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EXECUTIVE SUMMARY

In support of its activities under the Interactions Measurement Payload
for Shuttle (IMPS) project, the Jet Propulsion Laboratory (JPL) established an
Engineering/Science Working Group (ESWG) made up of engineering and scientific
specialists in the fields cf spacecraft interactions and space physics. The
ESWG was formed to assist JPL in providing its sponsor, the Air Force Geophys-
ics Laboratory (AFGL), with a mission concept for the IMPS project. IMPS, as
originally conceived by AFGL, is intended to be a Shuttle-compatible comple-
ment of engineering experiments and environmetal sensors capable of defining
spacecraft interactions in the auroral/polar environment. The purpose of this
document, as prepared by JPL and the ESWG, is to provide an estimate of the
impact of these interactions on materials, equipment, and technologies of
future AF systems and, based on their importance, to develop for JPL a generic
payload capable of carrying out the IMPS mission so that an accurate mission
plan and cost estimate can be prepared. It is also intended that the report
will provide a broad base on which future IMPS planning can be conducted.

This document addresses what are perceived as the key scientific and engi-
neering concerns for AF space missions due to the peculiarities of the auroral/
polar environment. These concerns have been combined into 6 general categor-
ies: (1) dielectric charging; (2) material property changes; (3) electromag-
netic interference, plasma interactions, and plasma wake effects associated
with high-voltage solar arrays and large space structures; (4) radio frequency
distortion and non-linearities due to the enhanced plasma in the Shuttle ram/
wake; (5) Shuttle glow and contamination; and (6) plasma interactions with the
space-based radar. Other (lesser) areas of concern considered were: interac-
tions associated with EVA; radiation and single-event upset effects peculiar
to the auroral/polar cap environment; and space debris. During a series of
meetings at which numerous experts in addition to the core ESWG panel were
invited to attend and present ideas, a consensus position on the information
most critical to an understanding of these categories of effects was devel-
oped. The report describes the measurements needed to adequately address the
concerns associated with each category and includes a list of generic instru-
ment packages capable of making the required measurements.

Although the ESWG did recommend specific instrument categories to be flown
on the first mission, the emphasis in the report is on the spectrum of
measurements necessary to quantize the interactions in the auroral/polar
environment. The specific evaluation criteria used in selecting the relevant
instrumentation were as follows:

(1) Is the interacticn effect being studied unique to polar orbits or
different in polar orbit than other orbits?

(2) Is the interaction expected to be unique to or enhanced by structure
size?

(3) Is the interaction relevant to planned AF systems?
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(4) Is the effect being investigated by other rrograms?

(5) Is it appropriate to carry out the investigation from the Shuttle?

(6) Can useful information be made available by 1990 so as to have a
meaningful impact on the next generation of AF spacecraft?

The intent of these criteria is to provide the justification, in terms of AF
objectives, for the IMPS mission. Given the potentially broad impact of some
of the interactions which meet these criteria on AF missions, the IMPS mission
will require a large cross-section of technical expertise ranging from basic
research (6.1) to advanced development (6.3).

Given the great complexity and cost of individual AF systems, the report
attempts to identify specific components (such as a segment of the space based
radar antenna) that should be tested rather than to recommend that the actual
systems be flown. The identification of the "weakest link," such as dielec-
tric materials in the case of charging, is a major theme of the report. As
the environments encountered in the auroral/polar regions are known to vary on
the order of minutes by orders of magnitude, it is unlikely that ground tests
will be able to duplicate the actual space conditions affecting these compo-
nents. It is therefore likely that meaningful component tests will in fact
not be capable of being performed on many systems until the IMPS investiga-
tions suggested by the report are completed.

This report is written with the intent of making its recommendations
available to the widest possible technical community within the AF. The
instruments have been presented in a generic sense so that program offices can
readily suggest refinements that would specifically benefit their programs.
Obvious candidates for material testing would be optical windows for planned
AF sensor systems, where contamination, surface chemistry, plasma etching, and
ion-induced color centers would be of concern, and dielectric antennas where
insulator charging noise could be an issue. Thus the report is intended as a
starting point for assisting in the development of actual flight test pro-
grams. In support of this, the report includes key contacts (the members of
the ESWG) and a detailed appendix of references by topic for each of the
interactions discussed in the report.

A suggested ground test plan for the IMPS project has been included as an
integral part of the report. The report concludes with a description of
proposed follow-on ?MPS missions intended to provide a complete, integrated
spacecraft interactions program. As time and resources permit, AFGL plans to
extend the data base on spacecraft environmental interactions through a series
of workshops on specific topics.
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SECTION I

INTRODUCTION

This document contains recommended measurements and instrumentation for
the Interactions Measurements Payload for Shuttle ( IMPS). The recommendations
are defined in terms of the spacecraft interactions relevant to the polar and
auroral Shuttle environments. The Jet Propulsion Laboratory (JPL) and its
advisory panel, the Engineering /Science Working Group (ESWG), have reviewed
the IMPS objectives and have recommended a list of applicable zategories :or
investigation. Investigation categories proposed in this e r^ort are as
fellows: dielectric charging; material property changes; electromagnetic
interf oronce, plasma interactions, and plasma wake effects associated with
high°-vol;age solar arrays and large space structures; radio frequency
distortion and nonlinearities due to enhanced plasma in the Shuttle ram/wake;
Shuttlz, glow and contamination; and plasma interactions with the space-'used
radar. Other concerns considered are the interactions associated with EVA;
the radiation and single-event-upset effects pecsliar to the auroral/polar cap
environment; and space debris.

This report first provides a review of the environmental concerns and
basic technology issues addressed and the impact of each of these on Air Force
(AF) systems. Second, this report lists the measurements required to
characterize these interactions and recommend:, instrument packages capable of
obtaining the measurements. Subsequent sectioixs include a suggested
ground-test program and possible follow-on missions.

1
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SECTION II

BACKGROUND

A. AF SYSTEM IMPACTS

This section provides the background justification for why the AF should
be concerned with the IMPS mission, specifically:

(1) The AF's role in space clearly dictates the need for vehicles in
high-inclination orbits in order to achieve mission goals.

(2) Proposed AF missions require that large or high-voltage structures
be placed in this environment.

(3) At the military has relied more on sophisticated electronic
surveillance, communications, and navigation systems capable of
autonomous operation, these systems have become increasingly
sensitive to the space environment, a sensitivity that needs to be
aCCirately assessed.

There is a growing urgency to evaluate in detail the effects of the space
environment on the long-term operation of military space systems. IMPS is
intended to address this problem for the specific case of low-altitude,
high-inclination polar Earth orbit (PEO) and for the case of operations in
conjunction with large structures such as the Space Shuttle that are capable
of locally altering the natural environment.

The objectives of IMPS, as defined by the Air Force Geophysics Laboratory
(AFGL), are to determine the effects of the space environment on:

(1) Optical systems as represented by cooled infrared detection systems
and laser systems (low power). Such systems are particularly
sensitive to surface contamination and to the hazard of "Shuttle
glow" at PEO.

(2) Large military structures such as the Space-Based Radar. These
systems will be sensitive to a variety of environments, particularly
plasma density, turbulence, and radiation unique to the polar/
auroral regions.

(3) Large, potentially high-power systems such as the Space Based
Laser. High-voltage systems will be affected by the high-density
ionospheric plasma at Shuttle altitudes and, possibly, by spacecraft
charging during auroral arc passage. Contamination and aging of
structural and optical components of such systems are also concerns.

(4) Manned operations requiring EVA during passage through the auroral
region. Again, passage through the harsh radiation and charging
environments associated with the auroral and polar cap regions poses
potentially serious effects.

3	 ►fi^EN1WNALL^ BW
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(5) Comunication and radar systems requiring specialized antennas
sensitive to polar environments. Antennas with dielectric materials
are sensitive to auroral region energetic electrons.

These systems areas are derived from specific mission concepts callcd out
in the A1AA/AFSTC Military Space Sybtem Technology Plan (MSSTP). Typical
examples of proposed AF space systems that would be impacted are the IR
step-stare mosaic surveillance systems, space-based LIDAR, neutral particle-
beam weapon systems, medium altitude surveillance radar, intermediate altitude
phased-array radar, and the space-based laser. As discussed at length in this
report, numerous, potentially &-structive interactions with the space
environment are possible for tuese systems. At the least, the proposed
effects, —ny of which are u-Aique to the auroral/polar region, will. degrade
system performance to the r.oint of failure on long-term (10 or morc years)
missions. Thus the threat to AF systems must he seriously considered and
quantized where possible--again, the purpose of IMPS.

The information gained from the 1MPS program is expected to have broad
AImpact across many AF systems in space. The polar space environment and the
alteration of the environment by large structures or high-voltage surfaces
will cause effects on virtually all apace systems. Examples of the effects
indicate the generic AF system applicability for IMPS:

(1) Auroral fluxes of keV electrons are capable of surface charging,
resulting in electrical breakdown of exposed dielectrics.

(2) Auroral electrons negatively charge spacecraft causing positive ion
impacts to occur at high energy 0100 eV) on wake surfaces of
large structures. High-energy ions cause sputtering and severe
chemical effects on surfaces.

(3) Large spacecraft with charged surfaces or high voltages .:an "focus"
ions or electrons onto sensitive subsystems.

(4) In polar orbit, auroral electron fluxes are encountered four times
per orbit throughout the li fe of the satellite. Severe surface
effects (deterioration, discoloration, etc.) are possible due to
deep electron penetration with resulting electric fields and
enhanced ion sputtering effects.

(5) ChArged or high voltage spacecraft surfaces in concert with
clectromagnetic fields may be able to trap high density plasmas in
localized regions near a large spacecraft. Such plasmas can
interfere with radiowave propagation or with antenna arrays.

There are many other examples but the point is obvious. The IMPS information
is neccusary before we design large or polar spacecraft.

B. THE NATURAL ENVIRONMENTS

At altituces below 1000 ka, the Earth's natural environment is dominated
by the ionosphere and the upper reaches o` the neutral atmosphere. A.1though

4



this is a dynamic region of high plasma and neutral density, most mission
planners tend to ignore it. In Fig. 1, typical profiles for midlatitudes are
presented showing how the neutral and charged-particle environments vary with

'	 altitude between 100 and 1000 km. The main features of this region are that
the densities decrease roughly exponentially with altitude and that the
environment changes from one dominated by oxygen to one dominated by hydrogen
and hydrogen ions. In addition, this environment is influenced by diurnal and
seasonal variations, changes in solar EUV (extreme ultraviolet) and heating
due to geomagnetic activity, interactions between the charged particles that
make up the ionosphere and the Earth's magnetic field, coupling to the neutral
winds, and chemical reactions. Thus, the Shuttle environment is extremely
complex and variable, characteristics considerably enhanced over the polar
caps and in the auroral zones by the following:

(1) Electron temperatures (Figs. 2-4) can undergo variations on the
order of 1000 K over scales of 10° latitude during periods of
intense magnetic activity, and on the order of 300-500 K during
normal conditions. Temporal variations of 1000 K for Te (100 K for
Ti) over 1/2 to 4 hours are typical during active conditions.

(2) 0+ and H+ densities (Fig. 5) exhibit significant (order of
magnitude) spatial/temporal variations at high latitudes in
conjunction with such phenomena as the "plasma trough," "ionization
hole," "light-ion trough," and "polar wind."

(3) Auroral electrons with fluxes of 10-100 VA m_2  with mean
energies in excess of several tens of keV occur in auroral arcs
during disturbed periods. Figure 6 indicates typical precipitation
regions of electrons and protons as a function of average particle
energy:

(4) Magnetic fields are nearly vertical (as opposed to horizontal near
the equator) with rapid spatial variations over the geomagnetic
poles.

(5) Cosmic ray and solar flare fluxes are within a factor of 2 of those
seen in interplanetary space. (Although at lower latitudes the
Earth's magnetic field shields these particles, direct entry over
the polar caps is possible along the magnetic field lines.)

(6) Significant sudden enhancements in neutral density are produced
through joule heating by intensified currents flowing during
magnetically disturbed periods.

Whereas the average low-latitude Shuttle environment has been reasonably
well modelled, the preceding characteristics have precluded the development of
similar models for the auroral and polar cap regimes. Only a few large and
extremely complex programs are currently capable of approximating these
regimes. Thus the impact of the auroral and polar cap natural environments on
space systems represents a unique challenge for the AF mission planner and
spacecraft designer.

5
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Fig. 2. Electron temperature (K) as a function of geomagnetic
latitude and local time at 1000 km over Grand Forks
during May-June, 1965
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(9
C. THE INDUCED ENVIRONMENTS

In addition to the ambient environment encountered between 100 and 1000
km, spacecraft possess locally induced environments by virtue of their
interaction with the ambient environment. The induced environment is often
dominant in terms of the effects on spacecraft activities, especially for
large structures. Potentially important to the local environment are the
outgassing and thruster effluents, near-surface chemical interactions
(contamination), generation of plasma waves and turbulence, optical emissions
(the "Shuttle glow"), enhanced (depleted) gas and plasma densities in the ram
(wake) region, and local generation of electric and magnetic yields. Much
useful experimental evidence concerning these interactions is available from a
variety of measurements aboard STS-3, results of which are reported by Murphy
et al., Shawhan et al., Murphy et al., Raitt et a1., and Narcisi et al.
The "Shuttle glow" has been observed in STS-3 and STS-4 by Banks et al. and
Mende et al.2 , respectively. These observations are briefly summarized
below (see also Figs. 7 and 8 and Table 1).

1.	 Neutral Gaseous Environrir.t

(a) A ram/wake vodulation of two orere of magnitude in neutral
pressure (lU5 	 T to 1077 T: 1071 T - ambient pressure at
240 km) has been observed within the payload bay on STS-3.

(b) The initial bay pressure on STS-3 was 10 -5 T. It took Aearly
twenty-four hours to outgas to the ambient level of 10 - T.

(c) Short-duration (approximately a few seconds) pressure increases
of an order of magnitude typically accompanied attitude-control
thruster firings on STS-3.

1G.B. Murphy et al., Electron and ion density depletions in the STS-3
orbiter wake, PROC. OF THE SPACECRAFT ENVIRONMENTAL INTERACTIONS TECHNOLOGY
CONFERENCE, USAF/NASA, Colorado Springs, 4-6 Oct. 1982; S.D. Shawhan et al.,
Plasma diagnostics package initial assessment of the Shuttle Orbiter plasma
environment, J. SPACECRAFT AND ROCKETS, in press, 1984; G.B. Murphy et al.,
Interaction of the space shuttle orbiter with the ionospheric plasma, PROC. OF
THE 17TH ESLAB SYMPOSIUM ON SPACECRAFT/PLASMA INTERACTIONS AND THEIR INFLUENCE
ON FIELD AND PARTICLE MEASUREMENTS (Noordwijk, Netherlands), 13-16 Sept.
1983a; G.B. Murphy et al., Perturbations to the plasma environment induced by
the Orbiter's maneuvering thrusts, PROC. SHUTTLE ENVIRONMENT AND OPERATIONS
MEETING (AIAA, Washington, D.C.), 1983b; W.J. Raitt et al., Measurements of
the thermal plasma environment of the space shuttle, PLANET SPACE SCI., in
press, 1984; R. Narcisi et al., The gaseous plasma environment around the
space shuttle, PROC. SHUTTLE ENVIRONMENT AND OPERATIONS MEETING (AIAA,
Washington, D.C.), 1983.

2P,.M. Banks et al., Spa,:e shuttle glow observation, GEOPHYS. RES.
LETT., 10, 118-121, 1983; S. B. Mende et al., Observations of optical emissions
on STS-4, GEOPHYS. RES. I-F T., 10, 122-125, 1983.
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Table 1. IMPS Environment near large surfacesa

Parameters	 Ram	 Wake	 Comment

Neutral density, 1075 	 1077	 Measured
torr

Plasma density, As high as 5 z 106 As low as 10 Measured
cm 3

Plasma waves Q0 Hz --300 kHz Low Measured
( 22V/m )2/MHz at peak electrostatic

waves

Energetic Mean energy of electrons: Low Higher fluxes
particles 10-100 eV predicted;

Flux: -.108/cm2 sec ster eV little numer-
Mean Energy of ions: ical data
10-30 eV published

Glow, photons 107 - 108 Low Glowing layer

(cm3 s )-1 in Ram 10-20
cm thick

aReference:	 H. A. Anderson, Induced shuttle environments, in Minutes of the
IMPS ESWG, Feb. 14-15, 1984.

(d)	 The major neutral contaminants around the Shuttle are H 2O and
He. The major engine exhausts are N2, H2O, and H2.

(e) Apart from thruster firings and water dumps, the quantity of
water vapor detected versus time correlates directly with the
temporal variation of spacecraft temperature.

Note: Shawhan et al. 3 do not believe that the measured high pressures
represent the ambient bay pressure (which they say is likely to be
considerably lower) but that the measurements are more likely connected with a
surface near the instrument. Therefore, all of the higher-than -ambient
pressures quoted above may be upper-limit values except close to the
spacecraft surfaces normal to the ram direction. Even so, the neutral gas
density enhancements should be studied because they are beyond current
expectations.

3S.D. Shawhan et al., Plasma diagnostics package initial assessment of
the shuttle orbiter plasma environment, J. SPACECRAFT AND ROCKETS, in press,
1984.
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2. Plasma Environment

(a) Plasma densities of order 2 x 10 6 to 2 x 10 7 cm-3 are
observed in the ram direction of STS-3, whereas ambient values
are believed to be less then 106 cm-3.

(b) A very significant plasma wake (4-6 orders of magnitude
depletion) existed behind the STS-3 orbiter.

(c) Orbiter-produced H2O+ ions are observed with densities
comparable to the ambient ions, Troduced from the •:apid charge
transfer reaction 0+ + H2O+ H^0 + 0. H30+ ions
are also produced from the H2O + H2O • H30 + + OH
fast reaction.

(d) Plasma depletions of about an order of magnitude have been
observed during VCS firings with enhancements of NJ,
NO+ , and OHS densities created by ion-molecule reactions
between 0+ and the exhaust gases.

(e) Electrostatic background noise dominates the electric field
spectrum from 30 Hz to 170 kHz with a peak in the spectrum
between 300 to 500 Hz. The noise variability exhibits a marked
orbital periodicity indicating its origin to be Orbiter
induced. No theory for the source of the noise has been
confirmed, but it may be associated with plasma instabilities.

3. Shuttle Glow

Characteristics of the shuttle glow phenonmenon as inferred from
currently available data are as follows4:

(a) The glow emanates from a layer 5-10 em thick just beyond
spacecraft surfaces facing in the lirection of the velocity
vector.

(b) The glow brightness on AE-C decreased exponentially with
altitude, with a scale height of roughly 35 km, consistent with
that of atomic oxygen at a temperature of about 600 K.

(c) The brightness of the glow was about 10-100 kR on STS-3 and
100-300 R on STS-4, the discrepancy being due to the higher
altitude and larger angle with respect to the velocity vector
on STS-4.

40rigin: see T.G. Sl.anger, Conjectures on the origin of the sOrface
glow of space vehicles, GEOPHYS. AES. LETT., 10, 130-132, 1983; for glow
brightness on AE-C, see M.R. Torr, Optical emissions induced by
spacecraft-atmosphere interactions, GEOPHYS. RES. LETT., 10, 114-117, 1983,
and J .H. Yee and V.J. Abreu, Visible glow induced by spacecraft -environment
interaction, GEOPHYS. RES. UTT., 10, 126-129, 1983.
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(d) the dimensions of the glowing layer are consistent with an

effective radiative lifetime of the emitting molecule(s) of
a^out 5 ms.

(e) The radiation is believe] to be emitted over a continuum (not

in discrete visible lines) extending throughout the visible and
reaching peak intensities between 6000 and 8000 A.

(f) The glow is enhanced after firing the Shuttle ' s attitude

thrusters, whose effluents primarily consist of H2O.

(g) There is evidence from AE -C data that a significant brightness

enhancement of unknown origin might occur in the vehicle wake.

In addition, recently analyzed data from STS-8 (Aug.-Sept. 1983;

S.B. Mende, private communication) showed that the glow brightness and
thicknes p viewed on the ram side of the manipulator hand varied depending on
the typ:: of material held up. A somewhat contradictory observation, though,
was that oxidation of the surface materials did not lead to perceptible
changes in glow characteristics for a particular material. A more complete
analysis of these data will be forthcoming O .B. Mende, private communication).

The above sections represent a brief compilation of natural and

induced environment characteristics. In the following, the interactions and
their effects on potential AY systems are examined, and where appropriate,
specific experiments and instruments are recommended for investigating the

interactions of greatest importance.
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SECTION III

THE INTERACTIONS OF SPACECRAFT WITH POLAR AND INDUCEn ENVIRONMENTS

A.	 MAJOR INTERACTIONS

1.	 Dielectric Charging

Grou::l experiments and in-flight experience such as on SCATHA have
indicated that the buildup of potential on exterior surfaces of a spacecraft
may not be the only source of bpacecraf` charging. The buildup of charge 1a

dielectrics and on interior isolated conducting surfaces may also be a
Potential source. Energetic electrons (typically greater than a fee 100 eV)
can penetrate a finite distance into a material before stopping. In the case

of a dieaectric, the charge can become trapped. Eventually, the electric field
in the dielectric will build up until the field either repels all incoming

electrons or exceeds the breakdowr_ potential of the material and an arc
occurs. With high auroral fluxes, the breakdown strength of co,umon dielectrics
(typically 10 6 V cm-1) can he reached after only one orbit. In the case

of conductive materials, the penetrating electrons can reach interior surfaces
and cause charging within shielded areas. Internal charging, as it !s called,
can ca , vie serious problems for spacecraft systems when, as an illustratior.
the dielectrir insulation in a cable breaks down due to the gradual buildul of
charge in it. With the increasing size of AF satellites, huge dielectric
areas will be exposed to the space environment and can build up

charge--potentially greatly enhancing the threat from this interaction.

The principal surfaces of concern are those that employ large areas

of dielectric or have conducting electrodes at potential differences of >100
V mounted near the dielectric surface. The fact that such dielectrics will
typically be organic, not ceramic, insulators may make them especially
sensitive to bombardment by low-energy articles. in low-Earth orbit such

surfaces are immersed in a plasma of 	 to 106 electrons cm-3 density
and with a temperature of a few thousand degrees (a fraction of an eV). The
plasma in the frame of the Shuttle is doubly anisotropic due to both the
magnetic field and the velocity of the plasma past the vehicle, a process
which produces ram/wake effects. Thermal electror curr!nts to a surface area
are several thousand pA M-2  while ram ion currents are cn order of magni-
tude less. In addition, photoelectron currer.cs are produced in sunlight.

Although such low-energy particles will typically not cause dielectric charg-
ing, particles with energies of hundreds of eV or more can. There exist at
least three different situations in which significant numbers of electrons
with energies of several hundred eV -an be generated:

(a) The auroral vane is crossed four times per pass for a polar

orbit. The flu: of electrons from hundreds of eV to a few tens

of keV regularly reaches 10 - 100 uA M-2  (ions have a
somewhat lower flux) in this orbit. This high-energy flux is

downcoming while the flux of electrons backscattered from the
atmosphere is of nearly equal magnitude but of lower average
energy.
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(b) The plasma is accelerlted by biased electrodes so that some of
the particles strike conductive surfaces while others strike
dielectric surfaces.

(c) acceleration due to electric fields can be created by

transmitting antennas or complex spacecraft/plasma interactions.

Dielectric charging begets further charging. Electrostatic fields

produced by one surface segment cause spaceborne charged particle trajectories

to change, thus inducing further charging on. adjacent surfaces. A negatively
charged surface prevents solar induced photoelectron currents from escaping

adjacent surfaces. These effects, interacting with the space plasma and polar

magnetic field, produce complex interactions that cause the dielectric cnarg-
ing process to be very difficult to predict for large structures in polar
orbit. Without knowledge of these effects, it is possible to have enhanced
charging in a location on the spacecraft where charging is not normally a
cause of failure.

