. External forces and torgues
acting on the rigid bodies are accommodated. The vehicle motion equa-
tions are deraved for two disparate modal expansions of the beam deflec-
tions. The equations of motion are cast in a first order form suitable
for numerical integration. FORTRAN computer programs implementing the

motion equations are given.



CHAPTER 2

EIGENVALUE PROBLEMS

2.1 Natural Frequencies and Mode Shapes of a Cantilevered Beam with
Tip Mass

The partial differential equation governing the transverse vibra-

tion of a beam 1s given by

4 2
EI—a—-‘f+pa—121- = 0
9x ot

This equation assumes a uniform distribution of stiffness EI and mass per

unit length p. The beam is clamped at x = 0

u(0,t) = % (0,£) = 0 for all t >0

at the other end of the beam: x = &, there 1s a point mass m_ (Fig-

t
ure 2.1).

ulx,t)

7

Figure 2.1. Clampéd beam with tip mass.




B8 54 = 0
2
9x
and
3 2
EIa—g (2,t) = mta—; (2,t)
ax ot
1wt
Assume a solution of the form u = ¢(x)e . We then
boundary value problem for the mode shapes ¢
4
d
$ox =0 4O = o0 =
dx
2
(A = pw /EI) $''(2) = 0, ' (L) =

obtain the following

m
t
-3 Ad (L)

(2-1)

The orthogonality condition in this case can be arrived at by a consider-

ation of the kinetic energy expression for the system

1.1(x,t)2 dx + S

T = >

i
5 P

O S

Expanding u(x,t) 1n a series of modes

u = Zcbk(x)qk(t)

k

. 2
mtu(k,t)



the kinetic energy can be written as a quadratic form in {qk}

[~ =) 2

1 .« .
T = 3 z z p J ¢n(x)¢m(x) dx + mt¢n(2)¢m(2) 9.4,
n=1 m=1 0

We suspect that the natural modes will diagonalize this form, 1.e.

2
Oof ¢ (X0 (x) ax + mtcbn(l)dbm(z) = 0 (2-2)

where ¢n(x) and ¢m(x) are characteraistic functions corresponding to dis-
tinct characteristic numbers. Indeed this orthogonality condition can be
verified directly by appealing to the differential equation and boundary

conditions (2.1).

If we set A = a4 the general solution of the differential equation

ls

d(x) = ¢, sin ax + c2 cos ox + c3 sinh ax + c4 cosh ox

(A = 0 1s not an eigenvalue)

The boundary conditions at x 0 require

and

Applying the boundary conditions at x % we are lead to the frequency

equation

This alternate method of arrivang at the orthogonality condition was
first suggested by P.C. Hughes of UTIAS.




n m
t
cos al + cosh al + _p a({sinh a2 - sin af) sinh ol - sin af + —pt a(cosh al - cos ai)

sin af + sainh af cos al + cosh al

Expansion and simplification yields

m

5%~B(sin B cosh B - cos Bsinh B) = 1 + cos B cosh B (2-3)

where we have introduced the dimensionless parameter 8 = af. Note that
the roots of this equation only depend upon the ratio of the tip mass to

the mass of the beam.

The natural frequencies w, are given by

- [EI .2 -
w —J4Bk (2-4)

and the corresponding mode shapes ¢k(x) are

¢k(x) = Ak[}cos Bk + cosh Bk)(Sln Bk % - sinh Bk %)

- (sin Bk + sinh Bk)(cos Bk % - cosh Bk %)]

(2-5)

If we set m_ = 0, the orthogonality condition (2-2) and the frequency
equation, Eg. (2-3), reduce to those for an ordinary clamped-free beam.
In the limit as mt -+ « the boundary conditions at x = £ approach those of
a pinned connection: zero displacement and zero moment. And indeed the
frequency equation, Eg. (2-3), takes the form appropriate to a canti-

levered-pinned beam (tan 8 = tanh B).



2.2 Natural Frequencies and Mode Shapes of a Cantilevered Beam with
Tip Body

Figure 2.2 depicts the situation in the undeformed position. A
uniform beam of mass density p, bending stiffness EI, and length £ coin-
cides with the x axis. At the tip (P) a rigid body 1s attached of mass m
and inertia J (about P). The distance between P and the rigid body mass
center 1is c¢ and this directed line segment makes an angle y with the

positive X axis.

> <

ANNANN\N\R

Ny

Figure 2.2. Clamped beam with tip body - undeformed.

Figure 2.3 shows the system in a deformed position. Note that the
tip body is 'rigidly' attached at P. Denote the inertial velocity of P

by ;ﬁ and the angular velocity of a body frame (fixed in the tip body) by

w
p

P <

ANNNNANNNNNY

Figure 2.3. Clamped beam with tip body - deformed.




2
— . — — 3%y —
vp = u(f,t)7, mp = 3% 9t (2,t)k

where u(x,t) 1s the elastic deflection of the beam and I} 5) Xk are the
unit vectors along axes X, y, z. Denoting the velocity of the mass cen-
ter of the tip body by ;é and the vector from p to the mass center by c

we have

observing that c=c cos’ (y + 9p)1'+ ¢ sin (y + ep)?, where GP 1s the
angle between the positive x-axis and the beam tip tangent. Noting that

|6 ] << 1 so that sin 6_ = 6_, cos 8_ = 1 we arrive at
P p P p

2
— . a u —_
v@ = [u(l,t) + c 3% 3E (2,t) (cos v GP sin Y{]J
82
- L (2,t) (sxtn v + 8_ cos Y)1
€ 3x ot ! P
82u *
The nonlinear term Bp 5% 3t (2,t) = ePGP will be dropped
2
- au 3 u —
Vo = I:at (2,t) + c cos Y 5% 9L (2,t):|3
82u —
- ¢ sin Yy 3% 3t (L,t)1

(2-6)

The linear and angular accelerations of the tip body follow directly by
differentiation of the above expressions. It will be observed that in
general the mass center of the tip body will have a component of acceler-

ation along the x axis



33u

32 ax

-c sin Y (2,t)

This implies a force acting on the beam along the x direction.

A problem arises at this point 1f we wish to accommodate the af-
fect of axial loading on the transverse bending of the beam since non-
linear equations would result in the context of the present investiga-
tion. For simplicity we therefore assume that y = 0 throughout the re-
mainder of this section. The mass center offset of the tip body 1is
therefore restricted to be directed axially from p and thais results in no

axial force being applied to the beam.

- 32u 83 -
aQ = ——5—(£,t) + c ———ELE (2,t) 13
at 9x Jt

— 3
w_ = % (2, 0k
P 9x ot

(2-7)

ae 1s the acceleration of the mass center of the tip body and dp 1s the

angular acceleration of the tip body.

In order to write the boundary conditions for u(x,t) at the end-
point X = £ we consider a free body diagram of the tip body. As indi-
cated in Figure 2.4 the beam exerts a force S directed along the y axis
at p and a moment M directed along z. The equation of motion of the tip

body along the y axis is

10




"¢

Figure 2.4. Free body diagram of tip body.

3
The shearing force in the beam at x = £ 1s given by S = EI 3—% (£,t).
This gives one of the required boundary conditions 9x
3 2 3
3 3 3
EI —‘31 (2,£) = m =3 (&,8) + ¢ —5 (L,£)| = 0 (2-8)
ax at ax 9t

The second boundary condition 1is obtained by writing rotational motion
equations for the tip body. Let [I] denote the inertia matrix of the tip
body about 1ts mass center and h its angular momentum both referred to

body axes at the mass center.

ho= (Tl +w) x [Tley

&l

Dropping the nonlinear term in wp 1t follows that

where J 1s the moment of inertia of the tip body about an axis parallel

to z and passing through P.

From Figure 2.4, the net moment about the mass center is

M-¢cx§S



M can be calculated from beam theory i1n terms of stiffness and curvature.

Specifically

—_— 32 PN
M = -EI -——‘2“— (2,t) k
9x

From the work above we readily obtain

- = 82u
c X8 = cm ——3-(2,t) + c )
ot 9x dt

3 ~
U _ 4,0k

Taking the z component of the rotational motion equation

n|

d — —_— —

—_— = - X

at h M c
results in the 2nd boundary condition at x = %

52 52 S
EI ——; (2,£) + mc —‘23 (2,8) + J —uz
ox ot 3x 9t

(L,8) = 0 (2-9)

Since the beam 1s clamped at x = 0 we have the two geometric boundary

conditions

au

u(0,t) = 0 and %

(Olt) = 0 (2-10)

The partial differential equation for free vibration 1is of course

4
EI%+QB—— = 0 (2-11)

2
u
ox 3t2

12




We now proceed to solve the partial differential equation (2-11) subject
to the geometric boundary conditions (2-10) and the natural boundary

t
conditions (2-8) and (2-9). Seeking solutions of the form elw ¢ (x) we

are led to the eigenvalue problem

4
E—i - X¢ = 0 (2-12)

4

dx
privn) + m—g- [6(2) + co'(1)] = 0 (2-13)
41 (1) - % [mcé(2) + J6' ()] = 0 (2-14)
$(0) = ¢4'(0) = O (2-15)

Proceeding as in previous sections, the orthogonality condition can be

arrived at by considering the kinetic energy, T, of the system.

2 2 2
1 . 2 1 . 3 u
T = 3}{ u(x,t) p dx + E-m[u(l,t) + ¢ 5% 9E (2,t)]

2 2
1 2 3 u
+ > (J - mc )[3x 5t (,‘L,t)]

Expanding u(x,t) = Z¢k(x)qk(t) the orthogonality condition is
k
s
péf ¢ (0 ¢3 (x) ax + m¢_ (L) ¢j(2) + J¢i(2)¢5(2)
+ mc[¢l(2)¢3(2) + ¢i(2)¢3(2)] = 0

(2-16)

13



where ¢l(x), ¢J(x) are eigenfunctions corresponding to distinct eigen-

values.

Returning to the eigenvalue problem, 1t can be readily shown that

A = 0 1s not an eigenvalue. The general solution of (2-12) can be writ-

ten as
d(x) = cl sin ax + <, cos ox + c3 sinh ax + Cy cosh ax
(A = a4 # 0)
The boundary conditions (2-15) require c, = 7C, and Cy = =Cy- Applying
the boundary conditions (2-13), (2-14) and eliminating cq and c, We ar-
rive at the following simultaneous equations in ¢y and ¢,
m m 2
— (sin B - sinh B) + — cB(cos B - cosh B) - = (cos B + cosh B)|c
o pL B 1
m m . L
+ ° (cos B - cosh B) - "y cB(sin B + sinh B) + g (sin B - sinh B) c, =
(2-17)
[ mc J 22 ]
- — (sin B - sinh 8) - — B(cos B - cosh B) - — (sin B + sanh B)|c
p pL 32 1
me J 22 ]
- — (cos B - cosh B) + — B(sin B + sinh B) - — (cos B + cosh B)|c., =
p pl B2 2
(2-18)

where we have introduced the symbol B = alf. Setting the determinant of
the system (2-17), (2-18) to zero gives the transcendental frequency

equation

14




m* (J* - m*c*2)84(1 - cos B cosh B) + m*B(cos B sinh B - sin B cosh R)

- 2m*c*B2 sin 8 sinh B - J*B3(51n B cosh B + sinh B cos B)

+ 1+ cosBcosh B8 = 0
(2-19)

where the dimensionless tip body parameters are defined by

m o] J
m* = — ; c* = - ; J* = =
pL 2 923
The natural frequencies are given by
EI 2
mk = 2 Bk (2-20)
pL
and the corresponding eigenfunctions by
2
= * - - * ek
¢k(x) [m B, (cos B, - cosh B, ) - m*c*, (sin B, + sinh B,)

X X
+ sin Bk - sinh Bk] (51n Bk 7" sinh Bk-z)

+ [m*Bk(51nh Bk - s1n Bk) + m*c*Bi(cosh Bk - cos Bk)

X X
+ cos Bk + cosh Bk] (cos Bk 2" cosh Bk E)

(2-21)

Note: the eigenfunctions given in (2-21) are not normalized.

2.3. Natural Frequencies and Mode Shapes of an Unconstrained Beam with
Two Tip Bodies

Figure 2.5 depicts the situation in the undeformed state. A uni-

form beam of mass per unit length p, bending stiffness EI, and length 2

15
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Figure 2.5, Unconstrained beam with rigid bodies
attached to each end - undeformed.

lies on the x axis (0 < x < £). A rigid body of mass m, and 1inertia Jl
about its mass center, 1s attached at x = 0. The mass center offset is
<y directed axially. A second rigid body 1s attached at x = £ with asso-
ciated parameters m,, J2 and c, defined similarly. The motion 1is planar

and the beam 1s capable of bending only.

The partial differential equation for free vibration is

4
3
EI?—Z+p—— = 0

2
u
ax 3t2

where u(x,t) 1is the transverse displacement of the beam from the neutral
axis. The boundary conditions at x = § can be obtained directly from the
analysis in section 2.2. Due to subtle sign changes the kinematics of
body 1 will be derived here so as to obtain the correct boundary condi-
tions at x = 0. Denote the inertial velocity of the attachment point at

x = 0 by ;i and the angular velocity of a body frame fixed in body 1 by B&

vl = u(0,t)3
2
—_ a u A
% dx ot 0,80k

le




Referring to Figure 2.6, the angle of inclination of the beam with re-
spect to the x axis 1s Sl(t) and the vector from the attachment point to
the mass center of body 1 1is E&. If ;é 1s the velocity of the mass cen-

ter of body 1 we can write

V; = ;1 + El x El
where
Ei = —cl(cos 61: + sin ei})
for
]ell << 1; Ei = —cl(i + 613)
Hence
;; = [g—‘; (0,t) - ) aiz‘.;t (o,t)]ﬁ

where we have dropped the nonlinear term 6 By straightforward dif-

6, .
171 -1
ferentiation the acceleration of the mass center of body 1 (a@) and the

angular acceleration of body 1 (Gi) are given by

Zé = 3__123 (0,8) - ¢, —a—uz 0,t) |3 (2-22)
ot 9x ot
' 33u -
w, = —5 (O,0)k (2-23)
9x dt

17



Figure 2.6. Beam and tip body 1 - deformed.

We now proceed to write dynamic equilibrium equations for body 1. For
this purpose let S be the force exerted by the beam on the tip body and M
the moment exerted by the beam on the tip body.

