General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-171853)NODULAR FLANT CULTUREN85-21924SYSTEMS FOR LIFE SUPPORT FUNCTIONS FinalReport (Phytoresource Research, Inc.)35 pHC AU3/MF A)1CSCL 06KUnclasG3/5114454

b=

MODULAR PLANT CULTURE SYSTEMS FOR LIFE SUPPORT FUNCTIONS

Final Report

NASA Contract No. NAS 9-16671

March 1, 1985

PhytoResource Research, Inc. 707 Texas Avenue, Suite 202-D College Station, Texas 77840

INTRODUCTION

This report summarizes the results of a study undertaken on the first phase of an empirical effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station. The overall effort is visualized as providing an underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex in an essentially operational mode. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive test trials of fragments or subsystems of the whole. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion or some modest contribution to the food supply.

The first phase, which is the subject of this report, had two technical goals: (1) an assessment of the current state of knowledge with regard to culture of higher plants in the zero-G environment; and (2) the evaluation of concepts for the empirical development of small plant growth chambers for use in the shuttle middeck area.

PART I

ASSESSMENT OF THE CURRENT STATE OF KNOWLEDGE

Operationally, the information collected has been used primarily in defining parameters of growth chamber design and, with the exceptions noted below, will not be presented in detail in this report or in derivative documents. Three areas were emphasized in the accumulation of the supporting data base for hardware concept development. All are considered to be continuing activities beyond the period of performance of the current effort. These areas of emphasis are:

- (1) review and analysis of the literature and the current status of research in the basic gravitational biology of plants;
- (2) review and analysis of the relevant results of previous and current U.S. flight experiments with plants; and

の影響に行いたが見たい。

白月月

(3) review and analysis of Soviet efforts in the use of plants in space.

Of the three subject areas, the major emphasis is placed upon the Soviet activities because theirs has been, by far, the most extensive and has, moreover, emphasized the practicial aspects of plant culture on spacecraft.

I. The Status of Gravitational Biology Research

It is useful to classify gravitational biology in terms of effects at three levels in the physiology of the organism: (1) Primary, or fundamental effects, effects at essentially the genetic level which have no particular relevance to the question at hand; (2) Secondary effects which are related to gravity directed growth response and are of some practical importance in setting approaches to orientation of growth and flight growth facilities; and (3) Teritary, or indirect-effects of gravity upon the organism's environment which could have considerable effect upon the growth and productivity of plants in a micro-G environment.

Primary Effects

The basic research question of whether gravity plays some essential role in the morphogenesis of biological systems, or whether the complete absence of gravity will result in the failure of some key sequence of developmental events is probably not of great consequence to this project. First of all, it will be impossible to critically test such hypotheses until some time in the relatively distant future when free-fall experimental facilities become available in which acceleration levels do not exceed threshold levels of less than .001 G. Current flight operations, into which this project is visualized as fitting, will always involve above-threshold accelerations associated with on-orbit maneuvering and crew activity. Moreover, the putative long-term or fundamental effects of gravity, or absence of it, will have minor impact upon the practical attempts with short-term plant growth in a manned operational mode. The Soviets (see later specific discussion), after many years of practical experience, with not a few failures which they may or may not understand completely, nonetheless appear not to give much credibility to the notion of fundamental effects.

Secondary Effects

The primary relevance of gravitational biology research for the present project is in the guidance of efforts to understand and compensate for the secondary and tertiary effects of gravity. Secondary effects will have some impact from a practical aspect in terms of directing growth of roots and shoots; however, much of the field we call gravitational biology is concerned with l-gravity environment oriented questions, explanation of the mechanisms by which organisms modify their architecture to compensate for gravityinduced stress, or utilize gravity as a reference stimulus for orientation. This kind of research has been an ongoing activity since the time of Darwin (Darwin, 1880) and has utilized a wide variety of organisms as illustrated in Table 1. The ability to eliminate gravity as a variable in such experimentation has the potential for providing valuable insights. Thus, space flight in this context can be viewed primarily as an experimental tool, a probe for understanding these mechanisms which are, of course, of considerable economic importance to terrestrial agriculture and horticulture.

Tertiary Effects

NASA has spent a considerable sum of money over the years on the design and construction of apparatus and on the planning of systems for plant growth in space based upon two pre-conceived and somewhat inconsistent viewpoints:

- 1. That there may be some fundamental effect of gravity, or the lack of it, upon plant cells and that, except for this hypothetical effect, there is
- No significant difference between the space environment and the earth environment in terms of the organism's interaction with it (accepting, of course, the obvious secondary or morphogenetic responses).

1

i

The major result of our survey of the literature is that we are led to take, for the purposes of this growth chamber development effort, a contrary view: that as a reasonable working hypothesis, there is no fundamental effect of gravity, or absence of it, upon living systems because in manned spacecraft, there will always exist a certain above-threshold G environment associated with on-orbit maneuvering and human activity. On the other hand, in terms of the practical functioning and growth of plants, there is a probably profound effect of the altered physical environment. This effect is mediated to a minor extent through such phenomena as the sensing and orientation response. Much more important; however, are the indirect effects of the physical environment, and it is these effects which will most probably have a major impact upon plant growth and growth chamber design. Neglecting direct sensing of gravity or its absence, the basic physical pheonomena most likely affecting plant growth in zero-G are altered fluid response and the absence of gravity driven convection. Whereas under gravitational influence, fluids will flow to the lowest point and drain from a soil matrix or run off the leaves, stems, or roots, in a zero-G environment the dominant force is surface tension and the molecular attraction of the water for itself and for other surfaces. Water will thus accumulate to a

LATIN NAMES	СОММОИ NAMES	RES PONSES STUDIED	LITERATURE CITED
Aegopodium podagraia	Goat Weed	Rhízome Gravitropism	Bennet-Clark and Ball 1981 (in Tepfer and Bonnett 1972)
Agrotis nebulosa	Cloud Grass or Bent Grass	Gravitropic Response of Leaf Sheath Pulvinus	Dayanandan et al, 1982
Arabidopsis thallana	European Cress	Shoot and Root Response	Hoshizaki, 1983
Arabidopsis thallana Arabidopsis thallana	European Cress European Créss ,	to timpstat Horizontal Clinostat Development Response to Gravitropism	Brown, Dahl, and Chapman, 1976 Brown, 1983
Arachis hypogaea	Peanut	Gravitropic Response	Waber, Williams, Dubin, and Siegel, 1975
Artemisia Sp. Artemisia Sp.	Sage Brush Sage Brush	Root Gravitropism Response of Roots to Garvitropism	Iversen, 1969 Johnson and Pickard, 1979
Asparagus offIcinalis	Asparagus	Epicotyl Gravitropism	Perbal, 1982
Avena sativa	Oat		
Avena sativa	Oat	Response to Gravitropism	Shen-Miller, Hinchman, and Gordon. 1968 & Shen-Miller. 1970
Avena sativa	0a t	Gravitropic Response and Calcium in Cell Walls	1983
Avena sativa	Oat	Ľ	Slocum and Galston, 1982
	0a t	Phototropic Response	Shen-Miller and Gordon, 1967
Avena sativa Avena sativa	0at Oat	Phototropic Response Photutropic Response	Pickard, 1969 Brigs, 1960
Capsicum Sp.	Peppet	Response to Freefall	Gordon, 1972
Caulerpa Sp.	Marine Algae	Stem Part Gravitropism	Westing, 1971
Chará Sp.	Algae	Rhizoid Gravitropism	Buder 1961
Clivia Sp.	Kaffer Lilly	Root Gravitropism	Westing, 1971
Convolvulus arvensis	Field Bindweed	Root Gravitropism	Tepfer and Bonuett, 1972
Cucumis sativa	Cucumber	Role of Shoot Apex	Lwami and Masuda, 1974
Cucumis sativa Cucumis sativa	Cucumber Cucumber	stem Lignification Seedling Lignification	Chen, Siegel, and Siegel, 1979 Siegel, 1979
Elodea Sp.	Water Fern	Cytoplasmic Streaming	Chen, Siegel, and Siegel, 1979 & Briegleb and Schultz, 1980

TABLE 1 - Plants Used in Gravitational Biology and Space Research

.

ł

ī

Ser.

. .