2.	 Material Property Changes

An important concern for the AF is the effect of the auroral/polar

environments on the properties of materials to be used on future large or

high-powered spacecraft in polar Earth orbit. It is expected that the
energetic, precipitating auroral particle fluxes associated with polar orbit
will result in significant degradation of surface and bulk mechanical and
electrical properties. These changes must be taken into account in the design

of spacecraft structures and thermal control systems. Ionic sputtering and
surface contamination are processes that can cause these effects. The

differential charging of dielectric surf.•- s relative to the structure may
also enhance them. in addition, arc disc;,arges. resulting from charge stored

in dielectric/metal configurations, may degrade surfaces. The sputtering or

arc discharge by-products may then redeposit on other surfaces causing
contamination and thermal problems. Cooled surfaces and biased surfaces are
believed to be especially susceptible and should be studied.

Typical spacecraft coatings that might be altered by these effects

are metal coatings such as indium tin oxide (ITO) and gold or dielectric
coatings such as silicon dioxide. These surfaces are used for electrostatic
charge control and thermal control. Other types of surfaces that should be
considered, because of pitting, discoloration, and discharging, are aluminum,

kapton, and various paints. Second surface mirror properties and solar cell
surfaces, especially when biased, may be particularly susceptible to degrada-

tion. It is clear that the study of the effects of the environment on all of

these surfaces under different AC and DC voltage biases (on the order of
±500 V) should be an important IMPS objective. Tn addition, as indicated,
contamination of these surfaces under biased conditions is also a critical

concern. However, as the IMPS mission is of relatively short duration (9 days
or less), active measures, such as the use of electron and ion beams, may be
needed to enhance the effects of the natural environment and to simulate more

hazardous environments. Such hazardous environments are not likely to be
encountered during the short IMPS mission but may be encountered on long-
duration AF missions.
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3.	 HV Solar Array/Large Structure Interactions

A major characteristic of future AF space systems is likely to be

increased power and, by implication, size. Several such missions are called
out in the MSSTP and similar long-range plans. These missions are projected

for low- or mid-altitude, near-polar orbits requiring power in the range of
5 KW to 30 kW continuous with peaks up to 10 times the continuous requirements
on the vehicle bus. To accomplish these missions, the AF needs to understand
the interaction of large, high-voltage arrays with the space environment. it
appears that the low-altitude polar orbit presents a worst case environment
for large, high-voltage solar arrays with its varying gravitational and mag-
netic fields, high-density ionospheric plasma, high-energy auroral particle

fluxes, and the need for the solar array orientation to be maintained normal
to the Sun's rays. Even missions projected for midaltitudes and higher will

have a higher reliability if they are designed for the low-polar-orbit case.

New solar array configurations are under investigation for hardening to
nuclear and laser weapon effects that employ materials and designs markedly

different from present systems. Examples include concentrator and thin,
hardened GaAs solar cell arrays. The concentration systems primarily expoae
metallic reflecting surfaces not part of the electrical circuit. The thin,

hardened arrays represent a very low thermal mass and employ thin substrates
and structures. Both of these, as well as rigid arrays, are expected to
operate at voltages in the range of 200 to 500 V so as to support an internal
volta;e in the range of 150 V. These concepts need to be evaluated in the

auroral/polar environments. Early testing (FY 66 or 87) would be desirable
since it would allow data early in the array development cycle currently

planned by the AF and would assist in developing lightweight, high-voltage,
high-power systems.

It is clear from these considerations that solar arrays with poten-

tials of 200 or more volts will be required for future spacecraft. Such
arrays will have exposed interconnects that can attract current from the space

plasma. As electrons, for roughly the same mean energy, have 40 or more times
the mobility of the ambient ions, the negatively charged collection area (for 	 }
positive ions) must be proportionately larger than the positively charged
collection area (for electrons) to assure current balance. For spacecraft
without onboard plasma sources, this will result in the array floating pre-
dominately negative with respect to plasma ground. Thus, exposed array

interconnections will collect ions. Since the solar cell coverglass is an
insulator, it will remain at a potential near plasma ground, creating a sub-
stantial differential voltage with respect to the solar array conductors.
This differential has been observed to cause arcing both in laboratory experi-

ments and in space experiments 5 . However, the susceptibility of modern AF

5For labora~ory experiments - K.L. Kennerud, High voltage solar array
experiments, REP. NASA CR- 121280 (Boeing Co., Seattle), March, 1974; N.J.
Stevens et al., Investigation of high voltage spacecraft system interactions

with plasma environments (Lewis Research Center), NASA Tech. Memo. 78831,
F 1978; for space experiment - N.T. Grier and N.J. Stevens, Plasma interaction

experiment (PIX) flight results, PROC. OF THE SPACECRAFT CHARGING TECHNOLOGY

CONFERENCE, AF Academy, Colorado Springs, Oct., 1978 (NASA CP -2071,
AFGL-TR-79-0082 295-314), 1979.
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systems to such phenomena is, as discussed above, unknown, and the relative
sensitivities of two different array designs to the same environment have
never been studied. In particular, the variation of arcing threshold with
ram/wake conditions, solar illumination, and high-energy auroral electrons has

not been determined. Since recent studies indicate surface effects of
conductors may be important in initiating arcs, it is necessary to examine
discharge rates as a function of exposure to atomic oxygen. An IMPS high-
voltage solar array (HVA) experiment would provide information that will lead
to improved solar array performance. Experiments are also necessary to help
determine safe operating voltages for AF systems.

Electromagnetic and electrostatic interferences of various types are

anticipated that could increase with the size of the structure and that may
seriously impact sensitive sensor systems. Electrostatic noise has been
observed on the Shuttle between 30 and 180 Hz (Fig. 9). Amplitudes measured
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-sere a maximum of (22.4) 2 V m-1 MHz -1 at 300 Hz (for a receiver passband

of 100 hz, which represents a field strength of 0.22 V m - ). This noise,

observed both within and outside of the Shuttle bay when the detectors were on

the ram side of the Shuttle, decreased to near zero on the wake side, implying
that the phenomenon is associated with the ram/wake orientation. Recent

theories imply that the field strength of this noise would increase with the

size of the generating structure.

Data on the phenomenology of the EMI sources in the auroral/polar

environments, their location, amplitude, waveshape, modes, and spectrum, are
all important in designing effective countermeasures to electromagnetic
interference (EMI). (By phenomenology is meant the environmental conditions

such as plasma density [ram-wake], temperature, and ionic composition as well
as the physical configurations and materials involved in the EMI generation

process.)

4.	 RF Distortions

The Shuttle and similar large spacecraft will produce large ram/wake

effects. in addition, ram particles can sometimes be ionized by auroral
electrons producing transient "dense" plasmas. For antenna arrays on large
space structures, the unusual RF beam scattering properties of this extended,
nonuniform plasma may be a problem. Several specific concerns have been
identified that relate to these RF effects in the auroral/polar region. Three
such concerns are beam pattern distortion, EMI (discussed earlier), and
harmonic distortion. These concerns apply to communications links between the

space system and space- or ground-terminal points, to space-based radar
systems, and to systems with large reflectors and sensitive receivers such as
radioastronomy or RF surveillance of the Earth. Each is described below.

The first of the RF concerns is beam pattern distortion. Electron

density irregularities in the vicinity of an antenna and antenna feed system
can distort the far-field antenna patterns, reducing the main beam efficiency

and increasing the sidelobe levels. This effect is undesirable for either
receiving or Transmitting antennas. Severe destruction of the beam pattern

occurs if the plasma density leads to a plasma frequency comparable to the

wave frequency:

fplasma(Hz) = 9 x 103 N1/2

where N is electron number density in cm -3 . Densities of 10 8-10 12 cm-3 are

necessary to severely affect the 100 MHz to 10 GH range. Although natural

polar electron densities range only up to 106 cm-3,  local ionization in
the vicinity of a large space structure may be significantly higher due to

auroral particle bombardment and other effects.

For densities expected in polar orbit the near-field phase pattern

can be modified so that the far-field pattern is distorted. If the density is

irregular in either space or time, the far-field pattern will cha3ge with
time. Ram/wake densities were observed to vary by a factor of 10 near the
Orbiter on STS-3 and STS-4. Such ram/wake variations would modulate the
far-field beam of any antenna-feed system to some extent. Even without the
large structure ram/wake, a spectrum of density irregularites exists in the
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polar ionosphere due to auroral particle precipitation and auroral current
systems. These density irregularities hove scale sizes of centimeters to

meters.

The second RF concern, already discussed in some detail, is EMI.

EMI is a low-frequency RF problem that needs to be quantified so that the

threat can be avoided.

The third RF concerti is that due to harmonic distortion. The

presence of plasma and plasma irregularities in the vicinity of high-power
transmitters could cause nonlinear effects on the signals. If the plasma

tends to rectify, as at the surface of the spacecraft, then harmonic
distortions will occur. Also, irregularities can cause wave energy to become
trapped in a localized volume leading to nonlinear effects. Such effects

cause spectrum spreading and beam envelope spreading, which lead to

interference and reduced privacy.

5.	 Shuttle Glow and Contamination

Three facets of spacecraft contamination for IMPS to evaluate in the

auroral/polar environment are (1) contaminant modification of the
electrostatic charging and discharging of vehicle and payload surfaces;

(2) electrostatic charging and discharging effects on contamination; and

(3) optical contamination by the so-called "Shuttle glow" phenomenon. Common
contaminants can decrease the photoyield and can change the secondary electron
yield of surface materials. These changes will affect the response of the

vehicle and payload to the transient charging environments found at

auroral/polar latitudes. Further, since many contaminants are dielectrics,
they may serve as sites for discharges and cause extensive differential

charging.

Work by Clark ar..d Ha11 6 and others has indicated that charged

spacecraft surfaces may buildup contamination at a faster rate than uncharged

sufaces (Fig. 10). Dielectrics tend to have the largest differential
potentials relative to the spacecraft ground. Since many optical and thermal
surfaces consist of dielectrics, the implication is that these surfaces would

be rendered even more sensitive to contamination as a result of their ability
to charge and attract contaminant ions. This phenomenon is not well

characterized and requires study by IMPS at Shuttle altitudes in polar orbit.

As discussed in Section II.C, a major source of background optical

contamination may be the glow that has been detected on Shuttle surfaces

exposed to the ram environment. One apparent source of this "Shuttle glow" is
the interaction between the neutral oxygen environment and the leading

surfaces of the Shuttle (a plasma interaction may also be involved). It is
currently postulated that an actual chemical reaction takes place that leads
to the degradation and aolation of surfaces (particularly organic compounds

such as kapton). Aside from the obvious surface changes thus introduced, the

6D.M. Clark and D.F. Hall, Flight evidence of spacecraft surface
contamination rate enhancement by spacecraft charging obtained with a quartz
crystal microbalance, SPACECRAFT CHARGING TECHNOLOGY, 1980, NASA CP-2182, 1981.
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glow apparently associated with the process is quite bright (upwards of 100

kR, as mentioned earlier). This glow potentially threatens optical systems
operating in this environment. As the effect may be related to size and
neutral and plasma density, it will be necessary to carefully study trade-offs
between orbital altitude (at higher altitudes, because of the exponential

decrease of oxygen, it is assumed that the problem will disappear) and size.
Further, it is unknown how variations in the environment found at high

latitudes will affect the phenomenon. A key to understanding this effect
would be spectroscopic measurement of the glow during flight operations.

6.	 Plasma Interactions

One candidate system for future AF missions is the space-based

radar. This system and its large antenna will employ dielectric surfaces and
high-voltage AC fields that can induce adverse interactions. Several interac-

tions have been proposed that are unique to this type of system. For example,
EMI due to dielectric discharge pulse noise initiated by high-energy (E > 1

keV) electrons encountered in the polar orbit and RF noise at the operating
frequencies such as observed on the Shuttle, would likely be enhanced for
large antenna surfaces and could cause serious interference with sensitive RF
detectors. Likewise, as discussed in previous sections, dielectric breakdown
on large surfaces, =vitiated by the high-energy polar electron fluxes and
powered to completion (full breakdown) by a high antenna voltage, could damage
the antenna structure itself and other supporting subsystems.

Solar panels, powered antennas, and large space structures will have

exposed potential surfaces that can cause interactions with the space plasma.
Such interactions can accelerate the plasma particles to energies greater than

100 eV. The process is not simple and the resulting current flows are

difficult to calculate. Theoretical predictors need to be developed and
compared with experiment. For example, a 1000 volt dipole 10 cm long will

collect a few milliamperes of current (magnitude very uncertain). Some of
this current will be collected by other materials adjacent to the dipole

causing damage to these materials. Codes to predict resulting plasma particle

energies/currents/trajectories need to be validated before biased elements can
safely be designed for large space structures.

B.	 OTHER INTERACTIONS OF CONCERN

1.	 EVA Interactions

Although no adverse interactions between astronauts and the space

environment have been observed, it is expected that as the EVA life-support

systems become more complex and astronaut activities more involved, a
potential hazard may exist. Specifically, as life-support control systems

change from those controlled by analog electronics to electronically complex
and active real-time processor systems, the potential failure and the effects
of that failure increase dramatically. It has been postulated that an
astronaut on EVA in the depleted plasma wake of the Shuttle could experience
severe spacecraft charging. The reasons for this are twofold. First, a
passive body in orbit at Shuttle altitudes normally charges (at most) to a few
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volts relative to the ambient plasma. This is due to the low energy of the
ambient plasma. The high density of the plasma tends to "short" any
differential potentials that might be generated by shadowing or anisotropics
in the flux. As structures become larger, however, a large plasma void is

created in the antivelocity vector direction (wake). An isolated body such as
an astronaut on EVA in this void region may charge to a potential independent

of the ambient cold plasma. As only relatively high-energy (!:eV and higher)

particles can easily penetrate this void, under some conditions kV potentials

might be expected. At low latitudes, the flux of such particles is diminish-
ingly small. At high latitudes, the auroral fluxes in this energy range can
be quite high. Further, these fluxes are along the magnetic field direction
(roughly perpendicular to the velocity vector at these latitudes) so that
indeed a high-energy-charging source may exist.

It is believed that an actual example of low-altitude charging in the

auroral zone was observed on the Defense Meteorlogical Satellite Project
(DMSP) satellite. Voltages on the order of 100-200 V were observed. Although
no such events have been observed during EVA, it is also true that manned
missions have yet to encounter a significant auroral flux. Further, the
simplicity of current EVA systems has rendered them virtually immune to such

effects. Plans for new, digitally controlled life-support systems and the
requirement for frequent EVAs in the auroral and polar cap environments may
change this, however.

2.	 Radiation and SEU Effects

Recently, much attention has been focused on the phenomenon of the

single-event upset (SEU). SEUs are the result of the sudden generation of
sufficient free carriers in an IC to cause an electronic upset. The increase

in free carriers is produced by the passage of a proton or heavier fast

particle. The upsets can be divided into two categories:

(1) OFF to ON (Memory Reset) caused by particles in the energy

range E : 100 MeV/nucleon

(2) Latch-up caused by particles with E greater than a few hundred

MeV/nucleon

Characteristic of these interactions, the effects are at a maximum near the

stopping point energy of the nucleon (typically a few 100 MeV). With the
increasing sophistication and the movement toward spacecraft autonomy of AF
space systems, it is clear that multitudes of ICs with potential sensitivity

to SEUs will be employed. Thus SEUs, which could disrupt or confuse
sophisticated sensors and autonomous control systems, are a serious threat for

AF space systems.

I.n low-Earth orbit, high-Z galactic cosmic rays cause the first type

of interaction, while any cosmic rays of over a few tens of MeV energy, as
well o g cosmic ray secondaries produced in massive parts of a spacecraft and
in the atmosphere below, will cause nuclear collisions. Secondaries are both
charged and neutral particles including neutrons (cosmic ray albedo
neutrons). These effects occur in any orbit, but the cosmic ray fluxes will
be greater in polar orbit because of the so-called Stormer cutoff variation
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with latitude (the magnetic field of the Earth causes asymmetries in the
incoming cosmic ray flux; see Fig. 11):

R min - 15 008 4 (LAT) (in GV)

with

LAT s latitude

R z magnetic rigidity, momentum/Z

Above about 60° latitude, the cutoff goes to approximately zero because the

polar cap magnetic flux is into the magnetotail. Further, even though a great
many measurements of cosmic rays have been made in the past 25 years, it will
be worthwhile to make an accurate calculation of the fluxes expected in polar

orbit on IMPS. As an example, theoretical calculations 7 imply flip rates of
10-8 upsets per bit- ay at low inclinations while at high inclinations, flip
rates as high as 10- may be possible. Thus, SEUs in the auroral/polar
regions represent an important concern for IMPS.

3.	 Space Debris

Kessler, Dour-Palais, and others 8 have systematically analyzed the
rate of buildup of man-made debris in low-Earth orbit. Their results
(Fig. 12) indicate that there is an increasing likelihood of collisions
between the debris itself and active satellites. Such collisions will be at
hypervelocity so that the resultant damage will lead to further fragmenta-
tion. Under sime scenarios, once a few collisions a year become commonplace,
the growth rate could become exponential so that within a decade space opera-
tions in the affected orbital regimes (typically in and near the Shuttle
orbit) could become exceptionally difficult. Given the additional factor that
the cross sectional area of space structures may also increase by orders of

magnitude in the same time frame, the problem of space debris--its size dis-
tribution, its orbital distribution, and its growth/decay rate--will be a
major concern by the early 1990's. IMPS, with its emphasis on environmental
impacts, makes an excellent platform for studying such space debris. As the
SPAS-mounted IMPS will be physically separated from the Shuttle, IMPS will

allow measurement of microscopic debris as a function of position relative to

the Shuttle as the Shuttle is maneuvered around it. This will make possible a
classification of the microscopic debris encountered into Shuttle-induced and
"environmental" debris.

7 P.A. Robinson, SEU rates for IMPS, Minutes of the IMPS ESWG, Feb.
14-15, 1984.

8D.J. Kessler and B.G. Cour-Palais, Collision frequency of artificial
satellites: Creation of a debris belt, SPACE SYSTEMS AND THEIR INTERACTIONS
WITH EARTH'S SPACE ENVIRONMENT, H.B. Garrett and C.P. Pike eds. (AIAA Press,
New York), 707-736, 1980.
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SECTION IV

i	 INVESTIGATIONS SUGGESTED TO QUANTIFY AF SYSTEM
i

DESIGN G 1- `.LS FOR POLAR ORBIT

Based on the requirements described in the previous sections, fifteen

t,.4neric categories of investigations capable of obtaining the required
measurements have been defined. In the following, the purpose of each of

these investigations is briefly described followed by a suggested list of
support instruments (,.he investigations are listed approximately in order of

importance as estimated by the ESW(;). At the end of this Section, for

reference, the investigations are listed in Table 2 along with the types of
measurements supported; Table 3 lists the various types of support

instruments. As should be clear from this latter table, the total list of

instruments necessary for a comprehensive IMPS mission is not as large and

diverse as might have been initially assumed. This finding should be of value
to mission planners in defining the IMPS payloads since the number of
instruments that must be considered is significantly limited.

A.

	

	 DIELECTRIC CHARGING, MATERIAL PROPERTY EFFECTS, AND ELECTROSTA'T'IC

DISCHARGE (DME)

As discussed earlier, an important investigation for IMPS would be the

monitoring of changes in the bulk properties and surfaces of materials. In
addition, the pac,cage should allow the study of the effects of charge deposi-
tion in dielectrics and associated arc discharges. To analyze the effects of
spacecraft potentials on charge deposition, surfaces should be capable of bias
to t5UU V relative to the SPAS ground. Cryogenic cooling, to simulate

effects on IR sensors, would also be desirable. Typical sample surfaces would

be dielectrics, optical surfaces, mirrors, and solar cells. A number of
dielectric samples should be flown to look for discharge pulses. Since expo-
sure time to the auroral fluxes will be relatively short and since the param-
eters of interest are numerous, a large number (>IUU) of samples are

required. Auroral electrons are likely to induce discharges in the dielec-
trics. Althoueh the passage through one auroral arc may be insufficient to

initiate a pulse, the effect is cumulative, with subsequent passes producing
discharges. It should be noted, however, that leaky dielectrics, produced by
sunlight shining on the material, would be less likely to break down by this
process.

The purpose of this DME investigation would be to measure several mate-
rial properties which are expected to be important in polar orbit over a broad
class of materials. the experiment will be designed to simultaneously measure

a number of effects on many samples. Figure 13 shows how many samples can be
exposed to the Shuttle environment simultaneousl y . Simply exposing materials

to polar shuttle orbits will usually not be a sufficient test of the mate-

rial. Some of the effects, which occur either slowly or rarely but cause a
significant effect when they do occur, need to be artificially enhanced during
a short duration mission like IMPS so that they can be studied; the experiment
described in Figs. 13, 14 and 15 is designed to do this.
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Table 2. Instrument (or investigation) categories for IMPS
versus measurements parameters

Instrument Categorya
Measurement

Parameter
DME SBR HVA CEM WCE EIM EMI EPD TVM RFT EIS GLW SEU LSS DDE

e
Material Properties

Bulk conductivity P	 S
Bulk charge	 P
Secondary emissiou S 	 P
Photoelectron

emission	 S	 P
Surface ablation P	 S	 P

Contamination

Surface build-up	 P	 P	 S
Absorptance	 P	 P

hmittance	 P	 P

Reflectivity	 P	 P

Vehicle glow	 P	 P	 S
Induced con-

tamination	 P	 P	 S	 S	 S

RF Contamination
Arc noise	 P	 S	 S	 P	 S
hMl background	 S	 S	 P	 S	 P

Propagation

effects	 P	 P	 P
hV Effects

Pcuer loss	 P	 P
Arc breakdown	 S	 P	 P	 S	 P

Single :'vent Upsets

Event detector	 ?	 P

Plasma hnviror.mevt

'_vuospheric plasma	 P	 S
Auroral fluxes	 P

Radiation fluxes	 P
Cosmic ray ilu.cs	 ?	 P

Atmospheric
Environment

Neutral density	 S	 P
Neutral

composition	 S	 P

Neutral pressure	 S	 P	 S

Ram/Wake Environment
Plasma density	 S	 P	 P

EMI noise	 S	 S	 P

Charging	 P	 S	 S	 S	 P
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Table 2 (cont)

Instrument Categorya
Measurement

Parameter
DME SBR HVA CEM WCE EIM EMI EPD TVM RFT EIS GLW SEU LSS DDE

E&M Environment
DC magnetic fields
AC magnetic fields

DC electric fields
AC electric fields

Photon Flux

Visible
LUV

IR

X-ray
Neteoroid Environment

Particulates

P
P

P
S	 P S

? S	 S
? ?	 S

? ?	 S

S	 P

ap Primary experiment
S Secondary experiment
? Inclusion uncertain

The nlaema retarding ring/grid shown in Fig. 14 may be used to accelerate
ions and reject electrons from the plasma in order to study the effects of
icns on the sample. The ring/grid would be negatively biased to voltages of a

kilovolt or more under the restriction that the current drawn by the ring/grid
does not exceed a predetermined value and that the Shuttle does not change its
potential with respect to the space plasma. If higher energy ions are to be
studied, the high voltage can be applied directly to the sample while the
ring/grid remains closer to ground pc_enti.al. In this configuration the
number of ions collected will be lens but at a higher energy. Ring/grid

biases would be adjusted while considering the effect on adjacent samples (a
biased ring can affect the plasma particle trajectories near adjacent samples).