32u 33u
s = ml— (0,t) - ¢y > (0,t) (2~-24)
ot 9x at
3
3 u
By the sign conventions of shearing forces in beams S = -EI —3 so we
9x

obtain the following boundary condition at x = 0

83u 82u 83u
EI —3 (0,t) + m1 ) (o,t) - cl — (0,t) = 0 (2-25)
X ot ax ot

The z component of the time rate of change of the angular momentum of

body 1 about i1ts mass center 1s

33u
J1 —5 (0,t)
9x ot
Net moment about mass center = M - ¢. X S

18




Bzu

From beam theory M = EI — (O,t)ﬁ and from (2-24)
9x
2 3
-, x5 = mec, 3—% (0,8) - ¢, 8‘12 (0,t) |k
t 9x at

Equating the time rate of change of the angular momentum to the net mo-

ment we arraive at the second boundary condition at x = 0O

2 2 3

3 u 3" u 2 " u
EI ;;5 (0,t) + m,Cq ;;5 (0,t) - (mlc1 + Jl) ) (0,t) = 0O

9x 3t
(2-26)

The boundary conditions at x = £ can be obtained from Egs. (2-8) and
(2-9) (recall that in these equations J was the moment of inertia of the

tip body about the attachment point)

33u 32u 83u
EI == (2,t) - m|== (2,t) + ¢, — ()| = 0 (2-27)
o9x ot 9x o9t
2 2 3
EI 3—% (£,£) + myc, E—% (2,t) + (J2 + mzc§> -Jiiii-(z,t) = 0
ax 3t Ix ot

(2-28)

We now proceed to the eigenvalue problem associated with the beam bending

equation and boundary conditions (2-25) - (2-28). Assuming a solution
u(x,t) = elwt¢(x) we arrave at the eigenvalue problem
4
- 2
49 _ a4¢ = 0 (a4 = pw /EI)
4
dx

19



Boundary conditions at x = 0

mla4
¢ (0) + 5 [-¢(0) + cj0'(0)] = © (2-29)
m c 4
[ ] - 1 1 4 a_.. 2 1 - -
$''(0) o ¢ (0) + 5 (mlcl + Jl)¢ (0) = 0 (2-30)
Boundary conditions at x =
a4
$1UN) 4 my = [9(0) + cpdt (W] = 0 (2-31)
m,c 4
- _ 272 4 _ o 2\ ., _ _
o' " (2) > o ¢(L) 5 (J2 + m2c2)¢ (2) = 0 (2-32)

Orthogonality Relation

The kinetic energy, T, of the system 1is given by

1 ., 1 . 32u 2
T = Eof u (x,t)p dx + -2-m1 u(o,t) - cl m— (0,t)

1 32u ]2 1 82u ]2
* 2 TilEcee (O8] F 3 MR * e gy (Be)
2 2
1 d7u
32 JZ[BX It (l't)]

Expanding u(x,t) 1n a series of eigenfunctions and assuming the quadratic

form in él(t)éj(t) 1s diagonal we arrive at

20




L
o £ 0,006 ax + my (8, (0) - O118,(0) - y¢3(0)]

+ J1¢i(0)¢5(0) + myld (2) + C2¢i(2)][¢3(2) + 02¢5(2)]

+ 3,01 ()61 (R) 0

(2-33)

where ¢l(x) and ¢J(x) are eigenfunctions corresponding to distinct eigen-

values.

It can be readily shown that w = 0 1s an eigenvalue of the problem
corresponding to two linearly independent eigenfunctions: rigid body

translation, and rigid body rotation.

Nonzero Bending Modes (a # 0)

The eigenfunction has the form

d(x) = Al sin ox + A2 cos ox + A3 sinh ax + A4 cosh ax (2-34)

Applying the boundary conditions at x = 0 (2-29), (2-30) yields

2 2
(mic{B - l)A1 - m’iBA2 + (1 + mic;B )A3 - mIBA4 = 0 (2-35)
2 3 2 2 3 2
* ~% * - * ~k * e~k * - mkeak =
(mlcl + Jl)B Al (1 + mlcls )A2 + (mlcl + Jl)B A3 + (1 mlclB )A4 0
(2-36)

where we have introduced the dimensionless tip body parameters

J
p 0%

al

21



Applying the boundary conditions at x = & (2-31), (2-32) yields

En;B sin B - (l - mEcEB ) cos B]A1 + [mEB cos B + (1 - m;czs ) sin B_A2
*
+ [mZB sinh B + (1 + mEcEB ) cosh B_A3
, -
* * ok =
+ [mZB cosh B + (1 + m2c28 ) sinh B-A4
(2-37)
- (1 + m*c*82> sin B + (J* + m*c*z)B3 cos BTA
272 2 272 J1
+ (J* + m*c*2)63 sin B - (1 + m*c*B2> cos B-A
2 272 272 12
+ [ 1 - m*c*Bz) sinh B8 - (J* + m3c32)83 cosh BTA3
+ [ 1 - m*c*Bz) cosh B -~ (J* + m*c*2)83 sinh B-A = 0
2 272 14
(2-38)

The dimensionless tip body parameters m%X, c*, J* are defined exactly as

2 2
those for body 1.

Equations (2-35) - (2-38) constitute a system of 4 homogeneous
linear equations in Al’ A2, A3 and A4. A nontraivial solution exists if

and only 1f the coefficient matrix is singular.

Writing the equations 1in matrix-vector form with

- T
A-—(Al A2 A3 A4)

ol

M]A =
Note that

= . m* * * * * *
M M(B; mll Cll Jll m2l Czl JZ)
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The permissible values of B are determined from det[M] = 0 and are func-
tions of only the six dimensionless tip body parameters even though there

are nine system parameters. The natural frequencies w, are obtained from

w = |f— 8 k =1, 2, ...)

(k)

Corresponding to Bk' there will be a vector A # a'whlch 1n conjunction

with Eq. (2-34) gaves the corresponding eigenfunction.
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CHAPTER 3

FORCED VIBRATION OF A CANTILEVERED BEAM WITH TIP BODY
SUBJECT TO BASE ACCELERATION

3.1 Exact Solution

In Section 2.2 the natural frequencies and mode shapes for a can-
tilevered beam with tip body were investigated. We now wish to examine
the more general situation in which the root of the beam (x = 0) 1s not
inertially fixed and external forces are present. As noted in Sec-
tion 2.2 we must be careful that no axial loads (impressed or inertial)
are acting on the beam 1f we want to use the simple bending theory.
Referring to Figure 3.1 let the x-y frame be a body fixed frame attached
to the left end of the beam (x = 0) and denote by u(x,t) the elastic
deflection of the beam along the y axis. The beam has a translational

acceleration ao(t) at x = 0 directed along the y axis and the body frame

%h)

&oh)\\)

Figure 3.1. Cantilevered beam with tip body subject to base acceleration
and external force and torque.
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has an 1inertial angular acceleration éo(t) perpendicular to the plane of
motion (along z axis). Let fp(t) denote the external force acting upon
the tip body through its center of mass directed along the y axis, and

gp(t) the external moment on the tip body directed along the z axis.

The partial differential equation for the elastic displacement

u(x,t), 1s essentially (2-11) modified by D'Alembert's principle.

34u ) .
EI 2 + p— = —pao(t) - pxmo(t) (3-1)

2
u
9x Btz

By definition of the body frame we have two geometric boundary conditions

at x =0

u(0,t) = -g% (0,t) = 0 for all t >0 (3-2)

The natural boundary conditions at x = £ are cbtained exactly as

in Section 2.2 taking into account the effects of ao(t) and éo(t)

52 52
EI -——; (2,t) + mc —121 (2,t)
9x ot
33u
+ 3 —=2_ (2,t) = g (t) + cf_(t) - mca.(t)
3x 9t> P p 0
- (mcl + J)«Lo(t)
(3-3)
3 2
EI —a—‘; (L,£8) - m —")——g (%,t)
9x ot
53 .
- mc —uz- (L,8) = =£ (t) + ma (t) + m(& + chu, ()
9x ot P
(3-4)
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The boundary value problem (3-1) - (3-4) consists of a nonhomo-
geneous partial differential equation and time dependent boundary condi-
tions. A key in solving this problem consists of finding solutions of
the associated homogeneous problem for which the base acceleration and
external excitation i1s zero, 1i.e., ao(t) = éo(t) = gp(t) = fp(t) = 0.
This problem has been solved in Section 2.2 where the eigenfunctions
¢k(x) and eaigenvalues Bk were deraived (see Egs. (2-21) and (2-19)). It
w1ll prove more convenient to work with the dimensionless eigenfunctions
Sk(n) where n = x/2. These are essentially given by (2-21) with the
replacement RN n. The eigenvalue problem for Sk(n) can be obtained from

L
(2-12) - (2-15)

4

d Sk(n)
A& = o
dn
a
5,0 = 0 250 0
3
a a
S = m s (1) + er S s ()
3
o kM x| °k an %M
2
d—2 s. (n) = A m*ers (1) + 3% S 5 (n)
a? kM X X an S|

(3-5)

The eigenvalue problem for Sk(n) 1s 1n terms of the dimensionless tip
body parameters m*, J* and c*. The natural frequency of vibration Qk 1s

related to the eigenvalue Xk by
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The orthogonality condition (2-16) gives the natural inner product for
the eigenfunctions Sl(n). We assume henceforth that the eigenfunctions

are orthonormal with respect to this inner product.¥*

1
*
Of Sl(n)sj(n) dn + m Sl(l)sJ (1)
*ol 1 * * L L} -
+ J sl(l)sj(l) + m*c [sl(l)s](l) + Sl(l)s](l)] 613
(3~-6)
The boundary value problem (3-1) - (3-4) can be written in opera-
tor notataion as
Dlu(x,t)] = —oao(t) - pxwo(t)
D,lulx,®)) o = 0; Dlux,t)] o = O
Dofulx,t)] o = £5(t); Dylutx,dl 0 = £,(8)
where the partial differential operators D, Dl' D2, D3, D4 are
4 2
9 ] ]
D = EI —+ p —; D = 1; D =
2 3
3x4 3t2 1 b4
2 2 3 3 2 3
= EI 2 + mc 2 + J 3 5 i D4 = EI ng -m jLE - mc >
3x at 9x 9ot 9x ot 3x 3t

and

The details of this normalization are given in Appendix A.
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fl(t) = gp(t) + cfp(t) - mcao(t) - (mc? + J)wo(t)

f2(t) —fp(t) + mao(t) + m(% + c)wo(t)

We write u(x,t) as the sum

u{x,t) = wv(x,t) + hl(x)fl(t) + h2(x)f2(t)

The approach is to choose the functions hl’ h, such that the boundary

2
conditions on v(x,t) are rendered homogeneous. In order that

Dl[V(x’t)]x=O = 0 we must have hl(O)fl(t) + h2(0)f2(t) =0 for all t > 0.
Thais will be satisfied i1f hl(O) = 0 and h2(0) = 0. Similarly

Dz[v(x,t)]x=0 = Q0 1f hi(o) = 0 and hé(O) = 0
D3[v(x,t)]x=2 = fl(t) - D3[h1(X)fl(t)]x=2 - D3[h2(x)f2(t)]x=2
D3[v(x,t)]x=2 will be zero if

[EThI* (2) - 11£ () + EThY' (0) £, (¢)
+ Imch (8) + Jhi(z)]El(t)

+ [mchy (2) + Jhé(z)]Ez(t) = 0 (for all t > 0)

The above condition will be satisfied 1f

EIhl ) -1 = 0; hé'(l) = 0;

mchl(l) + Jhi(l) = 0; mchz(l) + Jhé(l) = 0
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Similarly D4[V(x,t)]x 0 1f the following conditions are met

=1

hivt(z)

]
(@]

EIhé"(Q) -1 = 0;

hl(l) + chi(l) = 0; hz(l) + ché(l) = 0

In summary, we must find functions hl(x) and h2(x) whaich satisfy

the respective equations

hi"(l) = 0 h2(0) = 0
hl(O) = 0 hé(O) = 0
hi(O) = 0 hé'(l) = 0

EIhi'(l) = 1 h2(2) = 0
hl(l) = 0 EIhé"(l) = 1
hi(l) = 0 hé(l) = 0

Clearly, these conditions do not determine h1 and h2 uniquely. For con-
venience we use fifth degree polynomials. Applying the above conditions

to a general polynomial of fifth degree we obtain

1 3 .2 4 3 7 4 1 .5
h. (%) =—(—-x - =X 4+ — X - =X (3-7)
3
1 EI \ 2 2 222 2 )
1 L .2 1 .3 1 4 1 5
h2(x) = T (— G X + > T X+ . b d ) (3-8)
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We must still construct the function v(x,t) which in addition to
satisfying a particular differential equation (considered below) has to

satisfy the homogeneous boundary conditions

D,lvix,t)]__, = 0; Dylvix,®)l__, = 0;
Dylvi(x,0)]1__, = O; Dylvix,t)l _, = 0O
If we formally write
o
vix,t) = & I g, (t)s (n)
k=1 k k

the first two boundary conditions are satisfied for arbaitrary qk(t).
However, since the differential operators D3 and D4 contain time deriva-
tives as well as spatial derivatives the last two boundary conditions can
not be met for arbitrary 9 s indeed constraints amongst these coordinates
are obtained by demanding that these two boundary conditions are satis-
fied. Inserting this expansion for v(x,t) into the last two boundary
conditions (assuming term by term differentiation is valid) and using the

results (3-5) we obtain the following

= ) s} (1)
z [qk(t) + quk(t)] 5 = 0 (3-9)
k=1 k

@ 5 sp' ()

b) qk(t) + quk(t) —5— = 0 (3-10)
k=1 k

Recall that
vix,t) = u(x,t) - hl(x)fl(t) - h2(x)f2(t)
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and

D{u(x,t)] = —oao(t) - pxwo(t)

Hence the partial differential equation for v(x,t) 1is

v 52

EI 22+ o0 2Y = R(x,t) 0 <x<32 (3-11)
4 2
9x ot
where
. v iv
R(x,t) = —pao(t) - pxwo(t) - EIhl (x)fl(t) - EIh2 (x)fz(t)

- phl(x)fl(t) - ph2(x)f2(t) (3-12)

(The superscript "iv" 1indicates a fourth derivative with respect to the

argument of the function).

Inserting the series expansion for v(x,t}) and using the differen-

tial equation for the eigenfunction Sk(n); (3-11) becomes

.. 2
oli(qk + quk)sk(n) = R(x,t)

We observe that R(0,t) # 0 and é% R(0,t) # 0 1n general. Therefore the
above expansion for R(x,t) cannot hold pointwise on 0O <x < L. We will
interpret the above expansion in the sense of convergence in the mean.
This will suffice for our purposes since we will immedrately form an

integral of both sides with Sl(n).

© 1 1

2 _
o8 il(qk + quk)of s (ms, (M dan = Of R(x,£)S_(n) dn

(3-13)
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The orthogonality condition (3-6) can be rewritten with the aid of (3-5)

as

1 Si'(l) Si"(l)
Ss . (ms, (m) dn = § -8'(1) — + 8 (1) ———
0 1 k 1k 1 )\k 1 )\k

This result in conjunction with (3-13) and observance of the identities

(3-9), (3-10) uncouples the modal coordinate equations for v(x,t).