•

		REALARCE ====================================	LICKIDE CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT
Eloden Sp.	Water Fern	Ligntfication by Stimulated Hypogravity and Water Stress	Chen, Siegel, and Siegel 1980
Hellanthus annuus Nellanthus annuus	Sunf lower Sunf lower	Gravity Induced Growth Response to Autotropic Strafehtenine	Firn, Digby, and Riley, 1977 Firn and Digby ₂ 1979
Neilanthus annuus Hellanthus annuns	Sunflower Sunflower	Response of Hypocotyls Response of Hypocotyls roferantronice	Brown and Chapman, 1982 Johnson and Pickard, 1979
Helianthus annuns Helianthus annuns Helianthus annuus	Sunflower Sunflower Sunflower	co cravit option Auxin in Shoot Gravitropism Role of Shuoi Apex in Gravity Gibberellins in Gravitropically Stimulated Roots	Rayle, Higliaccio and Watson, 1982 Firn, Digby, and Hall, 1980 El-Antably and Larson, 1974
Nordeum vulgare Hordeum vulgare	Barley Barley	Coleoptile Gravitrpoism Gravitropic Response of Leaf Sheath Pulvinus	Behl, and Jesihke, et al 1981 Dayanandan, Franklín, and Kaufman, 1981
Laelia Sp.	Orchid	Aerial Root Gravitropism	Westing, 1971
Lens culinaris	Lentl	Root Gravitropism	Perbal, 1982
Lepidium sativum	Garden Cress	Root Gravitropism	lversen, 1969 & El-Antably.
Lepidium sativum Lepidium sativum	Garden Cress Garden Cress	Rout Response to Gravitropism Graviperception in Cells	and Latson, 1974 Hart and McDonald, 1980 Hensel and Stevers, 1983
kolium multiflorum	ltalian kye Grass	Gravitropic Response of Leaf Sheath Pulvinus	Uayanandan, 1982
Lupinus albus Lupiaus albus	, I.upine Lupine	Root Response to Gravitropism Root Gravitropism	l.yon, 1961 Dijman, 1934
Lycopersicon esculentum Lycopersicon esculentum	Tomato Tomato	Response to Clinostating Response to Norizontal	Salisbury and Wheeler, 1980 Lyon, 1970
Lycopersicon esculentum Lycopersicon esculentum	Тоща ко Тошако	ctinoscac Clinoscacing Stem Gravicropism, Seimotropism, Epinasty	Siegel, 1979 Wheeler, and Sallsbury, 1979 & Wheeler and Sallsbury, 1984
Phalaris Sp.	Ganary Grass	Coleoptile Gravitropism	Darwin, 1880 (Fern, Digby, 6 Nall citation of Durvin)
Phaseolus Sp.	Bean	Response to Gravitropism	Salisbury, Wheeler, Salvinski, and Maellar 1902
Phaseolus vulgaris Phaseolus anreus Phaseolus coreineus	Wax Bean Anng Bean Scarlet Rumer Bean	Stem Gravitropism Kesponse to Hypogravity Root Gravitropism	chen, Siegek, & Siegel, 1979 Chen, Siegek, & Siegel, 1979 Slocum and Galston, 1982 Hartung, & Wolfram, 1981

ORIGINAL PAGE IS OF POOR QUALITY

Table 1 Cont:

5

「「「「「「「」」」」」

Phycomyces Physarum polycephalum Picen ables Pinus ethttt Pisum sativum Pisum sativum	Bread Mold		
Physarum polycephalum Picea abies Pinus ethitti Pisum sativum Pisum sativum Pisum sativum		Sporangiophore Gravitropism .	Dennison, 1961
	Silme Mold	Protoplastic Streaming	Briegleb & Schultz, 1980
	Norway Spruce	Root Response to Gravitropism	Iversen and Stegel, 1976
	Black Pine	Lignification	Cowles et al, 1984
	Реа	Auxin in Root Response	Lyon, 1972
	rea Pea		Lyon, 1961 Irvene and Freyere, 1961
Pteris longifolia Rhizophora mangle	Mangrove Mangrove	Lignification of Seedling Lignification of Seedling	Jones and Yokayama, 1983 Siegel, 1979
Ricinus communts	Castor Bean	Gravitropic Bending in Stems	
Ricinus Communis	Castor Bean	Response to Glinostating	Salisbury and Wheeler, 1980
Tagetes patula	Dwarf Marigolds	Hypogravity Peroxidase and Cell Wali Constituents	Sieel, Speltel, Shirari, and Fukumoto, 1978
		ficat	el, 1979
Tagetes patula Tavetes vatula	Dwarf marigolds Dwarf marigolds	Leat Epinasry Lignifaction	waper, wiiliaws, et al 1975 Seigel, Speitel, et al, 1981
Tagetes patula		Gravitropic Response	Dut
Tradescantla Sp.	Spiderwort	Response to Freefall	Gordon, 1972
Tritleum aestlvum	Wheat	Clinostating	Siegel, 1979
aestl	Wheat	Gravitropic Response of Node	Bridges and Wilkins, 1973
Triricum aestivum Triricum aestivum	Bheat Bhear	kesponse to rreetall Roof Gravitronism	GOTGON, 1972 Barlow, 1974
acsti	Wheat	2	. 1971
Triticum vuigare	Wheat	Response to Chronic Acceleration	Gray and Eduards, 19/1 ORIGINAL PAGE IS
Troparolum majus	Garden Nasturtlums	Root Response to Gravitropism	Lyon, 1961 Lyon 1961
'Vanilla planifolia	Vantila Vines	Root Gravitropism	lrvine & Freyre, 1961 (in Tenfer & Ronnert 1972)
Vanilla planifolia	Vanilla Vines	Root Response to Gravitropism	
Vica faba Vica faba	Broad Bean Broad Bean	Root Response to Gravitropism Root Gravitropism	Lyon, 1961 Hartung and Wolfram, 1981
Xanthium strumarium Xanthium strumarium	Cockelbur Cocklebur	Stem Gravitropism Response to Clinostating	Wheeler and Salisbury, 1981 Salisbury and Wheele ⁻ , 1980
700 MOV6		Wule of Shoot Anev in Gravity	Fire Discher and Rall, 1980)
cea mays Zea mays	Corn Corn	to Gravitropl	1981
Zea mays	Corn	Response of Coleoptiles to Gravitronism	Hild and Hertel, 1972
	Gorn	CC:	and Ney, 198
Zea unys Zea Mave	Corn	Role of ABA in Root Gravitropism Phototranic Resnouse	Evans and Mulkey, 1982 Brivs. 1960

, sì

1

6

,

J

SELECTED REFERNCES ON GRAVITATIONAL BIOLOGY AND SPACE RESEARCH

Anderson, M., J.A. Rummel, and S. Deutsch (ed.). 1979. "biospex: Space Experiments. A compendium of Life S kences Experiments Carried on U.S. Spacecraft. NASA Techincal Memorandum 58217. Washington, D.C.

Barlow, P. 1974. "Recovery of Geotropism after Removal of the Root Cap." J. Exp. Bot.. 25(89):1137-1146.

Bennet-Clark, T.A. and N.G. Ball. 1951. "The Diageotropic Behavior of Rhizomes." J. Exp. Bot.. 2:169-203.

Bridges, I. and M.B. Wilkins. 1973. "Acid-induced Growth and the Geotropic Response of the Wheat Node." <u>Planta</u>. 114:331-339.

Briggs, W. 1960. "Light Dosage and Phototropic Responses of Corn and Oat Coleoptiles." Plant Phsylology. 35:951-962.

Brown, A.H. and D.K. Chapman. 1982. "The First Plants to Fly on Shuttle." Physiologist Supplement. 25:S-5-S-8.

Brown, Allan H., A.O. Dahl and D.K. Chapman. 1976. "Limitation on the Use of the Horizontal Clinostat as a Gravity Compensator." <u>Plant Physiology</u>. 58:127-130.

Brown, A.H., A.O. Dahl, and D.K. Chapman. 1976. "Morphology of <u>Arabidopsis</u> Grown under Chronic Centrifugation and on the Clinostat." <u>Plant Physiology</u>. 57:358-364. and the second second

A STATE OF A

مارغا بالالتيار يستطل فالتسامين والتابخ المستنبع

Brown, A. 1983. "Resistance of Mature Arabidopsis Plant to Mechanical Deformation in Relation to G-force During Development." <u>Physiologist Suppl</u>. 26:S-149-S150.

Burstrom, H.G. 1971. "Oreintation and Geotropic Reaction of Seminal Roots of Wheat". Physiol. Planta.. 25:283-293.

Chen, N., S. Siegel, and B. Siegel. 1980. "Gravity and Land Plant Evolution: Experimental Induction of Lignification by Stimulated Hypergravity and Water Stress." Life Science and Space Res.. 18:193-198.

Cowles, J., H.W. Scheld,, R. LeMay, and C. Peterson. 1984. "Growth and Lignification in Seedlings Exposed to Eight Days of Microgravity." <u>Ann.</u> Bot. (supplement). 3:33-48.

Cowles, J., H.W. Scheld, C. Peterson, and R. LeMay. 1982. "Lignification in Young Plants Exposed to the Near-zero Gravity of Space Flight." Physiologist Supple. 25(6):S-129-S130.

Dayanandan, P., C.I. Franklin and P.B. Kaufman. 1982. "Linkage Between Gravity Perception and Response in the Grass Leaf-Sheath Pulvinus." Physiologist Supplement. 25:S-102-S103.

Dennison, D. 1964. "The Effect of Light on the Geotropic Response of Phycomyces Sporangiophores." J. of General Physiol.. 47:651-665.

El-Antably, H. and P. Larson. 1974. "Redistribution of Endogenuos Gibberellins in Geotropically Stimulated Roots." Nature. 250:76-77.

El-Antably, H. and P. Larson. 1974. "Distribution of Gibberellins and Abscisic Acid in Geotropically Stimulated Vicia faba Roots." <u>Physiol.</u> <u>Plant.</u> 32:322-329.

Evans, M.L. and T.J. Mulkey. 1982. "A Reevaluation of the Role of Abscisic Acid in Root Gravitropism". <u>Physiologist</u> <u>Supplement</u>. 25:S-25-S26.

5/

Firn, R., J. Digby, and A. Hall. 1981. "The Role of the Shoot Apex in Geotropism." Plant Cell and Envirn. 4:125-129.