1.	 Pulsing in Insulators Caused by Auroral Electrons

It is estimated that one or a few passes through the auroral zones during

electron precipitation events would be sufficient to initiate electrical
pulsing noise in highly insulating materials. This needs to be studied in

both ram and wake configurations. The ring/grid can be used to simulate the

wake condition by biasing out the positive ions while letting the electrons
continue to bombard the sample. Ram conditions can not be simulated when in
wake. Poising would he monitored en the sample using electrodes which are
wired tc pulsed current detectors such as Lhe IDM detectors being developed by
JPL for the AFWL. In addition, radiated electromagnetic noise should be

measured by RF sensors placed as much as a few feet away from, and in front
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fable 3. IMPS support instrumentation for investigation categories

W,.

Supporting

Instrument

Investigation

Category

Supporting

Instrument

Investigation

Category

Artificial Arc Source EMI Monitor-Albedo CEM

Beam-Electron EIS Neutral Pressure Monitor EIM
EPD RFT

Beam-Ion EIS Plasma Diagnostics Package EIM
WCE EIS

Biasing Supply CEM LSS
DME RFT

HVA WCE

SBR Samples-Dielectric DME

Contaminant Release Samples-IC SEU

Canister CEM Samples-Optical Surfaces DME

Current Monitor EMI Samples-SBR Antenna Segment	 SBR
EPD Samples-Solar Cells HVA

Detector-Arc DME Simples-Surfaces DDE

HVA EPD

WCE GLW

Detector-EMI EMI Spectrometer-EUV C.?.W

LSS Spectrometer-IR GLW

SBR Spectrometer-Neutral Mass CEM
WCE EIM

Detector-Faraday Cup EPD Spectrometer-Visible GLW

Detector-Particulates DDE Sun Sensor EPD

Free Flyer WCE HVA
I- E ger-IR DDE Surface Potential Monitor EIS

Impact Monitor DDE EMI

LSS TQCM CEM

Langmuir Probe HVA LSS
SBR. Telescope-Cosmic Ray SEU

Low-Light TV DDE Transient Pulse Monitor DME
EIS Transponder or Reflector RFT

GLW Variable Frequency

LSS Transceiver RFT

TVM
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BASE POWER	 I	 TELEmETRY

Fig. 13. Standard sample trays to test many samples using common
support instruments. Each tray may contain up to 100

bins; each bin contains one sample.

PLASMA RET<AD RING/GRID
-----------------------^

I

AT LEAST b FEED THRUS (PER SAMPLE) AVAILABLE FOR USE

Fig. 14. A typical electrode-dielectric sample. The feed throughs are
necessary to pass through the thick plate that protects the

electronics from space radiation as well as structurally

supports the samples and apparatus.

of, the sample trays shown in Fig. 13. The RF sensors should be looking for
rare pulsEs which last from 10 nanoseconds to 10 microseconds. The RF signal
level should be measured and if possible the frequency spectrum should be
determined (see the EM1 experiment for RF noise measurements).

Several electrode configurations will be necessary for this experiment

because large structures will have a large variety of dielectric materials
associated with them such as antenna elements mounted on insulators or glasses

mounted on meta] holders. These configurations should be tested using
appropriate electrode configurations, and in some cases bias should be applied
to the electroces. AC bias could be especially interesting because of the
unusual fields that could be created within the dielectric. Biased electrodes

should be wired with current limit i ng resistors so that a discharge pulse does
not overload the power supply.
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Fig. 15. Typical telemetry controlled switchable connections to sample
electrodes

Pulsing should be monitored through several paths, between

(1) An electrode and ground

(2) Two electrodes on the same surface

(3) Two electrodes on differing surfaces of the same sample

(4) An electrode and the ring/grid

The pulsing should be monitored with and without bias applied to one of the

electrodes.

2.	 Surface Charging in Wake and by Auroral Electrons

It will be important to know the extreme potentials achieved by surfaces

in wake in the dark. One may do this by measuring the potentials of DME
sample electrodes or of conductive DME samples using the potential monitor

shown in Figs. 13-15. However, the validity of such data is strongly
dependent on experiment designs and on effects such as the "boot strap" which
ctiuse the potentials of nearby surfaces to be similar. The whole DME
apparatus may have to be electrically floated to do this experiment well. It
may turn out that the multisample trays shown in Figs. 13-15 are not
appropriate for determining the surface potentials on insulated surfaces of a

:Large structure. In order to properly design such an experiment, one should
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first decide exactly what information is needed and then use a surface
charging computer code such as POLAR or NAS(:AP to sce if an experiment can be

designed to get the data. It will often turn out that the surface potential

will depend mostly on interactions with other porti-ins of the spacecraft
through plasma particle trajectories and depend only weakly on the properties

of the sample in question.

It is of interest to measure differential voltages between small adjacent

samples on a large structure. Such data are presently lacking and the
computer codes are not yet reliable on this case. Thus in Fig. 15 is shown a
potential monitor which is basically an electioatatic probe to sense the
potential on any chosen electrode. The probe must be of very high input
impedance (infinite), and the telemetrically cor.tr . 11ed switches must also be

highly insulated for this measurement. It is nr nbably only necessary to have
one probe in each sample tray, and it will only be necessary to sense a few of

the electrodes; these electrodes should br cbosen based on analysis of
expected surface potentials, and the most extreme crises would be the logical

choices.

It should be noted that the surface potential monitors developed for

geosynchronous satellite!, are not appropri•:ce here because the surface
potentials are expected to be much smalle_.. However, such detectors could be
used to look for the expected extreme : -ia di g levels of a kilovolt in the
wake. This information will not be very material specific and will depend
greatly on the average over many materials on the wake side of the satellite.
Further, geosynchronous potential monitors measure the potential on the back
surface of an insulator and assume that the potential drop through the
insulator is small relative to the measured potential. Such an assumption is
not valid for much of the IMPS investigations.

3.	 Material Degradation (Surfaces)

Both the chemically reactive and the relatively high-energy species in

space are expected to have an adverse effect on sample surfaces. Large

structures are expected to alter the nature of this environment by introducing
chemical species as well as changing the trajectories of native species.
Surfaces charged by auroral electrons will experience bombardment by higher
energy positive ions. Some surfaces will experience enhanced ion bombardment

not because of charging but because of inadvertent focusing of the space ions
by electric fields generated by the structure itself. Thus, a test sample

with U bias (and with ± grids to keep out ions and electrons) should be
flown to be compared with an adjacent series of samples at increasingly more

negative bias. This will highlight contamination/damage by ions relative to
neutrals. Similarly, one may test for high energy "ram" neutral effects by
exposing one surface to the ram while a similar surface, facing down into
shuttle bay at all times, is only exposed to slow neutrals, never to energetic
neutrals.

A series of experiments using bias and sample covers/position can be used

to distinguish effects by various spaceborne species. However, Air Force
problems associated with large structures and high voltages should be related
to accelerated charged species bombardment effects. These studies should be

emphasized for AF studies as NASA and others look at nonaccelerated cases.
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The following diagnostics will be used as appropriate for specific
samples:

(1) Surface resistivity

(2) Volume resistivity

(3) Surface voltage

(4) Secondary electron emission (see EPD)

(S) Dependence on temperature, comparing hot sample to cold sample

(b) Optical absorptivity, reflectivity (before and after flight)

(7) Mass loss/gain (before and after flight)

(8) Contamination (before and after flight)

(9) Morphology (before and after flight)

The above arguments concerning high- and low-energy ions and neutral particle

effects, as controlled by bias and exposure, will also apply to experiments
using the above nine diagnostics.

Often, material degradation will depend on sample temperature. At the

least, the trays' temperatures will be monitored. If possible, a tray will be

designed to heat and/or cool its samples for a long time during the flight.

With the tray configuration shown, it is possible to measure the net

electrical current to the entire tray. The tray should be biased relative to
the shuttle ground. This provides a method for validating spacecraft charging
codes and current collection codes if current versus voltage is measured for
the entire tray. Applied bias is not expected to harm individual sample
experiments as long as it is applied only for a short time. These trays are
of sufficient size to validate the charging codes. Monitoring the (zero bias)

current allows a check on the incident space currents (auroral electrons,

ions, etc.) during the flight at the tray location. Thus the trays should be
grounded through an ammeter.

When devisiug an experiment scenario, the effect of a biased electrode
upon the fluxes to a sample in an adjacent bin should be determined. Because

the bin widths are larger than a debye length, the effect is not expected to

be large. Measurements should be performed to confirm this, however.

A number of specialized measurements should also be made. Such

experiments would be dedicated to a particular AF system component sample
requiring detailed testing. For example, reflectivity vs a or vs
accumulated exposure during flight could be measured on mirror materials using

laser reflectometer. Surface chemistry effects could be studied on a SIMS
apparatus (Secondary Ion Mass Spectrometry) as well as by measuring sputtered
species. Such specialized experiments should be limited to important
materials where the effects of the polar environment are expected to be
significant.
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Exposed electrodes should be biased by capacitors fed by a high impedance

(>104 ohms) source. This prevents a discharge from creating a permanent
arc which would drain the power source. The capacitor (>1.0 µF) provides

stored charge sufficient to cause larger arcs than occur in dielectrics
alone. A monitor can be provided in the 10 4 ohm line to indicate when a
pulse has occurred and can correlate with the EMI experiment.

B. EFFECTS ON SPACE-BASED RADAR (SBR)

To investigate the effects of plasma interactions with the Space-Based

Radar (SBR) as functions of plasma density and Shuttle orientation, an actual

sample of a SBR-antenna segment should be flown on IMPS. fo  characterize the
environment directly in front of the SBR sample, a Langmuir probe or similar

low-energy plasma probe is required. To characerize any electrostatic

discharges or EMI generated by the operation of the SBR, an ESD-EMI detection
system is suggested. Finally, to study the effects of different biases on the

operation of the SBR, the sample should be biased relative to the Shuttle

using DC and radar RF.

It is recommended that IMPS not only fly but also operate the sample

section (1 m2 ) of the RADC/OC space radar antenna and expose the antenna
during its operation to the ram and wake. The antenna is a structure composed

of an aluminum sheet surrounded by an array of dipoles mounted on kapton

membranes. When it is operating as a transmitting antenna, it will have
roughly lUO W peak radiated power. During the IMPS flight, the segment should
be transmitting as much as possible (at least during 1/4 of the flight) using
pulses typical of radar. During nontransmission periods, the antenna should
be either in a pure receiving mode listening for EMI noise or in a low-
frequency to DC mode looking for dielectric discharges within its own

structure. It should also have up to 1 kV bias on its elements at times.

Because the de-phasing of SBR beams by the space plasma is so important,
the SBR investigations should be correlated with the RFT investigation as

discussed in Section 1.

C. HIGH-VOLTAGE SOLAR ARRAY EFFECTS (HVA)

Although it would be preferable to fly a large, high-power solar array to
investigate the interaction between exposed nigh-voltage (SOU V) surfaces

and space plasmas, this may n_L be possible during the early IMPS missions.
Therefore, it is recommended that on early IMPS missions some small array

segments ut about 112 ft 2 of 2 x 2 cm GaAs solar cells (70 cells) would be

flown to generate 70 volts open circuit and about 55 or 60 volts under load.

Flying a silicon cell panel of the same 112 ft 2 size would generate about.

5U volts at open circuit. The latter would also be biased to observe changes

in leakage to the plasma as a function of negative and positive bias up to
!lODU volts. Corona effects in current between parts of the array itse'f

would also occur at voltages of 300 t,) 500 volts. This would be especially
true at times of contaminant release when local pressure could approach
1U-1 Torr and the surrounding vapor/plasma is at least partially ionized.
This effect could be measured with a bare conductor held at vehicle ground,

t
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instrumented and monitored to measure current vs. array bias voltage. The

silicon cell segment should be in two parts: one with interconnects not
shielded and one with the interconnects coated with inorganic oxides as

accomplished by the Plasma Activated Source (PAS) coating technique under
development by the Aero Propulsion Lab of AFWAL. The GaAs solar cell segment
could also employ the integral inorganic coating if its development status is
sufficient. At present the technique is only suitable with Si segment

technology. The current voltage curves should be obtained when the solar cell
array segments are illuminated. The cell temperature and sun angle should be
measured during testing. The combination of biasing the silicon cell

segment(s), measuring EMI, leakage currents, and corona between different
solar array parts, and correlating these measurements with the natural and
induced environments should provide a first look at high-voltage array

interactions with the PEO environment. Other critical parts of solar cell
arrays are the materials of which the arrays are made. These include
lightweight substrates such as mylar (treated) Kevlar and various laminates

for stiffeners and light weight. For the newer hardened concentrator array
systems, reflector components should be included and the effects of the
Shuttle and space environment on the reflective surfaces should be measured.

It is anticipated, however, that a qualified concentrator module could not be
prepared in time for the first flight and that achieving orientation of the
SPAS 1° normal to the sun would pose severe constraints on the SPAS
housekeeping stores.

In subsequent missions, the proposed approach is to deploy a 20-m2

array (i.e., 2-m x 10-m deployed length), with at least 2 m of active solar

cells, extending out of the Shuttle bay (it may be desireable to unfold this

array in two different shapes). Figures 16 and 17 show a possible

configuration. The segment should also contain a solar concentrator segment as
f •	well as provisions for testing candidate materials for solar array components

and other spacecraft components. The array experiment should be capable of

generating 500 V at about 200 W when oriented normal to the solar radiation.
The array segments should include the following experimental technologies:

(1) Two concentrator concepts hardened to laser effects

(2) Hardened, thin GaAs solar array segments

(3) Thin silicon solar array segment (both [2] and (3] would be used in

single and series segments to build up the voltage)

(4) Comparison of array segments with and without grounded conductive
covers

(5) Provision for biasing the experiment in increments to ±500 V

(6) Conductors arranged such that magnetic torques can be assessed

(7) A current generator so that currents up to 5 A can be imposed

(8) TV monitoring capability

(9) Ability to evaluate in sunlight and eclipse
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W DEPLOYMENT MECHANISM

CONCENTRATOR MODULE 112 m2

J CONCENTRATOR MODULE 1/22

THIN HARDENED SOLAR CELL SEGMENT
Go k

THIN OR CONVENTIONAL Si
CELL MODELS

it I

OTHER MATERIALS

SOLAR CELL BLANKET
TYPE UNDEFINED

Fig. 16. Possible solar array panel configuration for IMPS

41



b
b
cc

b

3
O
W
m

Cd

a.+

8
N
aa
K
G!

co

N

N

co

N

H

O

Cna
H 'b

G1N
O O

w
a^ v

^b
O

9.-r

00

w

Q	 \
Z
O

= WH
Z

U
o U

O J Q J
Q ZU wW V

Oh oO0N

O

v
O
Z
O

^.	 V

42

Cam. 0



(10) Ability to evaluate in ram and wake and edge on

(11) Orientation and deployment mast structure

(12) Open areas for other material experiments

For studying (and, if necessary, simulating) EMI and related plasma

effects on the small or large arrays, electron and ion sources, ±500 V bias
supplies, Langmuir probes, differential chargeup monitors, arc discharge

detectors, spectrum analyzers, and electric and magnetic field sensors would
be required. Electric and magnetic fields should be recorded in the 1 kHz to
1 GHz range, while electric discharge current and voltage wave forms should be

measured in the 1-ns to 100-us range. A search coil magnetometer capable of
determining the absolute orientation of the array relative to the magnetic

field should also be flown. Sensors should be emplaced near and around the

EMI sources and at remote locations to define the applicable coupling or

transfer functions (see EMI). Finally, allowance should be made for
measurements of flexible body effects and array short circuits.

D.	 CONTAMINATION EFFECTS (CEM)

The need to characterize contamination in the vicinity of the STS Orbiter
in the polar auroral environment arises from the expected complexity of the
interactions. Ultimately, of course, any interest in contamination

measurements is based on the effects of contamination:

(1) Damage to the sensitive surfaces of certain detectors, optical

elements, and special materials

(2) Degradation of the field-of-view of certain instruments

Plasma/contamination interactions will affect the magnitude and nature of

these effects.

The rapid changes in material charge states (arcs) that occur in the

polar auroral environment will enhance the sources of contaminants. The
material itself and its breakdown products will be directly released by
arcing. Additionally, pre-existing particulates will be indirectly released.

The transport of all contaminants may be profoundly affected by the plasma
through ionization (of gases) and charging (of particulates) and their
subsequent motion in the induced and ambient electric and magnetic fields.

The deposition of contaminants on victim surfaces will be quite complicated by
the plasma environment. Plasma collisions will tend to remove contaminants.

At the same time, plasma-induced chemical reactions may change the

contaminants to forms that tend to persist longer or that have a tendency to
more readily collect more contaminants. The chemical changes would also

affect the physical (e.g., optical) properties of the contamination on the
surface. Finally, the altered physical properties of the surfaces due to
contamination, whether changed through further plasma interactions or not, may
interact through plasma charging to, in turn, affect sourceP and transport.
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	1.	 Requirements

The desired capability of a contamination monitor instrument for IMPS

includes the following:

(1) Measurement of auroral plasma-induced enhanced contamination sources

(2) Characterization of contamination transport in the auroral

plasma/STS Orbiter environment

(3) Measurement of contamination deposition as affected by the plasma

for a catalog of contaminants

(4) Measurement of the alteration of the physical properties of a

catalog of deposited contaminants by the plasma

(5) Determination of the feedback interaction (e.g., dielectric
contamination causing arcing that produces more contamination or
charging that enhances deposition at other specific sites)

(b) Measurement of the rate of contamination as a function of surface

potential.

Several difficult requirements follow from the need to characterize the

Orbiter/auroral plasma/contamination interaction so as to permit the use of

generic models and predictions for specific unflown arrangements. The data
should provide for the separation of plasma-interactive effects from the
effects obtained in the absence of the plasma. IMPS specific effects should

be separable from generic Orbiter effects. The competing effects than
comprise net contamination deposition should also be separable.

Two conclusions may be drawn from the discussion to this point. The
contamination monitor package will require a combination of instruments and
sensors and will likely not accomplish everything desired. If the additional
constraint of a 1967 availability is imposed, the possibilities are even more
limited. However, a very useful package is feasible and will. be  discussed

below.

	

2.	 Approach

Any approach to contamination measurement may be cl,aracrerized as either

a technique for measuring contaminants in the vicinity of the sensor or a

technique for measuring contaminants striking and/or depositing on the
sensor. Most approaches are either better for determining molecular (gas)

contaminants or for determining particulate contaminants. For the pi.irposes of

this discussion, contamination sensors may be categorize ,'	 ^pt'_cai imaging
sensors, gas mass spectrometers, deposited mass sensors, thermal-optical

effects sensors, impact sensors, o r inactive collectors.
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Optical imaging sensors are the principal means for the measurement of

contaminants in the field-of-view. In p'.Iuments in this category typically
resemble those threatened by such contamination. Examples are television and
film cameras, coronagrapns, laser scattering instruments, and telescopes. All

of these are especially sensitive to particles. however, direct depositio-.

on the external optical element can confuse the data interpretation. 'these

instruments also have limited sensitivity to small particles (e5 j,m).
Typically the measure m ent of contamination threats to an infrared telescope

requires the use of an infrared telescope. The measurement of gas species in
the field-of-view, in contrast, requires the techniques of absorption spec-
troscopy (i.e., a stable well-characterized light source at a known distance

from the detector), which is extremely difficult.

(gas mass spectrometers exist that can very accurately measure either

neutral contaminants or ionized contaminants. Since the source cannot be
pumped in vacuo, the measured quantity is by necessity the flux. Without a

separate determination of species temperature, however, the density cannot be

ascertained. Furthermore, the measured flux may be very specific to the
location and orientation of the spectrometer where orders of magnitude effects
are common. On the positive side, mass spectrometers provide precise species

identification.

Deposited mass sensors are represented by various forms of quartz

oscillators whose frequencies change with contaminant (mass) deposition. The
prominent types are quartz crystal microbalances (QCM) and tapered element
oscillating microbalances (TEOM). The limitations of these sensors are a

saturation mass load, temperature effects, no species information, and
difficulty in particle collection. The advantages include small sensor size
(permitting several measurement locations), very good sensitivity, simplicity,
and dependability. QCMs resolve temperature effects by pairing the exposed
sensor with an unexposed control crystal; TEOMs, on the other hand, have a
respectable dynamic range. A simple existing adaptation of the temperature

controlled QCM (TQCM) -rovides a partial solution to mass saturation and
species identification for deposited molecular contaminants by periodic

bakeouts which can remove most of the deposition and restore dynamic range.
The stepped bakeout after a fixed collection temperature provides information
on the activation energy of the deposit which aids in the species identifica-
tion. Another adaptation of the QCM, its use as the detector element of a
retarding potential analyzer, permits species mass identification with an

auxiliary species temperature measurement. Furthermore, this technique has
been used successfully to quantize the effects of vehicle potential on mass
accretion. Finally a soft, sticky coating on either a QCM or TEOM can be used

to accomplish particulate collection.

Tnermal-optical effects sensors span the range from temperature measure-

ments on thermal control surfaces to narrow-band optical transmission or
reflection measurements cif targets. The appeal of this approach is the
direct determination of the effect of interest. However, except in its most
complex form (i.e., full optical spectroscopy), it cannot determine species

and quantity. Fortunately, calorimeters exist that can directly measure a/e
(absorptivity to emissivity ratio) for a selected thermal control coating at
little cost in terms of data requirements, size, and weight. These sensors

are an effective compromise.
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Impact sensors, such as Y-cut quartz crystals, can provide count rates

for the impact of large particles (such as space debris). With the develop-

ment of a preflight calibration procedure, size distributions may a'so be

possible. Count rate saturation and "ringing" are problems with this approach.

Inactive collectors are designed to return collected contaminants for

postflight study. The most common form is the passive sample array. This

approach provides the opportunity to use materials of direct interest and

special materials chosen for selective contamination collection. Particulates

are best retained upon reentry by the use of diaphragms over the collecting

surface and traps with doors. To facilitate the separation of auroral envi-

ronment effects from those of the rest of the orbit, consideration should be

given to synchronized shutter mechanisms. This additional feature is very

important for the integrating sensors (e.g., deposited mass, thermal-optical

effects, and inactive collector types).

Auxiliary measurements, if not available from other packages on the

spacecraft, snould include solar flux (orientation), ambient pressure, and

plasma temperature. An active release and moveable sensor package would alsu

De of value to allow the study of the evolution of artificial contaminant

clouds in the vicinity of the Shuttle and in the auroral zone. By the careful

timing of releases and placement of the free flyer instrument package, it

should be possible to spatially and temporally map the expansion of a contami-

nant cloud. by careful election of the contaminants released, the ef f ects of

unusual contamina;it sources such as laser by-products on representative mate-

rial surfaces could be studied.

To summarize, the principal recommendation that arises from the preceding

is for a package both on the SPAS and in the STS Orbiter bay for the partial

separation of Orbiter effects. The SPAS-mounted contamination package sho;.id

have its active contamination sensors (at least) very near the dielectric

charging-material property package (DCM). An active release source should be

integrated into the Day package.

Each h:lf of the contamination mcnitor package should comprise a low tem-

perature (-50°C) TQCM, an "ambient" temperature TQCM (+10°C), and a coated

TQCM (for particulates). Each half should also have two identical calorim-

eters and two identical passive sample arrays. the two calorimeters and the

two sample arrays should have a clock-driven shuttering system to expose one

at high latitudes (only) and one ac low latitudes (only). At least one of

each passive sample array's positions should be dedicated to a diaphragm or

trapdoor particulate trap.

This recommendation consists of existing designs, the only exception

being the synchronized shutter. As discussed, the development of the shutter

seems essential to IMPS purpose. The recommended contamination monitor

package and active release source for the first flight is a compromise that

could only be enhanced by the addition of other sensors as described above.

Measurements of contaminants that are ionized by aurorz or that are ionized

normi.11y when emitted are especially interesting since ionized contaminants

may remain with spacecraft for long times.
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E.	 WAKE CHARGING EFFECTS (WCE)

To determine the likelihood and effects of charging of an electrically
detached body, such as an astronaut, in the Shuttle wake region during auroral
passage or during artificial charging, wake charging should be investigated.

