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Summary 
An improved analytical procedure has been developed that allows for an efficient solution of the finite 

plate noise transmission problem. Both isotropic and symmetrically laminated composite plates are 
considered. The plate is modeled with classic thin-plate theory and is assumed to be simply supported 
on all four sides. The incident acoustic pressure is modeled as a plane wave impinging on the plate at an 
arbitrary angle. The reradiated pressure is assumed to  be negligible compared with the blocked pressure, 
and the plate vibrations are calculated by a normal-mode approach. A Green’s function integral equation 
is used to link the plate vibrations to the transmitted far-field sound waves, and transmission loss is 
calculated from the ratio of incident to transmitted acoustic powers. The result is a versatile research 
and engineering analysis tool that not only enables the determination of which modes are dominating the 
noise transmission but also allows for the problem to be broken down into its component parts. This 
includes determining what the modal behavior is, such as coupling between the incident noise and the 
plate vibrations, the plate resonance behavior, and the coupling between the plate vibrations and the 
transmitted noise. The effect of varying the angle of incidence and the far-field directivity can also be 
determined from the analytical model. The analysis approach was specifically developed to study noise 
transmission into aircraft, although it should be equally applicable to sound transmission through building 
walls, floors, and windows. 

Introduction 
Noise transmission is an important consideration in the design of many structures, such as building 

walls and floors, ship hulls, and aircraft sidewalls. Consequently, a variety of analytical models have been 
developed over the years to predict the noise transmission characteristics of walls. These analytical models 
may be further classified as either high-frequency-noise or low-frequency-noise models. 

In high-frequency noise, the dimensions of the walls are very large compared with the relatively small 
sound wavelengths, so the wall can be modeled analytically as infinite in extent. This is referred to as 
“infinite-panel theory.” Noise transmission analytical models based on infinite-panel theory have been 
extensively developed in the past (refs. 1 to 4) and dealt with such features as single-layer and niultilayer 
panels, oblique-incidence and random-incidence noise, and isotropic, orthotropic, and anisotropic panels. 

In low-frequency noise, the dimensions of the transmitting wall are comparable with the large sound 
wavelengths, so that boundary effects are important. In this approach, the wall is usually modeled as 
a rectangular plate simply supported in an infinite baffle. This model is especially desirable because 
it exhibits many of the same noise transmission phenomena that occur in more complicated structures 
and that are more easily studied in this idealized problem. However, noise transmission models for this 
problem have been much less studied. Most of the past work on this problem has been concentrated 
on solving for the radiated noise or the radiation efficiency of the plate vibrations (refs. 5 to 11). Only 
a few investigators have looked at the entire problem: the incident noise, the plate vibrations, and the 
transmitted noise, and all these studies ended up with very limited and mainly qualitative results (refs. 12 
to 16). This was invariably due to either the simplifying assumptions limiting the applicability of the 
analysis or, in the opposite case, the lack of assumptions causing the mathematics to be very complicated. 

In this paper, an improved analytical model that allows for the efficient calculation of the low-frequency- 
noise transmission characteristics of a rectangular plate simply supported in an infinite baffle is developed. 
The first section of the paper contains the derivation of the analytical model equations. First, the equation 
for the transmission loss of the finite plate is derived. The paper starts with the basic equations describing 
the incident noise and the plate vibrations and takes a step-by-step approach and derives the equations for 
incident intensity, incident acoustic power, plate velocity, transmitted pressure, transmitted intensity, and 
transmitted acoustic power. Transmission loss is then calculated from the ratio of transmitted to  incident 
acoustic power. This ratio is called the transmission coefficient. The general solution for transmission 
loss includes the response of a large number of modes. To investigate the response of these individual 
modes, equations are derived describing the component parts of the transmission coefficient of each mode. 



The transmission coefficient is factored into the ratio of transmitted acoustic power to mean-square plate 
velocity and the ratio of mean square plate velocity to incident acoustic power. This latter ratio is 
then broken down into two more parts with equations being derived for the frequency response of the 
plate vibrations and the frequency response of the exciting acoustic pressure. With the analytical model 
equations having been derived for an isotropic plate, an extension of the model to handle midplane 
symmetric composite panels is briefly discussed. 