Firn, R., and Digby, J.. 1979. "A Study of the Autotropic Straightening Reaction of a Shoot Previously Curved during Geotropism." <u>Plant Cell and Environ</u>. 2:149-154.

Firn, R., J. Digby, and H. Riley. 1977. "Shoot Geotropic Curvature - the Location, Magnitude, and Kinetics of the Gravity-induced Differential Growth in Horizontal Sunflower Hypocotals." <u>Ann. Bot.</u>. 42:465-468.

Gorden, S. 1973. "Effect of Free Fall on Higher Plants". COSPAR Life Sci and Space Res.. 11:155-162.

Gray, S. and B. Edwards. 1971. "Plant Responses to Chronic Acceleration." In: Gravity and the Oraganism (Gorden, S. and Cohen, M.) pg. 341-369.

Hart, J.W. and I.R. MacDonald. 1980. "The Influence of Light on Geotropism in Cress Roots." J. Exp. Bot.. 31:903-911.

Hensel W. and A Sievers. 1983. "Gravitropism in Plant Cells." Physiologist Supple. 26:S-60-S63.

Hild, V. and R. Hertel. 1972. "Intial Phase of Gravity Induced Lateral Auxin Transport and Geotropic Curvature in Corn Coleoptiles." <u>Plant</u>. 108:245-258.

Hoshizaki, T. 1983. "Clinostat Effects on Shoot and Root of <u>Arabidopsis</u>." Physiologist Supple. 26:S-151-S-152.

Irvine, J. and R. Freyre. 1961. "Diageotropism in Vanilla Roots." Science. 134:56-57.

Iversen, Tor-Henning. 1969. "Elimination of Geotropic Responsiveness in Roots of Cress (Lepidium sativum) by Removal of Statolith Starch." <u>Physiol.</u> Plant. 22:1251-1262.

Iversen, Tor-Heening and K. Siegel. 1976. "The Geotropic Curvature in Roots of Norway Spruce (<u>Picea abies</u>) Containig Anthocyanins." <u>Physiol.</u> Plant. 37:283-287.

Iwami, S. and Masuda, Y.. 1973. "Hydrogen Ion-induced Curvature in Cucumber Hypoctyls." Plant and Cell Physiol.. 14:757-762.

Johnsson A. and Pickard, B., 1979. "The Threshold Stimulus for Geotropism." Plant Phys. 45:315-319. Krikorian, A.D. and S.A. O'Connor. 1984. "Karyological Obseravtions." Ann. Bot. (supplement). 3:49-63. Krikorian, A.D., and S.A. O'Connet. 1982. "Some Karyological Observations on Plants Grown in Space." Physiologist Supple. 25(6):S-125-S-126. Lyon, C. 1972. "Auxin Control for Orientation of Pea Roots Grown on a Clinostat or Exposed to Ethylene". Plant Physiology. 50:417-420. Lyon, C. 1970. "Choice of Rotation Rate for the Horizontal Clinostat". Plant Physiology. 46:355-358. Lyon, C. 1961. "Measurement of Geotropic Sensitvity of Seedlings." Science. 133:194-195. Mulkey, 7. and M. Evans. 1981. "Geotropism in Corn Roots: Evidence for Its Mediation by Differtial Acid Effux." Science. 212:70-72. Perbal, G. 1982. "The Mode of Gravity Sensing in Plant Cells." Physiologist Supplemerit. 25:S-99-S100. Pickard, B. 1969. "Second Positive Phototropic Response Patterns of the Oat Coleoptile." Planta. 88:1-33. Pilet, P.E. and D. Ney. 1981. "Differential Growth of Georeacting Maize Roots." Planta. 151:146-150. Rayle, D.L., F. Migliaccio and E. Watson. 1982. "Role of Auxin and Protons in Plant Shoot Gravitropism." Physiologist Supplement. 25:S-33-S35. Roux, S.J., R.L. Biro and C.C. Hale, II. 1983. "Calcium Movements and the Cellular Basis of Gravitropism." Adv. Space Res.. 3(9):221-227. Salisbury, F., R. Wheeler, J. Sliwinski, and W. Mueller. 1982. "Plants, Gravity, and Mechanical Stress." Utah Sci. 43:16-21. Salisbury, F. and R. Wheeler. 1981. "Interpreting Plant Responses to Clinostating." Plant Physiology. 67:677-685. Salisbury, F.B., W.J. Mueller, P.T. Blotter, C.S. Harris, R.G. White, L.S. Gillespie, and J.E. Sliwinski. 1982. "The Mechanics of Gravitropic Bending in Leafy Dicot Stems." Physiologist Supplement. 25:S-111-112. Shen-Miller, J. and S.A. Gordon. 1967. "Gravitational Compensation and the Phototropic Response of Oat Coleoptiles." Plant Physiology. 42:352-360. Shen-Miller, J., r. Hinchman, and S.A. Gordon. 1968. "thersholds for Georesponse to Acceleration in Gravity-compensated Avena Seedling." Plant Physiology. 43:338-344. Shen-Miller, J. 1970. "Reciprocity in the Activation of Geotropism in Oat Coleoptiles Grown on Clinostats." Planta. 92:152-163.

A DESCRIPTION OF THE OWNER OF THE

Siegel, S. 1979. "Gravity as a Biochemical Determinant." Life Science and Space Res., 17:147-160.

Siegel, S., Speitel, T., Shirali, D., and Fukumoto, J.. 1978. "Effects of Experimental Hypogravity on Peroxidase and Cell Wall Constituents in the Dwarf Marigold." Life Science and Space Res.. 16:105-109. ある

Siegel, S., B. Siegel, and J. Chen. 1981. "Lignification and Land Plant Evolution." In: Billingham, Life in the Universe, NASA Symposium, NASA-Ames Research Center, MIT Press, Cambridge. pg. 307-316.

Siegel, S., T. Speitel, D. Shiraki, and J. Fukumoto. 1978. "Effects of Experimental Hypogravity on Peroxidase and Cell Wall Constituents in the Dwarf Marigold." Life and Space Res.. 16:105-109.

Slocum, R.D. and A.W. Galston. 1982. "A Comparative Study of Monocot and Dicot Root Development in Normal (Earth) and Hypogravity (Space) Environments". Physiologist Supplement. 25:S-131-132.

Slocum, R.D., J.J. Gaynor, and A.W. Galston. 1984. "Cytological and Ultrasturctural Studies on Noot Tissues." Ann. Bot. (supplement). 3:65-76.

Waber, J., B. Williams, J. Dubin, and S. Siegel. 1975. "Changes Induced in Peroxidase Activity under Simulated Hypo-gravity." Physiol. Plant. 34:18-21.

Wheeler, R. and F. Salisbury. 1980. "Gravitropism in Plant Stems May Require Ethylene." Science. 209:1126-1127.

Wheeler, R. and F. Salisbury. 1979. "Water as a Convenient Means of Imparting Mechanical Stimulation to Plants." HortScience. 14:270-271.

Wheeler, R. and F. Salisbury. 1981. "Gravitropism in Higher Plant Shoots. I. A role for Ehtylene." Plant Physiology. 67:686-690.

considerable layer thickness and cling to surfaces for which it has an affinity, while the maximum diameter of pores for which capillary action is an effective filling mechanism, is increased dramatically.

As a general principle, mass flow and gravity driven air convection constitutes a major mechanism of heat exchange between the plant and its environment as well as for movement of metabolic gases. In a micro-gravity environment, heat exchange through transpiration and the exchange of CO_2 and O_2 with the atmosphere will be severely humpered or perhaps reduced to a process of pure diffusion. The effects upon plant function are of very basic interest and such data could provide significant observations from the basic science point of view.

It is well recognized that excessive moisture in tight soils or growth media reduces air movement often with deleterious effects. In a micro-G environment, this problem will be accentuated. Any soil matrix, unless subjected to mechanical force to effect drainage, will become water-logged. Fluids, because of the dominance of surface tension or molecular attraction will tend to deposit themselves in unexpected and inconvenient places on the plant surfaces in growth media thus greatly impeding air movement and the supply of oxygen to plant cells.

والعتيبية الثيابي هوالمعاصر يزوو لأستخص فالخويدي

مستعينة المعقبي بالحرمية المقاربة ولالمسالحاتي المقابط أعفا كالمعدون

· Ś

ومعاقبته والمستردية والإدراق وموصيتهم والمستري والمسترية فالمد

and the second state to the second second second second

Although the foregoing discussion has been couched in terms of certainty, and while there are sound theoretical reasons for believing that the picture just presented represents the truth, there has been, as far as we know, no actual characterization of the effects of the micro environment upon the plant in micro-G and, in fact, no careful study by biological or physical scientists of the more general phenomenon of absence of convective air flow in zero-G. All discussions of botanical experiments in micro-G either ignore the possibility or assume that the effects would be insignificant or non-existant. In fact, there is apprently no way of predicting a priori what will be the precise nature of the convective environment in micro-G and it has been suggested by various people that the general phenomenon of behavior of air masses of different densities might be of a very great basic interest to some physical scientists, and hence, deserving of careful consideration without reference to its importance to plant growth (G. Brueckner - personal communication). There is, however, reasonable circumstantial evidence that such effects are real and have a significant impact. Altered areation and gas exchange in plant root appears to constitute the best explanation of a normal cell structure, cell division, and mitochondrial development in recent U.S. flight experiments (Cowles et al., 1982, 1984; Krikorian and O'Connor, 1982; Brown and Chapman, 1982; Slocum et al., 1984).