Specifically, a recent survey of DMSP data has uncovered several cases where
precipitating auroral electron fluxes are both sufficiently intense and ener-
getic to charge the spacecraft materials to high potentials. The usual
mechanism that limits the voltage attained by a spacecraft is the increase of
collected ambient ion current with increased negative surface potential. In
the wake of a large object it has been estimat e d that the collection of ion

current requires a much greater potential than for an isolated satellite
(Fig. 18). These high voltages could cause arcing during EVA, docking, or on
electrically isolated subsystems on a large space structure. However, the
theory of this phenomenon has not been fully developed and calculations are
very difficult to perform.

With the IMPS payload on SPAS, there -..ould be the opportunity to measure

the ion current voltage characteristic of a large object in the wake which
will help greatly in the validation of computational. models. The power neces-
sary to maintain high negative voltages on the SPAS should be quite small as
the ambient (positive) current is very low in the wake. Assuming an effective
collection area of 10 m`, it is estimated that the maximum positive ambient
:urrents to the SPAS (ion current, secondary current, and photoelectron cur-
rent) would be of the order of 10 mA and that in the dark wake region (where
the ion current and photoelectron current would be minimal) as little as 0.1
mA. Thus the electrical power required is less than 100 watts. The simplest

method for biasing the SPAS would be through a conducting wire tether to the

Shuttle. This would also allow for direct measurement of the Shuttle-SPAS

differential potential and current while using the least electrical power. As
currently conceived, however, the IMPS will be a free-floating object, elec-

trically and physically disconnected from the Shuttle. Alternatively, there-
fore, the SPAS can be bombarded with particles from ion and electron accelera-
tors on the Shuttle. Use of an accelerator allows the free flyer to be at
some distance but places constraints on the allowed orientations with respect
to ti.e geomagnetic field. In addition, if the current in the particle beam is
too large, a beam-plasma interaction may occur which complicates interpreta-
tion of the charge neutralization data. Interference wi t h incoming ambient

ion measurements could be minimized by using ions in th, dun whose atomic mass
is very different from oxygen.

The data rate for this experiment would be quite low, consisting of cur-
rent, voltage, and ambient density and temperature measurements. Since the
results are a function of position in the wake, one second resolution seems
appropriate. Also required is the SPAS location relative to the shuttle

orbiter and the location of the Mach and sun vectors. Tne experiment should

be performed in darkness and in the shadow of the vehicle. To make comparison
with analytical models simple, the structure of the SPAS should be covered to
a great extent with conducting material tied to a common ground. if need be,
much of this material might consist of a transparent mesh. [his would provide
a collecri_-n area That is easily resolvable and geometrically simple enough to

be modeled accurately.
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Fig. 18. Ambient ion density in the vicinity of a 2-m satellite flying
in the Shuttle orbiter wake. How much ion current such a

satellite collects for a given voltage is the issue addressed

by the wake-charging experiment.
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The total duration of such an experiment would be on the order of a sin-

gle orbit and during this time, to prevent interference, there should be no
otner exposed high voltage surfaces on the SPAS.

F. ENVIRONMENT AND INTERACTION MONITORING (EIM)

An important function for the IMPS mission will be to provide in situ
measurements of the charged particle, neutral particle, magnetic field, and

electric field environments within the Shuttle bay, in the environment per-
turbed by the Shuttle, and in the undisturbed ambient environment. Measure-
ments of this type are also required for correlation with many of the other

instrument packages. Such an instrument package would consist of ambient
plasma detectors for low-energy ions and electrons (<10 eV), a magnetometer
(AC/DC), an electric field monitor (AC/DC), charged particle detectors capable

of measuring fluxes in the energy range of 10 eV to 4U keV, a mass spectrom-
eter capable of measuring ion and neutral composition up to 64 AMU, and a neu-

tral pressure monitor. The package should be placed above or outside the
bay. A detailed description of this package is currently being developed by
AFGL.

G. ELECTROMAGNETIC INTERFERENCE MEASUREMENTS (EMI)

The purpose of the EMI investigation will be to characterize the signals
due to electrostatic discharge and wake-induced electromagnetic interference
in the vicinity of the Shuttle. This interference could significantly impact
sensitive AF sensor systems. An arc detector and EMI measurement system would
form the base of such a system. To characterize the current flow through and
from surfaces and the potential changes associated with an arc discharge, a
current monitor and surface potential monitor should be included. As
envisioned, the system would be used to locate the arc by ranging techniques
and multiple sensors. An artificial arc source could be used for calibration.

Low-frequency EMI due to plasma interactions has already been discussed.
Large structures with biased or aurora-exposed dielectrics are expected to
experience occasional breakdowns producing high frequency EMi pulses. Detect-
ors and pulse counters should register these events. Pulses are expected to

be of duration 1 to 100 ns and of amplitude 10 -3 to lU amperes over a range
from lU to ^UUU volts. The larger currents, voltages, and durations occur in
the same pulse, producing S X lU -3 watt sec pulses of 100 ns duration. Var-

ious '^F and EMI detectors are currently available for measuring these effects.

These detectors should be placed near the HVA and DME experiments where

dielectrics are being tested.

H. ELECTRICAL PROPERTIES DEGRADATION (EPD)

Given the fundamental importance of the electrical properties of

materials in the spacecraft charging computer models, it is necessary to
accurately characterize these properties in space. To determine the temporal
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variations in secondary emission, photoelectron emission, and backscatter flux
as functions of solar incidence angle, plasma variations, and contamination,
an instrument capable of measuring these properties in real time should be
flown. Aside from selected sample surfaces, a Sun sensor (to characterize the
photoelectron emission rate), a Faraday cup detectDr (to characterize the
secondary fluxes), and a surface c • :rrent monitor should be included. A
low-energy electron beam would also serve as a calibration source relative to
the ambient electron flux.

I.	 RF TRANSMISSION DISTORTION (RFT)

To investigate the distortions in radio-wave propagation through the

Shuttle plasma sheath, it is suggested that a variable frequency transceiver
be used to measure radio-wave phase delays propagating through the sheath.
One possible configuration would place th r transponder at one end of tho bay
and a radio-wave reflector or transponder for returning the signal at the
other end. By properly orientating the ShutL!e (i.e., bay into the ram), the
signal could be transmitted alternately through the ram-plasma enhancement or
through the wake-plasma void. As significant phase shifts are expected below
1 GHz, the transmitter should be at this frequency and less. Alternatively, a
two-path phase interferometer could be constructed, one path being in the ram
plasma.

t

	

	 In support of this instrument, several studies should be attempted prior

to the IMPS flight. On Spacelab --- 2, the PDP is to map the S- and Ku-Band

near-field beam patterns. Distortions of these patterns can be detected along
with density irregularities in a 50° inclination orbit that will sometimes

penetrate into the auroral zone. For EMI, the incidence of ground EMI should
be assessed on every Orbiter flight by monitoring the S- and Ku-band

receivers. On Spacelab-2, the PDP will have directional S- and Ku-band

receivers with the beam looking toward the Earth once per spin period. Any
ground-generated EMI could be detected by correlating the PDP and the Orbiter

receivers. For harmonic distortion, nonlinear effects in the range of 50 to
600 MHz can be studied in a systematic way with ground radars such as at

•Jicamarca, Peru, and the EISCAT in Norway. Although the transmitter is not

located in the ionospheric plasma, these radars can create V/m fields at the
ionosphere level.

Based on the pre-IMPS findings, more definitive measurements could be

defined for future IMPS missions. Such instruments would utilize the unique

characteristics of the the IMPS mission, namely the changing plasma densities

and magnetic fields in polar orbit. A possible suggestion for studying
beam-pattern distortions is to map in detail the near-field antenna pattern

for different irregularity conditions. To do this, two receivers at Ku- or
S-band could be used: One receiver would be placed in the main beam as a
phase and amplitude reference while the other would be manipulated through the

sidelobe pattern under different density and irregularity conditions.

Simultaneously, the electron density and irregularity spectrum should be
measured at both receivers. From the phase and amplitude plots, the far-field

beam could be constructed. However, a more viable alternative would be a

50



simple phase interferometer. For EMI, IMPS could carry sensitive, wideband
receivers to monitor a wide frequency spectrum for large signals of ground
origin. Probes to measure both the density and the irregularity spectrum are
also necessary. These measurements should be made in the auroral region since
the auroral plasma tends to be most unstable. Results from this investigation
would be critical to SBR studies.

J. ELECTRON-ION BEAM-INDUCED INTERACTIONS (EIS)

Although a major objective of the IMPS will be to investigate the charg-
ing and material properties changes resulting from the natural environment and
especially the aurora, it is quite possible that during the short duration of

a mission no very intense aurora will be encountered. The energetic auroral
particle bombardment of surfaces could be simulated or enhanced by particles

from an electron and ion accelerator of modest size. In contrast with the
situation achievable in the laboratory, the test surfaces would be bombarded
by kilovolt energy particles (whether from the accelerator or the aurora) and

the neutral and plasma components of the ionosphere which are impacting the

surface at the Shuttle orbital velocity of \,7 km/s. In both the natural and
simulated cases, the flux reaching the test surfaces should be monitored with

suitable detectors. A more detailed assessment of this experiment is

required, however.

K. LOW-LIGHT LEVEL TELEVI jN MONITOR (TVM)

To observe low-light level visual phenomena such as Shuttle glow,
thruster firings, electron-beam operations, arcing, and aurora, the IMPS
instrument complement should include a low-light level TV. This would allow
identification of the spatial location of the phenomena, estimates of their
amplitudes, and, when necessary (as in case of the electron beam), real-time
changes in experimental configurations to better observe a given phenomenon.

L. GLOW MEASUREMENTS (GLW)

To determine the variations in Shuttle glow during passage through the

auroral zone and polar cap, it is suggested that EUV, IR, and visible
spectrometers be flown on IMPS. A low-light TV or similar imaging system
should be used to identify "glowing" surfaces in real time. As this implies a
very high data rate, it is probably preferable to keep such an assembly in the
Shuttle bay during early missions. The glow should be measured as a function
of ambient plasma and neutral variations, materials, and Shuttle orientation.
This would involve measuring the glow at different locations around the
Shuttle during the mission. Induced conditions at a glowing surface should be

measured as well. The glow issue is not addressed in detail here since it is
being studied by the NASA Shuttle office.
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M.	 !.ARU E SPACE-STRUCTURE INTERACTIONS (LSS)

Future space missions have requirements which necessitate very large

deployable or erectable structures. These new spacecraft will have dimensions
ranging up to kilometers and will use light weight materials to achieve the
required low density. There are several types of interactions particularly

relevant to large structures:

(1) Mechanical interactions: Large structures are subject to a variety
of torques including atmospheric drag, solar radiation pressure,
gravity gradient forces, and magnetic field-induced forces. The
large area-to-mass ratios of large structures will especially
require a careful evaluation of their distortion, deformation, and
misalignment, and ways in which these effects can be controlled.

The movement of large conducting surfaces across magnetic fields
will induce electric_ fields, currents, drag, and surface heating.

(2) interactions connected with use of on-board high-voltage systems are

considered elsewhere in this report and are not discussed here.

(3) The plasma wake leads to asymmetries in the charge distribution

around a structure. This asymmetry produces potentials on the
surface and differential charging. The wake can also induce plasma
waves which may interfere with RF communications.

(4) Contamination of the structure environment originates from at least

four sources: (1) exhaust gases or ions emitted by the attitude
control bystem; (2) gas leakage; (3) surface erosion by meteoritic
ablation and ion sputtering; and (4) cold photoelectron emission.
Some effects of contamination are degradation of solar cell and

thermal radiator efficiencies.

On later 1MPS missions, it is suggested that a large (>25-100 m in

characteristic length) structure be flown to measure the effects of such a
structure on the environment and the effects of the environment on it. The

structure should be biased and should include a plasma diagnostics package and

EMI and RF pulse detector to monitor plasma interactions. A TQCM, low-light
TV, and impact monitor should be incluued to study enhanced contamination,

glow, and debris impact effects. The changes in plasma and neutral densities
at various locations caused by erection of the structures should be especially
studied.

N.	 SINGLE-EVENT UPSET (SEU)

To summarize the SEU investigation, the IMPS should

(1) Fly samples of ICs likely to be sensitive to the effects of

i+	 cosmic-ray-caused SEUs over the polar caps at Shuttle altitudes,
C^

M	 (2) Identify the incident cosmic ray fluxes responsible for these upsets

by including a cosmic ray telescope or a simple cosmic ray track
detector
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To compensate for the short duration of the Shuttle mission, it would be

sensible to expose a large number of junctions (such as a mass memory) with
various amounts of shielding to measure the number of SEUs. It is also
possible to measure the charge deposition rate by an array of electronic
detectors (proportional and solid-state counters) or using a nuclear
emulsion. This might be done with the test memory as part of a coincidence
telescope with the counters to identify which cosmic ray caused an $EU. The

detectors should cover the relativistic region (E > 10 MeV nucleon 1 ) to
provide the necessary correlations between the environment and the

experimental results. A dosimeter would be a useful adjunct to this
experiment to help separate total radiation exposure effects from short-term

SEU effects. This study should be coordinated with existing DoD SEU programs.

0.	 SPACE-DEBRIS DETECTION (SDD)

Given the increasing concern with space debris at Shuttle altitudes, it

has become necessary to measure the size and distribution of such particles in
the vicinity of the Shuttle and along the Shuttle orbit. As demonstrated by
C. A. Maag (Private Communication, 1984), even microscopic particles can cause

significant damage to optical surfaces. It would be valuable therefore to
include an impact detector and returnable samples on the IMPS carrier. An IR
imager and a low-light level television would provide size and distribution

information of larger particles. Samples in the DME, CEM, LSS, SBR, EPD, HVA,
and EMI should be inspected after the flight to see if debris impact has

occurred. Such impact should cause measurable effects, and the cause should
be ascertained.
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SECTION V
GROUND TEST PLAN

A. INTRODUCTION

A major consideration missing from the preceding IMPS instrumentation

description is that of a ground-test program to be carried out in conjunction
with the actual flight(s). Aside from the obvious requirements for preflight

calibration and payload integration testing, IMPS can be tested postflight
because of the inherent "returnable" nature of Shuttle missions. In conjunc-
tion with a well-thought out preflight test plan, such postflight testing will
provide a unique opportunity to compare inflight and ground-test techniques.

The intent here, therefore, is to describe in general terms a ground test pro-
gram that would enhance the usefulness and would increase the understanding of
the IMPS data.

B. PREFLIGHT TESTING

Several examples in the following illustrate the value of ground testing

during preflight planning for the evaluation of the IMPS data return. The

major thrust is that the instruments planned for IMPS would be of value in
studying space interactions in general--both on the ground and in space. In

this concept, the Shuttle flight becomes an extension of the laboratory rather
than a separate entity. The laboratory used for this work must be a full-
scale space plasma simulation chamber. Currently, large vacuum facilities

capable of holding the entire ?MPS/SPAS exist at NASA/JSC, NASA/JPL, and
AFDC. Both NASA/MSFC and AFDC should have plasma simulation capabilities by
the time of IMPS that could be used to test the IMPS components.

As a first example, the EMI and ESD instrument packages could be used for
several experiments before the IMPS flys. It would be very useful prior to
launch in conjuction with plas ►aa simulation studies to characterize arcs and
plasma noise to simplify that classification during the mission. The instru-

mentation should also be placed in the flight configuration and used to refine
the arc-location technique proposed for the flight.

As a second example, the EPD and DME could be employed to catalog Shuttle

material properties prior to the first mission. Not only would this signifi-

cantly enhance the data return from the flight, but it would also be of gen-
eral value in the understanding of Shuttle materials and how they interact

with the environment--currently a topic of very real concern. This is doubly

important as, to date, laboratory efforts at characterizing spacecraft charg-
ing properties have been minimal.

Development of the EIS electron- and ion-beam systems would complement
ongoing AFGL efforts at designing a charge control system for high-voltage

arrays. Charging sources similar to the proposed EIS have been utilized in a

number of chamber tests such as NASA tests of solar panel charging. These
sources are currently used to study the so-called beam plasma discharge phe-
nomenon in vacuum chamber tests. The charging characteristics of the EIS

should make it useful in tests with the VOLTS hardware or the IMPS HVA in Gtru-
mentation. Much still remains to be learned from such chamber tests, and the
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existence of the HVA prior to the IMPS flight would allow the study of a num-

ber of interesting plasma interaction phenomena.

Although there is at present no plan to define specific WCE instrumenta-

tion, several interesting experiments could be performed even at this date
with existing ground-based equipment. For one, the MMU and suit materials
should be characterized electrically, and the ICs being considered for incor-
poration in future versions should be evaluated for electrostatic sensi-

tivity. This information, aside from influencing the planning of a WCE
experiment, would aid in the design of new, safer EVA systems. Likewise, the
potential danger that the astronaut might pose to a satellite subsystem due to
his own static charge should be investigated on the ground in vacuum chambers
prior to launch.

Many experiments require analytical modeling in order to determine the

meaning of the results as well as to properly design the investigation/
experiment. Wake charging and plasma currents to biased elements are obvious

examples. For the RFT, another example, the magnitude of the phase delay and

the narmonic distortion need to be estimated to determine the parameters for
the apparatus prior to design. Ionization of contaminants and E x B effects
on the transport of ions around shuttle need to be estimated in order to
develop a successful experiment. Development of such models needs to begin
now before poorly designed experiments are generated and meaningless data
compiled.

C.	 POSTFLIGHT GROUND TESTING

In addition to the preflight tests described above, there are unique

postflight ground-test opportunities afforded by the IMPS mission. Principal

among these are the opportunities to recalibrate the instruments and test
assumptions about how an event occurred by conducting chamber simulations with

the actual flight hardware. In particular, if an arc were postulated to have

occurred at a specific point and to have, as a result, certain electrical
characteristics, it would be feasible to test such assumptions by setting up
the configuration, synthesizing the arc source, and comparing the results with
the original observations. Ideally, wich an experiment would permit an unam-
biguous test of the assumptions.

Material samples can be retested to determine the effects of the space
environment on their properties (see Table 2 for a list of properties). If

the materials are properly handled, the effects of rentry could be studied
systemaLically. Testing of the material properties such as tensile strength
and reflectance of small portions of the Shuttle itself prior to launch and

after return would be of additional value. As already noted, several of the
IMPS instruments are capable of accomplishing this testing. Additional
testing using standard laboratory equipment would complement these studies.

This latter type of testing would be valuable in determining the actual

I
sensitivities of the IMPS instruments.

A final t ype of postflight testing that would be of value is that

involved in reconfiguring the system. The initial flight in any series always
indicates ways to improve the basic design. With IMPS, as it is intended to
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be reflown, the recovery of the payload will permit rapid redesign. Testing
of the new payload will benefit from the flight data and the postflight ground

testing. Given better knowledge of the effects considered critical, the
reconfiguration testing can concentrate on those areas.

In Fig. 19, a possible ground-test schedule is presented that incorpo-
rates the preceding ideas. The schedule centers on the launch date and indi-

cates prelaunch and postlaunch activities. Prelaunch experiment calibration
and systems integration testing have been left out as these will be included
in the detailed IMPS mission plan that accompanies this report.

D. GROUND-BASED MEASUREMENTS

Numerous complementary observations in conjunction with 1MPS would be of
value to the mission. Besides the obvious value of magnetometer, riometer,
DMSP auroral photographs and electron precipitation measurements, all-sky

auroral photographs, and other measures of the gross features of th! magneto-
sphere during the mission, incoherent scatter radar measurements offer a par-

ticularly fruitful source of information on the ambient environment at IMPS.
The possibilities implied by such measurements are explored below.

FISCAL YEAR
1983	 1984	 1985	 1986	 1987	 1989	 1989	 1990

PREFLIGHT TESTING

ARC SIMULATION

MATERIAL PROPERTIES l

VOLTS 1 C

CRRES C

ASTRONAUT SUIT CHARGING
( CHAMBER TESTS)

IMPS FLIGHT	 1 C

POSTFLIGHT TESTINr

RECALIBRATION

ARC SIMULATION

MATERIAL PROPERTIES

RECONFIGURATION

IMPS FLIGHT 2 C

Fig. 19. Ground-test support plan for IMPS
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The polar ionospheric plasma is characterized by considerable spatial and

temporal variability, as compared with lower latitudes, due to the strong
influences of convection electric fields and precipitating particles of mag-
netospheric origin. Implications for IMPS are that if the spacecraft-

environment interaction is to be understood, we must require that

(1) Near simultaneous monitoring of the ambient plasma environment (Te,

Ti, Ne, and composition) be provided for

(2) The measurements scenario allows for separating spatial variations

in the plasma "disturbance zone" from temporal variations due to
movement of the spacecraft through a highly structured and varying
medium

A single instrumented subsatellite cannot provide unambiguous separation

of the sources of variability of the measured "disturbance zone" plasma char-

acteristics. A preferred approach might be a set of environment sensors
strung along the length of a moveable or even a stationary boom or an array of
small satellites orbiting in formation. In any case, on the initial and

future IMPS missions, both of these options may be precluded by budget con-
siderations. For this reason, the possible contributions of ambient plasma
parameters as measured by incoherent scatter radars should be closely

examined. Incoherent scatter radars provide measurements of Te, Ti, Ne, and
plasma drifts between nominal altitudes of 100 and 1000 km and complement the

capabilities of satellites in that they are capable of investigating temporal

and sometimes spatial behavior from a fixed geographic location. Resolutions
of 40 km and 10 minutes are fairly typical; however, these can be reduced con-

siderably,  at the expense of spatial coverage and/or accuracy. The latitudinal
coverage afforded by the American sector meridian chain of incoherent scatter
radars is illustrated in Fig. 20. basic data relating to currently opera-
tional incoherent scatter radars are provided in Tables 4, 5, and 6. A list
of key personnel (contacts) at these facilities is included i- Table 7.

It is specifically recommended that Thomson Scatter ground support be

included as part of the overall IMPS ground support plan to provide information
on ambient plasma properties and to provide a context for interpretation of
onboard IMPS diagnostics. The meridian chain of radars at Sondrestrom, Mill-
stone Hill, Arecibo, and Jicamarca would provide the capability to monitor Te,
Ti, and Ne from low to polar latitudes in the American longitude sector during
the mission and to overlap data with IMPS on selected passes. Due to the
steerable capability of the Millstone Hill radar, it is anticipated that this

facility would play the major role in such a ground support activity.
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Fig. 20. Meridional chain of radars near 70° West longitude. The radar
fields of view in altitude and latitude are shown in relation

to the size of the Earth. While these fields of view are

typical for most experiments, altitudes above 1 R E have

been obtained at both Arecibo and Jicamarca. Simultaneous

measurements can be obtained over an extended region of the

atmosphere between the polar cap and the magnetic equator.
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fable 6. Geomegnetic parameters a for incoherent scatter radars

Radar
Dip Angle,

deg

Declination,
deg

Invariant

Latitude

deg

L Value,
RE

B	
T

'

Jicamarca 2.2 2.2 18.2 1.1 0.23

Arecibo 48.4 -10 34.7 1.5 0.35

St.	 Santin 59.9 -4 42.6 1.8 0.39

Millstone 70.4 -14 55.3 3.1 0.47

Chatanika 77.1 27 65.7 5.9 0.49

EISCAT 77.6 1 56.9 6.5 0.46

Sondrestrom 80.4 -39 74.4 13.9 0.48

a Calculated for 35U km altitude from the 1GRF (1980) model updated to 1983.0

I^
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Table 7. Contacts at incoherent scatter facilities

Facility Contact

Sondrestrom or Chatanika Dr. Vincent B. Wickwar

Radio Physics Laboratory

SRI International
Menlo Park, CA 94025
Ph.	 (415) 859-4782

EISCAT Dr. Murray J. Baron
EISCAT Scientific Foundation
Box 705

S-981 27 Kiruna
Sweden

Ph. 46 980 18740

Millstone Hill Dr. John Foster

Haystack Observation
Route 40
Westford, MA	 01886
Ph.	 (617) 692-4761

St. Santin Dr. Michael Blanc

C.R.P.E.