In the second section of the paper, results of sample calculations using the analytical model are shown. 
First, polar plots of far-field transmitted intensity are shown for both low-frequency-noise and high- 
frequency-noise transmission. Next are shown the results of sample calculations of transmission loss. The 
finite-panel theory is compared with infinite-panel theory, and the variation of transmission loss with the 
incidence angles is shown. Then, results are shown of a modal study of the noise transmission at 600 Hz 
as an example of the use of the analytical model as a diagnostic tool. The model is used to determine 
which modes are dominating the-transmission at  this frequency and whether this transmission is due to 
coupling between the incident noise and the plate vibrations, to plate resonance behavior, or to coupling 
between the plate vibrations and the space into which the plate is transmitting. Results are also presented 
that demonstrate the applicability of the analytical model for studying the effect of fiber orientation on 
the transmission loss of midplane symmetric composite panels. 
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Description of the Analytical Model 

Incident Noise and Plate Vibration 

With classic thin-plate theory, the equation of motion governing the bending vibrations of an isotropic 
plate is 

where 

A comma denotes the partial differentiation with respect to the subscript; p ; ,  p r ,  and pt  are the incident, 
reflected, and transmitted pressures; and the geometry of the coordinate system is given in figure 1. These 
three pressures can be rewritten as the sum of the blocked pressure (the pressure that occurs on the incident 
side when the plate is considered as a rigid wall) and the reradiated pressure (the pressure solely due to 
the plate vibrating). Because the reradiated pressure is an unknown function of the plate displacement 
20,  the solution of equation (1) is very complicated. This is the main reason past investigators have been 
unable to arrive at effective, usable results. In order to arrive at  an accurate solution while avoiding this 
complication, the present analysis assumes that the reradiated pressure is negligible compared with the 
blocked pressure in the equation of motion for the plate. With the infinite-panel theory, this assumption 
results in errors of less than 1 dB for transmission loss values of 6 dB or more. Thus, the assumption 
allows an accurate solution to be obtained over a large frequency range and gives invalid answers only for 
frequencies near the plate fundamental resonant frequency. 

Rewriting the equation of motion with only the blocked pressure as the forcing function results in 

where the blocked pressure p b  is twice the incident pressure ( p b ( ( ,  Q, t )  = 2 p ; ( ( ,  Q, t ) ) .  Now the incident 
pressure is assumed to be an obliquely incident traveling plane wave given by 

p i (  E ,  71, t )  = P, exp [ z  (ut - kt sin Bi  cos 4, - kr] sin Bi sin 4i)] (3) 

where the amplitude P; of the incident pressure is assumed to be a real constant, an assumption that 
results in no loss of generality. The relationship between the incidence angles and the coordinate axes is 
shown in figure 1. At this point the incident intensity and the incident acoustic power can be calculated. 
Since the incident noise is a plane wave, it is well known the intensity is given by P;2/2pc (ref. 17). The 
intensity incident on the plate is the amount of the intensity that is normal to the plate. Thus, the incident 
intensity Ii is given by 

The incident acoustic power IIi is simply given by the incident intensity multiplied by the area it acts on, 
that is, the area of the plate. Thus, IIi is given by 

n, = (P,2abcose,) / 2 p c  (5) 
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The steady-state solution for the plate vibration displacement is the only part of the solution of concern 
in predicting noise transmission; since the forcing pressure is harmonic, the steady-state plate displacement 
will be harmonic such that 

Substituting equations (3) and (6) into (2) and dividing through by exp(iwt) gives 

The finiteness of the plate is now taken into consideration. The plate is assumed to be rectangular and 
simply supported on all four sides. The solution of equation (7) can be obtained by using the method 
of eigenfunctions (ref. 18). Homogeneously solving equation (7) by separation of variables and applying 
simple-support boundary conditions gives 

w w  
mrc W ( C , ~ )  = Wmnsin ( sin 

m=l  n=l 

Since the steady-state solution (see eq. (6)) must also satisfy the boundary conditions, equation (8) 
can be used for the spatial part of the steady-state solution so long as the spatial part of the forcing 
pressure can also be represented as an infinite series of the eigenfunctions. For the case at hand, the 
forcing pressure can be so represented, and the result is 

where pmn, the generalized forcing pressure, is given by 

mrc exp [-ik sin 8; ( e  cos q5z + 77 sin 4 z ) ]  sin ( T) sin ( y )  dq de  

The generalized displacement Wmn can now be obtained by substituting equations (8) and (9) into 
equation (7) and obtaining 

Pmn 
Wmn = mp [ w k n  - w 2  + (iC~w/m,)] 

where 

2 D r 4  
mP 

w L n  = (2rfmn)2 = - ($ + $) 
The integration in equation (10) can be done in closed form to obtain the generalized forcing pressure for 
each mode 

pmn = 8PJmI, 
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where 

- isgn (sin 0, sin 4,) ( ( n ~ ) ~  = [sinO,~inq5,(wb/c)]~) 

( ( n ~ ) ~  # [sin 0% sin 4t(ub/c)]2) 
n7r{1- (-l)nexp[-isine,sin4,(wb/c)l} 

( n ~ ) ~  - [sin 0, sin q b , ( w b / ~ ) ] ~  

Thus, the solution for the plate vibrations is complete. 