It logically follows from this discussion that if we are to design plant growth systems either for basic science experiments or for practical functions in providing food or atmospheric recycling on future spacecraft, it is of great importance to derive data for design of such hardware from a carefully planned characterization of the micro-G environment with respect to its interaction in the phenomena of interest. In a word, if we are to design micro-G rated plant culture systems, we will need ultimately to base such systems on micro-G derived data.

II. American Flight Experience

The most notable characteristic of the U.S. program in plant biological experimentation is its small size in terms of either number of tests og number of species tested. Table 2 summarizes the totality of U.S. #Light experimentation from its earliest trials to the present. Excluded are the so-called student experiments or other tests such as the Get-Away Special seed exposure experiments of the Park Seed Company which were primarily public relations efforts with no appreciable science content or technical validity. As of the fall of 1984, only two full scale botanical experiments have been carried into orbit and successfully completed on American spacecraft: the STS-3 plant lignification experiment in the spring of 1982, and the Spacelab I Heflex experiment on sunflower nutation. Although both produced results with practical implications, both were oriented primarily toward testing hypotheses in basic gravitational biology. Neither paid especial attention to the possible confounding tertiary effects of the space environment.

14

14

The major practical result of both the Heflex and the lignification experiments was in the results of tests peripheral to the main science objectives, which examined the growth and health of the roots. The general result was the observation that such roots exhibited unexplained anomalies in cell division and mitochondrial development (Cowles <u>et al.</u>, 1982, 1984; Krikorian and O'Connor, 1982; Brown and Chapman, 1982; Slocum <u>et al.</u>, 1984). Similar observations have been reported from a number of Soviet experiments. The most reasonable explanation for this phenomenon lies in the obvious fact that none of the experimental root systems were maintained under conditions that would allow circulation or aeration by convective flow equivalent to standard 1-G conditions. These observations thus point to the need for careful examination of indirect effects of the micro-G environment in any practical use of plants as well as in the planning of basic science experiments.

III. Soviet Flight Experience

This effort, which has formed the major portion of the total information gathering effort, is part of the continuing survey of Soviet pronouncements upon, or reference to, their space activities with special attention to the use of plant systems in support of their specific flight activities. The results of research of the Soviet literature have been compiled into an extensive document which is primarily of interest to scholars and is beyond the scope of the present report. It is being prepared for publication, as a separate document. The general findings of this work are summarized here.

While American experience with cultivation of plants in space is negligible, the Soviets have been continuously engaged in a variety of tests with plant systems since the earliest days of their space flight program. By comparison to the American interest, limited to science only, the Soviets have maintained a continuous and intensive effort of practical plant growth testing on orbit for over ten years. Since 1975, every manned mission has carried as a minimal compliment, onlons growing in small pots, and often other plants such as orchids and tulips; primarily for the purpose of entertaining the crew. In addition, a variety of experiments utilizing several hardware items, ranging up to relatively complex small growth chambers, has been flown routinely. These experiments range in objectives from basic

TABLE 2 - Plants Used in U.S. Flight Experiments*

SFECIES	COTTAON NAME	PLAUT NAVE	FLIGHT	PART USED	PIIEIKAIERUKI STUDTED
Pinus elliottii	Pine	Gymnosperm Noody Plant Timbertree	STS-3	Germinating seeds + seedlings	• Gravitropism, lignification
Avena sativa	0at	Nonocot, Grass, Field Crup. Grain	515-3	Dry seeds + seedlings	Gravitrooism, liquification, cytological damane
Oryza sativa	Rice	Honocot, Grass, Field Crop Grain	Skylab	Ory seeds + seedlings	Phototropism
Triticum aestivum (vulgare)	L'heat	Nonocot, Grass, field Crāp Grain	Biosatellite II	Dry seeds → emerging roots	Gravitropism, cytology, bio- chemistry
<u>Zea mays</u>	Corn	Monocot, Grass, Field Cron Grain	Discoverer XVLI ASTP	Dry seeds	Radiation and HZE damage
Phaseolus aureus	flung bean	Dicot, Legume Garden Vege- table	. E-SIS	0ry seeds + seedlings	Gravitropism, lignification, cytological damage
Vicia faba	Broad Bean	Dicot.legume Garden Yege- table	ASTP	Dry seeds	Radiation and HZE damage
Nicotiana tabacum	Tobacco	Dicot Field Crop Recreational Drug Herb	ASTP	Dry seeds	Rediation and HZE dymage
Helianthus annius	Sunflower	Dicot,Field Crop Oilseed	STS-2 STS-3 Spacelah 1	lthole seedlings	Gravitropism (nutation) Cytological damige

* Data Complied from: Anderson, et al. 1979. Brown, et al. 1982. Cowles, et al. 1982. Cowles, et al. 1984. Slocum, et al. 1984.

لىد
2
3
ç
n.
¢
-
p,
ંત્ય
<u> </u>

SPECIES	COMPION NAME	PLANT NAME	FLIGHT	PARE USED	PHEROMERKAN STUDIED
Capsicum annuum	Bell pepper	Dicot, Garden Vegetable	Biosatellite	ihole irmature plants	Gravi tropi sm
Arabidopsis thallana	Mouse-ear cress or European water cress	Dicot, miniature plant Laboratory Organsim	ASTP & Apollo 16. 17	Ûry seeds	Radiation and HZE damage
Iradescantia paludosa	Spidemort	Dicot, ornamental flower Laboratory Organism	Biosatellite 11	Excised flower stems	Genetic damaqe
Daucus carota (Tissue Culture)	Wild carrot	Dicot Heed, Garden Vege- table in the Domesticated Form	Kosmos 782, 1129	Cells and embryoids	Embryonic development
Elodea densa	Elođea	Monocot, Aquatic Nerb, Aquarium Plant.	Skylab	Excised leaves	Cytoplasmic streaming
Spirodela polyrhiza	Duckweed	Dicot very small vestigal water plant	0V1-4	thole plants	Growth
Chlorella ellipsoidea	green alga	Unicellular plant	Discoverer XVII	Cells	Growth, radiation
<u>Cilorella</u> sorokiniana	green alqa	Unicellular plant	0V1-4	Cells	Growth

science, aimed at evaluating effect of gravity upon such phenomena as cell development and ultrastructure and the ability of test tube plants (such as <u>Arabidopsis thaliana</u>) to flower and form seeds, to the very practical problems of plant growth for food production.

The Soviets have never been noted for elegance or sophistication in their undertakings; typically, they accomplish their aims by massive and concentrated effort. Their approach to space biology is no exception. They have done their experiments, often crudely, but in very large numbers. In spite of anomalies, unexplained results and downright failures, they have moved forward and out of all their efforts, they have observed enough successes or have understood the reasons for their failures to the point that they have convinced themselves that space presents no real biological barriers. This is true with respect to plants as well as human or animal systems. They have in the past explained their inability to grow plants reliabily in space by saying that plants need gravity to grow. This is probably more related to political expedience than actual belief. It may not be wise to complain about the very poor conditions of the spacecraft or their inability to engineer adequate environmental control systems.

سريد خاكا تسميا يأرمنه فسرغا معادم

大きななない いたいない しいない しきたいたい いたい いたい

It is obvious, from much of what they write, that no one in the controlling faction of the space biology establishment believes that there are any fundamental effects of weightlessness upon living systems. Their goals, of course, are quite different from those of the U.S. While we in the U.S. tend to vacillate quite a lot about why we are going into space, and often attempt to justify our going into space as a means of doing science, the Soviets care relatively little about science itself as a goal. They are frankly interested in more practical aspects. Whatever they might lack in the finesse with which they pursue their space program, one can never criticize the Soviets for their ambitions nor for the imagination and far reaching vision which guides their efforts in space. From the earliest days of their interest in space, their effort has been guided by a common vision, no doubt held to a greater or lesser degree by the national leaders as well, that of the extension of the Soviet domain into space not only in the exploratory and scientific sense, but in the occupation and large scale use of space as an extension of the national borders. They have not been reticent in proclaiming these goals. Thus in their efforts with plant experiments in space, the Soviets are very frankly problem-focused in their approach. The problem is simply this: how to use plants, higher or lower, in systems which will support their efforts to explore and conquer the Cosmos.

PART II

PHYTOMECHANICAL SYSTEM CONCEPT DEVELOPMENT

は記述の

This section outlines an empirical approach to the development of plant systems for support of space activities. Such an approach appears entirely justified based upon our quite limited knowledge of the space flight environment and the responses of plants in that environment. It is well to remember that the basis of what we consider to be modern terrestrial agriculture and horticulture was laid over the centuries in empiricism and art. Modern science and engineering have produced some remarkable advances, but none of these would have been possible without the ability to build upon the ancient foundation. That same foundation of experience is not yet available to those who wish to culture plants in space. We, therefore, will only be able to make appreciable progress if we have some reasonable body of empirically derived data upon which to build.