4, ave:nve de Nep^un-2
94107 Saint-Maur CEDEX
France

Ph.	 33(1) 886 84-66

Arecibo Dr. Jules Fejer, Director

Arecibo Ionospheric Observatory
P.O.	 Box 995

Arecibo, Puerto Rico 00612
Ph.	 (809) 878-2612

Jicamarca Bela G. Fejer

School of Electrical Engineering
Phillips Hall

Cornell University
Ithaca, N.Y. 14853
Ph.	 (607)	 256-6471
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SECTION VI

IMPS ADVANCED CONCEPTS PLAN

A. INTRODUCTION

IMPS does not exist in a vacuum. Several other missions (see Fig. 21)

directly related to the 1MPS program goals are currently planned for the same
time frame. Likewise, the IMPS advanced program concept is not limited to a

single flight. It is necessary, in order to obtain the maximum value from

IMPS, that IMPS be integrated into other planned efforts and that the IMPS
program incorporate the results of these missions into its long-range plan.

Such a long range plan is developed below with emphasis on future IMPS pay-
loads and missions into different space environments. Although not intended
as a detailed plan, the phased approach presented should provide the skeleton

for such a program.

In planning a long-range space program of the scope of IMPS and its com-

panion flights, a phased approach is a necessity. Here, the long-range plan

has been divided into four phases: an information-gathering phase, a simula-
tion phase, the actual flight phase, and the analysis phase. Each can exist
concurrently with the others (i.e., information will undoubtedly be gathered
throughout the program), and the process will be repeated for each flight.

B. INFORMATION COLLECTION AND PLANNING

The purpose of the first phase is to gather data. There are numerous

methods of accomplishing this, and indeed, the ESWG has had this as its pri-
mary objective. The four principal means that can be employed are

(1) Collecting documentation
(2) Conducting workshops/conferences
(3) Visiting key facilities
(4) utilizing a panel. of experts (i.e., the ESWG)

As an illustration of the first method. numerous literature searches were

carried out for AFGL on specific IMPS concerns by the ESWG and JPL. An exten-
sive bibliography of papers on IMPS-related material has been prepared for
AFGL under this effort. Several reviews of spacecraft and plasea interactions

were prepared. In reference to method two, a workshop was held in December
19bl and a joint hF/I;ASA conference in October of 1983. Numerous facilities

such as NASA headquarters and AFWL were visited with the assistance of the

ESWG members, AFGL, and JPL, and data on li•;PS issues were collected.

Building on the IMPS data base, future flights should concentrate on spe-

cific interaction concerns. If funding permits, workshops on these interac-
tions should become an integral part of the IMPS long-term program. In con-
cert with these topical meetings, every two years a general conference should
be held (e.g., such a conference was last held in October 1983). Based on the
workshops and the conferences, she data base of references on spacecraft
interactions developed by the ESWG can be expanded and made permanent. The
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1980 1985 1990 1995 2000

WORKSHOPS ♦♦ ♦ O 00 00 00 00 O
CONFERENCES ♦ 	 ♦ O O O O O

INTERACTION MODELS
SHIELDING/ DOSAGE O(UPGRADE)

CHARGE DEPOSITION O

SEU

NASCAP

LEO ♦

PEO ♦
MATERIAL PROPERTIES O

GROUND SIMULATIONS
LEO
PEO O
AURORA O
GEO ♦

PAPS FLIGHTS

1 O

2 O

3 O
4 O

CDAW

CONTAMINATION O O O
ARCING O O
CHARGE CONTROL O O
MATERIAL PROPERTIES O O O

COMPANION MISSIONS

PIX 2 ♦
VOLTS 1 O

VOLTS 2 O

CRRES O

SPACE PLASMA LAB O

♦ COMPLETED	 O TO BE COMPLETED

Fig. 21. Master time line for IMPS, 1980-2000
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rudiments of such a data base now exist. The material has been divided by
interaction effects and is currently being cross-referenced to the specific

systems affected.

Blue-ribbon panels, such as represented by the ESWG, should be organized
on a permar,^nt basis to advise AFGL on progress in mitigating individual prob-
lems and on future research. For example, panels should advise or, each of the

following:

(1) Space plasmas

(2) Ionosphere/atmosphere

(3) Radiation effects

(4) Charging/plasma interactions

(5) Contamination

(6) Material properties

(7) Astronaut safety

Furthermore, a master technology road map in the area of spacecraft
interactions should be developed (the rudiments of such a plan actually exist
within the joint AF/NASA technology program) based on the findings of these

panels.

C.	 SIn'LATION AND MODELING

For the second phase, the main thrust is to improve the capability to

simulate interactions. Giver the existence of the data base on spacecraft
interactions developed in phase 1, the adequacy of the existing models and
experimental data associated with the different interactions can be evaluated.

This information can be used to determine where simulation capabilities need
to be improved and where more data are required. Again, several approaches
are necessary and, as indicated in Fig. 21, this too is a continuing process.

Two approaches are considered here:

(1) Theoretical modeling

(2) Ground simulation

As in any scientific activity, the ability to control a given phenomenon

depends on the adequacy of the theoretical constructs used to define it. In
studies of spacecraft interactions, an adequate understanding of the phe-

nomenon includes an understanding of the source (the environment), of the vic-
tim (the space system), and of the interaction (spacecraft charging, radiation

damage, etc.). The model then attempts to simulate the effects of the source

on the system. Currently, although fairly adequate models of the space envir-
onment exist and systems can be modeled to some degree, interaction models are

at a very rudimentary level in general (dosage and shielding calculations are
an exception). Thus the development of adequate models is a primary concerti.

An invaluable adjunct to such models is actual experimentation. Even

with the advent of the Shuttle, ground testing remains in most cases the
cheapest and easiest way to study many phenomena associated with spacecraft

r
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interactions. It is suggested in this report that such ground simulation be
given at least as high a priority as the modeling efforts. The primary prob-
lems to date with ground testing have been difficulties with scaling plasma
phenomena and with simulating the space plasma characteristics. In a depar-
ture from previous studies, it is recommended here that specific facilities be
developed and dedicated to simulating each of the principal space plasma
environments (namely, the plasma associated with low-earth orbit, polar Earth
orbit, the aurora, and the energetic particles associated with the radiation
environment). LiKewise, adequate simulations of particular phenomena are also
necessary (launch conditions, rocket-plume effects, arcing, high-voltage

surfaces, etc.). Various examples of the required simulations and analytic
models in terms of the interactions and flight experiments are presented in

fable d.

D.	 FOLLOW-ON MISSIONS

Figure 21 shows several possible follow-on flights for IMPS. The intent
is to modify the IMPS payload so that the interactions typical of each of the
key space regimes (ionosphere, auroral zone, and polar region) discussed in

this report are emphasized. It should also be emphasized that the individual
!MPS instruments should be viewed as evolutionary so that follow-on versions
of the initial engineering experiments would be improved after eacn mission.
In this way, the basic IMPS complement could evolve into an increasingly more
complex and sophisticated sensor system capable of characterizing a variety of
critical interactions. Those missions in the actual flight phase, in

chronological order, are as follows:

(1) IMPS 1--Polar Earth orbit/auroral zone: This is the principal IMPS
mission now envisioned and outlined in this report. The SPAS will
probably be the carrier for this mission.

(2) IMPS /VOLTS (IMPS 2)--Polar earth orbit/auroral zone: A joint mis-
sion with the NASA VOLTS array would mutually benefit botn pro-
grams. It would afford IMPS the possibility of flying with a large,
high-voltage structure. For VOLTS, the IMPS diagnostic capabilities
would be of great value in studying interactions with the auroral
and polar regions. As IMPS has been designed with such a mission in
mind, no modification to the basic IMPS 1 package should be neces-

sary.

(3) IMPS 3--Low-latitude plasmasphere/ionosphere-large structure:
Although the primary IMPS mission will pass through the low-latitude
regime, the mission is not optimized for this region, nor will it
necessarily fly with a large structure (100 m or larger). An actual

large structure (as opposed to the samples on IMPS 1), such as the

prototype of the space-based radar or the space station, should be
available by the time of this launch. Depending on the size and com-
plexity of the structure, multiple EIM packages could be deployed to
simultaneously monitor the environment around the structure.

(4) IMPS 4--Polar cusps/magnetosheath: Although currently not really

accessible to the Shuttle, improvements in the Shuttle or the free
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Ground Simulation

Develop "natural"
radiation simulation

Develop techniques fcr
simulating long-
duration exposure

Develop shuttle,
geosynchronous, and
polar simulation
environments

Develop arc simulation
techniques

Sheath and wake

simulation

Analysis

Charge deposition
modeling

SEU prediction

Astronaut EVA dosage
models

Develop NASCAP and
similar models

Develop low altitude
plasma sheath models

Develop material
response models

Chamber testing

Test shielding methods

Compare NASCAP and
similar models at
geosynchronous orbit

Test low altitude
plasma sheath models

Simulate launch
environment

Simulate space
contamination/
degradation

Develop thruster
simulations

Rocket plume
measurements

Radar cross-section
studies

Chemical reaction
studies

Compute simulation
of deposition

Test atmospheric
reactions models

Compare chemical
releases with theory

Simulate ionospheric
changes

Confirm magnetospheric
models

s
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Cable 8. Ground simulation and analytic model requirements
compared with interactions and fligtl experiments

Interaction	 Experiment

Radiation High time	 resolution crass

Effects spectrometer on IMPS

Samples of high density
microcircuits on IMPS

Charge deposition
measurements

Spacecraft Charged beams experiment

charging
Sheath and wake
measurements

Photoelectron,	 backscatter,
and secondary emission
properties

Arc discharge simulation
and monitoring

Surface potential
monitoring

Systems response study

Large,	 High Exposed,	 high potential

Voltage surfaces of	 var y ing	 size,
Structures construction,	 and

potential

Sheath measurements

Test	 shielding methods

Contamination Surface contamination
monitors

Measure	 artificially
induced contamination

Environmental	 Launch exhausts measurements

Effects
Wake-induced wave
measurements

Meteoroid/debris
measurements

Chemical release ;tudies

Particle depletion
measurements

Microwave heating/turbulence

measurements

Measure ambient environment
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flyer should my ke a flight into this region possible in the indi-
cated time frame. The IMPS package should be modified to allow
better detection of high time variations in the ambient electric

fields and plasmas in this region as the primary environmental issue

is the rapid fluctuation of these parameters. As AF systems will
occasionally encounter these rapid variations, it will be important

to characterize their engineering effects.

(Note: There will be a continuing need on each successive flight to incorpo-
rate updated AF hardware concepts and concerns within the IMPS generic

philosophy.)

E. ANALYSIS/DATA WORKSHOPS

The most critical phase for IMPS will be the actual analysis of the
data. Although as already indicated, invaluable data can be gained from

ground testing, analysis of actual flight data is the ultimate step in gaining

a real understanding of interactions. Further, for the IMPS program to be of
any lasting value, that understanding has to be documented. As turn-around is

a crucial issue in adequately disseminating the IMPS data, a carefully con-
ceived data analysis plan incorporating real-time analysis, data workshops,
and quantifiable outputs such as MIL-STDS is a necessity. Each of these
issues will be addressed for the IMPS and its companion missions in this
section.

Real-time analysis of the IMPS data will be a necessity for some of the
instruments. In particular, much of the glow data will have to be returned in

real time as the operation of imaging equipment, although perhaps automatic,
will require careful monitoring when particle sources (thrusters, etc.) are
turned on or the imagers are moved to another position. Further, the status
of the aurora will need to be monitored in real time in order to predict the
encounter of IMPS with an auroral arc. It is hoped, in fact, that the IMPS
package can be configured in specific modes so as to optimize data collection
when passing through auroral features, thus making the data available for
real-time analysis. It is recommended that at least one such optimized
real-time run take place each day. Several candidates for such runs are
listed below:

(1) Auroral arc encounter: All instruments capable of recording rapid

variations should be in their highest time-resolution modes and,
where possible, the data should be broadcast back to Earth in real

time.

(2) Thruster firings/beam operations: Specific experiments to observe

the results of thruster firings or, if available, charged particle
systems should be developed. As was learned from SCATHA, such

operations can induce rapid plasma variations.

(3) EMI events: If the ESD/EMI detectors on IMPS report peculiar activ-
ity, such intervals would be logical candidates for quick analysis.

This analysis requires simultaneous EIM data (see Section IV.F).
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(4) Contaminant releases: Past Shuttle flights have indicated that the

Shuttle-induced environment can significantly change over short
periods.

(5) !Major changes in Shuttle orientation: Changes in Shuttle attitude

relp tive to its velocity vector, the Sun, and the Earth's magnetic

field can all generate interesting variations.

(6) Movement of the SPAS: Real-time data analysis of the SPAS during

its movement would help to indicate locations of interest for

further study during the flight and for future flights.

Such real-time analysis will require the principal investigators to com-

mit to a rigorous schedule during flight. Even so, as evidenced by previous
Skylab and Shuttle flights, the ability, based on real-time data, to recon-

figure the experiments in real time is crucial. An integral part of the pro-
gram should be a data management system capable of handling real-time needs.

Within the first year following (and, indeed, in the months preceding)

launch, a series of data workshops should be held, similar to the NASA Goddard

Coordinated Data Analysis Workshops (CDAWs). At these workshops, the IMPS

data would be available through the data-management system so that the experi-

menters could rapidly compare their results. This approach argues for a large
central processing unit such as a dedicated VAX and a number of interconnected
terminals. By the IMPS launch time (1966-88), such systems should be common,
and by the time of the later launches, standard. The key to the workshops,
However, is the selection of key topics such as "contamination," "arcing,"
"charge control," etc. By limiting each workshop to a key topic, it should be

possible to generate a report concentrating on that topic as the output of the
workshop. These reports should be directed toward improving the relevant MIL-
STDs and Guidelines.

A major conference such as held in 1983 should be timed to occur within
out to two years of each IMPS mission. These conferences should represent the

culmination of each mission and should have several sessions devoted to
summarizing the results. In particular, the parallel results from the

ground-test programs should be incorporated into the mission reports at this

time. The output from these conferences should be comprehensive mission-
analysis reports.

Based on the conference reports and the workshop results, the updating of

the MIL-STDs and Guidelines should begin in earnest. A time table, spanning
the two decades of the IMPS missions, should be established for updating these

documents. A tentative time line is presented in Fig. 21. These updates
represent the primary goal of the IMPS program and should be given the highest

priority of any items considered thus far.
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F.	 SUMMARY

The steps necessary for taking the IMPS and its sister missions from

concept to utilization have been documented in this section. The major value

of this presentation is that it organizes the IMPS mission into a logical
sequence of events. It should be remembered, However, as indicated in

Fig. 21, that the steps overlap and repeat. Even so, the progression is clear

and valuable for future planning efforts.
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	 SECTION VII
CONCLUSIONS

t This report has defined a baseline IMPS program. The description of this

program has provided both the justification (in terms of AF mission needs) and
the rationale for the proposed IMPS investigations. The environments and the

interactions of potential concern to AF missions through the auroral zone/
polar caps have been described. Key investigations and the necessary instru-
mentation for these investigations have been identified. A coherent, long-

'	 ranSe plan for multiple IMPS flights has been developed. It is concluded that
R'	 IMIS offers a significant opportunity to

(1) Improve the reliability of AF missions

(2) Improve the survivability of AF missions

Given the great expense of future systems, the IMPS program outlined in this

report is readily justifiable.

73

0



U-17V

REFERENCES

Anderson, H.A., Induced shuttle environments, in Minutes of the IMPS ESWG,
February 14-15, 1984.

Banks, P.M., Williamson. P.R., and Raitt, W.J., Space shuttle glow

observations, GI -)PHYS. RES. LETT., 10, 118-121, 1983.

Baron, M.J., Rept. DNA 3023F, Stanford Research Institute, California, 1972.

Clark, D.M., and Hall, D.F., Flight evidence of spacecraft surface
contamination rate enhancement by spacecraft charging obtained with a
quartz crystal microbalance, SPACECRAFT CHARGING TECHNOLOGY 1980, NASA
CP-2182, 1981.

Grier, N.T., and Stevens, N.J., Plasma interaction experiment (PIX) flight
results, PROCEEDINGS OF THE SPACECRAFT CHARGING TECHNOLOGY CONFERENCE,

Air Force Academy, Colorado Springs., CO, Oct., 1978 (NASA CP-2071, 1979),

295-314, 1979.

Hoffman, J.H., and Dodson, W.H., J. GEOPHYS. RES., 85, 629, 1980.

Iijima, T., and Potemra, T. A., Large-scale characteristics of field-aligned

currents associated with substorms, J. GEOPHYS. RES., 83, 612, 1978.

Kennerud, K.L., High voltage solar array experiments, REP. NASA CR-121280,

Boeing Co., Seattle, Wash., March, 1974.

Kessler, D.J., Cour-Palais, B.G., Collision frequency of artificial satellites:

Creation of a debris belt, in SPACE SYSTEMS AND THEIR INTERACTIONS WITH

EARTH'S SPACE ENVIRONMENT, H.B. Garrett and C.P. Pike, editors, AIAA, New
York, New York, 707-736, 1980.

Mende, S.B., Garriott, O.K., and Banks, P.M., Observations of Optical

Emissions on STS-4, GEOPHYS. RES. LETT., 10, 122-125, 1983.

Miller, N.J., and Brace, L.H., J. GEOPHYS. RES., 74, 5742, 1969.

"-r-hy, G. B., J. S . Pickett, W. T. Raitt, S. D. Shawhan, Electron and ion

density depletions in the STS-3 orbiter wake, PROC. OF THE SPACECRAFT
ENVIRONMENTAL INTERACTIONS TECHNOLOGY CONFERENCE, USAF/NASA, Colorado
Springs, 4-6 Oct. 1982.

Murphy, G.B., Shswhan, S.D., Frank, L.A., D'Angelo, N., Gurnett, D.A.,

Grebowsky, J.M., Reasoner, D.L., and Stone, N., Interaction of the space

shuttle orbiter with the ionospheric plasma, PROC. OF THE 17TH ESLAB
SYMPOSIUM ON SPACECRAFT/PLASMA INTERASCTIONS AND THEIR INFLUENCE ON FIELD

AND PARTICLE MEASUREMENTS, Noordwijk, Netherlands, 1.3-16 Sept. 1983 (ESA

SP-198, publ. December 1983a).

Murphy, G.B., Shawhan, S.D., and Pickett, J.S., Perturbations to the plasma

environment induced by the orbiter's maneuvering thrusts, PROC. SHUTTLE
ENVIRONMENT AND OPERATIONS MEETING, ALAA, Washington, D.C., 1983b.

INi^N110t^^y
^'R!%ELMNG ;'AGE HUAwIK NOT I'}r,"1 n 	

75	 BIANK

0



76

+,	 .:

Narcisi, R., Trzcinski, E., Federico, G., Wlodyka, L., and Delorey, D., The

gaseous plasma environment around space shuttle, PROC. SHUTTLE
ENVIRONMENT APfD OPERATIONS MEETING, AIAA, Washington, D.C., 1983.

Kaitt, W.J., and Schunk, R.W., ENERGETIC ION COMPOSITION IN THE EARTH'S

MAGNETOSPHERE (R.G. Johnson, ed.), 99, 1983

Kaitt, W.J., Siskind, D.E., Banks, P.M., and Williamson, P.R., Measurements of

i	 the thermal plasma environment of the space shuttle, PLANET. SPACE SCI.,
in press, 1984.

Robinson, P.A., SEU rates for IMPS, in Minutes of the IMPS ESWG,

February 14-15, 1984.

Shawhan, S.D., Murphy, G.B., and Pickett, J.S., Plasma diagnostics package

initial assessment of the shuttle orbiter plasma environment, J. SPACE-
CRAFT AND ROCKETS, in press, 1984.

Slanger, T.G., Conjectures on the origin of the surface glow of space
vehicles, GEOPHYS. RES. LETT., 10, 130-132, 1983.

Stevens, N.J., Berkopec, F.O., Purvis, C.K., Grier, N.T., and Staskus, J.V.,

Investigation of High Voltage Spacecraft System Interactions with Plasma
Environments, Lewis Research Center, NASA Technical Memorandum 78831,

1978.

Torr, M.R., Optical emissions induced jy spacecraft-atmosphere interactions,

(,EOPHYS. RES. LETT., 10, 114-1 1 1 1983.

T. M. Watt, Incoherent scatter obsp:vations of the ionosphere over Chatanika,

Alaska, J. GEOPHYS. RES., 78, 2992-3006, 1973.

Yee, J.H., and Abreu, V.J., Visible glow induced by spacecraft-environment

interaction, GEOPHYS. RES. LETT., 10, 126-129, 1983.

[-4



BIBLIOGRAPHY

Earth

General

General References

Chan, K. W., D. M. Sawyer, and ,i. I. Vette, "Model of the near-earth plasma

envir( ment and application to the ISEE-A and -B orbit," REP. NSSI)C/WDC-A-R&S

7701, Goddard Space Flight Center, Greenbelt, MD, July, 1977.

Freeman, .1. W., H. K. Hills, T. W. Hill, and P. H. Reiff, "Heavy ion

circulation in the earth's magnetosphere," GEOPHYS. RES. LETT., 4, 195, 1977.

Garrett, H. B., "Review of quantitative models of the 0- to 100-keV near-earth

plasma," REV. GEOPHYS. SPACE SCI., 17, 397-416, 1979.

Hines, C. 0., "'The energization of plasma in the magnetosphere: hydromagnetic

and particle-drift approaches," PLANET. SPACE SCI., 10, 239, 1963.

Kivelson, M. G., "Magnetospheric electric fields and their variations with

geomagnetic activity," REV. GEOPHYS. SPACE PHYS., 14, 189, 1976.

Theoretical Models

Alfven, H., "A theory of msgne*ic storms and of the aurorae," in PROCEEDINGS

OF THE ROYAL SWEDISH ACADEMY OF SCIENCES, Stockholm (Reprinted in EOS TRANS.
AGU, 51, 180, 1970), 1939.

Brice, N. M., "Bulk motion of the magnetosphere," J. GEOPHYS. RES., 72, 5193,

1967.

Chen, A. J., "Penetration of low-energy protons deep into the magnetosphere,"

J. GEOPHYS. ICES., 75, 2458, 1970.

Cowley, S. W. 1'., and M. Ashour-Abdalla, "Adiabatic plasma convection in a

dipole field: Electron forbidden-zone effects for a single electric field
model," PLANET. SPACE SCI., 24, 805, 1976a.

Cowley, S. W. H., and M. Ashour-Abdalla, "Adiabatic plasma convection in a

dipole field: Proton forbidden-zone effects for a single electric field

model," PLANET. SPACE SCI., 24, 821, 197bb.

Eji.ri, M., "Trajectory traces of charge particles in the magnetosphere,"

J. GEOPHYS. RES., 83, 4798, 1978.

T
:V

17

0



Ejiri, M., and R. A. Hoffman, and P. H. Smith, "The convection electric field
model for the magnetosphere based on Explorer 45 observations," J. GEOPHYS.
RES., 83, 4811, 1978.

Grebowsky, J. M., and A. J. Chen, "Effects of convection electric field on the

distribution of ring current type protons," PLANET. SPACE SCI., 23, 1045, 1975.

Grebowsky, J. M., Y. Tulunay, and A. J. Chen, "Temporal variations in the dawn

and dusk mid-latitude trough and plasmapause position," PLANET. SPACE SCI.,
22, 1089, 1974.

..