1

. 9
ol(ql + qul) = OfR(x,t)sl(n) dn (3-14)

This modal coordinate equation can be expanded as

. 2 . " B
g, +Qa = F(0) vt F(0)+r, 0 (1=1,2 ...

where

1 1
l L)
—Fl(t) = -9:0f s (n) dn - a,(t) +Of nS, (n) dn wq(t)
BT L .iv
+ B'zof hl (x) Sl(n) dn fl(t)
ETI 1 1v
+ -p_'Q’c.)r h2 (x)Sl(n) dn fz(t)
11
t, = - -Z—Of hl(x)Sl(n) dn
1
ty, =~ E({ h2(x)Sl(n) dan
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It 1s possible to make a transformation to a new set of coordinates pk(t)
such that the differential equations on pk(t) do not contain El(t) and
%z(t). Indeed 1f we set

ql(t) = pl(t) + tllfl(t) + t f2(t) (3-15)

21

The modal coordinate equation (3-14) transforms to

2 2
lQlfl(t) -t lQlfz(t) (3-16)

. 2
pl + lel = Fi(t) -t 5

1

In terms of the new modal coordinates pk(t) the expression for v(x,t) is

vix,t) = 2L pk(t)S (n) + 2zt .S (n)fl(t) + 2zt Sk(n)fz(t)

k=1 k k=1 1k k k=1 2k

The beam deflection u(x,t) assumes the form

ulx,t) = 2 I pk(t)sk(n) + hl(x) + LI tlksk(n) fl(t)
k=1 k=1
+ hz(x) + 2z tZkSk(n) fz(t)
k=1
with the substitution x = nf Egs. (3-7), (3-8) become
22 (3 2 3.7 4 5\ _
hi(x) = ={3n -4n” +5n” - = g,
(3-17)
23 1 2 1 3 1 4 1 5
h2(x) = BT (- L + S0 -3 tgn ) = g2(n)
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For future reference we also have the expressions

1
h;v(x) = — (84 - 120m)
EIL
(3-18)
iv 1
hyV(x) = gy (-12 + 20m)

Consider the expansion of hl(x)(gl(n)) in terms of the eigenfunctions

Sk(n)-

gl(n) = clsl(n) + c282(n) +

taking inner products with sk(n) vields

Q
I

1
(s (M, g (M) = ({ s, (Mg, (n) dn

since
gl(l) = gl(l) = 0

hence

o

- I 2,8 (n)

h, (x)
1 k=1 1k'k

Similarly 1t can be shown that

o

- I &t._.S (n)
=1 2k"k

h, (x)
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O\H

Hence the beam deflection 1s exXpressible as a series in the mode shapes

Sk(n)

«©

u(x,t) = & I p, (t)s, (n)
k=1 k k

Returning to the modal coordinate Eq. (3-16) we have

1 1
2 I . _ :
p. + lel = 1({ Sl(n) dn ao(t) of ns_(n) dn wy (t)
1 eI 2
- Iof [p (x) - thl(x)]sl(n) dn fl(t)

1
1 EI ,1v 2
- Eé’ [F h2 (x) - thz (x)]sl(n) dn fz(t)

Now

]

4 1
——/ (21 - 30n)s_(n) dn
2O 1

EI ,1v 2
[T h1 (x)} - thl(X)]Sl(n) dn "

pL
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(3-20)

hY 1
-—-—f(3 2—4n3+—n -ns)s (n) dn
20 1



and

1 1
EI . 1v 2 _ 1 _
S [?7 h2 (x) - thz(x)]sl(n) dn = Si'f (=12 + 20n)sl(n) dn
0 0
A1
1 1 2 1.3 1 4 1 5
- ol({ ( 3 n + >N -3n + g )Sl(“) dn

(3-22)

We must evaluate four weighted integrals of the eigenfunction. This can
be readily accomplished through integration by parts and use of the geo-

metric boundary conditions.

1

2 1 L ] _i 1t _E_ v
Jon sl(n) dn = = S:'(L) ST+ st
0 1 1 1
L 3 1
S n sl(n) dn = x [Si"(l) - 3Si'(l) + 6Si(l) - 651(1)]
0 1
(3-23)
1, 1 - 1
S s (n) dn = = |s!''@) - 4s)'(1) + 128! (1) - 24S.(1) + 24 S s (n) dan
0 1L 0
1 1 i 1
S n7s (m) dn = = |sS!'''(1) - 5S''(1) + 20S'(1) - 60S (1) + 120 / nS (n) dn
o 1 Al | 1 1 1 1 o 1

Using these results in (3-21) and (3-22) we obtain

1
BI L1v 2 I
S [?;'hl (x) - thl(x)]sl(n) dn = - 5 Sl(l)
0 oL
}[El—hl"m—n%()]sud = L s
o Lp 2 x LR i an = S,
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Inserting the expressions for fl(t) and f2(t) and using the above re-

sults, the Eq. (3-20) can be written in 1ts final form

a.(t) g _(t) £ ()
. 2 _ 0 . P P
p; +&p, = -uy g U U8+, Ty, T
pL pL
(3-24)
where the dimensionless modal parameters are defined by
= 1
Uy sk(l)
= *xat
Uy Sk(l) + C Sk(l)
(3-25)
1
= * k~kQ!?
Ugy g Sk(n) dn + m Sk(l) + m¥*c Sk(l)
1
= * * *ak *)gt
Uy g nSk(n) dn + m*(1 + ¢ )Sk(l) + (m*c* + J )Sk(l)

3.2

Modal Parameter Identities

The modal parameter identities derived in this section are ob-

tained by many formal operations and all series expansions are to be

interpreted in the sense of convergence in the mean. Expanding

1z clsl(n) + czsz(n) + ... and forming the 1inner product of both sides

with Sk(n) we find

1
= = * k~kC =
cp <Sk' l> S Sk(n) dn + m Sk(l) + m*c Sk(l) u

0 3k
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Hence

1 = Elu3ksk(n)

Proceeding in the same fashion we have

2]

Zu, s (n)
k=1 4k~ k

Keeping the orthogonality condition (3-6) in mind we can write

1
1 = Z Zu,u, S S (nMS_(n) dn
3173
1] ) 0 * ]
also
* = *
m Lz u31u33m Sl(l)SJ(l)
Differentiating the series expansion of 1: 0 = I u3ksi(l), SO
k
= kQt ]
0 LIz u3lu3JJ Sl(l)sj(l)

13

Multiplying the series expansion of 1 with the above for 0

. = '
1 0 Zz u3lu3JSl(l)SJ(1)

1)
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therefore

0 = I u, u m*c*(Sl(l)SS(l) + Si(l)SJ(l))

3
1:1lJ

Adding the above results we obtain

To get an identity on u4k we proceed as above. Firstly

2

n = L I u4lu4jsl(n)sj(n)
1]
therefore
1 1
3 = Iz u4lu4j(§ Sl(n)S](n) dn
also

* *
m ZZu, .u lm Sl(l)sj(l)

17 4374

Differentiating the expansion for n

L (1)

L= Iu,S

k=1
hence

xat [}
u4lu4jJ Si(l)sj(l)

o
&

]
™M
™
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We also have

1 = X u4ksk(1)

Multiplying by the expansion above

— ]
1 = i § u4iu4jsl(1)S](l)

Noting the symmetry of this expression in 1, J

m*c*(Sl(l)S:'l(l) + sj(l)s;(l))

4

2m*c* = I L u, u
1 4)
13

It follows by addition of the above results that
Zu = %-+ m* + J* 4+ 2m*c* (3-27)

We now proceed to get an identity on u *u

K ak” From the first expan-

sions

3174371

3
|
| o

Zu,u, S (ms_()
3 J

Integrating over (0,1)

1

L u3lu4jé' sl(n)SJ(n) dn

N
I
™

m* L Zu. u, m*s (1)s (1)
1 J

., 31 4]
13

e

0 = ? u3
i
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1 = I u4383(1)
Multiplying these series
0 = I I u3lu4jSi(l)sa(1)
173
1 = f b u3lu4jsl(1)55(1)
and
0 = LI u3lu4]Si(l)SJ(1)
1
Hence
mrc* = LI u3lu4jm*c*(sl(1>s5(1) ¥ Si(l)sg(l))

1]

Adding the above results we obtain

1
- = * koK -
z u3]u!] = 3 + m* + m*c (3-28)

We can obtain a simple i1dentity amongst the parameters {ulk} by consid-
ering the expansion of n2 over (0,1) in terms of the eigenfunctions,

writing

2
n = clsl(n) + czsz(”) + ...
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we have

¢ = <n2, sk(n)>

1
2
= * L Y=2} * ~Kk []
Sy of n sk(n) dn + m sk(l) + 27 sk(l) + m*c (sk(l) + 2sk(1))
Evaluating the integral by the first of relations (3-23) and using the

boundary conditions (3-5) we obtain

(=]

2
n = I — u,.S (m)
k=1 x KK

Differentiating this result and evaluating at n = 1 we obtain

1k
I X
k=1 "k

= 1 (3-29)
Now consider the expansion n3 = clsl(n) + czsz(n) + ...

1
cp = é n3sk(n) dn + m*Sk(l) + 3J*Si(l) + m*c*[Si(l) + 3sk(1)]

Evaluating the integral by the second relation in (3-23) and invoking

(3-5) we obtain

«©

6
n = I T— [s:(1) = s, (1)]s, (n)
k=1 Ak k k k
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or equivalently

0

= 6 21+ ehu

k=1 "k

Differentiating this result and evaluating at n = 1 we obtain

2

u u..u
1 _ o 1k o 2k 1k
> = (1+cHI L=

k "k k k

The first series 1s given by (3-29). Hence
u,,u
w1
k=1 k

5y 1x = Ukl Sk (M

(3-30)

Evaluating the expansion for n3 and its derivative at n=1 we can write

11 1 1
24 cr = L= (14 cHu,. S (1) + I —
5% 3 o A 1%k S
- X [u (s (1) + c*sr ()]

e 2k K

(c* + c*z)u S (1)

2
© u
A
k=1 k
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The model parameter i1dentities derived above will prove extremely useful

for numerical validation of digital simulations.

3.3 Approximate Solution

In the previous section the dynamics of the excited beam with tip
body was solved 1n an exact fashion. The partial differential equation
of motion was derived along with the time dependent boundary conditions.
A great deal of labor was expended 1in constructing a solution which sat-
i1sfied the governing equation and all boundary conditions. Indeed, 1t
will be recalled, that satisfaction of the two natural boundary condi-
tions at x = & proved most difficult. The end result, (3-19), was that
the structural deformation could be expressed as a series in the mode
shapes Sk(n) - mode shapes for a clamped beam with tip body. Although we
were able to solve the boundary value problem (3-5), (3-6) for Sk(n);
these functions depend upon the parameters m*, c* and J* in a complicated
fashion. The question arises whether we can expand the deformation in a
series of simpler functions. Specifically, the mode shapes for a clamped
beam without tip body suggest themselves, since they will serve the pur-
pose for all beams with any tip body. Since these later eigenfunctions
satisfy saimple homogeneous boundary conditions at x = £, the boundary
conditions (3-3), (3-4) will not be satisfied when the structural defor-
mation 1s expanded in terms of these modes. This will lead to poor con-
vergence of the series solution compared with the series solution based

upon the former eigenfunctions.

We use the symbol ()O to indicate a function or parameter based
upon the simple clamped-free eigenfunctions as opposed to the clamped-tip

body eigenfunctions. Hence

at
dn4 k k'k

0
S, (0)

1
w5
e
I
(@}
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a o &
2 'k

3 si = 0 atn=1 (3-32)
dn dn

o

These functions enjoy the simple orthonormality condition

0 0 -
Sl(n)SJ(n) dn = 613

(@]

Analogous to (3-25) we have the tip bodyless modal parameters

0 - 0,
Y1k S (1)
0 _ 0
Uk = S
1
0 _ 0
Uy = i) 5, (M) dn
0]
1
0 _ 0
Uy = 7 ns, (n) dn
0
(3-33)
Expanding the structural deformation in terms of these modes
u(x,t) = & I s (np,(t) (3-34)

k

It should be understood that this 1s only an approximation to
u{x,t) and that we sum over a finite number of terms. The generalized
coordinates pk(t) w1ll be determined via Lagrange's Equations for which
expressions are required for the kinetic and potential energies in terms

of the Py and ék'
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The potential energy in the beam 1is given by

B 7.2 \2
EIJ'(-——;) dx
0

<
1]
[P

9x

Using the expansion (3-34), integrating by parts, and invoking (3-32) we

arrive at

v (t) EL kopi(t) (3-35)

22 k k

If we neglect terms of the order structural deformation x angular rate

then the kinetic energy of the beam Tr can be written

+ 1:1(x,t)]2 dx

1 '3
Tr = -z-pc.)f [V0+xu)O

where Vo(t) 1s the inertial velocaity at x = 0, directed along the y-axis.