Transmitted Noise and Transmission Loss 

The plate vibrations cause reradiated pressure to be transmitted by the plate. The equation relating 
plate velocity to the transmitted pressure can be derived from a Green's function formulation (ref. 19) 
starting from the basic fluid flow conservation equations together with the Kirchoff-Helmholtz method of 
integration. The resulting equation for transmitted pressure is commonly known as the Rayleigh integral 
and is given by 

where 
a 
2 

b 
2 

E ' = < - -  

q ' = q - -  

and 

The transmission geometry is given in figure 2. Since 

x = rs inecosd 

and 

y = rs inesind 

the equation for I-' can be rewritten as 

ql + ( ;)2 
2 sin 0 sin 4 

r 
r l =  r / l -  2 sin 0 cos 4 

r 
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The integral in equation (14) must be evaluated numerically. However, a closed-form solution for this 
integral can be obtained in the far field. In the far field, the following approximations are valid (ref. 17): 

1 1  - x -  
r 

and 

sin 0 cos 4 sin 0 sin 
exp(-iwr'lc) M exp [ I -  

Thus, the far-field transmitted pressure is given by 

Plate motion is assumed to be continuous through the thickness of the plate so that w(c ,  r ] ,  t )  is given 
by equations (6) and (8). Thus, 

Substituting equation (17) into (16) allows a closed-form solution to be obtained for the Rayleigh integral 
as follows: 

W W  

p t ( r , 8 , 4 )  = ~ e x p { i w  -w2pab [ t-  r - T ( a c o s 4 t b s i n 4 )  sine 

where 

NOW, to calculate the far-field intensity, the far-field acoustic particle velocity must first be calculated. 
The equation for the velocity vector u(r, e ,$ )  is 

where ir , ie,  and i4 are the unit vectors in the r-,  e-, and $-directions; ur,ue, and u+ are the velocity 
components in those directions; and 

In the far field, T- will be large so that the radial component of velocity will be much larger than the 
components of velocity in the ig- and i4-directions. Thus, the far-field velocity is approximated by t.he 
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scalar +. Substituting equation (18) into (19) and neglecting the l / r 2  terms compared with the l / r  
terms gives 

UT = Pt/PC (20) 

If far-field pressure and velocity are known, the far-field transmitted intensity It can be calculated by 
substituting equation (20) into the basic definition of It as follows: 

(21) 
1 

It = jR" bt(r161 4 ) 4 ( r 1  6,411 

where Re [ ] denotes the real part and the asterisk denotes the complex conjugate. The result of this is 

It = IPt(r1~1 4)I2/2PC (22) 

If we substitute for p t ( r ,  e,+)  from equation (18),  the equation for It becomes 

where 

and 

The transmitted acoustic power II, can now be calculated by integrating the transmitted intensity over a 
far-field .hemisphere such that 

IIt = / 2 T  Itr2 sin6 d0 d 4  (25) 
+o e-o 

This equation must be integrated numerically. Simpson's one-third rule (ref. 20) was used in the 
calculations that were done in conjunction with the present study. Finally, transmission loss (TL) is 
calculated from 

TL = lolog ( l / r )  (26) 

where the transmission coefficient r is given by 

Modal Components of Transmission 
Presented here is a derivation of equations which can be used to study an individual mode's noise 

transmission characteristics. They can be used for both the characteristics of the total problem and the 
characteristics of the different components of the problem. 
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First of all, for the total noise transmission response of a single mode, the following single-mode 
equation for the transmission coefficient is used: 

where, because of symmetry, integration over 4 is necessary only from 0 to ~ / 2 .  This result can be used to 
determine the frequency at which a mode is transmitting the most noise. To determine what part of the 
total noise transmission is the primary cause of the transmission, the transmission coefficient is divided 
into the following two multiplicative factors: the acoustic power transmitted divided by mean-square 
velocity ( IIt/lVmn12> and the mean-square velocity divided by incident acoustic power IVmnI2/IIi) , 
where V,, is the generalized plate modal velocity and is equal to iwWmn. The equations corresponding 
to these factors are 