Harel, M., R. A. Wolf, and P. H. Reiff, "Preliminary report of the first

computer run simulating the substorm-type event of 19 September 1976,"
Appendix A, Annual Retort for Grants ATM74-21185 and ATM74-21185A01, Nat. Sci.
Found., Washington, D.C., 1978.

fiarel, M., R. A. Wolf, P. H. Reiff, R. W. Spiro, W. J. Burke, F. J. Rich, and

M. Smiddy, "Quantitative simulation of a magnetos pheric substorm. 1. Model

logic and overview," J. GEOPHYS. RES., 8t, 221;-2241, 1981a.

Harel, M., R. A. Wolf, R. W. Spiro, P. H. Reiff, C.-K. Chen, W. J. Burke,

F. J. Ricci, and M. Smiddy, "Quantitative simulation of a magnetospheric

substorm. 2. Comparison with observations," J. GEOPHYS. RES., 86, 2242-2260,
1981b.

Jaggi, K. K., and R. A. Wolf, "Self-consistent calculation of the motion of a

sheet of ions in the magnetosphere," J. GEOPHYS. RES., 78, 2851, 1973.

Kivelson, M. G., and D. J. Southwood, "Local time variations of particle flux

produced by an ele-trostatic field in the magnetosphere," J. GEOPHYS. RES.,
80, 56, 1975a.

i.eboeuf, J. N., 1'. Tajims, C. F. Kennel, and J. M. Dawson, "Global

magnet. ,hydrodynamic simulation of the two-dimensional magnetosphere," in
QUANT,CATIVE MODELING OF MAGNETOSPFiERIC PROCESSES, edited by W. P. Olson,
American Geophysical Union, Washington, D.C., 536-556, 1979.

Southwood, D. J., "The role of hot plasma in magnetospheric convection,"

J. GEOPHYS. RES., 82, 5512, 1977.

Southwood, D. J., and M. G. Kivelson, "An approximate analytic descr^ption of

plasma bulk parameters and pitch-angle anisotropy under adiabatic flow in a
dipolar magnetospheric field," J. GEOPHYS. RES., 80, 2069, 1975.

R. W. Spiro, M. Harel, R. A. Wolf, and P. H. Reiff, "Quantitative simulation

of a magnetospheric substorm. 3. Plasmaspheric electric fields and evolution
of the plasmapausc," J. GEOPHYS. RES., 86, 2261-2272, 1981.

Stern, D. P., "The motion of a proton in the equatorial magnetosphere,"
J. GEOPHYS. RES., 80, 595, 1975.

is

i r



0

^I

i

Tinsley, B. A., "Evidence that the recovery phase ring current consists of
helium ions," J. GEOPHYS. RES., 81, 6195, 1976.

Wolf, R. A., "Effects of ionospheric conductivity on convective flow of plasma
in the magnetosphere," J. GEOPHYS. RES., 75, 4677, 1970.

Wolf, R. A., "Calculation of magnetospheric electric fields," in

MAGNETOSPHERIC PHYSICS, edited by B.M. McCormac, 400 D. Reidel, Hingham, MA,
1974.

Observations/Data

Grard, R., and Villain, J. P., "Conjugate observations of Pc 5 electric fields

with a geostationary satellite and a ground radar facility," J. GEOPHYS. RES.,
88, 5709-5714, 1983.

Roederer, J. G., and E. W. Hones,Jr., "Electric field in the magnetosphere as

deduced from asymmetries in the trapped particle flux," J. GEOPHYS. RES., 75,
3923, 1970.

Roederer, J. G., and E. W. Hones, Jr., "Motion of magnetospheric particle
clouds in a time-dependent electric field model," J. GEOPHYS. RES., 79, 1432,
1974.

Ionosphere

General References

Burke, W. J., R. C. Sagalyn, and M. Kanal, "Observed heating effects of
conjugate photoelectrons," PLANET. SPACE SCI., 1978.

Geisler, J. E., Ph.D. Dissertation, University of Illinois, 1965.

Mille., D. C., and J. Gibbs, "Ionospheric analysis and ionospheric modeling,"

AFCRL-TR--74-0364, AF Cambridge Research Laboratories, 1974.

NisSet, J. S., "Models of the Ionosphere," ATMOSPHERES OF THE EARTH k1D THE

PLANETS, edited by B. M. McCormac, D. Reid p', Dordrecht, Holland, 245-258,
1975.

Stubbe, P., and Warnuum, W. S., PLANET. SPACE SCI. ; 20, 1121, 1972.

Aualvtic Models

Angerami, J. J., and J. 0. Thomas, "Studies of planetary atmospheres, 1, The

distribution of electrons and ions in the earth's exosphere," J. GEOPHYS.
RES., 69, 4537, 1964.

Ching, B. K., and Y. T. Chiu, "A phenomenological model of global ionospheric
r	 electcor density in the E-, F1- and F2-regions," J. ATMOS. TERR. PHYS., 35,
p	 1615-163U, 1973.

79

a



IQD

Chiu, Y. T., "An improved phenomenological model of ionospheric density,"
J. ATMOS. T .a. PHYS., 37, 1563-1570, 1975.

Rush, C. M., and D. Miller, "A three dimensional ionospheric model using

observed ionospheric parameters." AFCRL-TR-73-0567, AF Cambridge Research
Laboratories, 1973.

Theoret cal Models

Bradley, P. A., and J. R. Dudeney, "A simple model of the vertical

distribution of electron concentrar'on in the ionosphere," J. ATMOS. TERR.

PHYS., 35, 2131-2146, 1973.

Lemaire, J., and M. Scherer, "Exospheric models of the topside ionosphere,"

SPACE SCI. REV., 15, 591, 1974.

Mayr, H. G., E. G. Fontheim, L. H. Brace, H. C. Brinton, and H. A. Taylor,

Jr., "A theoretical model of the ionosphere dynamics with interhemispheric
coupling," J. ATMOS TERR. PHYS., 34, 1659, 1972.

Schunk, R., and J. C. G. Walker, "Thermal diffusion in the topside ionosphere

for mixtures which include multiple charged ions," PLANET. SPACE SCI., 17,

853, 1969.

Singh, N., and R. W. Schunk, "Numerical calculations relevant to the initial

expansion of the polar wind," J. GEOPHYS. RES., 87, 9154-9170, 1982.

Sojka, J. J., W. J. Raitt, and R. W. Schunk, "Theoretical predictions for ion

composition in the high-latitude winter F-region for solar minimum and low
magnetic activity," J. GEOPHYS. RES., 86, 2206-2216, 1981.

Stubbe, P., "Simultaneous solute-n `,f the time dependent coupled continuity

equations, hea t_ conuuction equations ana equations of motion for a system
consisting of a neutral ;as, and electron gas and a four component ion gas,"
J. ATMOS. TERR. PHYS., 32, 365, 1970.

Viasov, M. N., and A. G. Kolesnik, "Self-consistent model of the ionspheric

plasma and the hydromagnetic forecast," SOLAR-TERRESTRIAL PREDICTIONS
PROCEEDINGS, Vol. 4: Prediction of Terrestrial Effects of Solar Activity,

edited by R. F.Donnelly, NOAH, C47-056, 1979.

"oung, E. R., D. G. Torr, P. Richards, and A. F. Nagy, "A computer simulation

of the mid-latitude plasmasphere and ionosphere," PLANET. SPACE SCI., 28,
881-893, 1980.

Observations/Data

Ahmed, M., R. C. Sagalyn, P. J. L. Wildman, and W. J. Burke, "To-side

ionospheric trough morphology: Occurrence frequency and diurnal, seasonal, and

altitude variation," J. GEOPHYS. RES., 54, 489, 1979.

00

F1



r
1`

Brace, L. H., and J. H.

low latitudes from Isis
2207, 1975.

Brace, L. H., and R. F.

mid-latitudes: Isis 1 L
1871, 1974.

Hoffman, "Variations in ion composition at middle and

1 Langmuir probe measurements," J. GEOPHYS. RES., 80.

Theis, "The behavior of the plasmapause at

ingmuir probe measurements," J. GEOPHYS. RES., 79,

Breig, E. L., and J. H. Hoffman, "Variations in ion composition at middle and

low latitudes from Isis 2 satellite," J. GEOPHYS. RES., 80, 2207, 1975.

Grebow,'<-, J. M., Ph?ro III, M. W., Taylor Jr., H. A., and Eberstein, I. J.,

"Measured Thermal Ion Environment of STS-3," A Collection of Technical Papers,
AiAA Shuttle Environment and Operations Meeting, Wash., D.C., Oct. 31-Nov. 2,

CP838, 47-51, 1983.

Gringauz, K. I., Bezrukikh, V. V., and Ozerov, V. D., "Measurements of the

Concentration of Positive Ions in the Ionosphere by Ion Traps on the Third

Soviet Earth Satellite" (in Russian), ISKUSSTV. SPUTNIKI ZEMLI, 6, 63-100,
1961.

Johnson, C. Y., and Meadows, E. B., "First Investigation of Ambient Positive-

Ion Composition to 219 km by Rocket-Borne Spectrometer," J. GEOPHYS. RES., 60,
193-203, 1955.

McMahon, W., Salter, R., Hills, R., and Delorey, D., "Measured Electron
Contribution to Shuttle Plasma Environment," A Collection of Technical Papers,

AIAA ShuLtle Environment and Operations Meeting, Wash., D.C., Oct. 31-Nov. 2,
CP838, 52-58, 1983.

Narcisi, R. S., Bailey, A. D., and Lucca, L. D., "Composition Measurements of

Negative Ions in the D and Lower E regions" (abstract), EOS TRANS. AGU, 49,
149, 1968.

Reddy, B. M., Brace, L. H., and Findlay, J. A., "The Ionosphere at 640

Kilometers on Quiet and Disturbed Days," J. GEOPHYS. RES., 72, 2709-2727, 1967.

Spencer, N. W., Brace, L. H., Corignan, G. R., Taeusch, D. R., and Nieman, H.,

"Electron and Molecular Nitrogen Temperature and Density in the Thermosphere,"

J. GEOPHYS. RES., 70, 2665-2698, 1965.

Taylor, H. A., Jr., Brinton, H. C., and Smith, C. R., "Positive Ion

Composition in the Magnetoionosphete Obtained from the OGO-A Satellite,"
J. GEOPHYS. RES., 70, 5769-5781, 1965.

Auroral Zone

General References

Frank, L. A., "Magnetospheric and auroral plasma: A short survey of progress,"

REV. GEOPHYS. SPACE PHYS., 12, 974, 1975.

81

i



Observations/Data

Craven, J. D., "A survey of low-energy (E<5 keV) electron energy fluxes over

the northern auroral regions with satellite Injun 4," J. GEOPHYS. RES., 75,
2468, 1970.

Knudsen, W. C., and Sharp, G. W., "Ion Temperatures Measured Around a Dawn-

Dusk-Auroral-Zone Satellite Orbit," J. GEOPHYS. RES., 72, 1061-1072, 1967.

Young, D. T., "Ion composition measurements in magnetospheric modeling," in

QUANTITATIVE MODELING OF THE MAGNETOSPHERIC PROCESSES, GEOPHYS. MONOGR. SER.,

vol. 21, edited by W. P. Olson, AGU, Washington, D.C., 1979.

Young, D. T., J. Geiss, H. Balsiger, P. Eberhardt, A. Ghielmetto, and

H. Rosenbauer, "Discovery of Het and 02 ions of terrestrial origin in the
outer magnetosphere," GEOPHYS. RES. LETT., 4, 561, 1977.

Geosynchronous Orbit

General References

Frank, L. A., "On the axt,--terrestrial ring current during geomagnetic

storms," J. GEOPHYS. RE'—, 72, 3753, 1967.

Frank, L. A., "Relationship of the plasma sheet, ring current, trapping

boundary, and plasmapause near the magnetic equator and local midnigilt,"
J. GEOPHYS. RES., 76, 2265, 1971.

Mcllwain, C. E., "Plasma convection in the vicinity of the geosynchronous

orbit," in EARTH'S MAGNETOSPHERIC PROCESSES, edited by B. M. McCormac, 417

D. Reidel, Hingham, MA, 1972.

Vasyliunas, V. M., "Magnetospheric plasma," in SOLAR TERRESTRIAL PHYSICS--

1970, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM, U.S.S.R., MAY 11-19, 1970,
part III, edited by E.R. Dyer, 733 D. Reidel, Hingham, MA, 1972.

Analytic Models

Freeman, J. W., "Kp Dependence of the plasma sheet boundary," J. GEOPHYS.

RES., 79, 4315, 1974.

Garrett, H. B., "Modeling of the geosynchronous orbit plasma environment, l,"

REP. AFGL-TR-0288, Air Force Geophys. Lab., Bedford, MA, 1977.

Garrett, H. B., and S. E. DeForest, "An analytical simulation of the

geosynchronous plasma environment," PLANET. SPACE SCI., 1979.

Garrett, H. B., E. G. Mullen, E. Ziemba, and S. E. DeForest, "Modeling of the

geosynchronous plasma environment, 2, ATS-5 and ATS-6 statistical atlas,"
REP. AFGL-TR-78-0304, Air Force Geophys- Lab., Bedford, MA, 1978.

82

a



Konradi, A., C. L. Semar, and T. A. Fritz, "Substorm-injected protons and
electrons and the injection boundary model," J. GEOPHYS. RES., 80, 543, 1975.

Mauk, B. H., and C. E. Mcllwain, "Correlation of Kp with the substorm plasma

sheet boundary," J. GEOPHYS. RES., 79, 3193, 1974.

Stevens, N. J., R. R. Lovell, and C. K. Purvis, "Provisional specification for

satellite time in a geomagnetic substorm environment," Proceedings of the
Spacecraft Charging Conference, REP. AFGL-TR-77-0051; NASA-TMX-73537, Air
Force Geophys. Lab., Bedford, MA, 1977.

Su, S.-Y., and A. Konradi, "Description of the plasma environment at
geosynchronous altitude," NASA JOHNSON TECH. NOTE P-10, Houston, 1977.

Theoretical Models

Kivelson, M. G., and D. J. Southwood, "Approximations for the study of drift

Loundaries in the magnetosphere," J. GEOPHYS. RES., 80, 3528, 1975b.

Smith, R. H., N. K. Bewtra, and R. A. Hoffman, "Inference of the ring current

ion composition by means of charge exchange decay," NASA TECH. MEMO.,
TM-79611, 1978a.

Smith, K. H., R. A. Hoffman, and N. K. Bewtra, "A visual d•-scription of the

dynami,al nature of cagnetospheric particle convection in .. time-varying
electric field" (abstract), EOS TRANS. AGU, 59, 361, 197rb.

Smith, R. h., N. K. Bewtra, and R. A. Hoffman, "Motions of charged particles
in the magnetosphere under the influence of a time-varying large scale
convection electric field," in QUANTITATIVE MODELING OF THE MAGNETOSPHERIC

PROCESSES, GEOPHYS. MONOGR. SER., vol. 21, edited by W. P. Olson, AGU,
Washington, D.C., 1979.

Vasyliunas, V. M., "Mathematical models of maguetospheric convection and its

coupling to the ionosphere," in PARTICLES AND FIELDS IN THE MAGNETOSPHERE,

edited by B.M. MCCormac, 419, D. Reidel, Hingham, MA, 1970.

Walker, R. J., and M. G. Kivelson, "Energization of electrons at synchronous

orbit by substorm-associated cross-magnetospheric electric fields,"

J. GEOPHYS. RES., 80, 2074, 1975.

Whipple, E. C., "(U,B,K) coordinates: A natural system for studying

magnetospheric convection," J. GEOPHYS. RES., 83, 4318, 1978a.

Williams, D. J., and L. R. Lyons, "The proton ring current and its interaction

with the plasmapause storm recovery phase," J. GEOPHYS. RES., 79, 4195, 1974.

Williams, D. J., J. N, Barfield, and T. A. Fritz, "Initial Explorer 45

substorm observations and electric field considerations," J. GEOPHYS. RES. 79,

554, 1974.

83



Observations/Data

Balsiger, H., P. Eberhardt, J. Geiss, and D. T. Young, "Magnetic storm

injection of 0.9-to 16-keV/e solar and terrestrial ions into the high-altitude
magnetosphere," J. GEOPHYS. RES., 85, 1645-1662, 1980.

DeForest, S. E., "Specification of the geosynchronous plasma environment," REP

AFGL-TR-77-0031, Air Force Geophysics Lab., Bedford, MA, 1977.

DeForest, S. E., and C. E. Mcllwain, "Plasma clouds in the magnetosphere,"
J. GEOPHYS. RES., 76, 3587, 1971.

DeForest, S. E., and E. C. Whipple, "Specification of the Natural Plasma

Environment at Geosynchronous Orbit," Air Force Geophysics Lab., Bedford, MA,
AFGL-TR-79-0060, 1978.

DeForest, S. E., and A. R. Wilson, "A preliminary specification of the

geosynchronous plasma environment," REP. DNA 39515, Def. Nucl. Agency,
Washington, D.C., 1976.

Deutsch, M.-J., "A worst case charging environment: Day 178, 1974," J. SPAC.
AND ROCKETS, 1982.

Garrett, H. B., D. C. Schwank, and S. E. DeForest, "A statistical analysis of

the low-energy geosynchronous plasma environment--I. Electrons," PLANET. SPACE
SCI., 29, 1021-1044, 1981a.

Garrett, H. B., D. C. Schwank, and S. E. DeForest, "A statistical analysis of
the low-energy geosynchronous plasma environment--II. Protons," PLANET. SPACE

SCI., 29, 1045-1060, 1981b.

Geiss, J. H., Balsiger, P. Eberhardt, H. P. W?Iker, C. Weber, D. J. Young, and

H. Rosenbauer, "Dynamics of magnetospheric ion composition as observed by the

Geos mass spectrometer," paper presented at 13th Eslab Symposium, Ei,-_ Space
Agency, Innsbruck, Austria, June, 1978.

Lennartsson, W., and D. L. Reasoner, "Low-energy plasma observations at

synchronous orbit," J. GEOPHYS. RES., 83, 2145, 1978.

Mullen, E. G. and Gussenhaven, M. S., "SCATHA environmental atlas," Air Force

Geophysics Lab., Bedford, MA, AFGL-TR-83-, 1983.

Mullen, E. G., 111. S. Gussenhoven, and H. B. Garrett, "A worst case spacecraft
environment as observed by SCATHA on 24 April 1979," Air Force Geophysics
Lab., Bedford, MA, AFGL-TR-81-0231, 1981a.

Mullen, E. G., D. A. Hardy, H. B. Garrett, and E. C. Whipple, "P78-2 SCATHA

environmental data atlas," in SPACECRAFT CHARGING TECHNOLOGY, 1980, Air Force
Geophysics Lab., Bedford, MA, NASA CP 2182, AFGL-'IR-81-0270, 80: 1-813, 1981b.

WOW

64

• ^4 1.



(1))

%.del

Vasyliunas, V. M., "A survey of low-energy electrons in r.he evening sector of
the magnetosphere with Ogo 1 and Ogo 3," J. GEOPHYS. RES., 73, 2839, 1968.

i

Young, D. T., H. Balsiger, and J. Geiss, "Correlations of magnetospheric ion

composition with geomagnetic and solar activity," J. GEOPHYS. RES., 87,
9U77-9096, 1982.

Radiation

General References

Lyons, L. R., and D. S. Evans, "The inconsistency between proton charge

exchange and the observed ring current decay," J. GEOPHYS. RES., 81, 6297,
1976.

Roederer, J. G., "Dynamics of geomagnetically trapped radiation," in PYSICS

AND CHEMISTRY IN SPACE, vol. 2, edited by J. G. Roederer and J. Zahringer,
Springer-Verlag, New York, 1970.

Sharp, R. D., E. G. Shelley, and R. G. Johnson, "A search for helium ions in

the recovery phase of a magnetic storm," J. GEOPHYS. RES., 82, 2361, 1977.

Su, S.-Y., and Konradi, A., "Average Equatorial Radiation-Belt Environment at

Low-Earth Orbit," Draft for May 1980 AGU Meeting., 1980.

Theoretical Models

Spjeldvik, W. N., and T. A. Fritz, "Energetic ionized helium in the quiet time
radiation belts: Theory and comparison with observation," J. GEOPHYS. RES.,
83, 654, 1978a.

Spjeldvik, W. N., and T. A. Fritz, "Theory for charge states of energetic

oxygen ions in the earth's radition belts," J. GEO PHYS. RES., 83, 1583, 1978b.

Observations/Data

Fritz, T. A., and W. N. Spjeldvik, "Observations of energetic radiation belt

helium ions at the geomagnetic equator during quiet ccnditions," J. GEOPHYS.
RES., 83, 2579, 1978.

Plasmasphere

General References

Carpenter, D. L., and C. G. Park, "On what ionospheric workers should know

about the plasmapause-plasmasphere," REV. GEOPHYS. SPACE PHYS., 11, 133, 1973.

Chappell, C. R., "Detached plasma regions in the magnetosphere," J. GEOPHYS.

RES., 79, 1861, 1974.

85



Pon- U

Chappell, C. R., K. K. Harris, and C.W. Sharp, "The morphology of the bulge of

the plasmasphere," J. GEOPHYS. RES., 75, 3848, 1970.

Chen, A. J., and J. M. Grehowsky, "Plasma tail interpretations of pronounced

detached plasma regions measured by Ogo 5," J. GEOPHYS. RES., 79, 3851, 1974.

Chen, A. J., and R. A. Wolf, "Effects on the plasmasphere cf a time-varying

convection electric field," PLANET. SPACE SCI., 20, 483, 1972.

Chen, A. J., J. M. Grebowsky, and H. A. Taylor, Jr., "Dynamics of mid-latitude
light ion trough and plasma tails," J. GEOPHYS. RES., 80, 968, 1975.

Gringauz, K. I., and V. V. Bezrukikh, "Plasmasphere of the earth" (review),
GEOMAGN. AERON., 17, 523, 1977.

Nishida, A., "Formation of plasmapause, or magnetospheric plasma knee, by the

combined action of magnetospheric convection and plasma escape from the tail,"

J. GEOPHYS. RES., 71, 5669, 1966.

Analytic Models

Chiu, Y. J., J. G. Luhmann, B. K. Ching, and D. J. Boucher, Jr., "h ► :
equilibrium model of plasmaspheric composition and density," J. GEOPHYS. RES.,
84, 909-916, 1979.

Cowley, S. W. H., "Energy transport and diffus'on," in PHYSICS OF SOLAR

PLANETARY ENVIRONMENTS, vol. 2, edited by D. J. Williams, 582 pp., AGU,
Washington, D.C., 1976.

Gringauz, K. I., and V. V. Bezrukikh, "Asymmetry of the earth's plasmasphere

in the direction noon-midnight from Progncz and Prognoz-2 data," J. ATMOS.
TERR. PHYS., 38, 1071, 1976.

Lemaire, J., "Steady state plasmapause positions deduced from Mcllwain's

electric field models," J. ATMOS. 'TERR. PHYS., 38, 1041, 1976.

Theoretical Models

Kavanagh, L. D., Jr., J. W. Freeman, Jr., and A. J. Chen, "Plasma Clow in the

magnetosphere," J. GEOPHYS. RES., 73, 5511, 1968.

Observations/Data

Ahmed, M., and Sagalyn, R. C., "Thermal Positive Ions in the Outer Ionosphere

and Magnetosphere from OGO 1 9 " J. GEOPHYS. RES., 77, 1205-1220, 1972.

brinton, H. C., J. M. Grebowsky, and H. G. Mayr, "Latitude variations of ion

composition in the mid-latitude trough region: Evidence for upward plasma

flow," J. GEOPHYS. RES., 76, 3788, 1971.

E6



Burke, W. J., and Donatelli, D. E., "Injun 5 Observations of Low-Energy Plasma
in the high-Latitude Topside Ionosphere," J. GEOPHYS. RES., 83, A5, 2047-20565
1978.

Carpenter, D. L., "Whistler studies of the plasma pause in the magnetosphere,

1, Temporal variations in the position of the knee and some evidence on plasma

motions near the knee," J. GEOPHYS. RES., 71, 693, 1966.