Inserting the expansion (3-34) we arrive at

3 *2 2 0 0,
pf i pk(t) + pl i (Vo(t)u3k + lwo(t)u4k)pk(t)

1 32
Tr(t) = 3 pL wo(t) +

N -

2
pl Vow

N

1 .2
— v
+ 5 eV, 4+ 0 (3-36)

Similarly the kinetic energy of the tip body, TP, can be expressed as

2 2
1 . 2 1 3 u
Tp = 3 m[VO + wol + u(l,t)] + 5 J[;o + TR (l,t)]

2
. 3 u
+ mc[Vo + woz + u(l,t)][wo + 3t 9% (l,til
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ox

1 2 1 2
T = 3 m(V0 + wol) + E-on + mcwo(V0 + mol)

0 L]
+ ILm(V0 + wol + cwo) z u2kpk(t) + [Jmo + mc(Vo + wol)] L u

k k

0 .
1Pk (8

0 o . L] 0 0 . .
+
lluljplpj mcl L Z u21uljplpj

1 2 0 0 0° 1
= = J LI
+ m¢ X Iu L pipj + > u -

2 13 217°2)

(3-37)

The last gquadratic form in (3-37) can be rewritten in symmetric form as

1 0 .0 0 .0 1
2 met f § 0y 8y + Uy vy, )P Py

Adding the expressions (3-36) and (3-37) we obtain the total kinetic

energy. The vairtual work 6w performed by fp and gp 1s given by
Sw = £ Su(f,t) + ( + cf )8(u (2,t))
p (2, gp P <
Using (3-34) we can wraite
dw = I PlcSpl
where
po= (ul +cul)f +ulg (3-38)
1 21 11" p 11°p

Lagranges equations are given by
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Inserting the appropriate expressions for T, V and P, we arrive at the

k
system of differential equations

g £ a
5oy BL B P )_ O _ v
[Mlp + 014 (Klp = ¥, (p£3>+ v, (p 2) v, ( 2 ) V4w

(3-39)

where the symmetric positive definite matrices [M] and [K] are given by

- %e.0 .0 .0 .0 sk (140 -0 0 ,.0
Mlj m u21u23 + J ullu1J + m*c (u21ulj + u2]u11) + Glj
(b, 3 =1, 2, ...)
[K] = dlag(x;, A;, xg, L)

and the column vectors 21, !2, 23 and X4 are defined as
_ 0
ik T Uik
= 0 * 0
Vox Uox T €745y
- 0 demkys 0 51,0
V3k u3k + m*c u1k +m u2k
v = vl + m* (1 + c*)u0 + (m*c* + J*)u0
4k 4k 2k 1k

Associated with the system (3-39) we have the eigenvalue problem

[Kle = ulMle
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(3-41)
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Here the eigenvalues ul, u2, ... are all positive. Denote by [E] the

1’ gz, ... and normalize the

T
eigenvectors according to [E ]1[M][E] = [I]. Hence

matrix whose columns are the eigenvectors e

T —
[E ][K] [E] = dlag(l-ll, u21

The equations (3-39) can now be uncoupled by applying the linear trans-

formation
p = I[Elg

g £

- EI _ T P + T ,_Pi_

g + —‘4 dlag(ull 1-12, -")g - (E ]y_l( 3) [E 122( 2)
0l pL pe

a
T, (o) _ Ty ot
- [E ]!3 (77) [E ]y4wo
(3-43)

In Section 3.1 we expanded the structural deformation in terms of the
eigenfunctions Sk(ﬂ) and arrived directly at the uncoupled system (3-24).
Here we have expanded the structural deformation in terms of the eigen-
functions Si(n) and, as would be expected, the modal coordinate equa-
tions (3-39) do not uncouple. A transformation was required to arrive at
the uncoupled set (3-43). It 1s reasonable to expect that as the number
of retained modes Si(n) 15 ancreased the finite system (3-43) should

approach the infinite system (3-24). More specifically

B f A
- T
u = [E1Y
. T
u, = [E1Y,
T
u, = (E7]V,
T
u, = [E 124
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CHAPTER 4

A MODEL OF THE SHUTTLE ORBITER WITH DEPLOYED PAYIOAD

4.1 Motion Equations in Terms of Clamped-Tip Body Eigenfunctions

In this section we derive equations of motion for the vehicle
presented in Figure 4.1. A large class of shuttle deployed payloads can
be approximated in this fashion, specifically, as long slender beams with
attached tip bodies. The orbiter and tip body are assumed rigid while
the beam 1s allowed to undergo small, elastic transverse bending. The
attachment point of the beam to the orbiter 1s located arbitrarily with
respect to the mass center of the orbiter, but in keeping with other
sections of this report, the mass center of the tip body 1is located along
the tip tangent of the beam. (It should be noted that the difficulty
discussed in Section 2.2 i1s still present due to axial loads exerted by
the orbiter on the beam. This complicating affect will be ignored in the
present analysis.) In order to fully understand the interaction between
the flight control system and the flexible body dynamics, all rigid body
motion and bending will be restricted to the orbiter pitch plane. Hence
there are essentially three rigid body degrees of freedom—two transla-
tional and one rotational, and an infinite number of elastic degrees of
freedom. Since the flight control system 1s primarily concerned with
orbiter attitude control we analytically eliminate the translational
coordinates so that the final set of differential equations of motion

only involve orbiter attitude and elastic degrees of freedom.

The attitude control system exerts a net force EO and moment go on
the orbiter. There 1s an external torque g@ acting on the tip body and
external force Ep applied at 1its mass center perpendicular to the neutral

axis of the beam.
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Y

=

57. INERTIAL FRAME

J, ORBITER BODY FRAME FIXED AT ORBITER MASS CENTER (@)

.9'{ BODY FRAME AT 0 CANTILEVERED AT BEAM TIP, PARALLEL TO &7,
[

Xq AXIS PASSES THROUGH TIP BODY MASS CENTER (@‘)

] PITCH ANGLE OF ORBITER MEASURED FROM X TO X3

Figure 4.1. Planar dynamics model of Shuttle Orbiter
with deployed payload.

Basic Mass and Geometric Parameters

m_ - orbiter mass
I_ - orbiter moment of inertia about 1ts mass center perpendicular to
plane of motion
a - vector from orbiter mass center to beam attachment point
p - mass per unit length of beam

2 - beam length
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¢ - tir body mass center offset
m_ - tip body mass

It - tip body moment of 1nertia about its mass center perpendicular to

plane of motion

It will prove convenient to define the following quantities.

m = pl +m mass of beam plus tip body

1 t
m = mO + ml total vehicle mass (4-1)
My = mo/m
dimensionless mass ratios
By = ml/m

p9,2/2 + mt(z + ¢)

b1 = - location of mass center of beam + tip body
1

relative to 0 under no deformation

(4-2)

Primordial Motion Equations

Figure 4.2 1s the free body diagram of two sub-bodies associated
with the vehicle being analyzed: the orbiter, and the composite body of
beam + tip body. F and G are respectively the interbody force and moment

exerted by the beam on the orbiter at the attachment point O.

We have the translational egquations

0

M2 = Lot E
(4-3)
1
m2y = - E

1
where 3; and E@ are the 1inertial accelerations of the orbiter mass center
and beam + tip body mass center respectively. The corresponding rota-

tional equations are
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Figure 4.2. Free body diagrams.

d ;o _ B
dc By = Sy+tGt+taxE (4-4)
Ll - G+g +bXF+ (L+c-b+8) xf
at 2o =T Hp T2 T2 —p

(4-5)
where gé, Eé are the angular momenta of the orbiter and beam + tip body
about their respective mass centers. The vector b locates the mass cen-
ter of the deformed beam + tip body relative to 0 and 1s 1llustrated

along wath £, gp and ¢ in Figure 4-3.

If a, denotes the 1inertial acceleration of the attachment point O,

then we have the simple conditions
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Figure 4-3. Deformed beam + tip body - vector geometry.

a, = al+ r a
=0 8 dt2-—
(4-6)

2

1 d
a = a +—=Db
2 =

-9 -0 at

Equation (4-5) can be rewritten in terms of 2; - tke angular momentum of
the beam + tip body about 0. Using the second of results (4-3) and (4-6)
and the translation theorem for angular momentum we arrive at the more
useful form

d .1

—_— % f -

thO - 1= 2O ) (4-7)
Ignoring completely the affect of axial acceleration on the beam +

tip body, the elastic deformation of the system in Figure 4.3 1s identi-

cal to the problem considered in Section 3.1. Indeed, 1f u(x,t) denotes
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the elastic deflection of the beam along the y axis ofegi the governing
partial differential equation 1s given by (3-1) where ao(t) 1s now the
component of 2, along the y, axis and éo(t) 1s the inertial angular accel-

eration of 9'1

body framegﬁi, the geometric boundary conditions (3-2) apply. The natu-
ral boundary conditions are given by (3-3) and (3-4) with the following

perpendicular to the plane of motion. By definition of the

replacements
-5
m m
J - I, + mtc
[ee)
It was shown that u(x,t) = £ % pk(t)sk(n) with the modal coordinate
k=1

equations given by (3-24).

Elimination of Interbody Force F from Rotational Equations

Adding the translational equations (4-3) and invoking (4-6) we can

show

i g2 42
20 T ¥ 227 W

-1
b+m (F, + £) (4-8)
at at? o P

Inserting this expression into the first of (4-3) we obtain

F = - - G DN (4-9)
= T MM NEE R HiZo T Hop

which expresses the interbody force in terms of kinematic quantities and

the external forces on the vehicle.
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The orbiter rotational motion equation (4-4) can now be written

42
wax — (a+ b -u

0
h = G.+ G - myu
—0 dt

d
g X F_ + x £
3 a u.a

0 1 —0

(4-10)

and the rotational motion equation (4-7) becomes

- - X
(Hga - wb) - b X F,+ =

(4-11)

Angular Momentum Calculations

Let 1, J, k be unit vectors along the x, y and z axes of gﬁ)(gﬂ)

and let the plane of motion be the xy plane. If 6 1s the orbiter paitch

rate then

0 - T - - -
g$ = Ioek + { )1+ ( )3 (4-12)

If u(x,t) 1s the elastic deflection of the beam and we neglect the term
fu then the angular momentum of the beam about 0 has a nonzero component

along z given by

2
S px 2u (x,t) dx + 1 p236
0 ot 3

The z component of the angular momentum of the tip body about 0 is

2
. 3°u a —
It[e + 3t 9% (Z,t)] + mt [(& + ép + c) % I (& + gp + g)] k
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We have

+c = (c+ L1+ [u(z,t) + c —2& (z,t)]H

From this point onward terms of the order structural deflection X angular
rate will be dropped as well as any deraivatives of such quantities. It
then can be shown that the z component of the angular momentum of the tip

body about 0 1s given by

2 2
. 3 u . Ju 3 u
It[e + 52—5;-(£,t)] + mt(c + Z)[(c + 2)6 + T (2,t) + ¢ 3t o (l,t)]
Adding these two contributions it follows that
L 2
1 ~ : Ju 9 u
EO k = JOS +({ CE v (x,t) dx + It 5t Bx (%,t)
2
9u 3 u
+ mt(c + L) [at (L,t) + ¢ 3T o (Q,t)]

(4-13)

where J0 1s the 1inertia of the beam + tip body about 0 in the undeformed

state

J, = 1-023 + I

2
0 3 + mt(c + 1) (4-14)

t

Differentiating (4-12), (4-13) 1t follows that

(— h°) ck = 1.8 (4-15)
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2 2 3
(é% Bé) ek = Joe + [ px 2—% (x,t) dx + It 9 u (2,t)
0 ot at” 3x
82 83u
+m (L + c) -—‘2‘ (L,£) + ¢ —=—=— (%,t)
ot at” 9x

(4-16)

Vector Geometry

The motion eguations (4-10), (4-11) call for various geometric
vectors and their time deravatives. Recall that b i1s the position vector

of the mass center of beam + tip body relative to 0.

2
b = b1 +~}— S u(x,t)p dx + m [u(l,t) + c du (L,£)113
= 1 m1 o t 9x

Using the series expansion for u(x,t) and definition (3-25) for the modal

parameter u,, we can show

b = bll + uc(t)j (4-17)

where uc(t), the shift in the mass center of the beam + tip body due to

elastic deformation, 1s given by

2 -3
pl
uf{t) = — L u p, (t) (4-18)
o] m1 k=1 3k Tk
It follows that
Ly 2w T+ (b6 + )T
dt = c 1 o] J

113

(ble + uc)j

(since u_ 1s of order structural deflection)
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4 by = b 8T+ (b8 +ud3T (4-19)
2 = 1 1 c
dt
8
- G (T -
a a, in JO(J]_) (4-20)
0
It follows that
d 4 . T
ac a = (—a26, ale, 0)
. 02
-a28 - ale
2
TS -2
Loa = | af-ap (4-21)
dt
0
2
Ex‘d—zi = (ai+a2)9—}z
dt
2
d .. . 02 ——
a X — b = (aluc + alble + a2b16 >k
dt
2
d . «2\—
bx—=a = (blale - bya,8 )k
dt
2
bxdp = (blii + bi'e')k
dt

(4-22)
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01 0
= = a (O
Writing E, Foo | ¢ Ep fp in F (&)
0 0
BXEy = (a)Fp(8) - ayF,, (B))k
ax f = af (tk
ax i 1p()
b x EO = (blFOZ(t) - uc(t)F01(t))k
§ - = - k
L +e+ 8 -wb x £ (4 + ¢ = wb)E (0K

(4-23)

Rotational Motion Equations - Expanded Form

Using the above results with (4-15) allows us to write (4-10) 1in

the form

2 2 .
[IO + muoul(al + a2 + albl)]e

.- _ N
+ my p.a.u Go(t) Gz(t)

01l1lc (t)

- H3F0,

+ u.a.F__(t) + 1

2
122F01 alfp(t) - mp u,a b o

0’1271
(4-24)

0

Here Go(t) 1s the component of perpendicular to the plane of motion

o
(only nonzero component by assumption) and Gz(t) 1s the corresponding

component of G.
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Similarly with the aid of (4-16) we can write (4-11) in the form

(J + my u.b.a, - muibi)e

0 o"1°1%1
% )2 23,
+ [ px —‘21 (x,£) & + I_ —>—— (2,t)
0 ot 9t~ ox
2 3
+m (2 + c) 3—;‘ (2,t) + ¢ ——37‘—’—— (%,t)
ot ot~ 9x
2 .
- mulbluc = —Gz(t) - “1b1F02(t) + Uluc(t)FOI(t)

+ gp(t) + (8 + ¢c - ulbl)fp(t)

2
+ muoulbla26

(4-25)

Using the series expansion for u(x,t) and definition (3-25) for the modal

parameter u,, we can show that

4x
) 32 43
[ px ——% (x,t) dx + I -——2—“—— (%,t)
0 ot ot 9x
2 3 w
+m (2 + ) -3—‘21 (2,8) + c —32“— el = p2’: u4k£>k(t)
ot ot~ 9x k=1

Introducing this result into (4-25) and adding with (4-24) eliminates the

interbody torque Gz(t)

61



[=

2 2 2. 2|
+ JO + muoul(al + a2 + 2a1b1) - mulbl]e

(=]

2
TeLT I (mpajug + fuy - wbiug e

G, (t) - u,(a, + b.)F__(%)
kel 0 1'%1 1702

k
+ Ul(a2 + uc(t))FOI(t) + gp(t)

+ (uoal + 2+ c - ulbl)fp(t)

(4-26)

As discussed above, the modal coordinates pk(t) are governed by

(3-24) wath éo(t) = 6 and ao(t) being the component of along the

2,
y1 axis. From (4-8) with (4-19) and (4-21)

(F_+ f) - pab
p

_ _ . _ _9_2’__ . l
ag(t) = (uga; = wb))8 = ==L uyp, + - (Fy, 0%2

° k

The modal coordinate differential equation assumes the form

( f.lu —uﬁu +u)é
Mo % Y3 T M1 Y T Ug,

it g (t) £ (t)

pL . P P
+ I (5 - ==u_,. u )p = u + u
k=1 ik m 3x 3k/k 11 p£3 21 p22
u a
31 2 22 2
Y) (FO2 + fp) + u31“0 2 o - lel(t)

(r=1, 2, 3, ...)
(4-27)

Note the coupling of the modal coordinate equation with all the elastac

coordinates as well as orbiter pitch. Introduce the following notation
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2 2

I +3J a a a b

0 0 1 2 1 1 22,2
359 = ——;;3—— + (m/ol)uoul (12 + ,2 + 2 7 )- (m/ol)ulbl/l

! >
3 T Ho g Uy Ty T Mg Yy =23 el
(4-28)
Equations (4-26), (4-27) can now be written
+ F
a_ 6 + aanké; = ——Go(t) - n (al bl) 02
00 -1 ikx' k pl3 1 2 912
. (a2 + uc) . F01(t) . gp(t)
1 2
022 023
( a, b ) £ (v)
—_— * —_—
+ uo 2 + 1+ cC ul 2 5
pL
(4-29)
@ g_(t) £ (t)
pL - p p
a, 6+ I (6 — u, u )p = u + u
11 -1 ik m 31 3k/°k 1i p23 21 p2,2
u
31
T (F02(t) + fp(t))
a
2 2
*ug g & - e ()
(=1, 2, 3, ...)
(4-30)

Equations (4-29) and (4-30) are the final set of differential equations
of motion involving orbiter pitch and elastic coordinates of the beam.
The coefficients of the accelerations are constant but (4-29) contains a
time dependent coefficient through the term Fol(t)uc(t) while (4-30) has

a nonlinear term in 6.
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Matrix-Vector

Form of Motion Equations

Define

F, (1)

I (t)
1

Gy (€) . (al + bl)Foz(t) . a_2 Foq(t) gp(t)
023 1 2 p£2 1 2 12 p23
a b £ (t)
1 1 P
* _— - —
+ (1 + c* + Yo 2 LN ) 5
pL
g (t) £ (t) u
p 31
u + u - — (F . (t) + £ (t))
11 023 21 22 ml 02 P
(r = lr 2, 3, .)