( 

and 

With these two frequency-response functions, it can be determined whether the modal noise transmis- 
sion is due more to coupling between the incident noise and the plate vibrations (eq. (30)) or more to 
coupling of the plate vibrations with the space into which they are radiating (eq. (29)). For the case in 
which the problem lies with coupling between the incident noise and the plate vibrations, the mean-square 
velocity divided by incident power can be investigated in terms of the two main quantities which describe 
its behavior, namely, the mean-square generalized force divided by incident power IpmnI2/IIi) and the 

two quantities are 

( 
plate frequency response divided by incident power IP;Vmn/pmn l 2  /Hi). The equations governing these 

and 

IPiVmn/Pmn I /na = 

The quantity Ipmn12/II; indicates how much of the noise transmission is due to the frequency character- 
istics of the incident noise; the quantity I P ~ V , , / P ~ ~ ( ~ / I I ;  indicates how much of the noise transmission 
is due to the frequency characteristics of the plate vibrations. 

Extension to Midplane Symmetric Composite-Material Plates 

The major difference in modeling a midplane symmetric composite plate as opposed to an aluminum 
plate is that the composite is allowed to be anisotropic. Because of this, the equation of motion shown 
in equation (1) must be rewritten to account for the anisotropic stiffness terms, resulting in the following 
equation of motion: 
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where a comma denotes the partial differentiation with respect to the subscript and the D;j terms are 
the anisotropic bending stiffnesses that relate the internal bending and twisting moments of the plate 
to the twists and curvatures they induce. The theory for calculating the stiffnesses of tape-ply panels is 
well established (ref. 21), and the values depend on the ply orientation and the stacking sequence. For 
a simply supported plate, Bert (ref. 22) has calculated an approximate equation for the modal resonant 
frequencies, and sinusoidal eigenfunctions are used as approximations to the actual mode shapes. With 
these frequencies and mode shapes, a noise transmission calculation for composite plates can be performed 
in the same manner as for isotropic plates. 

Transmission Loss 

The oblique-incidence transmission loss of a 0.38-m by 0.15-m by 0.081-cm aluminum plate has been 
calculated for an incident wave at  8; = 60' and 4i = 0'. The results are presented in figure 7 along with 
a transmission loss calculation based on infinite-panel theory. Although the two curves agree well at  high 
frequency (approximately 2000 Hz and above), for which the panel transmission is the mass-controlled 

I 

Results of Sample Calculations 

Far-Field Transmitted Intensity 

In order to carry out the numerical integration in equation (25) to obtain transmitted acoustic power, 
an understanding of the variation of transmitted intensity is helpful in determining how small a step size is 
needed to perform the integration. Presented in figures 3 and 4 are sample plots of the effect of frequency 
on the intensity radiation pattern of a 1.52-rn by 1.22-m by 0.081-cm aluminum plate. The results are 
presented for an incident sound wave at  8; = 45' and +i = 0' for two frequencies of 100 Hz and 600 Hz. 
Figure 3 shows the variation of transmitted intensity with polar angle 8 for an azimuthal angle C#I of 0'. 
Figure 4 shows the variation of transmitted intensity with azimuthal angle q5 for a polar angle 8 of 45'. 
These sample results show a trend that was discerned from studying many transmitted-intensity results, 
that is, as frequency increases] increasingly more of the transmitted sound becomes concentrated at, a 
transmitted angle equal to the incident angle. This results in a steeper variation of intensity with 8 and C#I 
which, in turn, results in increasingly smaller integration steps being needed as frequency increases. The 
sample results in figure 4 also display an example of the symmetry which can occur in the transmitted 
intensity and which helps reduce the numerical integration time. As can be seen in equation (18), with 
$i = 0' the meven modes contribute nothing to the transmitted intensity. Thus, in the n-direction of the 
plate, only the odd modes contribute to the transmitted intensity, and this results in symmetry about 
4 = Oo. Similarly, for 4; = 90°, symmetry occurs about q!~ = 90'; and, for 4; = O', symmetry occurs 
about both 4 = 0' and 4 = 90'. For any other t9i or g5;, symmetry cannot be shown a priori to occur 
in the &direction. An example of this is presented in figure 5, wherein a plot is shown of transmitted 
intensity variation with 4 for 8 = 20°, 8; = 60°, 4; = 47', and f = 600 Hz. 