Chappell, C. R., "Recent satellite measurements of :he morphology and dynamics

of the plasmasphere," REV. GEOPHYS. SPACE PHYS., 10, 951, 1972.

Gringauz, K. N., and Zelikman, M. Kh., "Measurement of the Concentrations of

Positive Ions Along the Orbit of an Artificial Satellite," The Russian
Literature of Satellites, Part II, 133-147, International Physical Index, 1958.

Knudsen, W. C., "Evaluation and Demonstration of the Use of Retarding
Potential Analyzers for Measuring Several Ionospheric Quantities," J. GEOPHYS.

RES., 71, 4669-4678, 1966.

Park, C. G., D. L. Carpenter, and D. B. Wiggin, "Electron density in the

plasmasphere: Whistler data on solar cycle, annual, and diurnal variations,"

J. GEOPHYS. RES., 83, 3137, 1978.

Rich, F. J., W. J. Burke, P. J. L. Wildman, and R. C. Sagalyn, "Electron

temperature profiles measured up to 8000 km by S3-3" (abstract), EOS TRANS.

AGU, 59, 338, 1978.

Sagalyn, R. C., M. Smiddy, and J. Wisnia, "Measurement and Interpretation of
Ion Density Distributions in the Daytime F Region," J. GEOPHYS. RES., 68,
199-211, 1963.

Shawhan, S. D., and Murphy, G. B., "Plasma Diagnostics Package Assessment of

the STS-3 Orbiter Environment and Systems for Science," AIAA-83-0253, AIAA
21st Aerospace Sciences Meeting, Jan. 1983., 1983.

Instrumentation

Generel Interest

Burrous, C. N., Lieber, A. J., and Zaviantseff, V. T., "Detection Efficiency

of a Continuous Channel Electron Multiplier for Positive Ions," REV. SCI.

1NSTR., 38, 1477-1481, 1967.

Chutjian, A., "Geometries and Focal Properties of Two Electron-lens Systems

Useful In Low-Energy Electron or Ion Scattering," REV. SCI. 1NSTRUM., 50,

347-355, 1979.

Conley, J. M., "Conceptual Design of IMPS Electrical Properties Degradation

E} •.periment," JPL IOM, internal document, 1982.

Knott, K., "Payload of the GEOS Scientific Geostationary Satellite," FSA--ASE

	

r
	 SCI. TECH. REV., 1, 173-196, 1975.

v^

	

yam. r
	

8i

ti.

V



r.,. )

Masek, "Satellite Positive Ion Beam System," AIAA International Electric
Propulsion Conference, 1976.

Sellers, B., et al., "A High-Time Resolution Spectrometer for 0.05 to 500 keV

Electrons and Protons," in Spacecraft Charging by Magnetospheric Plasmas,
PKUGRESS IN ASTRONAUTICS AND AERON., 47, 31-42, 1976.

Whipple, E. C., "The Problem of Low Energy Particle Measurements in the

Magnetosphere," UCSD, San Diego, NASA Contract 8-31145, 1978b.

Effects on Space Systems

General

General References

Durrett, J. L., and Stevens, J. R., "Description of the Space Test Program
P78-2 Spacecraft and Payloads," Spacecraft Charging Technology--1978, NASA

GP-2071/AFGL-TR-79-0082, ed. by R. C. Finke and C. P. Pike, 4-10, 1979.

Ehlers, H. K. F., "Modeling Correlation with :'light Data," NASA, The Shuttle

Environment Workshop, Calverton, MD, Oct. 5-7, 1982, Contract NAS5-27362,
A147-A15b, 1983.

Garrett, H. B., and Pike, C. P., eds., "Space Systems and Their Interactions

with harth's Space Environment," Prog. Astronaut. Aeronaut., Vol. 71, AIAA
Press, New York, 1980.

Grard, R. J. L., ed., Photon and Particle Interactions With Surfaces in Space,

D. Reidel, Hingham, Mass., 1973a.

Halverson, W. D., "Modifications of Ionospheric Simulation Capability," NASA

Jt,hnson Space Center, Houston, Progress Briefing #1, 24 May, 1979.

Pike and Lovell, eds., Proceedings of the Spacecraft Charging Technology

Conference, AFGL-TR-77-0051--NASA TMX-73537, 1977.

Potter, A. E,, "Effects of Shuttle Environment on Instrument Performance,"

NASA, The Shuttle Environment Workshop, Calverton, MD, Oct. 5-7, 1982,

Contract NAS5-27362, A157-A162, 1983.

Shawhan, S. D., et al., "Subsatellite Studies of Wave, Plasma and Chemical

Injections from Spacelab," AlAA-82-0008 5, AIAA 20th Aerospace Sciences Meeting,
1982.

Singer, S. F., ed. "Interactions of Space Vehicles With an Ionized Atwo-

sphere," Pergamon, New York, 1965.

Whipple, E. C., Jr., "The equilibrium electric potential of a body in the
upper atmosphere," NASA X-615-65-296, 19b5.

88



+3P

Wilkerson, T., "Space Shuttle: A View of What We Have Done So Far," NASA, The

`	 Shuttle Environment Workshop, Calverton, MD, Oct. 5-7, 1982, Contract

NAS5-273b2, A295-A299, 1983.

Theoretical Models

Parker, L. W., and Whipple, E. C., Jr., "Theory of a Satellite Electrostatic

Probe," ANNALS OF PHYS., 44, 126-161, 1967.

Observations/Data

Rosen, A., "Spacecraft Charging," TRW Systems Croup, internal document, 1973.

Spacecraft Charging

General References

Adamo, K. C., and Nanevicz, J. E., "Spacecraft Charging Studies of Voltage

Breakdown Processes on Spacecraft Thermal Control Mirrors," AGU 1975 Spring
Annual Meeting, Paper SA42, 1975.

Agamy, S. A., and Robinson, J. E., "Energy Spectra and Charge Fractions For
KeV Hydrogen and Helium Backscattered From Silicon," SURF. SCI., 90, 648-bb0,
1979.

Al'pert, J. L., Gurevich, A. V., Pitaevskii, L. P., Sp p ,:e Physics With

Artificial Satellites, Consultants Bureau, New York, -86-210, 1965.

Baragiola, R. A., Alonso, E. V., and Florio, A. Oliva, "Electron. Emission from

Clean Metal Surfaces Induced by Low-Energy Light Ions," PHYS. REV. B, 19,

121-129, 1979a.

Baragiola, R. A., et al., "loa-Induced Electron Emission From Clean Metals,"

SURFACE SCI., 90, 24U-255, 1979b.

Beattie and Goldstein, "Active spacecraft Potential cuntrol system for the

Jupiter orbiter with probe emission," Proceedings of the Spacecraft ChargirS
Technology Conference, AFGL-TR-77-0051--NASA TMX-73537, edited by C. P. Pike

and K. R. Lovell, 143-165, 1977.

Beers, B. L., First principles numerical model of avalanche-induced arc

discharges in electron-irradiated dielectrics," NASA-C-168 (Rev. 10-75), 1979.

Bohm, D., Burhop, H. S., and Massey, H. S. W., "The Use of Probes for Plasma

Exploration in Strong Magnetic Fields," fhe Characteristics of Electrical
Discharges in Magnetic Fields, ed. by A. Guthrie and R. K. Wakerling, McGra!•
Hill, New York, Chap. 2, 1949.

Bunney, R. E., "Review of Literature, Secondary Electron Emission," NASA CR

54366, CEK65VAo-KEB12a, 1964.

v

39

^.1 A

a



Cambou, R., Sagdeev, R. Z., and Zhulin,	 A., "Reviewing Artificial Radiation
and Aurorae Between Kerguelen and Soviet Union," SPACE SCI. INSTRUM., 4,
117-121, 1978.

Cauffman, D. P., "Recommendations Concerning Spacecraft Charging in the

Magnetosphere." AIR FORCE ,rPORT NO. SAMSO-TR-73-348, AEROSPACE REPORT NO.
IR-0074(92b0-09)-5, 1973b.

Chen, F., "Electric probes," Plasma Diagnostic Techniques, edited by R. H.

huddlestone and S. L. Leonard, Academic, New York, 113-200, 1965.

Chung and Everhart, "Simple calculation of energy distribution of low-energy

secondary electrons emitted from metals under electron bombardment," J. Appl.
Phys., 45, 707, 1974.

"'hutjian, A., "Spectra and Cross Sections for Electron Autoionisation in Low
Energy Mg+-Ne Collisions," J. PHYS. B., 1980.

DeForesr, S. E., "Spacecraft charging at smchronoLs orbit," J. GEOPHYS. RES.,
77, b51, 1972.

Dekker, A. J., "Secondary electron emission," Solid State Physics, Prentice

hall, Englewood Cliffs, N. J., 418-445, 1958.

Dorozhkin, A. A., et al., "Ion-Bombardment Auger Spectroscopy for Studying

Surfaces of Solids," SOV. PHYS. TECH. PHYS., 23, 31.0-314, 1978.

Everhart, T. E., "Simple Theory Concerning the Reflection of Electrons from
Solids," J. APPL. PHYS., 31, 1483-1490, 1960.

F'euerbacher, B., Willis, R. F., and Fitton, b., "Electrostatic Charging and

Formation of Composite Interstellar Grains," Photon and Particle Interactions

With Surfaces in Space, ed. by R. J. L. Grard, 415-428, D. Reidel, Hingham,

 1973.

Frank, D. E., "ESD Phenomenon and Effect on Electronic Parts," Avionics

Maintenance Ccnference, Douglas Paper 7072, 1981.

Frederickson, A. R., "Electrostatic Charging and Discharging in Space

Environments," Proc. 10th Inter. Symp. Discharges and Electrical Insulation in
Vacuun, 1983.

Freeman, J. W., Jr., Fenner, M. A., and hills, H. K., "The Electric Potential
of the Moon in the Solar Wind," Fhoton and Particle Interactions With Surfaces
in Space, ed. by R. J. L. Grard, 363-368, 1973.

Garrett, H. B., "The Charging of Spacecraft Surfaces," REV, GEOPHYS., 19,
577-616, 1981.

Ghosh, S. N., and Khare, S. P., "Secondary Electron Emissions from Metal

Surface by High-Energy Ion and Neutral Atom Bombardments," PHYS. REV., 125,
1254-1258, 1962.

90

_	 ^J



Ghoeh, S. N., and Khare, S. P., "Secondary Electron Emission from Metal
Surfs.ces by H+ , H , He + , and He Bombardments," PHYS. REV., 129, 1638-1642,
1963.

g ibbons, D. S., "Secondary electron emisslon," Handbook of Vacuum Physics,

vol. 2, edited by A. H. Beck, Pergamon, New York, 301, 1966.

Godfrey, D. J., and Woodruff, D. P., "A Simple Ion Scattering Spectrometer for

Surface Studies," J. PHYS. L. SCI. INSTRUM., 13, 969-972, 1980.

Goldstein, R., and DeForest, S. E., "Active Control of Spacecraft Potentials

at Geosynchronous Orbit," Spacecraft Charging by Magnetosphe:ic Plasmas,
PROGRESS IN ASTRONAUTICS AND AERON., 47, 169-181, 1976.

Grard, R. J. L., "Spacecraft Potential Control and Plasma Diagnostic Using

Electron Field Lmission Probes," SPACE SCI. INSTR., 1, 363-376, 1975a.

Grard, R. J. L., "Effect of the Ambient Medium Upon the Electric Properties of

the Spacecraft Surface and Environment," Proceedings, Conference on Lightning
and Static Electricity, The Royal Aeronautical Society, 1975b.

Grard, R. J. L., "The multipl y applications of electron emitters in space,"
Proceedings of the Spacecraft Charging Technology Conference, AFGL-TR-0051.--
NASA TMS-73537, edited by C. P. Pike and R. R. Lovell, 203-221, 1977a.

Grard, R. J. L., et al., "The influence of photoelectron and secondary

electron emission on electric field measurements in the magnetosphere and

solar wind," Photon and Particle Interactions With Surfaces in Space, edited
by R.J.L. Grard, D. Reidel, Hingham, Mass., 163-192, 1973.

Grard, R., Knott, K., and Pedersen, A., "Spacecraft Charging Effects," SPACE

SCI. REV., 34, 289-304, 1983.

Hachenberg and Brauer, "Secondary electron emission from solids," ADV.
ELECTRON. ELECTRON PHYS., 11, 413-499, 1959.

Halverson, W. D., "Techniques for the Simulation of the Space Plasma

Environment," AFGL-TR-80-0203, 1980a.

Halverson, W. D., "Simulation of Spacecraft Charging Environments by
Monoenergetic Beams," USAF--NASA Spacecraft Charging Technology Conference
III, 1980b.

Jung, H., "The Origin of Solid Particles in lnterstellsr Space," ASTRON.

NACIT,. , 263, 426, 1937.

Kenaall, B. R. F., "Mass Analysis of Neutral Particles and Ions Released

During k.lectrical Breakdowns on Spacecraft Surfaces," NASA Crant NSG-3301,
Semi-Annual ti iatus Report No. 7, "•983.

Knott, K., "The equilibrium potential of a magnetosptLeric satellite in an

eclipve situation," PLANET. SPACE SCI., 20, 1137-1146, 1972a.

im

91

o^



Kollath, V. R., "Lur Energievertellung der Sekundar elektronPn," ANNALEN DER
PHYS., b, 357-379, 1947.

Laframbolse et al., "Numerical calculations of high-altitude differential

charging," Preliminary results, in Spacecraft Charging Technology - 1978, NASA

CP-2U71--AFGL-TR-79-0082, edited by R. C. Finke and C. P. Pike, 188-196, 1979.

Li ►cas, A. A., "Fundamental Processes in Particle and Photon Interactions With
Surfaces," Photon and Particle Interactions With Surfaces in Space, ed. by
R. J. L. Grard, D. Reidel, Hingham, MA, 3-21, 1973.

Manka, K. H., "Plasma and Potential at the Lunar Surface," Photon and Particle

lateractic,ns With Surfaces in Space, ed. by R. J. L. Grard, D. Reidel,
Bingham, MA, 347-367, 1973.

McPherson, D. A., and Schober, W. R., "Spacecraft Charging at High Altitudes:

The SCATHA Satellite Program," Spacecraft Charging by Magnetospheric Plasmas,
PROG. ASTRON. AERONAUT., vol. 47, ed. by A. Rosen, I4IT Press, Cambridke,
Mass., 15-30, 1976.

Mizera, P. F., et al., Spacecraft Charging Handbook, The Aerospace Corp., 1983.

Opik, E. J., "interplanetary Dust and Terrestrial Accretion of Meteoric

Matter," IRISH ASTRON. J., 4, 84, 1956.

Opik., E. J., "Particle Distribution and Motion in a Field of Force,"

Interactions of Space Vehicles With an Ionized Atmosphere, ed. by S. F.
Singer, Pergamun, New York, 3-60, 1965.

Purvis and Bartlett, "Active control of spacecraft charging," Space Systems

and Their Interactions Witt ► the Earth's Space Environment, Prog. Astronaut.
Aeronaut., vol. 71, edited by H. B. Garrett and C. P. Pike, AiAA Press, New
York, 299-317, 1980.

Kosen, A., ed., Spacecraft Charging by Magnetospheric Plasmas, Prog.

Astronaut. Aeronaut, vol. 47, MIT Press, Camhridge, Mass., 1976.

Rubin et al., "Reduction of spacecraft charging using highly eLissive eurface

materials,' Proceedings of the 1978 Symposium on the Effects of the Ionosphere

on Space and Terrestrial Systems, Naval Research Laboratories, hashington,
D.C., 313- •311 b, 1978.

Schultz, A. A., and Pomerantz, M. A., "Secondary Electron Emission Produced by

Relativistic Primary Electrons," PHYS. REV., Second Series, 130, 2135-2141,
1963.

Shaw et al., "Observations of electrical discharges caused by differential

s: ► tellite charging," Spacecraft Charging by Magnetospheric Plasmas, Prog.
Astronaut. Aeronaut,, vol. 47, edited by A. Rosen, AIAA Press, New York,
bl-7b, 1976.

Sherman, J. C. ; "Secondary Electron Emission by Multiply Charged Ions and its

Magnitude in Vacuum Arcs," J. PHYS. D, 355-359, 1977.

92

J



,m

i^

Spitzer, L., Jr., "The Dynamics of the Interstellar Medium," ASTROPHYS. J.,
93, 369-379, 1941.

Spitzer, L., Jr., "The Temperature of Interstellar Material," ASTROPHYS. J.,

107, 6-33, 1948.

Spitzer, L., Jr., and Savedoff, M. P., "The Temperature of Interstellar

Matter, Ill," ASTROPHYS. J., 111, 593-608, 1950.

Sternglass, E. J., "Backscattering of Kilovolt Electrons from Solids," PHYS.

REV., 95, 345-358, 1954.

Sternglass, E.J., "Theory of secondary electron emission by nigh speed ions,"
PHYS. REV., 108, 1-12, 1957.

Stevens, J. R., and Vampola, A.L., eds., "Description of the Space Test
Program P78-2 Spacecraft and Payloads," REP. SAMSO-TR-78-24, U. S. Air Force

Satellite and Missile Syst. Organ., Los Angeles, Calif., 1978.

Stevens, N. J., "Space Environmental Interactions with Spacecraft Surfaces,"

NASA Technical Memorandum 79016, 1979b.

Stevens, N. J., Kamen, R. E., and Holman, A. B., "Design Guidelines for

Assessing and Controlling Spacecraft Charging Effects, Preliminary Report,"
NASA Lewis Res. Center, Cleveland, Ohio, 1980c.

Tautz, "SSPM Experiment Simulation Study for the April 24," AFSC--AFGL, 1979.

Whipple, E. C., Jr., "Modeling of spacecraft charging," Proceedings of the

Spacecraft Technology Conference, AFGL-TR-77-0051--NASA TMX-73537, edited by
C. P. Pike and R. R. Lovell, 225-236, 1977.

Wilkenfeld, J., C. Mallon, J. Horne, "Conduction and Charge Storage in

Electron Irradiated Spacecraft Insulators," AFSC--RADC, RADC-TR-81-198, 1981.

Willis, R. F., and Skinner, D. K., "Secondary Electron Emission Yield

Behaviors of Polymers," SOLID STATE COMMUN., 13, 685, 1973.

Analytic Models

Besse, R. L., and Rubin, A. L., "A Simple Analysis of Spacecraft Charging

Involving Blocked Photoelectron Currents," J. GEOPHYS. RES., 85, 2324-2328,
1980.

Garrett, H. B., and Rubin, A. G., "Spacecraft Charging at Geosynchronous

orbit--Generalized Solution For Eclipse Passage," GEOPHYS. RES. ,ETT., 5, 865,
1978.

Garrett, H. B., et al., "Prediction of spacecraft potentials at geosynchronous

orbit," Solar-Terrestrial Prediction Proceedings, vol. II, edited by R. F.
Donnelly, NOAA Environmental Research Laboratories, Boulder, Colo., 104-118,

1979.

9 3

V



A
.1

Tsipouras, P., and H. B. Garrett, "Spacecraft charging model, 2 Maxwellian

approximation," Rep. AFGL-TR-79-0153, Air Force Geophys. Lab., Bedford, Mass.,
1979.

Theoretical Models

Albers, N., "Computer Simulation of a Spherical Langmuir Probe," REP. SU-IPR
449, Stanford University, Stanford, CA, 1973.

Allen, J. E., Boyd, L. F., and Reynolds, P., "The Collection of Positive Ions

by a Probe Immersed in a Plasma," PROC. PHYS. SOC. LONDON, SECT. B, 70,
297-304, 1957.

Besse, A. L., "Unstable Potential of Geosynchronous Spacecraft," J. GEOPH~'S.
KES., 86, 2443-2446, 1981.

Cauffman, D. P., "Ionization and Attraction of Neutral Molecules to a Charged

Spacecraft," REP. SAMSO-TR-73-263, Space and Missile Syst. Organ., Los
Angeles, 1973a.

Chang, J. S., Prokopenko, S. M. L., Goddard, R., and Laframboise, J. G.,

"Prediction of Ion Drift Effects on Spacecraft Floating Potentials,"
Spacecraft Charging Technology--1978, NASA CP-2071,'AFGL-TR-79-0082, ed. by
R. C. Finke and C. P. Pike, 179-187, 1979.

Derksen, F., and Knott, K., "Effects of a Photoelectron Cloud on

Electric-Field Measurements From a Geostationary Satellite,"
ELDO-CECLES--ESRO-CERS SCIENT. AND TECH. REV., 6, 3-16, 1974.

Evdokimov, 0. B., and Tubalov, N. P., "Stratification of Space Charge in

Dielectrics lrradiated With Fast Electrons," SOV. PHYS. SOLID STATE, ENGL.
TRANSL., 15, X869-1870, 1974.

Grebowski, R., and Fischer, T., "Theoretical Density Distribution of Plasma
Around a Cylinder," PLANET. SPACE SCI., 23, 287-304, 1975.

Katz, I., Parks, D. E., Wang, S., and Wilson, A., "Dynamic Modeling of

Spacecraft in a Collisionless Plasma," Proceedings of the Spacecraft Charging

Technology Conference, AFGL-TR-77-0051/TMX--73537, ed. by R. C. Finke and C. A.
Pike, 101-122, 1977.

Katz et al., "The capabilities of the NASA charging analyzer vrogram,"

Spacecraft Charging Technology-1978, NASA CP-2071---AFGL-TR-79-0082, edited by
R. C. Finke and C. A. Pike, 101-122, 1979.

Konemann, B., and Schroder, H., "The Irfluence of Capacitor Effects on the

Surface Potential of Satellites with Partially Insulating Surfaces in the
Solar Wind," PLANET. SPACE SCI., 22, 321-331, 1974.

Kurt, P. G., and Moroz, V. I., "The Potential of a Metal Sphere in

Interplanetary Space (in Russian)," TSKUSSTV. SPUTNIKI ZEMLI, 7, 78-88, 1961
(Translated in PLANET. SPACE SCI., 9, 259-268, 1962).

94

C s	 - t 
Y	

Js



Laframboise, J. G., "Theory of Spherical and Cylindrical Langmuir Probes in a
Collisionless Maxwellian Plasma at Rest," REP. 100, Univ. of Toronto Inst.

Aerosp. Stud., 'Toronto, Ont., 1966.

Laframboise, J. G., "Calculation of Secondary-Electron Escape Currents From

Inclined Spacecraft Surfaces in a Magnetic Field," Proc. USAF--NASA Spacecraft

Environmental Interactions Technology Conference, 1984.

Laframboise, J. G., and Prokopenko, S.M.L., "Numerical Simulation of

Spacecraft Charging Phenomena," USAF--NASA Spacecraft Charging Technology
Conference, 1976.

Laframboise, J. G., et al., "Results From a Two-Dimensional Spacecraft-
Charging Simulation, and Comparison with a Surface Photocurrent Model," in
SPACECRAFT CHARGING TECHNOLOGY 1980, NASA Conf. Pub. 2182, AFGL-'TR-81-0270,
709-716, 1981.

Laframboise, J. G., Goddard, R.,and Yrokopenko, S. M. L., "Numerical

Calculations of High-Altitude Differential Charging: Preliminary Results,"
Spacecraft Charging Technology--1978, NASA CP-2071/AFGL- TR-79-0082, ed. by
R. C. Finke and C. A. Pike, 188-196, 1979.

Laframboise, J. G., R. Goddard, M. Kamitsuma, "Multiple Floating Potentials,

Threshold-Temperature Effects, and 'Barrier' Effects in High-Voltage Charging
of Exposed Surfaces on Spacecraft," Proc. Inter. Symp. on Spacecraft Materials

in Space Environment, ESA, 1982.