(4-31)

The generalized forces 3%(t) and gi(t) are functions only of the external

forces and moments acting upon the vehicle.

Let

— T = T
X (6, Plr PZI P3I S F (Jol Jll er J3r ae)
| T @ 0

2
1 2 0% “
31
0 a
- 2 °2
N = + uo ) u32 87 (t) (4-32)
0
0 Y3z
L : - b -
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We have the symmetric generalized mass matrix A

00 211 ) 813 e
_p4 2 ) _ 0L _ 02
411 (l Uap m 31%32 m S3i¥3y v
_ _ oL ( _pL 2 ) _ 0L
A 412 m 232Y31 L-m Ui m U32¥33 v
_ 0% _pL ( pL 2 )
213 m 33Y31 m U3z¥32  \! Ysz) o
T (4-33)
and stiffness matrix
2 2 2
[K] = dlag(o, Ql, Qz, 93, ...) (4-34)

In terms of the above notation Egs. (4-29), (4-30) are

2— —
[a] 9——%+ [Klx = F(t) + N(t; Xx,x)
dt
4.2 Motion Equations in Terms of Clamped-Free Eigenfunctions

We treat here the same vehicle as in Section 4.1; the only differ-
ence being the set of eigenfunctions used to expand the elastic displace-
ment 1n the beam. Here we use the tip-bodyless eigenfunctions Sﬁ(n)
described 1in Sectaion 3.3. For the same reasons as given there we expect
that, for the same degree of truncation, the results will be inferior to
those obtained by use of the motion equations of the previous section.
The results of the present section in conjunction with our previous anal-

ysls can serve as a basis for numeracal confirmation of this statement.
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Throughout this section 1t will be understood that the elastic

deflection 1n the beam 1s expanded 1in terms of the set {Sﬁ(n)}

- 0
u(x,t) = 2 i Sk(n)Pk(t)

No confusion should arise between the modal coordinates pk(t) and those
appearing in Section 4.1. Virtually all results previously obtained
remain intact except in those instances where explicit use was made of
the series expansion for u(x,t). We list sequentially those equations 1in
Section 4.1 which require modification due to a switch of the modal basis

0
from {Sk(n)} to {Sk(n)}.

(1) Equation (4-18) i1s replaced by
022
= B 73 . (3~
uc(t) - V3kpk(t) (V3k 1s given by Eg. (3-41))
1 k
(2) Equation (4-26) - second term on left hand side i1s replaced
by
a b
3 1 1 .
Pl f: (“o 2 Vak tVax T M1 V3k)pk(t)
(3) The modal coordinates are now governed by Eqg. (3-39) with
. pzz . 1 )
= - - — + - -
2o (®) (g3 = ¥P)8 = ivskpk m Foa * Ep) = W30
and éo = 8. Thus Equation (4-27) 1s replaced by
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a b
1 1
T Ve, TR V31)6
g £ \%
pL _ p p _ _31
+ I (Mlk m V31V3k)Pk Via T3 V9 77 T Fox T EY
k pL oL
a
2 22 EI 0
— 8" - ==
* V31.”0 2 4 1 1(t)
ol
where Mlk 1s given by Eq. (3-40).
(4) Equation (4-28) 1s replaced by
a = W il vV, +V - Ei v (k =1, 2, 3 )
1k - "oz sk T Vak T M1 T Vak TS S e
(5) Equation (4-30) i1s replaced by
. ol - gp fg V3l
T —_— = —_— -
6 + (Mlk m V31V3k)pk Vis T3t Vo T2 " e Foo t ED)
k pL 2
a
2 22 EI 0
< §% . ==
+ V31“0 2 4 1 1(t)
pL
(with a:Ll given by (4) above).
(6) The second definaition (4-31) 1s replaced by

(7)

gp £ V31
gg = Y ~a _pP - —
Jl(t) - Vll pSLB * V21 p52,2 mi (FOZ * fp)

In Eq. (4-32) use the expression for uc(t) given by (1)

above and replace second vector with

H (ty (0 v \4 \Y v ces)

%2 62 T
) 31 32 "33 34

0
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(8) Definition (4-33) 1is replaced with

1

00 %11 ) 213 o]

oL )
- BX L M - 2%
%1 (Mll m V31"31) (M12 m V31\’32) ( 13 " m V31Vss

(9) Definition (4-34) 1s replaced by

_ EI 0 0
[K] = — diag (0, Al, A

A%, L
I r
i 2" "3

Note: these are the squares of the natural fre-
quencies of a uniform clamped beam without
tip body.

4.3 Differential Equations of Motion - First Order Form

In the last two sections equations of motion were derived for the
vehicle depicted in Faigure 4.1. These equations were of the form of a
system of second order differential equations and are not directly suita-

2_

ble for digital implementation. Since these equations are linear in Q_%
dt
they can be transformed into an equivalent set of first order differen-

tial equations. In effecting this transformation the "system natural
frequencies" reveal themselves and the cption of further modal truncation
(beyond the truncation of elastic degrees of freedom in the beam) "can be

adopted.
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Our motion equations can be written

2
Al 2 x + EL m1x = o) + N(t; x, X) (4-35)
2 = 4 = = ===
dt oL
where
[B] = diag(o0, Al, AZ' A3, .es An)

If we follow the procedure in Section 4.1 the Xl are the eigenvalues of
the problem for a clamped beam with tip body (Equation 3-5) while 1f we
follow the procedure in Section 4.2 they are the eigenvalues appropriate

to a clamped beam without tip body (Equation 3-32).

The free vibration of the system associated with (4-35) leads to

the eigenvalue problem
(BIV = ulAlV (4-36)

and the "system natural frequencies" w® are given by

ws = (E_I4)1/2/ﬁ;
pl

[B] 1s symmetric, positive-semidefinite and [A] 1s symmetric, positive

definite. All eigenvalues are therefore nonnegative. Specifically py =20
1s a simple eigenvalue with eigenvector (1, 0, 0, ..., O)T corresponding
to rigid body rotation. This eigenvalue problem has a full set of line-

(1) , !(2) ) (n+1)

arly independent eigenvectors V < v and we can always

, arrange that they be orthonormal relative to [A], 1.e.

VI Ty

1)
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Define

(1) v(2) V(3) ) V(n+1)

] (4-37)

If we make the linear transformation x = [Z]g in (4-35) we arrive

at
d2 ET T .
—— q + == diag(M_ U, ... ¥__)g = [Z]1(Ft) + N(t; X, X))
2 = 4 12 nt+l < == a2
dt pl
(4-38)
Let
q(t)
yle) = f5--
g(t)
and label the eigenvalues so that ul = 0.
The system (4-38) can now be written as
yn+2
yn+3
yn+4
d .
dt l - : (4-39)
Yon+2
T ET T
G - =
(271 (% + N) 024 (0, UWo¥Y,r MaYar --y Mo ¥ne1)
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CHAPTER 5

FORTRAN PROGRAMS

Two separate FORTRAN computer programs have been created for the
purpose of numerically implementing the motion equations of Sections 4.1
and 4.3. Complete listings of these programs accompanied by annotated
sample input and output data are provided in Appendices B and C. Each is
extensively commented throughout and in most instances the FORTRAN vari-
able names are mnemonically similar to corresponding analytical quanti-
ties. Where relevant, reference 1s made to specific equations of the

report.

The program of Appendix B computes the eirgenvalues, modal param-
eters and modal parameter identities of a cantilevered beam with tap
body. Note that these computations are performed in (IBM) quadruple
precision due to the numerical sensitivity of the transcendental expres-
sions involved. The roots of the characteristic equation (Eg. 2-19) are
estimated by incrementing the parameter B and searching for sign changes
in the left-hand-side. Root estimates are then improved by Newton-
Raphson 1teration. The modal parameters of Eg. 3-25 are computed and
together with the roots of Eq. 2-19 (raised to the fourth power) written
to a disc data set to be used by the motion equation program (described
below). The partial sums and asymptotic values of the modal parameter
identities (Egs. 3-26 thru 3-31) are evaluated and output. This informa-
tion serxrves to check the calculations of the modal parameters and can
indicate "missed" roots of the characteristic equation by showing poor

convergence.
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The program of Appendix C numerically synthesizes and integrates
the motion equations for the planar dynamics of an elastic beam with
r1gid bodies at each end. The formulation implemented 1s that for which
the beam deflection 1s expanded as a series of eigenfunctions appropriate
to a clamped beam with tip body (as per Section 4.1). The eigenvalues
and modal parameters generated by the above program are read and checked
for consistency wath the NAMELIST input data. Note that the initial
conditions on the attitude angle and its rate may be specified arbitrar-
ily as input, while those of the modal coordinates and their time deriva-
tives are internally set to zero. The algebraic eigenvalue problem of
Eg. 4-36 1s solved via the double precision IMSL subroutine EIGZS. The
"system natural frequencies" are output and are helpful for selection of
an integration time step. External forces and torques on the "Orbiter"
and tip body are specified through subroutines ORBFOR and TPBFOR respec-
tively. The motion equations in first order form, Eg. 4-39 are inte-

grated using the Adams Method with third order differences.
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APPENDIX A

EIGENFUNCTION NORMALIZATION FOR CANTILEVERED BEAM WITH TIP BODY

In Section 3.1 extensive use was made of the eigenfunctions Sk(n)
defined by the boundary value problem (3-5). In this appendix we formu-
late a procedure to obtain these normalized eigenfunctions from a set of
non-normalized eigenfunctions. Certain definite integrals involvaing the

eirgenfunctions are evaluated to facilitate computation of the modal pa-

rameters given in Egs. (3-25).

Recall that for the case of a simple beam with no tip body the

normalized clamped-free eigenfunctions are given by

sin B, - sinh B

Yk(n) = cosh Bkn - cos Bkn + e Bk + cosh Bk (sinh Bkn - sin Bkn)

where Bk 1s a root of
cosh Bcos B+1 = 0
and the normalization condition is

T2
fYimy an = 1
J ¥x

To obtain a set of eigenfunctions for the case of a beam with tip

body we can, 1n the discussion preceding Egs. (2-17), (2-18), choose the
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constant ¢, = 1. (So c, = -1). Invoking the boundary condition (2-18)

4 2
the resulting unnormalized eigenfunction wk(n) 1s given by

wk(n) = cosh Bkn - cos Bkn + Yk(51nh Bkn - sin Bkn) (a.1)

where now Bk are the roots of Eg. (2-19) and the parameter Yk 1s given by

m*c*Bz(cosh B - cos B) + J*83(51n B + sinh B) - cos B

cosh B

m*c*Bz(s1n 8 - sainh B) + J*B3(cos B - cosh B) + sin B8 + sinh B

i
(<]

*

]
(@]

where subscript k is deleted for clarity. (Note that for m*

this eigenfunction i1s already normalized).