For calculating two of the modal components of transmission (i.e.,Tmn and l&/lVmnI2) , numerical 

integration is required. Thus, a detailed investigation of the equation for 
transmitted intensity was undertaken to determine if any special symmetry occurs for a single mode as 
opposed to when all the modes are summed. It was found that symmetry occurs about both q5 = 0' and 
4 = 90' no matter what the values of 8; and +i. This is very helpful information for saving computer time 
during the numerical integration. An example of this &direction symmetry for the transmitted intensity 
of a single mode is presented in figure 6 for m = 1, n = 1 1 , O  = 20°, 8; = 60°, 4; = 47O, and f = 600 Hz. 

(See eqs. (28) and (29).) 



and coincidence-frequency regions, considerable differences occur at lower frequencies. This is because 
infinite-panel theory is appropriate only for those high-frequency transmission regions, whereas finite- 
panel theory is appropriate not only for those regions but also for the low-frequency resonance-controlled 
and stiffness-controlled transmission regions. Thus, the analytical model developed in this paper is most 
useful in gaining new insight into the characteristics of noise transmission at low frequency. An example 
of how the analytical model may be used is shown in figures 8 and 9. In figure 8, transmission loss as a 
function of polar incidence angle 8; is shown for two sizes of 0.081-cm-thick aluminum plate, a 0.38-m by 
0.15-m plate and a 1.52-m by 1.22-m plate. The azimuthal incidence angle 4; was 0' and the frequency 
was 600 Hz. The larger panel is slightly more sensitive to e;, with about a 5-dB change from 8; = 60' to 
8; = 0'. In figure 9 a similar comparison is plotted for transmission loss as a function of 4; with 8; = 45' 
and f = 600 Hz. Neither panel is very sensitive to 4; for 8; = 45'. In both figures, the smaller panel 
has higher transmission loss because the 600-Hz frequency is within the resonance-controlled transmission 
region of the smaller panel and within the mass-controlled frequency region of the larger panel. 

Modal Decomposition 

A demonstration of how the analytical model might be used as a diagnostic tool to gain understanding 
of a noise transmission problem is presented in this section. The problem, arbitrarily chosen, is the 
transmission of noise at 600 Hz through a 1.52-m by 1.22-m by 0.081-cm aluminum plate for an incident 
sound wave at 8; = 60' and q5i = 0'. As a first step, a trial-and-error modal study was done of the 
transmitted intensity to determine which modes were the largest contributors. The results of this study 
are summarized in figure 10, in which a plot of the square root of intensity as a function of polar angle 8 
with 4 = 0' is shown for the total intensity (for all the modes summed together) and for the two largest 
modal contributors, the m = 5, n = 1 mode and the rn = 4, n = 1 mode. Next, each mode was investigated 
individually using the modal component equations (28) to (32) to try to determine the specific behavior 
by which the mode was dominating the transmission. The results of the modal component calculations for 
the m = 4, n = 1 mode are shown in figure 11. In figure l l (a) ,  the ratio of transmitted power to incident 
power is shown as a function of frequency. The large response near 600 Hz is clearly shown. The graphs of 
the ratio of transmitted power to mean-square velocity (fig. l l ( b ) )  and of the ratio of mean-square velocity 
to incident power (fig. l l (c))  show that the high transmission of the plate at 600 Hz for the m = 4 , n  = 1 
mode is due more to coupling between the plate vibrations and the acoustic space into which the plate 
is transmitting than to coupling between the incident sound and the plate vibrations. This coupling on 
the transmitting side (the peak in fig. l l(b)) occurs at  what is commonly referred to as the acoustic 
short-circuit frequency. This is the minimum frequency for which there is some angle at which the trace 
wavelength of a transmitted wave will equal the shorter of the two wavelengths of the mode. For all higher 
frequencies, there will always be an angle for which this wavelength matching will occur, which is why the 
curve in figure l l ( b )  flattens out after reaching the short-circuit frequency. In figures l l ( d )  and l l (e ) ,  the 
breakdown of the ratio of mean-square velocity to incident power into its component parts, namely, the 
frequency response of the incident noise (fig. ll(d)) and the frequency response of the plate vibrations 
(fig. l l (e)) ,  is shown and explains the main features of the response in figure l l (c) .  The peak near 20 Hz 
in figure l l ( c )  can be shown in figure l l ( e )  to be due to the mode's resonant frequency; the peak near 
600 Hz in figure l l (c )  can be shown to come from a peak in the curve in figure l l (d) .  The frequency at 
which these peaks occur is called the coincidence frequency, and it corresponds to the matching of the 
trace wavelength of the incident sound with the longer of the two wavelengths of the mode. This coupling 
at  the coincidence frequency also contributes to the high transmission at 600 Hz, but it is not as big a 
contributor as the coupling at the short-circuit frequency. 