I. Habitability Support System Characteristics

In initiating this effort, we began to consider the characteristics and components of a program which would be necessary to develop a habitability system, or systems, for support of major orbital space activities or of activities on other planetary surfaces. The general approach taken was to define, based upon current knowledge, what was considered to be a final system in terms of its major characteristics in order to establish a target; and, then, to visualize the program necessary to arrive at that target system. In Table 3 are listed the general characteristics of this target system visualized as being appropriate based upon current knowledge.

Table 3. Characteristics of Target Phytomechanical Habitability Support Systems

- They will be very large, but comprised of relatively small, individual units.
- They will not be self-regulating biological systems and, in fact, by definition will be a combination of biological and mechanical systems.
- 3. They will incorporate redundancy from both organic and chemical systems and their capacity will be lightly stressed in order to enhance reliability.
- 4. They will be largely isolated from the human habitations.
- 5. They will utilize growing conditions for plants which are radically different from conditions ordinarily utilized in terrestrial plant culture.
- 6. They will initially emphasize atmosphere and waste recycling over food production as a primary function because of the probable difficulties of large scale food conversion.

7. They will develop incrementally through space flight experience with small fragments and components of the overall system.

4

and the second second

and the second sec

8. They will retrofit with minimum modification of in-place physicochemical systems.

The general scenario for the long-term development of plant culture systems for space is depicted in Figure I. There is nothing about the currently defined target system or the pathway to its development that specifies precise configurations or technologies employed. We are, in effect, deferring specific questions related to the selection of final system concepts and approaches until we have gained sufficient data and operational experience in the handling of plants in space to support rational decisions. The present report summarizes the results of our efforts in defining the first empirical plant growth systems which will provide the needed operational experience and data in handling plant systems in space as well as some practical support of the general flight food system.

II. Considerations in Concept Development

It is virtually impossible, within a document of less than textbook length, to present in detail the large number of inputs and sources of information and the complex thought process involved in the sifting of information and weighing of possibilities for a plant culture chamber for space use, particularly one which is to have a more practical emphasis. A number of efforts have been published relating to plant growth facility design. These have ranged from the somewhat grandiose and superficial discussions of space greenhouses (Model1, 1977; Phillips, Leggett and Fielder, 1984; Crawley 1977; Phillips, 1979) to the relatively specifically focused documents emanating from the CELSS program (Mitchell et al., 1984; Hoshizaki and Hansen, 1981; Meissner and Modell, 1979; Moore et al., 1982; Raper et al., 1979) to the various efforts aimed at development of specialized hardware for basic science experimentation. Two such instruments have been built and flown in Shuttle (Brown and Chapman, 1982, 1984; Cowles et al., 1982, 1984; Maine et al., 1979) and more complex units have been considered. All of these as well as a considerable body of experience and information regarding conventional plant culture systems and art were incorporated into the effort summarized here.

The focus of this effort, however, has been quite different from the published work. As indicated in Table 3 and Figure 1, it has begun to examine the practical problem of space plant growth systems at the simplest useful level. It began with a given set of constraints and requirements and explored the possiblities within the envelope of these requirements. A relatively large number of dead-ends were explored and while these are useful to know, a detailed account will largely detract from a discussion of the concept development. The discussions and diagrams which follow outline the major steps in the process of developing approaches to small plant growth systems for Shuttle.

Constraints in Design Envelope

The following are the constraints placed on the plant growth system:

FIGURE 1 - Time Course for Development of Space-Borne Plant Culture Systems

portions of the life support load large scale hubitability and life support systems modules are gradually brought on line to take up increasing proexterior to, or seperate from, large apparatus or aggregates construction, external to the habitats, of specialized moddichotomy based on function: major contribution to life planetary surface Operational Use humon habitations a) orbiting &G
b) planetary ules for growth Stage J of modules support 9661 ł ī ı ī ī 1 modules, space station significant support of expanded use-sultiple planning exercise for major operational use design data for major aesthetic/psychological support operational development of data on capaci-ties and mechanical/biological problems minor contributions to fuod supply and habitdiversion for crew space habitability :661 food production data collection support systems Operational Testing of Nardware Concepts Integration into spacecraft structure or mounted ŧ 2561 i ,i ł ī Stage 2 tested and operation-al growth hardware toutine carry-on of collection of opercation, or redesign de-bugging, modifiexpanded data base modular apparatus habitable space single modules ational data major uses: 0561 ability କଳ ī ī ŧ 1 ŧ ŧ i ł 1938 small tests routinely carried on shuttle flights properties of space environsynthesis of design concepts small test hardware module designed to yield data on: collection and analysis of systeps design and fabrication of plant reactions to space Concepts/Baseline Data physical properties of hardware components scall fragmentary ŧ . Stage I 1986 test data . for hardware design environment engineering **baterials** test data nent 1984 . 1 1 ı. ŧ ٠ 1 ł CIMPACTERISTICS HAIN PRODUCTS MAJOR ACTIVITIES TINE SCALE

56

- A. Functional Requirements
 - to provide useful contributions to the food system prime requirement;
 - to test empirically the "best guess" of what a growth system should be;
 - 3. to provide a test bed for acquisition of experience and data.

B. Hardware Configuration

- must fit into a standard slot in the orbiter; the bulkhead storage locker system;
- 2. must have simple, low cost construction;
- 3. must use least complex growth systems consistent with adequate function; and
- 4. must be configured to grow salad-type vegetable plants.

II. Approaches to Salad Production

After an examination of the various possibilities within the constraint envelope, two general approaches were adopted and pursued. The first, and simplest, was in the use of seed sprouts as a low cost, low technology means of producing fresh salad vegetable material. The second was, more conventionally, the use of standard garden vegetable plants in a small, lighted growth chamber.

Sprouting Systems

Seed sprouts offer a number of advantages both as a quick and easy way of providing fresh vegetable material and in short Shuttle flights and as a more routine food for much longer duration space flights (Figure 2). Seeds of the various vegetables and field crop can be stored dry for considerable periods of time. When fresh sprouts are needed, water is the only needed input to bring about a five to seven-fold increase in fresh weight. The most important characteristic is the marked increase in food value associated with sprouting. Vitamin content increases dramatically, fat and carbohydrate content are reduced while relatively little protein is lost, fiber content increases, and many of the inhibitors and toxicants associated with seeds are lost.

Apparatus necessary for seed sprouting is minimal. Light, soil, and the containers necessary for whole plant cultivation are not necessary; water and a well drained, aerated container are the major requirements. The space environment with the altered conditions of fluid movement, as discussed in Part I, places some constraints on the process, but once recognized the elimination of the constraints is merely an engineering problem.

A number of potential issues was addressed and resolved during the development effort. These will only be listed here:

- 1. microbial contamination;
- 2. toxicant content of seeds and sprouts;
- 3. selection of species for use in flight conditions;
- 4. sources of water and water addition schedules particularly as they related to flight conditions; and

South States and the second second

1

FIGURE 2 - Comparative Characteristics of Seed Sprouts and Mature Salad Vegetable Plants as Candidates for Testing and Use in Small Inflight Fresh Food Systems

L.L.L

4

CHARACTERISTIC	SPROUTS	MATURE PLANTS
Time to Maturity	4 - 6 Days	ùp to 90 Days
Complexity of Apparatus	Simple and compact: necessity only for water and aeration; orientation not problematic.	Nore complex and larger: provision for soil and nutrients, light and tempera- ture control, orientation of plant parts.
Variety of Food Items	Limited - A single type of item with limitations in taste texture and range of uses	Variety large - limited only by ability to contain and grow the plant.
₽opularity/Aesthetic Appeal	Limited because of food habits of gen- eral population. Not especially ap- pealing from an aesthetic point of view.	Wide popularity; high aesthetic appeal both during growth and at consumption.
Rutritional Value	Adequate. Limit on amount which can be consumed raw without complications.	Adequate.
Processing/Use	Very simple. No waste, no mess.	Not complex but with significant waste disposal problems.
Experimental Value	Useful for development of fluid/air handling technology.	Useful for development of soil, nutrient and microbiological technology. Useful for light and energy technology develop- ment and for study of air/gas handling.

(Th

4

2

5. storage and/or pre-germination of seeds. None of these were seen as having an appreciable impact upon the use of seed sprouts in Shuttle or extended flight systems.

The system depicted in Figure 3 represents the end point of an exercise which considered several different approaches to the problem of routinely producing salad sprouts on Shuttle. It utilizes the storage locker and the configuration of the standard half-locker tray as a structural envelope. A number of issues related to operation remain to be worked out; many will depend upon flight testing for resolution.

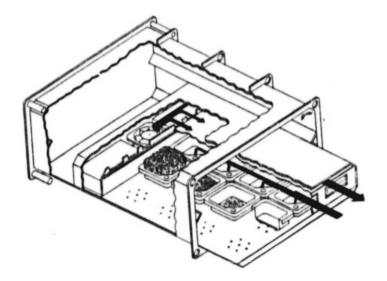


FIGURE 3 - Configuration of Shuttle Middeck locker based seed sprouting system. Unit is sized to half-locker tray.

The general features of the system are as follows:

- The seed sprout container is the standard six ounce Shuttle food system pack. Seeds are packaged and stored dry under vacuum in the same manner as dehydrated foods.
- The dry packs are installed in the system using a tool which perforates the bottom of the food pack, and the flexible cover is either perforated or removed.
- 3. Water is added to the dry seeds to initiate germination and is added periodically, as required, to maintain sprouting. Watering could be accomplished by hand, but a system for sensing moisture content and adding water as needed could be utilized.
- 4. In operation at micro-G, the system fan pulls a low flow of air down through the seeds into the space below and then forces it out through a channel separated from the compartment containing the seed packs. This small air flow serves to aerate the seeds

and in micro-G, theoretically, should be adequate to prevent the seeds or sprouts from floating out into the cabin environment.