Usaing the eigenfunction (A.l) we readily evaluate the following

integrals
1 2 1
S y"(n)y dn = 1 + 28 (sinh B cosh B + sin B cos B)
0
- —é— (sinh B cos 8 + cosh B sin 8)
2
+ %E [sinh B cosh B - sin B cos B
-~ 2(sin B cosh B - cos B sinh R)]
+ %‘(Sln 8 = sinh 8)2
(A.2)
1 1
J Y(n) dn = 3 [sinh B - sin B + Y(cosh B + cos B - 2)] (a.3)
0
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1

S ) dn = %-[31nh B - sin B + y(cosh B + cos B)]
0
+ % [2 - cosh B - cos B - y(sin B + sinh B)]

B
(A.4)

We can now evaluate the sguare of the norm of the eigenfunction ka(n)

with respect to the inner product in (3-6)

1
: 2 2 . ,
P, = Of Wk(n) dn + m*\Pk(l) + J*[wk(l)] + 2m*C*1Pk(l)¢k(1)

(A.5)

The normalized ergenfunctions are given by

1
Sk(n) = —J:lbk(n)
Pk
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APPENDIX B

"EIGENVALUE"-MODAL PARAMETER
FORTRAN PROGRAM LISTING

FERRERE KRR AR AR RSk R AR R F bRk R bRk kbR r R TR R £ 20 x T4 5 R2500000100

*+ THIS PROGRAM COMPUTES THE EIGENVALUES, MODAL PARAMETERS AND *00000110
*  MODAL PARAMETER IDENTITIES OF A CLAMPED BEAM WITH TIP BODY *00000120
*  THE EIGENVALUES AND MODAL PARAMETERS WHICH ARE NECESSARY INPUT *00000130
* TO THE PLANAR DYNAMICS PROGRAM ARE WRITTEN TO A DISC FILE *00000 140
* ( WRITTEN BY JOEL STORCH & STEPHEN GATES C S D L  BASED UPON *00000200
* C S DL REPORT # R-1629 MAY 1983 ) *00000300
t*****ti*t*t*tttt#t**titttt*tttt**tt*****tt**v*tt*‘tttttvit*t#ttttt:ttooooo,;oo
0000500

NOTE ARRAYS DIMENSIONMED FOR A MAXIMUM OF 50 EIGENVALUES 00000510
00000520

IMPLICIT REAL*16(A-H,0-2) 00000600
REAL*16 LAM,MSTAR,JSTAR 00000700
DIMENSION LAM(50),U1(50),U2(50),U3(50),U4(50) 00000900
NAMELIST /INPUT/ MSTAR,JSTAR,CSTAR,NF 00000910
00000918

IR R RS R R AR RS E R RS INPUT - OUTPUT FILES tttk**tvtt:tttti*t*tt*xttooooogze
FILE #5 NAMELIST INPUT FILE 00000934
FILE #6 PRINTED OUTPUT FILE 00000942
FILE #8 DISC OUTPUT FILE FOR EIGENVALUES & MODAL PARAMETERS 00000950
00000958

Fersrxrxxdvickss DESCRIPTION OF /INPUT/ LIST ITEMS *#%xs#i1¥xtxx¥+3%3+00000966
00000374

"MSTAR" MASS RATIO (OF EQ 2-19) 00000982
"JSTAR" INERTIA RATIO (OF EQ 2-19) 00000983
"CSTAR" OFFSET RATIO (OF EQ 2-19) 00000984
“NF* NUMBER OF EIGENVALUES & MODAL PARAMETERS TO BE COMPUTED 00000985
tttttttt*ttt#tttittttt#tt#tx*tttt*ttt*ttitt**ttt*ttttttttttt*tttttttiooooogge
00000990

PROMPT FOR NAMELIST INPUT DATA 00000993
00000996

WRITE(5, 1) 00001000
FORMAT(1H ,5X,‘INPUT DATA’,/) 00001100
READ(S, INPUT) 00001200
IF(NF LE 50) GO TO 3 00001300
WRITE(6,2) NF 00001400
sTOP 00001500
FORMAT(1HO,5X,13,’ MODES REQUESTED MAXIMUM ALLOWABLE IS 50‘) 00001600
WRITE(6.6) 00001610
WRITE(6,4) MSTAR,JSTAR,CSTAR 00001700
FORMAT(1HO,5X, ‘MSTAR=',F8 4,4X, ‘JSTAR=',F8 4,4X,'CSTAR=',F8 4) 00001800
WRITE(6,5) NF 00001810
FORMAT(1H ,5X,’NF=’,13) 00001820
FORMAT(1H1, 15X, ‘DATA FROM NAMELIST INPUT’) 00001830
CALL EIGEN(NF,MSTAR.JSTAR,CSTAR,LAM,U{,U2,U3,U4) 00001900
00001910

OUTPUT EIGENVALUES AND MODAL PARAMETERS (NOTE ARRAY LAM CONTAINS THEOQ0001320
ROOTS OF EQ 2-19 RAISED TO THE FOURTH POWER) 00001930
00001940

WRITE(6,13) 00001950
WRITE(6,11) 00002000
WRITE(8) NF,MSTAR,JSTAR,CSTAR 00002100

DO 10 N=1,NF 00002200
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ISN 0017

0018

21
22
23
c
C
c

30

C
C
C

WRITE(8) LAM(N),U1(N),U2(N),U3(N),U4(N)

WRITE(6,12) N,LAM(N),U1(N),U2(N),U3(N),U4(N)

FORMAT (1HO,T4,'N*,T12,/LAM’ ,T27,°U1’,T40,°U2',T49,°U3’,T66,'U4’)
FORMAT(1H0,73,12,78,G12 5,T24,F9 4,736,F9.4,T47,F9 §,760,G13 5)
FORMAT({HO,/, 17X, ' "EIGENVALUES™ & MODAL PARAMETERS’)

MODAL PARAMETER IDENTITIES

WRITE(6,20)

FORMAT( 1H1,35X, MODAL PARAMETER IDENTITIES’)
WRITE(6,23)

SUM1=0 0Q0 .

SUM2=0 000

SUM3=0.000

SUM4=0 000

SUM5=0 0QO

SUM6=0 0Q0

DO 22 N=1,NF

SUM1=SUM14U3(N)**2

SUM2=SUM2+U4(N)*+2

SUM3=SUM3+U3(N) *U4(N)
SUM4=SUM4+U1(N)*+2/LAM(N)
SUM5=SUMS+U1(N)*U2(N)/LAM(N)
SUMG=SUMG+U2(N)*+2/LAM(N)
WRITE(6,21)N,SUMT, SUM2,SUM3, SUM4, SUM5, SUM6
FORMAT(1HO,5X,12,6{G13 5,2X))

CONTINUE

FORMAT( 1HO, 42X, 'PARTIAL SUMS’,//////)

EXACT SUMS

SUM1=1 +MSTAR

SUM2=1 /3 +MSTAR+JUSTAR+2 *MSTAR*CSTAR
SUM3=,5+MSTAR*(1 +CSTAR)

SUM4=1

SUMS= S+CSTAR

SUM6=1 /3.+CSTAR*(1,+CSTAR)

WRITE(6,30) SUM1,SUM2,SUM3, SUM4, SUM5, SUM6
FORMAT(1Ho,//////.8%,6(G13 5,2X))

sTOP

END

FUNCTION CHARDT(ALF,MSTAR,JSTAR,CSTAR)
THIS FUNCTION COMPUTES THE EQUIVALENT OF EQ 2-18

IMPLICIT REAL*16(A-H,0-2)
REAL*16 MSTAR,JSTAR
$=QSIN(ALF)

C=QCOS(ALF)

SH=QSINH(ALF)

CH=QCOSH(ALF)

C1=MSTAR*ALF

C2=C1*CSTAR*ALF
C3=JSTAR*ALF**3
A11=C2*(C-CH)-C3*(S+SH)+C+CH
A12=C2%(S-SH)+C3*(C-CH)+S+SH
A21=C1*(CH-C)+C2*(S+SH)-S+SH
A22=C1*(SH-5)+C2*(CH-C)+C+CH
CHARDT=A11*A22-A12%A21
RETURN

END
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SUBROUTINE EIGEN({NF,MSTAR,JSTAR,CSTAR,LAM,U1,U2,U3,U4)

THIS SUBROUTINE COMPUTES "NF" EIGENVALUES (ROOTS OF £EQ 2-19) AND
MODAL PARAMETERS (EQ’S 3-25) OF A CLAMPED BEAM WITH TIP BODY

IMPLICIT REAL*16(A-H,0-2)
REAL*16 MSTAR,JSTAR,LAM(NF),LEFT

DIMENSION U1 (NF),U2(NF),U3(NF),U4(NF)
ESTIMATE ROOT OF CHARACTERISTIC EQUATION (EQ 2-19)
N IS THE NUMBER OF ROOTS FOUND

N=0

STEP=1 00-02

LEFT=0 0Q0

RIGHT=LEFT+STEP
COMPARE THE STIGNS OF THE FUNCTION "CHARDT™ AT THE TWO POINTS

IF(CHARDT(LEFT,MSTAR,JSTAR,CSTAR) #CHARDT (RIGHT,MSTAR, JSTAR,CSTAR)
i LE 0 000) GO TO 2

LEFT=RIGHT

GO 70 1

N=N+1

ALF=RIGHT

IMPROVE ROOT ESTIMATE WITH NEWTON-RAPHSON ITERATION

NIT=0
$=QSIN(ALF)

C=QCOS(ALF)

SH=QSINH(ALF)

CH=QCOSH(ALF)

C1=MSTAR*ALF
C2=C1+*CSTAR*ALF
C3=USTAR*ALF**3
A11=C2*(C-CH)-C3*{S+SH)+C+CH
A12=C2*(S5-SH)+C3*(C-CH)+S+SH
A21=C1*(CH-C)+C2*(S+SH)-S+SH
A22=C1*+(SH-S)+C2*(CH-C)+C+CH
A11P=MSTAR*CSTAR*(2 OQO*ALF*(C~CH)-ALF**2+*(S+SH))-C3*(C+CH)

1 -3 OQ0*JSTAR*ALF**2+(S+SH)-S+SH
A12P=MSTAR*CSTAR*(2 QQO*ALF*{S-SH)+ALF**2+%(C-CH))-C3*(5+SH)

1 +3 OQO*JSTAR*ALF**2%(C-CH)+C+CH
A21P=Cf*(S+SH)+C2*(C+CH)+2 OQO*MSTAR

1 *CSTAR*ALF*(S+SH)-C+CH+MSTAR*(CH-C)
A22P=MSTAR*(SH-S)+C1*(CH-C)+C2*(SH+S)

1 +2 OQO*MSTAR*CSTAR*ALF*{CH-C)-S+SH
F=A11*A22-A12%A21
FP=A11P*A22+A11%A22P-A12P*A21-A12%A21P
DA=F/FP
ALF=ALF-DA
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[sNeNe)

[+ NeNsKy]

IF(QABS(DA/ALF) LE 1.00-09) GO TO 6

NIT=NIT+1

IF(NIT GT. {10) GO TO 4

GO T0 3 ,
WRITE(6,5) NIT,N,DA,ALF

00012600
00012700
00012800
00012900
00013000

FORMAT( 1HO,5X, ‘NEWTON RAPHSON ITERATION FAILED TO CONVERGE IN‘, 1X,00013100

1 12,' ITERATIONS. ROOT # *,12,2X,’DA=’ E13 5,2X,’ALF=‘ E{3 5)
$=0SIN(ALF)

€=QCOS(ALF)

SH=QSINH(ALF)

CH=QCOSH(ALF)

C1=MSTAR*ALF

C2=C1*CSTAR*ALF

C3=JUSTAR*ALF*+3

A11=C2*(C-CH)-C3*(S+SH)+C+CH
A12=C2#(S5-SH)+C3*{C-CH)+S+SH

LAM(N)=ALF**4

BETA=-A11/A12

T1=ALF*(SH+S+BETA*(CH-C))

T2=CH-C+BETA*(SH-S)

T3=(SH-S+BETA*(CH+C-2.000) )/ALF
T4=(SH-S+BETA*(CH+C))/ALF-(CH+C-2 OQO+BETA*{S+SH))/ALF**2

CALCULATE MODAL PARAMETERS WITH NON NORMALIZED EIGENFUNCTIONS

UT(N)=T1

U2(N)=T2+CSTAR*T{

U3(N)=T3+MSTAR*T2+MSTAR*CSTAR*T

U4(N)=T4+MSTAR*(1 OQO+CSTAR)*T2+(MSTAR*CSTAR+JSTAR)*T1

CALCULATE INTEGRAL OF SQUARE OF EIGENFUNCTION

C1i=1 OQ0+BETA**2
C2=BETA**2-1 0Q0

T5=(C1*CH+2 0QO*BETA*SH)*SH/(2 OQO*ALF)
T6=C2*SH*C/ALF-C1*CH*S/ALF-2.000*BETA*SH*S/ALF
T7=5*(2 OQO*BETA*S-C2*C)/(2.000*ALF)+1 0QO0
VALINT=T5+T6+T7

CALCULATE NORM OF EIGENFUNCTION & MODAL PARAMETERS FOR NORMALIZED

EIGENFUNCTIONS

P2=VALINT+MSTAR*T2+*24JSTAR*T1*%242 OQO*MSTAR*CSTAR*T1+T2
P=QSQRT(P2)

U1{N)=U1(N)/P

U2(N)=U2(N)/P

U3(N)=U3(N)/P

U4(N)=U4(N)/P

1F(N .EQ NF) RETURN

LEFT=RIGHT

GO TO 1

END
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10

k=1

2 4621
2 7350
2 8238
2 8724
2 9015
2 9203
2 9332
2 9425
2 9496

2 9552

OUTPUT FROM "EIGENVALUE"~MODAL PARAMETER PROGRAM

DATA FROM NAMELIST INPUT

MSTAR=
NF= 10

2 0000

JSTAR=

0 0280

CSTAR=

"EIGENVALUES" & MODAL PARAMETERS

LAM
1 0310
143 31
1220 0
5231 5
16775
42936
93095
17894Q+06
314510+06

516170406

N
:E: “ik
k=1
2.7356
2 71577
2 7602
2 7609
2 76141
2.7612
2 7613
2 7613
2.7613

2 7613

1/3 +m*

+J* +2m*c*

2 7613

Uit U2 u3
0 9087 0 6760 t 56911
-4 8354 -0 1266 0 52240
6 0703 -0 0027 0 29800
-4 9666 0 0552 0 22042
3 5599 -0 0608 0 17072
-2 6385 0 0551 0 13693
2 0584 -0 0485 0 11354
-1 6739 0 0427 0 09673
1 4044 -0 0380 0 08415
-1 2066 0 0341 0 07442

0 1000

MODAL PARAMETER IDENTITIES

PARTIAL SUMS

N N 2

Z UziUak E %k-

k=1 k=1 "k
2 5953 80094
2 6729 96409
2 6379 99429
2 6936 29901
2 6962 93976
2 6975 99993
2 6983 99997
2 6987 99999
2 6990 99999
2 6992 1 0000

ASYMPTOTIC VALUES

1/2 + m* +m*c*

2 7000
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1 0000

>

k=1 k

u4
1 6540
14854
50587Q-01
259090-01
15001Q-01
951230-02
650020-02
470290Q-02
355330-02

27765Q-02

YikY2k

59581
60008
60007
60002
60001
60000
60000
60000
60000

60000

1/2 +c*

60000

44322
44333
44333
44333
44323
44333
44333
44333
44333

44333

1/3 +c* +c’2

44333
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APPENDIX C

PLANAR DYNAMICS FORTRAN PROGRAM LISTING

00000100

CHRAEEAAKRRNKKKRKKKEKKKERKKFRR KRR RARRTRARRRRRRR KRR AR R REHRIXAXXXE XX XXX 300000200

C* THIS PROGRAM SOLVES THE EQUATIONS OF MOTION FOR THE PLANAR DYNAMICS *00000300
C* OF A FLEXIBLE BEAM WITH RIGID BODIES ATTACHED TO EACH END THE *00000400
C* BEAM DEFORMATION IS EXPANOED IN TERMS OF THE MODES APPROPRIATE TO *00000500
C* A CLAMPED BEAM WITH TIP BODY ONLY THE ATTITUDE AND BENDING COOR- *00000600
C* DINATES ARE CALCULATED ( WRITTEN BY JOEL STORCH & STEPHEN GATES +00000700
C* BASED UPON C S D L REPORT # R-1629 MAY 1983 ) *00000800
Ct*'***ﬁ*ﬁ*#***#i**#**t#ﬁ*‘*#ttl‘l#t****‘**i****i"!*ti*ﬁt*ttit*ﬁ*tt**tt*ooooogoo
(o} 00001000
C NOTE ARRAYS DIMENSIONED FOR A MAXIMUM OF 20 CLAMPED-TIP BODY MODES 00001100
c 00001200
IMPLICIT REAL*8(A-H,0-2) 00001300
REAL*16 LAM,U1,U2,U3,U4,MSTAR,JSTAR,CST 00001400
REAL*8 M,L,MO,IO0,MT, IT M1,MUO,MU1,JO,NA 00001500
DIMENSION LAM(20),U1(20),U2(20),U3(20),U4(20),A1V(20),A5(231), 00001600