The results of the modal component calculations for the m = 5, n = 1 mode are shown in figures 12(a) 
to 12(e). Similar results as for the m = 4 , n  = 1 mode are again noted, with the coupling at the short- 
circuit frequency (fig. 12(c)) playing the major role in the transmission and the coupling at  the coincidence 
frequency (figs. 12(b) and 12(d)) also contributing significantly. 
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Thus, for the case just discussed, the analytical model facilitates the determination of which modes are 
dominating the noise transmission and the physical phenomena causing the transmission. The discovery 
that the physical mechanism involves the matching of wavelengths between the plate and the transmitted 
noise could be helpful to noise-control engineers. For instance, at least one common method of noise 
control, plate resonance damping, would be ineffective in this case. 

Results for Composite Panels 

To further demonstrate the usefulness of the analytical model, sample calculations for two composite 
panels have been performed to determine the effect of the stacking sequence of the plies on the normal- 
incidence transmission loss of the panels. The ply material was graphite-epoxy tape. The ply properties 
were El ,  = 137 GPa, E22 = 10 GPa, 4 2  = 0.30, and G12 = 5 GPa. Each panel was assumed to be made 
of eight plies layered in a midplane symmetric fashion. One panel, designated as GT1, was assumed to 
have a symmetric stacking sequence of alternating 0' and 90' plies. The other panel, designated as GT2, 
was assumed to have a symmetric stacking sequence of alternating 45O and -45' plies. The size of each 
panel was 0.36 m by 0.20 m by 0.10 cm, with a mass per unit area of 1.59 kg/rn2 and a critical damping 
ratio of 0.06. The results of the calculations are shown in figure 13. The panel GT2 has a 40-percent 
increase in fundamental frequency over panel GT1 and thus has a much higher transmission loss in the 
stiffness-controlled region. At higher frequencies, the curves merge together in the mass-controlled region 
since both panels have the same weight per unit area. 

Concluding Remarks 
An improved analytical model has been developed that allows for the efficient calculation of the 

noise transmission characteristics of a rectangular plate simply supported in an infinite rigid baffle. 
The governing equations of the analytical model have been derived. Sample calculations comparing the 
analytical model to infinite-panel theory and showing the usefulness of the analytical model in studying 
noise transmission have been presented. 

Illustrated examples were given of how the model can be used to determine the effect on the transmitted 
noise of varying the angle of the incident plane wave and to determine far-field directivity of the transmitted 
noise. Also, examples were given of how the model can be used to determine the modal behavior of a 
rectangular plate. These included the determination of which modes dominate the noise transmission, 
the coupling between the incident noise and plate vibrations, the resonance behavior of the plate, and t.he 
coupling between the plate vibrations and the transmitted noise. 

The applicability of the model to symmetrically layered composite panels has also been demonstrated. 
Although the analysis approach was developed to study noise transmission into aircraft fuselages, it 
should be equally applicable to sound transmission through building walls, floors, and windows. Overall, 
the analytical model was shown to be a versatile and useful tool. 

NASA Langley Research Center 
Hampton, VA 23665 
November 21. 1984 
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Figure 1. Geometry on incident side of plate. 

\ 

/ 

YL--  
\ 
\ 
\ 

Figure 2. Geometry on radiating side of plate. 
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Figure 3. Transmitted-intensity variation in 0-direction for 1.52-m by 1.22-m by 0.081-cm aluminum plate. 
ei = 450; +i = 0 0 ;  + = 0 0 .  
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Figure 4. Transmitted-intensity variation in &direction for 1.52-m by 1.22-m by 0.081-cm aluminum plate. 
e, = 450; 4, = 00; e = 450. 
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Figure 5. Transmitted-intensity variation in &direction for 1.52-m by 1.22-m by 0.081-cm aluminum plate for 
f = 600 HZ. ei = 600; +i = 470; e = 200: 
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Figure 6. Transmitted-intensity variation in $-direction for 1.52-m by 1.22-m by 0.081-cm aluminum plate for 
m = 1, n = 11, and f = 600 Hz. 8, = 60"; 4, = 47"; 8 = 20". 
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Figure 10. Variation of square root of transmitted intensity in &direction for 1.52-m by 1.22-m by 0.081-cm 
aluminum plate. 8, = 60"; 4% = 0"; 4 = 0"; f = 600 Hz. 
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