The configuration shown in Figure 3 has been built and operated on the ground as a nonflight-qualified item. Issues such as watering practice, air flow, and general workability of the apparatus in micro-G will only be resolved by flight experience.

Whole Plant Chambers

The more conventional approach to growth has taken, as a starting point, the space envelope of one middeck foreward bulkhead locker, the exterior middeck dimensions of which are 21.062 in. x 10.757 in. x 18.125 in. A detailed description of the locker is included in the NASA <u>Orbiter</u> <u>Middeck Payload Provisions Handbook</u>. Because of the practical approach taken in this effort, many of the orientation and space constraints of an earlier effort (Maine et al, 1979; Cowles et al., 1982, 1984) were not necessary (see Figure 4) and thus more optimal use could be made of the available space.

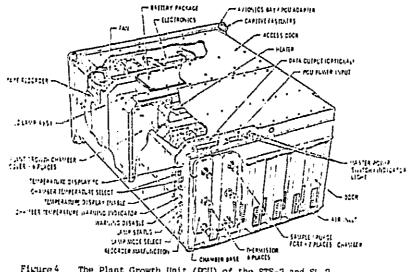


Figure 4 The Plant Growth Unit (PGU) of the STS-3 and SL-2 Lignification Experiments. Dimensions - 51 x 36 x 27 cm and sized to fit a standard mid-deck

locker space

Weight as used on STS-3, approximately 24 Kg Average Power as used on STS-3 - 52 W at 28 Vdc

Power interface by single power cable to an outlet in the ceiling of the Shuttle Mid-deck.

Source: V.S. Clifton, 1982. Spacelab Mission 2 Experiment Descriptions-Second Edition. NASA TM-52477. NASA George C. Marshall Spacerlight Center. The general effort had two thrusts:

- 1. A study of optimized configuration for the envisioned use; and
- 2. Consideration of the general array of technology to be taken into account in development of a growth system.

Figure 5 schematically summarizes the various issues as outlined below:

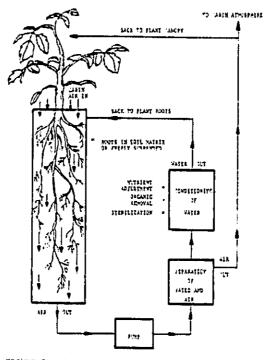


FIGURE 5 - Concept for Control of Watering and Aeration in a Zero-Gravity Environment.

- 1. Optimal configuration of the container.
 - a. Geometry which may be very dependent upon tests in a zero-G environment.
 - b. Volume of contained area related to plant size and species.
- 2. Composition of the growth/support medium.
 - a. Synthetic, versus natural materials, versus a modified hydroponic/aeroponic system.
 - b. Porosity and affinity for water.
 - c. Fertilizer delivery system slow release, versus ion exchange, versus hydroponic solution.

- 3. Operating parameters.
 - a. Air and liquid movement rates.
 - b. Temperature regulation of the root zone.
 - c. The role of microorganisms important because of disease, human and plant, but also because microbes could function in atmosphere scrubbing.

Ż

. Ц. 1. (

- 4. Mechanical systems.
 - a. Air and water handling, zero-G separation of the two being the main problem.
 - b. Water cleanup and conditioning.
 - i. Nutrient adjustment.
 - ii. Removal of root and microbial metabolites.
- 5. The adaptability of various plant species to the system.

All of the points listed are subjects of continuing efforts. This report and the growth chamber concepts it presents are merely single frozen moments in an evolving field. Much of what we add will depend on flight test data and experience.

Most of the points have been addressed, at least briefly, in discussions of Part I. Point 5 needs a brief, philosophical note. The whole business of species selection can get out of hand. It is one of those projects which can easily generate much apparent result without any real progress. Several lists have been generated formally by NASA. The writer has informally assembled one on a more limited scope and knows of several unpublished lists which have been generated in a different context by other agricultural researchers. The main point we need to make is that species selection is a kind of activity undertaken when no one is really certain as to what should be done next. The approach we take here presumes that we know enough about the properties of plant systems and the specific requirements of the several functions they must perform to select species which are adequate for a particular function at this early stage of development. The ultimate selection of plant species will very likely, as indicated in Table 3, take into consideration and select for optimal performance in an environment very different from the one encountered by the standard horticultural and field crop varieties now in use.

Growth Chamber Concepts

The growth chamber shown in Figure 6 embodies most of the issues listed above. Figure 6-B depicts a configuration appropriate for dwarf varieties of small, bush-type plants such as tomatoes or peppers. Figure 6-A depicts the configuration more appropriate for a low profile leaf or root vegetables such as lettuce, onions, or radishes. All exterior dimensions of the chamber shown are the dimensions of the Shuttle locker. Materials are yet to be determined by flight configuration. In the models depicted, all

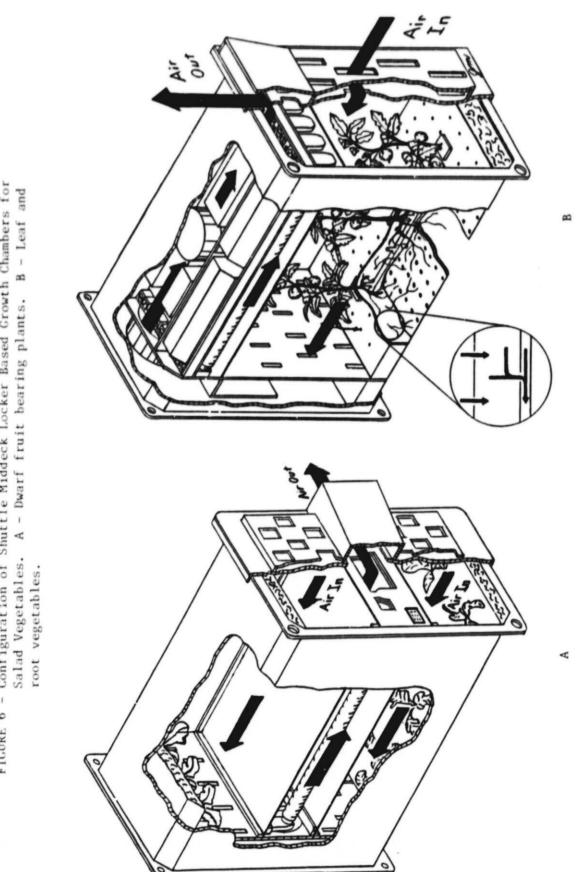


FIGURE 6 - Configuration of Shuttle Middeck Locker Based Growth Chambers for

materials are off-the-shelf plexiglas or lexan, standard light and electronical components, and foamcore for the frames and shells.

Air flow is set to move across the plant from the Shuttle environment and to exit across the lamps to provide cooling. Growth media and roots are aerated and water is controlled by positive movement of air down through the growth substrate area aided by a small vacuum pump. Water is metered into the growth substrate area under control of a sensing system that limits over watering and movement of excess fluid.

Working models of both configurations have been built and tested in the i-G configuration with orientation of the lights, and other components, 90° to the flight orientation as the instruments would be mounted in a shuttle locker. These configurations thus form a base line and starting point for an effort aimed at flight development and testing of small growth systems.

SELECTED REFERENCES ON SEED SPROUTING

Adkins, D. M. 1920. "LVI. Digestibility of Germinated Beans." <u>Biochem. J.</u> 14:637-641.

Ananda, S. 1982. Love the Sunshine in With Sprouts. A Better Health for Life Publication, John Becker, Corvalis, Oregon.

Bagley, B.W., J.H. Cherry, M.L. Rollins, and A.M. Altschul. 1963. "A Study of Protein Bodies During Germination of Peanut (<u>Arachis Hypogaea</u>) Seed." Amer. J. Bot. 50:523-539.

Baker, E., and E. Baker. 1980. The UNcook Book. Communication Creativity, Sagauche, Colorado.

Banerjee, S., and R. Banerjee. 1950. "Studies on the Biosynthesis of Nicotinic Acid. Part I. Biosynthesis of Nicotinin Acid by Germinating Pulses." <u>Ind.</u> Jour. Med. Res. 38:153-160.

Banerjee, S., A.R.G. Roy, and P. Kumar Ghosh. 1959. "Folic Acid Metabolism in Germinating Seeds." Food Research. 24:332-334.

Banerjee, S., K. Rohatyi. 1955. "Pyridoxine Inositol and Vitamin K Cotents of Germinating Pulses." Food Research. 20: 545-547.

عفيليفسي الإستريك

كالمرابع والمحافظ والمح

and the second second second second

ł

Banerjee, S., N.C. Ghosh, and N. Nandi. 1951. "Studies on the Biosynthesis of Nicotinic Acid. Part III. Effect of Germination on the Nicoticic Acid, Nicotinuric Acid, Ni-Methyl-Nicotinamide, and Trigonelline Values of Pulses and Cereals." Ind. Jour. Med. Res. 39:447-451.