1 BS(231),2(21,21),Ev(21),WK(483),FV(21),CN5(20),.CN6(20),CN7(20), 00001700

2 CN8(20),F0(2),FA(21),NA(21),W1(21),w2(21),Y(42),YDOT(42) 00001800
COMMON /DIM/ NF,NFP1,NSZ 000019200
COMMON /EXTFC/ CN1,CN2,CN3,CN4,CN5S,CN6,CN7 00002000
COMMON /NLKTC/ CN9,U3,CN8 00002100
COMMON /STATE/ X(21),XxD0OT(21) 00002200
NAMELIST /INPUT/ MO,10,A1,A2,L,PHO,C,MT IT NF,EI,THETA THETAD, 00002300

{ DT,TSTOP,TPRT 00002400

o 00002500
C FREEECERARCRRRE [NPUT - OUTPUT FILES **rtxtkketrssaxtssxtiss k¥ ¥xx00002600
C FILE #S5 NAMELIST INPUT FILE 00002700
C FILE #6 PRINTED QUTPUT FILE 00002800
c FILE #8 INPUT FILE OF EIGENVALUES & MODAL PARAMETERS FOR BEAM WITH 000023800
c TIP BODY 00003600
C 00003100
c ErRARSRERRE X2 AADESCRIPTION OF /INPUT/ LIST ITEMSH**#%%k%xx#+%%+%++00003200
C 00003300
C "MO" ORBITER MASS 00003400
C "IO" ORBITER MOMENT OF INERTIA ABOUT ITS MASS CENTER 00003500
C PERPENDICULAR TQ PLANE OF MOTION 00003600
C "A1","A2" VECTOR FROM ORBITER MASS CENTER TO BEAM ATTACHMENT POINT 00003700
(o} (EXPRESSED IN ORBITER FRAME) 00003800
c "L BEAM LENGTH 00003900
C "RHO" MASS PER UNIT LENGTH OF BEAM 00004000
C MEI" BENDING STIFFNESS IN BEAM 00004100
c "¢ TIP BODY MASS CENTER OFFSET 00004200
C “"MT* TIP BODY MASS 00004300
C "IT*" TIP BODY MOMENT OF INERTIA ABOUT ITS MASS CENTER FOR AXIS 00004400
C PERPENDICULAR TO PLANE OF MOTION 00004500
C “NF" NUMBER OF CANTILEVERED-TIP BODY MODES TO BE RETAINED 00004600
C FOR EXPANSION OF BEAM ELASTIC DISPLACEMENT 00004700
C "THETA" ORBITER INITIAL ATTITUDE (DEG ) 00004800
C "THETAD" ORBITER INITIAL ATTITUDE RATE (DEG /SEC) 00004900
[ INTEGRATION TIME STEP 00005000
C "TSTOP" FINAL TIME 00005100
C "TPRT" TIME INTERVAL BETWEEN CONSECUTIVE PRINTOUTS 00005200
c P L I R RS T s R T T T T e T ] 00005300
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ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN

0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027

0028
0029
0030
0031
0032
0033
0034
0035
0036
0038
0039
0040

0041
0043
0044
0045
0046
0048
0049
0050
0051
0053
0054
0055
0056

0058
0059
0060
0061
0062
0063
0064

c
READ(5, INPUT)
WRITE(6,7)
WRITE(6,1) MO, 10

1 FORMAT(1HO, ‘MO = ’,1PE17.8,5X,’10 = ’,{PE17.8)
WRITE(6,2) MT,IT

2 FORMAT(H ,’MT = ’,1PE1T7 8,5X,’IT = ’ {PE17.8)
WRITE(6.3) A1,A2

3 FORMAT(IH ,“A1 = ', 1PE17 8,5X,’A2 = ’ {PE1T7 8)
WRITE(6,4) L,C

4 FORMAT(tH ,’L = ‘ {1PE17 8,5X,’C = ’,1PE17 8)
WRITE(6,5) RHO,EI

5 FORMAT({H ,’RHO =‘,1PE17 8,5X,'EI = ’,1PE17 8)
WRITE(6,6) DT,TPRT

6 FORMAT(1H ,’DT = ‘,1PE17 B,5X,'TPRT =’ 1PE{6 8)
WRITE(6,8) THETA,THETAD

7 FORMAT(1H1, 13X, ‘DATA FROM NAMELIST INPUT’)

8 FORMAT(1H ,’THETA =’,1PE15 8,3X, 'THETADOT =‘{PE15 8)

C

C TEST FOR DATA CONSISTENCY WITH VALUES ON DISC DATA SET

Cc

READ(8) NFT,MSTAR,JSTAR,CST
D1=DABS(DBLEQ(MSTAR)-MT/(RHO*L))
D2=DABS(DBLEQ(USTAR)-(IT+MT*C*+2)/(RHO*L**3))
D3=DABS(DBLEQ(CST)-C/L)

D1=D1/DBLEQ(MSTAR)

D2=02/DBLEQ(USTAR)

D3=D3/DBLEQ(CST)

1ER=0

IF(NFT GE NF) GO TO 11

1ER=1

WRITE(6,10) NF,NFT

io FORMAT(1HO,5X,’* * * FATAL ERROR * * */ ,2X,I3,’ CANTILEVERED’,

1 / TIP-BODY MODES REQUESTED DATA ON DISC ONLY FOR’,I3,

2 / MODES’)
1 IF(D1 LE 001DO) GO TO 13
1ER=1

WRITE(6,12) MSTAR

12 FORMAT(1HO,5X,"* * ¢ FATAL ERROR * * *’ 2X,‘MSTAR(DISC)=’,G13 5)

13 IF(D2 LE 001D0) GO TO {5
IER=1
WRITE(6,14) JUSTAR

14 FORMAT(1HO,5X,’* * * FATAL ERROR* * * ’/ 2X,’JSTAR(DISC)=’,G13 5)

15 IF(D3 .LE 001D0) GO TO 17
IER=1
WRITE(6,16) CST

16 FORMAT(1HO,5X,’* * * FATAL ERROR* * * ’/ 2X,’CSTAR(DISC)=’,G13 5)

17 IF(IER NE O0) STOP
c
C COMPUTE CONSTANT QUANTITIES
c
RG=EI/(RHO*L**4)
FC= 1591549*DSORT(RS)
M1=RHO*L+MT
M=MO+M1
MUO=MO/M
MU1=M1/M
B1=( S*RHO*L**2+MT*(L+C))/M1
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00005400
00005500
00005700
00005800
00005900
00006000
00006 100
00006200
00006300
00006400
00006500
00006600
00006700
00006710
00006720
00006800
00007000
00007010
00007 100
00007200
00007300
00007400
00007500
00007600
00007700
00007800
00007900
00008000
00008100
00008200
00008300
00008400
00008500
00008600
00008700
00008800
00008900
000039000
00009 100
00009200
00009300
00009400
00009500
00009600
00009700
00009800
00009900
00010000
00010100
00010200
00010300
00010400
00010500
00010600
00010700
00010800
00010900
00011000




ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN

0065
0066
0067
0068
0069
0070
0071

0072
0073
0074
0075
0076
0077
0078
0079
0080
0081

0082
0083

0107

0108
0109
0110

C
C
C

40
41

50
51
o
C
C

STORF "K" IN SYMMETRIC STORAGE MODE -

JO=RHO*L**3/3 ODO+IT+MT*(C+L)**2
R1=RHO*L/M

R2=A1/L

R3=A2/L

R4=B1/L

CSTAR=C/L

A00=(I10+J0)/(RHO*L**3)+MUO*MU1*(R2**24R3¥*2+2 ODO*R2*R4)/R1

1 -MU1*+2*R4%+2/R1

READ & PRINT EIGENVALUES AND MODAL PARAMETERS FOR BEAM+TIP BODY

WRITE(6,23)

WRITE(6,21)

Do 20 N=1,NF

READ(8) LAM(N),U1(N),U2(N),U3(N),Us(N)

WRITE(6,22) N,LAM(N),U1(N),U2(N),U3(N),U4(N)
FORMAT(1HO,T4,’N’,T12, ‘LAM’,T27,°U1’,T40,U2’,T49,'U3’,T66,°U4")
FORMAT(1IH ,73,12,78,G12 5,T24,F9 4,T36,F9 4,T47,F9 5,7T60,G13 5)

00011100
00011200
00011300
00011400
00011500
00011600
00011700
00011800
00011900
00012000
00012100
00012110
00012200
00012300
00012400
00012500
00012600
00012800

FORMAT(1HO,/, 11X, ’EIGENVALUES & MODAL PARAMETERS FROM DISC FILE’) 00012810

WRITE(6,24)

FORMAT(1HO./,7X,’SYSTEM NATURAL FREQUENCIES’)

COMPUTE TERMS A1l

DO 30 K=1,NF
A1V(K)=MUO*R2*U3(K)+U4(K)-MU1*R4*U3(K)

WASH
nggn

STORE "A" IN SYMMETRIC STORAGE MODE -

AS(1)=A00

N=1

DO 41 I=1,NF

N=N+1

AS(N)=A1V(I)

DO 40 J=1,1

N=N+1
AS(N)=-R1*U3(J)*u3(1)

IF(I EQ J) AS(N)=AS(N)+1 0DO
CONTINUE

CONTINUE

Bs(1)=0 000

N={

DO 51 I=1,NF

N=N+1

BS(N)=0 00O

DO 50 uv=1,I

N=N+1

BS{N)=0 0ODO

IF(I EQ J) BS(N)=LAM(I)
CONTINUE

CONTINUE

GET EIGENVALUES AND EIGENVECTORS FOR 2.3,
NFP1=NF+1

NSZ=2*NFP1
DO 66 N=2 ,NFP1
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00012820
00012830
00012900
00013000
00013100
00013200
00013300
00013400
00013500
00013600
00013700
00013800
00013900
00014000
00014100
00014200
00014300
00014400
00014500
00014600
00014700
00014800
00014900
00015000
00015100
00015200
00015300
00015400
00015500
00015600
00015700
00015800
00015900
00016000
,NFP1 DEGREES OF FREEDOMOOO16100

00016200

00016300

00016400

00016500



ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN

ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

o111
0112
0114
0115

0116
o117
o118
0119
0120
0121
0122
0123

0124
0125

0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137

0138
0139
0140
0141

0142
0143
0144

0145
0146
0147
0148
0149
0150
0151
0153
0154

CALL EIGZS(BS,AS,N,1,EV,Z,21,WK, IER)

IF(IER EQ. O) GO TO 62
WRITE(6.61) N,IER

61 FORMAT(1HO,5X, ERROR IN EIGENVALUE EXTRACTION MATRIX ORDER=',I2,

{1 3x,’IER=’,13)
sTOP
62 WRITE(6,63) N

63 FORMAT(1HO,12,’ DEGREES OF FREEDOM IN EIGENVALUE PROBLEM’)

DO 64 I=1,N
WS=FC*DSORT(EV(I))
64 WRITE(6,65) I, WS

65 FORMAT(1H ,2X,’MODE’,12,2X,’SYSTEM FREQUENCY(HZ )=’,G13 5)

66 CONTINUE
[ NORMALIZE EIGENVECTORS

DO 70 N=1,NFP1{
o] CALL NORM(AS,NFP1,Z2(1,N))

7
c
C CALCULATE CONSTANTS IN MOTION EQUATIONS
C

DO 80 I=1,NFPt

80 FV(I)=R5*EV(I)
CN1=RHO*L**3
CN2=MU1*(A1+B1)/CN1
CN3=MU1*A2/CN1

CN4={1 ODQ+CSTAR+MUO*R2-MU1*R4)/(RHO*L**2)

CN9=1 0DO/(M*L)
DO 90 I=1,NF
CNS(I)=U1(1)/CN1
CN6(I1)=U2(I)/(RHO*L**2)
CN7(I)=U3(1)*CN9

0 CN8(1)=MUO*R3*U3(I)

SET INITIAL CONDITIONS

aO0Onw

T=0 00O

CPRT=0 0ODO

X{(1)=THETA* 0174532
XDOT(1)=THETAD* 0174532

OO0

D0 100 I=1,NF
X(I+1)=0.000
100 XDOT(I+1)=0.0D0

c
C  CALCULATE Y AT T=0
c
DO 112 I=1,NFP4
11=1
W1(1)=0 0ODO
w2(1)=0 ODO
00 11 J=1,NFP1{
Ju=v
IF( I GE. J) GO TO 110
1=V
Ju=1

INITIAL DEFORMATION AND RATE ARE SET TO ZERD
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00016600
00016700
00016800
00016900
00017000
00017100
00017200
00017300
00017500
00017600
00017700
00017800
00017300
00018000
00018100
00018200
00018300
00018400
00018500
00018600
00018700
00018800
00018900
00018000
00019100
00019200
00019300
00019400
00018500
00019600
00019700
00019800
00019900
00020000
00020100
00020200
00020300
00020400
00020500
00020600
00020700
00020800
00020900
0002 1000
00021100
00021200
00021300
00021400
00021500
00021600
00021700
00021800
00021900
00022000
00022100
00022200
00022300
00022400




ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN

ISN
ISN
ISN

ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN

0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167

0171
0172
0173
0174
0175
0176

0177
0178
0179
0180

0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192

0193
0195
0196
0197
0198

110 LL=II%(I1I-1)/2+UJ

Wi(I)=w1(I)+AS(LL)*x(J)
111 W2(I)=W2(I)+AS(LL)*XDOT(J)
112 CONTINUE

DO 114 I=1,NFP1

Y(I)=0 0DO

Y{NFP1+1)=0 ODO

DO 113 JU=1,NFP1

Y(I)=Y(1)+2(J,1)*Wi(J)

113 Y(NFPI+I)=Y{NFP1+I)+Z(J,1)*w2(J)

114  CONTINUE
WRITE(6,115)

115 FORMAT(1HO,/,20X, ' TIME RESPONSE’)

C  CALCULATE EXTERNAL FORCES ON ORBITER AND TIP BODY

120 CALL ORBFOR(T,FO,GO)
CALL TPBFOR(T,FP,GP)
CALL EXTF(FO,GO,FP,GP,FA)

CALCULATE NON-LINEAR TERMS

oo

CALL NLKT(FO,NA)
00 131 I=1,NFPI

wi(1)=0 ODO

DO 130 J=1,NFP1

130 WI(I)=W1(I)+Z(J,I)*(FA(JU)+NA(U))

131 CONTINUE
C  CALCULATE “YDOT"

DO 140 I=1,NFP1
YDOT(I)=Y(NFP1+1)