Beauchene, R.E. and H. Mitchell. 1957. "Effect of Temperature of Dehydration on Proteins of Alfalfa." Agricultural and Food Chemistry. 5:762-765.

Bernstein, L. 1943. "Amylases and Carbohydrates in Developing Maize Endosperm." American Journal of Botany. 30:517-526.

Berrang, B., K.H. Davis, Jr., M.E. Wall, C.H. Hanson and M.E. Pedersen. 1974. "Saponins of Two Alfalfa Cultivars." Phytochem. 13: 2253-2260.

Bhagvat, K. and K.K.P. Narasinga Rao. 1942. "Vitamin C in Germinating Grains." Ind. Jour. Med. Res. 30:493-504.

Blauer, S. 1981. The Miracle of Sprouting. Green Grown Publications, Boston, Massachusetts.

Bogart, R. and J.S. Hughes. 1935. "Ascorbic Acid (Vitamin C) in Sprouted Oats." J. Nutr. 10:157-160.

Catsimpoolas, S., T.G. Campbell, and E.W. Meyer. 1968. "Immunochemical Study of Changes in Reserve Proteins of Germinating Soybean Seeds." <u>Plant Physiol.</u> 43:799-805.

Chattopadhyay, H. and S. Banerjee. 1951. "Studies on the Chlorine Content of Some Common Indian Pulses and Cereals both Before and During the Course of Germination." Food Res. 16:230-232.

Chattopadhyay, H. and S. Banerjee. 1953. "Effect of Germination on the Biological Value of Proteins and the Trypsin-Inhibitor Activity of Some Common Pulses." Ind. Jour. Med. Res. 41:185-189.

Cheeke, P.R. and J.E. Oldfield. 1970. "In Vitro Inhibition of Succinate Oxidation By Alfalfa Saponin." <u>Can. J. Anim. Sci</u>. 50:107-112.

Chick, H. and E.M. Delf. 1919. "XXII. The Anti-Scorbutic Value of Dry and Germinated Seeds." <u>Bioch</u>. 13:199-218.

Chien, T.F. and H.L. Mitchell. 1970. "Purification of a Trypsin Inhibitor of Alfalfa." Phytochemistry. 9: 717-720.

Choate, H.A. 1921. "Chemical Changes in Wheat During Germination." Botanical Gazette. LXXI: 409-424.

Cooperman, J.M. and C.A. Elvehjem. 1944. "The B Vitamin Content of Groats and Rolled Oats." J. Nutr. 27: 329-333.

Crocker, W. 1916. "Mechanics of Dormancy in Seeds." <u>Amer. J. Bot.</u> 3:99-120.

Davis, A. 1954. Let's Eat Right to Keep Fit. Harcourt, Brace and Company, New York.

De, H.N. and S.C. Barai. 1949. "Study of the Mechanism of Biosynthesis of Ascorbic Acid During Germination." Ind. Jour. Med. Res. 37: 101-111.

Dotzendo, A.D. and J.G. Dean. 1959. "Germination of Six Alfalfa Varieties at Three Levels of Osmotic Pressure." Agron. J. 51: 309-309.

Drennan, D.S.H. 1962. "Physiological Studies of Germination in the Genus Avena. II. Changes in some Metabolites During the Germination of Grains of A. Sativa." New Phytology. 61: 261-205.

Dunn, M.S., M.N. Camien, S. Shankman, and H. Block. 1948. "Amino Acids in Lupine, Soybean Seeds, and Sprouts." Arch. Biochem. 18: 195-200.

Evans, C.R. 1922. "Effect of Temperature on Germination of <u>Amaranthus</u> retroflexus." Bot. Gaz. 73:213-225.

Evans, R.J. and S.L. Bandemer. 1967. "Nutritive Value of Legume Seed Proteins." J. Agric. Food Chem. 15:439-443.

Everson, G.J., H. Steenbock, D.C. Cederquist, and H.T. Parsons. 1944. "The Effect of Germination on the Stage of Maturity and the Variety Upon the Nutritive Value of Soybean Protein." J. Nutr. 27: 225-229.

Gestetner, B. 1971. "Structure of a Saponin From Lucerne (Medicago sativa)." Phytochemistry. 10: 2221-2223. 語が表示者にいたない

Gilbert, S.G. and H.M. Sell. 1957. "Biochemical Changes During Germination of the Tung Seed." Plant Physiology. 32:668-674.

Hall, GS. and DL. Laidman. 1968. "The Pattern and Control of Isoprenoid Quinone and Tocopherol Metabolism in the Germinating Grain of Wheat (<u>Triticum</u> vulgare)." <u>Biochem</u> J. 108:475-482.

Hayward, J.W., H. Steenbock, and G. Bohstedt. 1936. "The Effect of Cystine and Casein Supplements Upon the Nutritive Value of the Protein of Raw and Heated Soy Beans." J. Nutr. 12:275-283.

Hegdecker, W. 1973. <u>Seed Ecology</u>. Penn State University Press. University Park.

Hesterman, O.B., L.R. Teuber, and A.L. Livingston. 1981. "Effect of Environment and Genotype on Alfalfa Sprout Production." <u>Crop Science</u>. 21:720-726.

Holman, R.T. 1948. "Lipoxidase Activity and Fat Composition of Germinating Soybeans." Biochem. J. 17:459-466.

Horner, H.T. and H.J. Arnott. 1965. "A Histochemical and Ultrastructural Study of Yucca Seed Proteins." Amer. J. Bot. 52: 1027-1038.

Howell, R.W. and J.L. Carter. 1958. "Physiological Factors Affecting Composition of Soybeans. II. Response of Oil and Other Constituents of Soybeans to Temperature under Controlled Conditions." Agron. J. 50:664-667.

Hymowitz, T. 1970. "On the Domestication of the Soybean." <u>Economic</u> Botany. 24:408-421.

Iengar, N.G.C., V. Jayarman and Y.V.S. Rau. 1955. "Thiamine Contents of Some Indian Foodstuffs. Part II. Studies on Thiamine Contents of a Few Leguminous Seeds During Germination." <u>Annals of Biochemistry and Experimental Medicine</u>. 15:49-54. and the second

Jackson, H.D. and R.A. Shaw. 1959. "Chemical and Biological Properties of a Respiratory Inhibitor from Alfalfa Saponins." <u>Archives of Biochemistry and</u> <u>Biophysics</u>. 84: 411-416.

James, A.L. 1940. "The Carbohydrate Metabolism of Germinating Barley." New Phytology. 39:133-144.

Johnston, F.A. and H.M. Sell. 1944. "Changes in Chemical Composition of Tung Kernels During Germination." Plant Physiology. 19:694-698.

Jones, M. and F.C. Elliott. 1969. "Two Rapid Assays for Saponin in Individual Alfalfa Plants." <u>Crop Science</u>. 9:688-691.

Kahn, A.A. 1977. The Physiology and Biochemistry of Seed Dormancy and Germination. North Holland Amsterdam.

Kaiser, S. and H.G. Albaum. 1939. "Early Root and Shoot Growth in Two Varieties of <u>Avena sativa</u> in Relation to Growth Substances." <u>Amer. J. Bot.</u> 26:749-754. Kakade, M.L. and R.J. Evans. 1966. "Effect of Soaking and Germination on the Nutritive Value of Navy Beans." <u>Research Note</u>. 24: 781-783.

Knuckles, B.E., D. de Fremery, and G.O. Kohler. 1976. "Coumestrol Content of Fractions Obtained During Wet Processing of Alfalfa." J. Agric. Food Chem. 24(6):1177-1180.

Kozlowski, T.T. 1972. <u>Seed Biology. Vol. I, II, & III</u>. Academic Press. New York.

1

Krober, O.A. and J.L. Carter. 1962. "Quantitative Interrelations of Protein and Non-protein Constituents of Soybeans." Crop Science. 2:171-172.

Liener, I.E. 1980. <u>Toxic Constituents of Plant Foodstuffs</u>. Academic Press. New York.

Macleod, A.M. 1956. "Raffinose Metabolism in Germinating Barley." New Phytology. 56: 210-220.

Macleod, A.M. and H. McCorquodale. 1957. "Water-Soluble Carbohydrates of Seeds of the Gramineae." New Phytology. 57:168-182.

Miller, C.D. and D.B. Hair. 1928. "The Vitamin Content of Mung Bean Sprouts." Journal of Home Economics. 20:263-271. 1

Л

Morton, R.K., B.A. Palk, and J.K. Raison. 1964. "Intracellular Components Associated with Protein Synthesis in Developing Wheat Endosperm." <u>Biochem.</u> J. 91:522-528.

Nada, I.A.A. and A. Rafaat. 1955. "Carbohydrate Changes During Germination of Vicia faba Seeds." Ind. Jour. Agric. Sci. 25: 271-280.

Naik, M.S. and N. Narayana. 1960. "Biosynthesis of Riboflavin in Bengal Gram Seedlings." Annals of Biochemistry and Experimental Medicine. 20:237-242.

Oliver, M.H. 1975. Add A Few Sprouts. Keats Publishing Inc. New Canaan. Connecticut.

Pederson, M.W. and L.C. Wang. 1971. "Modification of Saponin Content of Alfalfa Through Selection." Crop Science. 11:833-835.

Pederson, M.W., B. Berrang, M.E. Wall, and K.H. Davis, Jr. 1973. "Modification of Saponin Characteristics of Alfalfa by Selection." <u>Crop Science</u>. 13:731-735.

Peterson, D.W. 1950. "Some Properties of a Factor in Alfalfa Meal Causing Depression of Growth in Chicks." J. Biol. Chem. 183: 647-653.

Peterson, D.W. 1950. "Effect of Sterols on the Growth of Chicks fed High Alfalfa Diets or a Diet Containing Quillaja Saponin." J. Nutr. 42:597-607.

Pieterse, PJS. and FN. Andrews. 1956. "The Estrogenic Activity of Alfalfa and Other Feedstuffs." Journal of Animal Science. 15:25-36. Pieterse, P.J.S. and F.N. Andrews. 1956. "The Estrogenic Activity of Legume Grass and Corn Silage." J. Dairy Science. 39: 81-89.

Pudelkiewicz, W.J. and L.D. Matterson. 1960. "A Fat-Soluble Material in Alfalfa that Reduces the Biological Availability of Tocopherol." J. Nutr. 71:143-148.

Ramirez, J.S. and H.L. Mitchell. 1960. "The Trypsin Inhibitor of Alfalfa." Agri. and Food Chem. 8(5):393-395.

Rhine, J.B. 1926. "Translocation of Fats as Such in Germinating Fatty Seeds." Bot. Gaz. 82:154-169.

Rogler, G.A. 1954. "Seed Size and Seedling Vigor in Crested Wheatgrass." Agron. J. 46:216-220.

Rose, M.S. and E.H.F. Phipard. 1937. "Vitamin B and G Values of Peas and Lima Beans Under Various Conditions." J. Nutr. 14: 55-67.

Santos, F.O. 1922. "Some Plant Sources of Vitamins B and C." <u>American</u> Journal Physiology. 11:310-334.

Schopfer, W.H. 1943. <u>Plants and Vitamins</u>. Chronica Botanic Co. Waltham, Massachusetts.

Shaw, RA. and HD. Jackson. 1959. "Isolation of a Respiratory Inhibitor from Alfalfa." Archives of Biochemistry and Biophysics. 84:405-410.

Smith, D. 1955. "Influence of Area of Seed Production on the Performance of Ranger Alfalfa." <u>Agron. J.</u> 47:201-205.

Stark, O. 1927. "The Protein Metabolism of the Soybean." Amer. J. Bot. 14:532-547.

Tombs, M.P. 1967. "Protein Bodies of the Soybean." <u>Plant Physiology</u>. 42:797-813.

Toole, E.H. 1924. "The Transformations and Course of Development of Germinating Maize." <u>American Journal of Botany</u>. 2:325-350.

Trelease, S.F. and H.M. Trelease. 1943. "Sprouted Soy and Mungo Beans." New York Botanical Garden Journal. 23 254-260.

Tremazi, S.A. 1957. "Ascorbic Acid in Some <u>Oleiferous brassicas</u> Cultivated in Pakistan." Britain Journal of Nutrition 2:1-4.

Van Atta, G.R., J. Guggolz, and C.R. Thompson. 1961. "Determination of Saponins in Alfalfa." J. Agri. Food Chem. 9(1): 77-79.

Van Parijs, R. 1965. "Quantitative Changes of Ribonucleic Acid, Desoxyribonucleic Acid, Protein, and Dry Matter in Different Organs of Pea Seedlings During Germination." <u>Archives Internationales de Physiologie el de Bio-</u> chimie. 75: 125-138.

Varner, J.E. and G. Schidlovsky. 1963. "Intracellular Distribution of Proteins in Pea Cotyledons." <u>Plant Physiol.</u> 38:139-144.

Von Ohlen, F.W. 1931. "A Microchemical Study of Soybeans During Germination." American Journal of Botany. 18:30-49.

Waggoner, H.D. 1917. "The Viability of Radish Seeds (<u>Raphanus sativus L.</u>) as Affected by High Temperatures and Water Content." <u>Amer. J. of Bot.</u> 4:299-313.

Wai, K.N.T., J.C. Bishop, P.B. Mack, and R.H. Cotton. 1947. "The Vitamin Content of Soybeans and Soybean Sprouts as a Function of Germination Time." Plant Physiology. 22:117-126.

Wats, R.C. and C.M.E. Eylies. 1932. "Some Sources of Vitamin C in India. Part II. Germinated Pulses, Tomatoes, Mangoes, and Bananas." <u>Ind. Jour.</u> Med. Res. 20: 89-106.

Weiss, M.G., C.R. Weber, L.F. Williams, and A.H. Probst. 1952. "Correlation of Agronomic Characters and Temperature with Seed Compositional Characters in Soybeans as Influenced by Variety and Planting Time." Agron. J. 44:289-297.

White, H.B. Jr. 1958. "Fat Utilization and Composition in Germinating Cotton Seeds." Plant Physiology. 33:218-226.

Zimmer, D.E., M.W. Pedersen, and C.F. McGuire. 1967. "A Bioassay for Alfalfa Saponins Using the Fungus <u>Trichoderma</u> <u>Viride Pers.</u> es <u>Fr.</u>" <u>Crop Science</u>. 7:223-224.

LITERATURE CITED

Bowman, G.H. and P.D. Sebasta. 1978. "Support System Consideration for STS Biological Investigations." <u>ASME Publication</u>. ENAs 37:1-5.

Brown, A.H. and D.K. Chapman. 1982. "The First Plants to Fly on the Shuttle." The Physiologist. (Supplement). 25:S5-S8.

Brown, A.H. and D.K. Chapman. 1984. "A Test to Verify the Biocompatibility of a Method for Plant Culture in a Microgravity Environment." <u>Ann. Bot.</u> (Supplement). 3:19-31.

Cowles, J.R., H.W. Scheld, R. LeMay, and C. Peterson. 1984. "Experiments on Plants Grown in Space: Growth and Lignification in Seedlings Exposed to 8 Days of Microgravity." <u>Ann. Bot</u>. (Supplement). 3:33-48.

Cowles, J.R., H.W. Scheld, C. Peterson, and R. LeMay. 1982. "Lignification in Young Plants Exposed to the Near-Zero Gravity of Space Flight." <u>The</u> Physiologist. (Supplement). 25(6):S129-S130.

Crawley, E. 1977. "Designing the Space Colony ." <u>Technology Review</u>. July/Aug 79:45-50.

Darwin, C.R. 1880. The Power of Movement in Plants. (J. Murray, London.)

Darwin, C.R. 1875. The <u>Movements</u> and <u>Habits</u> of <u>Climbing</u> <u>Plants</u>. (J. Murray, London.)

Hix, M. 1984. Orbiter Middeck Payload Provision Handbook. Crew Station Branch Man-Systems Division. Revision C. NASA. pg. 1-32.

Hoshizaki, T. and B.D. Hansen, III. 1981. "Generic Waste Mangement for a Controlled Ecological Life Support System (CELSS)." <u>AMSE Publication</u>. ENAs 23:1-7.

Leggett, N. and J.A. Fielder. 1984. "Space Greenhouse Design." J.B.I.S. 37:495-498.

Maine, R.B., P.A. Wagner, T.M. Olcott, and R.S. Luce. 1979 "Development of a Space Shuttle Plant Growth Unit." ASME Publication. ENAs 19:1-11.

Meissner, H.P. and M. Modell. 1979. "Recycling Plant, Human, and Animal Wastes to Plant Nutrients in a Closed Ecological System." <u>ASME</u> <u>Publication</u>. ENAs 29:1-5.

Mitchell, C., S. Knight, and T. Pappas. 1984. "Photosynthesis Productivity and Vibration/Acceleration Stress Considerations for Higher Plants in Bioregenerative Systems." The Physiologist. (Supplement). 27(6):S-29-S30.

Modell, M. 1977. "Sustaining Life in a Space Colony." <u>Technology Review</u>. July/Aug 79:36-43.

AND ADDRESS OF ADDRESS OF ADDRESS OF

Moore, B., R. Wharton, Jr., and R.D. MacElroy. 1982. <u>Controlled Ecological</u> <u>Life Support System</u>. First Principal Investigators Meeting. <u>NASA Conference</u> <u>Publication #2247 pg. 1-83.</u>

Phillips, J.M. 1979. "Controlled-Environment Agricultural System as Food Source for Large Space Habitats." AMSE Publications. ENAs 30:1-7.

Raper, C.D., Jr., T.A. Pollock, and J.F. Thomas. 1979. "Using Phytotrons in Assessing Environmental Requirements for Plants in Space Habitats." <u>ASME</u> <u>Publication</u>. ENAs 28:1-5.

Salisbury, F. 1984. "Acheiving Maximum Plant Yield in a Weightless, Bioregerative System for a Space Craft." <u>The Physiologist</u>. (Supplement). 27(6):S31-S34.

Schwartzkopf, H. and P.E. Stofan. 1981 "A Chamber Design for Closed Ecoolgical Systems Research." <u>ASME</u> <u>Publication</u>. ENAs 37:1-5.

Yakut, M.M., D.L. Magargee, and E.N. Tell. 1978. "Life Support Systems for Biological Specimens in the Shuttle/Spaceleb." ASME Publicaton. ENAs 38:1-8.

Workshop on Closed System Ecology. 1982. NASA / JPL Publication #82-64. pg. 1-15.