YOOT(NFP1+I)=W1{I)-FV(I)*Y(I)

140  CONTINUE
C

o INTEGRATE DIFFERENTIAL EQUATIONS IN FIRST ORDER FORM

c
CALL ODESLV(NSZ,Y,YDOT,DT)
T=T+0T
CPRT=CPRT+DT
DO 151 I=1,NFP1
x(1)=0 0DO
XxDOT(1)=0 0DO
DO 150 J=1,NFP1
X(I)=x{(1)+2(1,J)*Y(V)

150 XDOT(I)=XDOT(I)+2(I,J)*Y(NFP1+J)

151 CONTINUE
THETA=X(1)*57 29578
THETAD=XDOT(1)*57 29578
C
C PRINT ouTpPUT
¥
IF(CPRT LT TPRT) GO TO 1
CPRT=0 ODO
WRITE(6,160) T
160 FORMAT(1HO, ‘TIME =’ ,F7 3)
WRITE(6,161) THETA

70
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00022500
00022600
00022700
00022800
00022900
00023000
00023100
00023200
00023300
00023400
00023500
00023510
00023520
00023600
00023700
00023800
00023900
00024000
00024100
00024200
00024300
00024400
00024500
00024600
00024700
00024800
00024900
00025000
00025100
00025200
00025300
00025400
00025500
00025600
00025700
00025800
00025900
00026000
00026100
00026200
00026300
00026400
00026500
00026600
00026700
00026800
00026900
00027000
00027100
00027200
00027300
00027400
00027500
00027600
00027700
00027800
00027900
00028000



ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN

ISN
ISN
ISN

ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN

ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

0199
0200
0201
0202
0203
0204
0205
0206
0207

0208
0210
o211

0002

0003
0004
0005
0006
0007
0008
0009
0010

0002

0003
0004
0005
0006

0002

0003
0004
0005
0006
0007
0008
0009
0010
0011

161

162

163

170

OOO00

10

OOO0OOO0

O0000

10

WRITE(6,165) THETAD
FORMAT(1H ,’THETA =‘,1PE17 8,’ DEG’)
WRITE(6, 162)

FORMAT(1HO, / MODAL COORDINATES‘, 10X, ‘DERIV MODAL COORDINATES’)

D0 163 I=2,NFP1

J=1-1

WRITE(6,164) J,X(I),XDOT(I)

FORMAT(1H ,12,2X,1PE17 8,10X,1PE17 8)
FORMAT(1H , 'THETADOT =’,1PE{7 8, DEG/SEC’)

IF(T GE TSTOP) STOP
GO TO 120
END .

SUBROUTINE ORBFOR(T,F0,GO)

THIS SUBROUTINE CALCULATES THE EXTERNAL FORCE “FO" ON THE ORBITER
(IN ORBITER FRAME) AND NET MOMENT “GO" PERPENDICULAR TO PLANE OF
MOTION AT TIME "T"

IMPLICIT REAL*8(A-H,0-2)
DIMENSION FO(2)

FO(1)=0 0DO

FO(2)=0 0DO

GO=0 0DO

FORMAT(1H ,3X,’FO=’,2E13 5,3X,’G0=",E13 5)
RETURN

END

SUBROUTINE TPBFOR(T,F,G)

THIS SUBROUTINE CALCULATES THE EXTERNAL FORCE "F" ON THE TIP BODY
(ACTING TRANSVERSE TO BEAM NEUTRAL AXIS) AND MOMENT "G"
PERPENDICULAR TO PLANE OF MOTION AT TIME "T"

F=0 0DO
G=C 0DO

RETURN
END

SUBROUTINE EXTF(F0O,GO,FP,GP,F)

THIS SUBROUTINE ASSEMBLES THE VECTOR OF EXTERNAL FORCES "f" GIVEN

BY EQ (4-31) THE ORBITER FORCE AND MOMENT "FO","GO" AS WELL AS THE

FORCE AND MOMENT ON THE TIP BODY "FP","GP" ARE INPUT

IMPLICIT REAL*8(A-H,0-2)

DIMENSION FO(2),F(NFP1)

COMMON /DIM/ NF,NFP1,NSZ

COMMON /EXTFC/ CN1,CN2,CN3,CN4,CN5(20),CN6(20),CN7(20)
F{1)=GO/CN1-CN2*FO(2)+CN3*FO(1)+GP/CN1+CNA*FP

DO 10 I=1,NF
F(I+1)=CNS(I)*GP+CN6(I)*FP-CN7(I)*(FO(2)+FP)

RETURN

END
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00028010
00028100
00028200
00028300
00028400
00028500
00028600
00028700
00028710
00028800
00028900
00029000
00029100

00029200
00029300
00029400
00029500
00029600
00029700
00029800
00029900
00030000
00030100
00030200
00030300
00030400
00030500

00030600
00030700
00030800
000309200
00031000
00031100
00031200
00031300
00031400
00031500

00031600
00031700
00031800
00031900
00032000
00032100
00032200
00032300
00032400
00032500
00032600
00032700
00032800
00032900
00033000




ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN

0002

0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018

0002

0003
0004

0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

0002
0003
0004
0005

OO0

10

20

OO0

20

30

OO0

SUBRQUTINE NLKT(FO,N)

THIS SUBROUTINE ASSEMBLES THE VECTOR OF NON-LINEAR TERMS "N"

GIVEN BY EQ (4-32)

IMPLICIT REAL*8(A-

REAL*8 N
REAL*16 U3

THE EXTERNAL FORCE ON THE ORBITER

H,0-2)

COMMON /NLKTC/ CN9,U3(20),CN8(20)
COMMON /STATE/ X(21),XDOT(21)
COMMON /DIM/ NF,NFP1,NSZ
DIMENSION FO(2),N(NFP1)

N(1)=0 0DO
00 10 K=1,NF

N(1)=N(1)+DBLEQ(U3(K))*X(K+1)
N(1)=N{1)*CN9*FO(1)

THD2=XDOT(1)**2
00 20 K=1,NF

N(K+1)=CN8(K)*THD2

RETURN
END

SUBROUTINE NORM(AS,N,X)

THIS SUBROUTINE NORMALIZES THE EIGENVECTOR

"FO" IS INPUT

“X" WITH RESPECT TO THE

SYMMETRIC POSITIVE DEFINITE MATRIX ‘A’ OF ORDER “"N" STORED IN
SYMMETRIC STORAGE MODE AS THE VECTOR "AS"

IMPLICIT REALY8(A-

H,0-2})

DIMENSION AS(1),x(1)

S=AS(1)¥x(1)**2
NC=1

Do 10 1=2,N
IMi=I-1

DO 20 J=1,IM1
NC=NC+1

$=5+2 ODO*AS(NC)*X(I)*X(J)

NC=NC+1

S=5+AS(NC)*X(T)**2

CONTINUE
$=DSQRT(S)
D0 30 I=1,N
x(1)=x(1)/s
RETURN

END

SUBROUTINE ODESLV(N,Y,DERIV, H)

IMPLICIT REAL*8(A-

H.0-2)

DIMENSION DERIV(N),Y(N),DERIVO(42),8D1(42,2),B8D2(42,2),BD3(42)

DATA INTF/1/,C1/0

0/.c2/0 0/.C3/0 /

THIS SUBROUTINE INTEGRATES THE FIRST ORDER SYSTEM OF ORDINARY

DIFFERENTIAL EQUATIONS

USING THIRD ORDER DIFFERENCES

N- SIZE OF SYSTEM

Y- VECTOR OF INITIAL VALUES ON INPUT

WITH THE NEW SOLUTION

H- STEP SIZE

87

"DY/DT=DERIV" BY THE ADAMS METHOD

"y" IS OVERWRITTEN

00033100
00033200
00033300
00033400
00033500
00033600
00033700
00033800
00033900
00034000
00034100
00034200
00034300
00034400
00034500
00034600
00034700
00034800
00034900
00035000
00035100

00035200
00035300
00035400
00035500
00035600
00035700
00035800
00035900
00036000
00036 100
00036200
00036300
00036400
00036500
00036600
00036700
00036800
00036900
00037000
00037 100
00037200
00037300
00037400

00037500
00037600
00037700
00037800
00037900
00038000
00038100
00038200
00038300
00038400
00038500
00038600



ISN
ISN
ISN
ISN

ISN

ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN

0006
0008
0009
0010

o011

0012
0013
0014
0015

0016
0017
0018
0019
0020
0021
0022

0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033

0034
0035
0036
0037
0038
0039
0040

0041
0042
0043
0044

IF(N LE 42) GO T0 10
WRITE(6,12) N
sTop

12 FORMAT ( 1HO,5X, 'ERROR IN SUBROUTINE **ODESLV** CALLED WITH STATE
1SIZE =/,13,’ EXCEEDS DIMENSION SIZE OF ARRAYS')

10 GO TO(1000,2000,3000,4000), INTF

c

C  FIRST CALL TO ROUTINE - EULER INTEGRATION

c

1000 DO 20 I=1,N

20 DERIVO(I)=DERIV(I)
INTF=2
GO TO 5000

c
c SECOND CALL TO ROUTINE - FIRST ORDER DIFFERENCES
C
2

000 DO 30 I=1,N
BD1(I,1)=DERIV(I)-DERIVO(I)
BD1(1,2)=BD1(I,1)

30 DERIVO(I)=DERIV(I)
C1= 5
INTF=3
GO TO 5000

c
C THIRD CALL TO ROUTINE - SECOND ORDER FIFFERENCES
c
3000 DO 40 I={,N

BD1(I,2)=DERIV(I)-DERIVO(I)

BD2(I,1)=BD1(I.2)-BD1(I,1)

BD2(I1,2)=BD2(1.1)

DERIVO(I)=DERIV(I)
40 BD1(I,1)=8D1(1,2)

INTF=4

€2=5 0/12 0

GO TO 5000

[
[ ADAMS METHOD WITH 3RD ORDER DIFFERENCES
[
4

000 DO S0 I=1,N
BO1(I,2)=DERIV(I)-DERIVO(I)
BD2(1,2)=BD1(1,2)-BD1(I,1)
BD3(1)=BD2(1,2)-BD2(I, 1)
DERIVO(I)=DERIV(I)
BD1(I,1)=BD1(I1,2)

50 BD2(I,1)=BD2(1,2)

C3=3 0/8 0O
GO TO 5000

UPDATE VECTOR ‘Y’

OO0

5000 DO 60 I=1,N

60 Y(I)=Y(I)+H*(DERIV(I)+C1*BD1(I,2)+C2*BD2(I,2)+C3*BD3(1))
RETURN
END

88

00038700
00038800
00038900
00039000
00039100
00039200
00039300
00039400
00039500
00039600
000338700
00039800
00039900
00040000
00040100
00040200
00040300
00040400
00040500
00040600
00040700
00040800
00040900
00041000
00041100
00041200
00041300
00041400
00041500
00041600
00041700
00041800
00041900
00042000
00042100
00042200
00042300
00042400
00042500
00042600
00042700

00042800
00042900
00043000
00043100
00043200
00043300
00043400
00043500
00043600
00043700
00043800
00043900
00044000
00044100




EXAMPLE PROBLEM PARAMETERS

m, = 98739.5 kg

IO = 9769869.5 kg-m2
m = 875.32 kg

It = 1400.512 kg-m2
al = 2.0m
a2 = 0.0m

£ = 20.0m

c = 2.0m

p = 21.883 kg/m
EI = 353520.0 N--m2
m* = 2.0
J* = 0.028
c* = 0.1

NAMELIST INPUT DATA

&INPUT M0=98739 5,10=9769869 5,A1=2 ,LA2=0 ,L=20 ,RH0=21 883,EI=353520 ,C=2 ,
MT=875 32,IT=1400 512,NF=3,THETA=0 ,THETAD=0 ,DT= O1,TSTOP=1 ,TPRT= 02,&END

89



OUTPUT DATA FROM PLANAR DYNAMICS PROGRAM

4
Excitation: GO = 4 xXx 10 N for a1l t > O

All units are metric (MKS)

DATA FROM NAMELIST INPUT

MO = 9 873950000+04 10 = 9 76986950D+06

MT = 8 753200000402 IT = 1 400512000+03

Al = 2 000000000+00 A2 = 00

L = 2 00000000D+01 c = 2 00000000D+00

RHO = 2 18830000D+01 El = 3 535200000+05

DT = 1 00000000D-02 TPRT = 2 000000000-02

THETA = 0 O THETADOT = 0 O

EIGENVALUES & MODAL PARAMETERS FROM DISC FILE

N LAM u1 U2 u3 U4
1 1 0310 0 9087 0 6760 1 56911 t 6540
2 143 31 -4 8354 -0 1266 0 52240 14854
3 1220 © 6 0703 -0 0027 0 29800 505870-01

SYSTEM NATURAL FREQUENCIES

2 DEGREES OF FREEDOM IN EIGENVALUE PROBLEM

MODE t SYSTEM FREQUENCY(HZ )= 0

MODE 2 SYSTEM FREQUENCY(HZ )= 53106D-01
3 DEGREES OF FREEDOM IN EIGENVALUE PROBLEM
MODE 1 SYSTEM FREQUENCY(HZ )= o]

MODE 2 SYSTEM FREQUENCY(HZ )= 53106D-01
MODE 3 SYSTEM FREQUENCY(HZ )= 60600
4 DEGREES OF FREEDOM IN EIGENVALUE PROBLEM
MODE 1 SYSTEM FREQUENCY(HZ )= o]

MODE 2 SYSTEM FREQUENCY(HZ )= 53106D-01
MODE 3 SYSTEM FREQUENCY(HZ )= 60600

MODE 4 SYSTEM FREQUENCY(HZ )= 1 7669

TIME RESPONSE

TIME = 0 020

THETA = 3 51839150D-05 DEG
THETADOT = 4 69118867D-03 DEG/SEC
MODAL COORDINATES DERIV MODAL COORDINATES
1 -1 111891280-06 -1 48252171D-04
2 -1 23251214D-07 -1 64334952D-05
3 -4 93395608D-08 -6 57860810D-06
TIME = O 040
THETA = 1 759120990-04 DEG
THETADOT = 9 382316970-03 DEG/SEC
MODAL COORDINATES DERIV MODAL COORDINATES
1 -5 55938160D-06 -2 96494856D-04
2 -6 15468068D-07 -3 27670730D-05
3 -2 44025899D-07 -1 28184228D-05
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End of Document