Lai, S. T., Gussenhoven, M. S., and Cohen, H. A., "The Concepts of Critical
Temperature and Energy Cutoff of Ambient Electrons in High Voltage Cnarging of
Spacecraft," Proc. ESLAB Symp. on 'Spacecraft--Plasma Interactions and their
Influence on Field and Particle Measurements', ESA SP-198, 1983.

Massaro, M. J., Green, T., and Ling, D., "A Charging Model for Three-axis

Stabilized Spacecraft," Proceedings of the Spacecraft Charging Technology
Conference, AFGL-Tk- . 71-0051/NASA TMX-73537, ed. by C. P. Pike and R. R.

Lovell, 237-270, 1977.

Massaro et al., "A charging model for three axis stabilized spacecraft,"

Proceedings of the Spacecraft Charging Conference, AFGL-TR-77-0051--NASA

TMX-73537, edited by C. P. Pike and R. R. Lovell, 237-270, 1977.

Mazzella, A., Tobenfeld, E., and Rubin, A. G., "AFSIM--An Air Force Satellite

Interactions Model," REP. AFGL-TR-79-0138, AFGL, Bedford, Mass., 1979.

Meulenberg, A.,

in a Plasma, Sp
AERONAUT., vol.

Parker, L. W.,

ANAL-TR-72-222,

Jr., "Evidence for a New Discharge Mechanism for Dielectrics

acecraft Charging by Magnetospheric Plasmas," PROG. ASTRON.
47, ed. by A. Rosen, MIT Press, Cambridge, Mass., 1976.

"Computer Solutions in Electrostatic Probe Theory," REP.

Mt. Auburn Res. Assoc., Newton, MA, 1973.

95

4irii a	 ^—



Parker, L. W., "Computer Method for Satellite Plasma Sheath in Steady-State

Spherical Symmetry," REP. AFCRL-TR-75-0410, Lee W. Parker, Inc., Concord,

Mass., 1975.

Parker, L. W., "Theory of Electron Emission Effects in Symmetric Probe and

Spacecraft Sheaths," REP. AFGL-TR-76-0294, Lee W. Parker, Inc., Concord,
Mass., 197bb.

Parker, L. W., "Potent'_al Barriers and Asymmetric Sheaths Due to Differential

Charging cf Nonconducting Spacecraft," REP. AFGL-TR-78-0045, AFGL, Bedford,
Mass., 1978b.

Plamp, G., "Completion of a Code to Evaluate Secondary Electron Emissions ill

lusulators," JPL IOM 5137-81-82, (internal document), 1981.

Prokopenko, S. M. L., and Laframboise, J. G., "Prediction of Large Negative

Shaded-Side Spacecraft Potentials," Proceedings of the Spacecraft Charging
Technology Conference, AFGL-TR-77-0051/NASA TMX-73537, ed. by C.P. Pike and

R.R. Lovell, 369-387, 1977.

Prokopenko, S. M. L., and Laframboise, J. G., "High-Voltage Differential
Charging of Geostationary Spacecraft," J. GEOPHYS. RES., 85, 4125-4131, 1980.

Purvis, C. K., "Configuration effects on satellite charging response," Paper

80-0040, presented at 18th Aerospace Sciences Conference, Am. Inst. of
Astronaut. and Aeronaut., Pasadena, Calif., 1:80.

Reitan, D. K., and Higgins, T. J., "Accurate Determination of the Capacitance

of a Thin Rectangular Plate," AIEE Paper 56-980, 1957.

Robinson and Holman, "Pioneer Venus spacecraft charging model," Proceedings of

the Spacecraft Charging Technology Conference, AFGL-TR-77-0051--NASA
TMX-7;,537, edited by C. P. Pike and R. R. Lovell, 297-308, 1977.

Rothwell, P. L., et al., "Simulation of the Plasma Sheath Surrounding a

Charged Spacecraft," Spacecraft Charging Ly iKagnetospheric Plasmas, PROGRESS
IN ASTRONAUTICS AND AERON., 47, 121-133. ISibb.

Rubin, A. G., et al., "A Thre bimensional Spacecraft Charging Computer Code,"

Space Systems and Thei r interactions With Earth's Space Environment, Prog.
Astronaut. Aeronaut., vol. 71, ed. by H. B. Garrett and C. P. Pike, AIAA

Press, New York, 318-336, 1980.

Sanders, N. L., and Inouye, G. T., "Secondary Emission Effects on Spacecraft

Charging: Energy Distribution Considerations," Spacecraft Charging

technology--1978, NASA CP-2071/AFGL-TR-79-0082, ed. by R. C. Finke and C. P.
Pike, 747-755, 1979.

Schnuelle, G. W., Stannard, P. R., Katz, I., and Mandell, M. J., "Simulation

of the Charging Response of the SCATHA (P78-2) Satellite," Proceedings of the

USAF/NASA Spacecraft Charging Technology Conference III, 1981.

96

J.)

1

Oa



I+ J

Schnuelle, G. W., et al., "Charging Analysis of the SCA:'HA Satellite,"
Spacecraft Charging Technology--1978, NASA CP-2071/AFGL-TR-79-0082, ed. by
R. C. Finke and C. P. Pike, 123-143, 1981.

Soop, M., "Report on Photosheath Calculations for the Satellite GEOS," PLANET.

SPACE SCI., 20, 859, 1972.

Soup, M,, "Numerical Calculations of the Perturbation of an Electric Field

Around a Spacecraft," Photon and Particle Interactions With Surfaces in Space,

ed. by R. J. L. Grard, D. Rei.del, Hingham, Mass., 1973.

Stevens, N. J., and Purvis, C. K., "NASCAP modeling computations or. large

optics spacecraft in geosynchronous substorm environments," NASA TM-81395,
1980.

Tautz, M. F., et al., "Prediction of Materials Charging in Magnetospheric

Plasmas," AFGL Technical Memorandum No. 31, 1980b.

Whipple, E. C., Jr., "Observation of Photoelectrons and Secondary Electrons

Reflected From a Potential Barrier in the Vicinity of ATS 6," J. GEOPHYS.
RES., 81, 715-719, 1976b.

Whipple, E. C., Jr., and Parker, L. W., "Theot; • of an Electron Trap on a

Charged Spacecraft," J. GEOPHYS. RES., 74, 2962-2971, 1969a.

Whipple, E. U., Jr., and Parker L. W., "Effects of Secondary Electron Emission

on Electron Trap Measurements in the Magnetosphere and Solar Wind," J. GEOPHYS.

RES., 74, 5763-5774, 1969b. 	
I

Whipple, E. C., J. W. Hirman, and R. Ross, "A Satellite Ion-Electron

Collector," U. S. Dept. Commerce--ESSA, ERL 99-AL 1, 1968.

Observations/Data

Balmain, K. G., "Surface discharge effects," Space Systems and Their 	 +
Interactions With the Earth's Space Environment, Pro. Astronaut. Aeronaut.,

vol. 71, edited by H. B. Garrett and C. P. Pike, AIAA Press, New York,
276-298, 1980.

Balmain et al., "Surface micro-discharges on spacecraft dielectrics,"

Proceedings of the Spacecraft Charging Technology Conference,
AFGL-TR-77-0051--NASA TMX-73537, edited by C. P. Pike aad R. R, Lovell,

519-526, 1977.

Cauffman, D. P., and Shaw, R.R., "Transient Currents Generated by Electrical

Discharges," SPACE SCI. INSTR., 1, 125-137, 1975.

DeForest, S. E., "Spacecraft Charging at Synchronous Orbit," J. GEOPHYS. RES.,

77, 3587-3bll, 1972.

DeForest, S. E., "Electrostatic potentials developed by ATS-5," Photon and

Particle interactions With Surfaces in Space, edited by R. J. L. Guard,
D. Reidel, Hingham Mass., 263--276, 1973.

97



4

Frederickson, A. R., "Electric. Fields in Irradiated Dielectrics," Spacecraft
Charging Technology--1978; NASA CP-2071/AFGL-TR-79-0082, en. by R. C. Finke

and C. P. Pike, 554-569, 1979.

Frederickson, A. R., "Radiation Induced Dielectric Charging," Space Systems

and Their Interactions With the Earth's Space Environment, PROG. ASTRONAUT.

AERONAUT., 71, ed. by H. B. Garrett and C. P. Pike, AIAA Press, New York,
3N6-412, 1980.

Garrett, H. B., and DeForest, S. E., "Time-Varying Photoelectron Flux Effects
on Spacecraft Potential at Geosynchronous Orbit," J. GZOPI!YS. RES., 84,
2U83-2Ob8, 1979.

Garrett, H. B., and Forbes, J. M., "A Model of Solar Flux Attenuation During

Eclipse Passage and its Effects on Photoelectron Emission From Satellite

Surfaces," PLANET. SPACE. SCI., 29, 601-607, 1981.

Garrett, h. B., Pavel, A. L., and Hardy, D. A., "Rapid Variations in

Spacecraft Potential," REP. AFGL-TR-77-0312, Air Force Geophys. Lab., Bedford,
Mass., 1977.

Garrett, H. B., Mullen, E. G., Ziemba, E., and DeForest, S. E., "Modeling of

the Geosynchronous Plasma Environment, 2, ATS-5 and ATS-6 Statistical Atlas,"

REP. AFGL-TR-78-0304, Air Force Geophys. Lab., Bedford, Mass., 1978.

Gonfalone et al., "Spacecraft potential control on ISEE-1," Spacecraft

Charging Technology - 1978, NASA CP-2071--AFGL-TR-79-0082, edited by R. C.

Finke and C. P. Pike, 256-267, 1979.

Grard, R. J. L., "Properties of the satellite photoelectron sheath derived

from photoemission laboratory measurements," J. GEOPHYS. RES., 78, 2885-2906,
1973b.

Grard, R. J. L., et al., "Comment on Low Energy Electron Measurements in the

Jovian Magnetosphere, GEOPhYS. RES. LETT., 4, 247, 1977.

Grier, N. T., and Stevens, N. J., "Plasma Interac^ion Experiment (PIX) flight

results," PROCEEDINGS OF THE SPACECRAFT CHARGING TECHNOLOGY CONFERENCE, Air

Force Academy, Colorado Springs, CO, Oct. (NASACP-2071, 1979), 1978.

Gross, B., and Nablo, S. V., "High Potentials in Electron-Irradiated

Dielectrics," J. APPL. PHYS., 38, 2272 -2275, 1967.

Inouye, G. T., "Spacecraft potentials in a substorm environment," Spacecraft
Charging by Magnetospheric Plasma, Prog. Astronaut. Aeronaut., vol. 42, edited
by A. Rosen, MIT Press, Cambridge, Mass., 103-120, 1976.

Johnson, B., Q%inn, J., and DeForest, S. E., "Spacecraft Charging on ATS-6,"

Effect of the Ionosphere on Space and Terrestrial Systems, ed. by J. Goodman,
U.S. Gov. Printing Office, Washington, D. C., 322-327, 1978.

98
	 i

L__

	 O



1.19

Koons, H., "Characteristics of electrical discharges on the P78-2-satellite
(SCATHA)," Paper 80-0333, presented at 18th Aerospace Sciences Meeting, Am.

Inst. of Astronaut and Aeronaut., Pasadena, Calif., 1980.

Krainsky, I., et al., "Secondary Electron Emission Yield," Annual Report, FY

1979, NASA Grant NSG 3197, 1979.

Krainsky, I., et al., "Secondary Electron Emission Yield," Annual Report, FY

1980, NASA Grant NSG 3197, 1980.

Krainsky, I., et al., "Secondary Electron Emission Yield," Annual Report, FY

1981, NASA Grant NSG 3197, 1981.

Mizera, P. F., "Preliminary Natural Charging Results From the P78-2 Satellite

Surface Potential Monitors During the April," AFSC--SAMSO, 1979.

Mizera, P. F., "Natural and Artificial Charging: Results From the Satellite

Surface Potential Monitor flown on P78-2," Paper 80-0334, 18th Aerospace
Sciences Meeting, AIAA, Pasadena, Calif., 1980.

Mizera, P. F., Schnauss, E. R., Vandre, R., and Mullen, E. G., "Description

and Charging Results from the RSPM," Spacecraft Charging Technology--1978,
NASA CP-2071/AFGL-TR-79-0082, ed. by R. C. Finke and C. A. Pike, 91-100, 1979.

Montgomery, M. D., et al., "Low-Energy Electron Measurements and Spacecraft

Potential," Photon and Particle Interactions with Surfaces in Space, R. J. L.
Grard, ed., D. Reidel, Hinghaw, Mass., 2.47-261, 1973.

Nanevicz, J. L., and Adamo, R. C., "Occurrence of Arcing and its Effects on

Space Systems," Space Systems and Their Interactions With Earth's Space
Environment, Prog. Astronaut. Aeronaut., vol. 71, ed. by H. B. Garrett and
C. P. Pike, AIAA Pref;s, New York, 252-275, 1980.

Nanevicz, J. E., et al., "Electrical Discharges Caused by Satellite Charging

at Synchronous Orbit Altitudes," AGU 1975 Spring Annual Meeting, Paper SA41,
1975.

Norman, K., and Freeman, R. M., "Energy Distribution of Photoelectrons Emitted

From a Surface on the OGO-5 Satellite and Measurements of Satellite

Potential," Photon and Particle Interactions With Surfaces in Space, ed. by
R. J. L. Grard, D. Reidel, Hingham, MA, 231-246, 1973.

Olsen, R. C., "Differential and Active Charging Results From the ATS

Spacecraft," Ph.D. dissertation, Univ. of Calif., San Diego, 1980.

Olsen, R. C., "Modification of Spacecraft Potentials by Plasma Emission,"

Repr. from J. SPACECRAFT ROCK., 18, AIAA 81-4287, 462-532, 1981.

Olsen, R. C., "A Threshold Effect for Spacecraft Charging," J. GEOPHYS. RES.,

493-499, 1983.

Olsen, R. C., et al., "Observations of Differential Charging Effects on
ATS b," J. GEOPHYS. RES., 86, A8, 6809-6819, 1981.

''
	

99



Pedersen, A., et al., "Measurements of Quasi-Static Electric Fields Between 3
and 7 Earth Radii on GEOS-1," SPACE SCI. REV., 22, 333-346, 1978.

Pike, C. P., "A Correlation Study Relating Spacecraft Anomalies To

Environmental Data," Spacecraft Charging by Magnetospheric Plasmas, PROGRESS

IN ASTRONAUTICS AND AERON., 47, 45-•60, 1976.

Purvis, C. K., et al., "Charging characteristics of materials: Comparison of

experimental results with simple analytical models," Proceedings of the
Spacecraft Charging Conference, AFGL-TR-77-0051--NASA T ,4C-73537, edited by C.

P. Pike and R. R. Lovell, 459-486, 1977.

Roche, J. C., and Purvis, C. P., "Comparison of NASCAP Predictions With
Experimental Data," Spacecraft Charging Technology--1978, NASA CP-2071/AFGL-TR-

79-0082, ed. by R.C. Finke and C.P. Pike, 144-1-J7, 1979.

Rosen, A., et al., "RGA Analysis: Findings Regarding Correlation of Satellite

Anomalies With Magnetospheric Substorms and Laboratory Test Results," REP.

U9670-7020-RO-00, TRW Systems Group, Redondo Beach, Calif., 1972.

Schroder, if., "bnherically Symmetric Model of the Photoelectron Sheath for

Moderately Large Plasma Debye Lengths," Photon and Particle Interactions with

Surfaces in Space, R. J. L. Grard, ed., D. Reidel, Hingham, Mass., 51-58, 1973.

Scudder, J. D., Sittler, E. C.,Jr., and Bridge, H. S., "A Survey of the Plasma

Electron Environment of Jupiter: A View From Voyager," J. GEOPHYS. RES., 86,
8157-8179, 1981.

Stevens, N. J., "CTS and OTS Transient Event Counter Flight Behavior and

Relationship to Analytical Modelling Predictions," NASA Lewis Research Center,
1979a.

Stevens, N. J., Staskus, J. V., Roche, J. C., and Mizera, P. F., "Initial

Comparison of SSPM Ground Test Results and Flight Data to NASCAP Simulations,"
NASA TM-81394, 1980a.

Stevens, N. J., Staskus, J. V., Roche, J. C., and Mizera, P. F., "Initial

Comparison of SSPM Ground Test Results and Flight Data to NASCAP Simulations,"

NASA Technical Memorandum 81394, 1980a.

Stevens, N. J . , Staskus, J. V., and Roche, J. C., "Initial comparison of SSPM

ground test results and flight data to NASCAP simulations," NASA TM-81314,
1980b.

Treadaway et al., "The effects of high-energy electrons on the charging of

spacecraft dielectrics," IEEE Trans. Nucl. Sci., NS-26(6), 5102-5106, 1979.

Glow

General References

"Summary Minutes of Physics of Spacecraft Glow Workshop," NASA/MSFC, Space

Science Laboratory, 1984.

100



f 1^

Observations/Data

Abreu, V. ?., Skinner, W. R., Hays, P. B., and Yee, J-H., "Optical Effects of

Spacecraft-Environment Interaction: Spectrometric Observations by the DE-B
Satellite," A Collection of Technical Papers, AIAA Shuttle Environment and

Operations Meeting, Wash., D.C., Oct. 31-Nov. 2, CP838, 178-182, 1983.

Banks, P. M., Williamson, P. R., and Raitt, W. J., "Observation of Optical

Emissions from STS-3," NASA, The Shuttle Environment Workshop, Contract

NAS5-27362, A109-A110, 1983.

Banks, P. M., Williamson, P. R., and Raitt, W. J., "Space shuttle glow

observations," GEOPHYS. RES. LTTRS., 10, 118-121, 1983.

Hanson, W. B., Sanatani, S., and Hoffman, J. H., "Ion Sputtering From

Satellite Surfaces," J. GEOPHYS. RES., 86, 1135, 1981.

Kofsky, I. L., and Barrett, J. L., "Optical Emissions Resulting from Plasma

Interactions Near Windward-Directed Spacecraft Surfaces," A Collection of
Technical Papers, AIAA Shuttle Environment and Operations Meeting, C:838,
198-203, 1983.

Leger, L. J., "Oxygen Atom Reaction with Shuttle Materials at Orbital
Altitudes," NASA Technical Memorandum 58246, 1982.

Mende, S. B., "Measurement of Vehicle Glow on the Space Shuttle," A Collection

of Technical Papers, AlAA Shuttle Environment and Operations Meeting, Wash.,

D.C., Oct. 31-Nov. 2, CP838, 79-86, 1983.

Mende, S. B., Garriott, 0. K., and Banks, P. M., "Observations of optical

emissions on STS-4," GEOPHYS. RES. LTTRS., 10, 122-125, 1983.

Slanger, T. G., "Conjectures on the origin of the surface glow of space

vehicles," GEOPHYS. RES. LTTRS., 10, 130-132, 1983.

Torr, M. R., "Optical emiasion induced by spacecraft-atmosphere interactions,"

GEOPHYS. RES. LTTRS., 10, 114-117, 1983.

Vanhoosier, M. E., "Solar Ultraviolet Spectral Irradiance Monitor Experiment

on OSS-1," NASA, The Shuttle Environment Workshop, Contract NAS5-27362,
A267-A274, 1983.

Yee, J. H., and Abreu, V. J., "Visible glow induced by spacecraft-environment

interactions," GEOPHYS. RES. LTTRS., 10, 126-129, 1983.

Yee, J. H., and Dalgarno, A., "Radiative Lifetime Analysis of the Shuttle

Optical Glow," A Collection of Technical Papers, AIAA Shuttle Environment and
Operations Meeting, CP838, 191-197, 1983.

0



i

t1

Plasma Interactions/HV

General References

A1'pert, J. L., "Wave-like phenomena in the near-earth plasma and interactions

with man-made bodies," Handb. Phys., Geophys. 111(V), 217-350, 1976.

Bernstein and Rabinowitz, "Theor:- o f electrostatic probes in a low-density
plasma," PHYS. FLUIDS, 2, 112, 1959.

Brundin, C. L., "Effects of Charged Particles on the Motion of an Earth

Satellite," ALAA J., 1, 2529-2538, 1963.

Call, S. M., "The Interaction of a Satellite With the Ionosphere," REP. 46,

Plasma Lab., Columbia University, New York, 1969.

Chang, K. W., and Bienkowski, G. K., "Lffects of Electron Emission on

Electrostatic Probes at Arbitrary Pressures," PHYS. FLUIDS, 13, 902, 1970.

Chopra, K. P., "Interactions of Rapidly Moving Bodies in Terrestrial

Atmosphere," REV. MOD. PHYS., 33, 153-189. 1961.

Cohen, H. A., et al., "Design, Development, and Flight of a Spacecraft

Charging Sounding Rocket Payload," Spacecraft Charging Technology-- 19/8, NASA
CP-2U71/AFGL-TR-79-0082, ed. by R. C. Finke and C. P. Pike, 80-90, 1979.

Davis, A. H., and Harris, I., "Interaction of a Charged Satellite With the

l^)nosphere," ka-efied Gas Dynamics, ed. by L. T.lbot, 691-699, Academic, New
York, 196.

DeLeeuw, J. H., "A Brief Introduction to Ionospheric Aerodynamics," Rarefied

Gas Dynamics, vol. 2, ed. by C. L. Brundin, 1561-1587, Academic, New York,
1967.

Fahleson, U., "Plasma-Vehicle Interactions in Space--Some Aspects on Present

Knowledge and Future Development," Photon and Particle Interactions With

Surfaces in Space, ed. by R. J. L. Grard, 56',-570, D. Reidel, Hingham, Mass.,
1973.

Fournier, G., "Electric Drag," PLANET. SPACE. SCI., 18, 1035-1041, 1970.

Goldan, P. D., Yadlowsky, E. J., and Whipple, E. C., Jr., "Errors in ion and

electron temperature measurements due to grid plane potential nonuniformities
in retarding potential analyzers," J. GEOPHYS. RES., 78, 2907-2916, 1973.

Gurevirh et al., "Ionospheric aerodynamics," SOV. PHYS. USP. (Engl. Transl.),
99(1-2), 595, 1970.

Kasha, M. A., The Ionosphere and Its Interaction With Satellites, Gordon and
Breach, New York, 1969.

^_;	 IU2



Langmuir, I., "The Interaction of Electron and Positive Ion Space Charge in

Cathode Sheaths," PHYS. REV., 33 (Reprinted in Collected Works of Irving
Langmuir, ed, by G. Suits, vol. 5, Macmillan, New York., 1961.), 954, 1929.

Langmuir, I., and Blodgett, K. B., "Currents Limited by Space Charge Between

Concentric Spheres," PHYS. REV., 24, 49, 1924.

Stevens, N. J., Berkopec, F. D., Purvis, C. K., Grier, N. T., and Staskus,

J.V., "investigation of High Voltage Spacecraft System Interactions with
Plasma Environments," Lewis Research Center, NASA Technical Memorandv.m 78831,
1978.

Analytic Mod^_Ls

Cipolla, J. W., and Silevitch, M. B., "Analytical Study of the Time Dependent

Spacecraft-P1?sma Interaction," Spacecraft Charging Technology--1978, NASA
CP- • 207VAFGL-TR-79-0007, ed. by R. C. Finke and C. P. Pike, 197-208, 1979.

Theoretical Models

Beard, D. B., and Johnson, F. S., "Charge and Magnetic Field Interaction With

Satellites," J. GEOPHYS. RF.S., 65, 1-7, 1960.

beard, D. B., and Johnson, F. S., "Ionospheric Limit-itions on Attainable

Satellite Potential," J. GEOPHYS. RES., 66, 4113-4122, 1961.

Bohm, D., "Minimum Ionic Kinetic Energy For a Stable Sheath," Tile

Characteristics of Electrical Discharges in Magnetic Fields, ed. by A. Guthrie
and R. K. Wakerling, McGraw-Hill, New York, 77-86, 1949.

^ourdeau, R. E., "On the Interaction Between a Spacecraft and an Ionized
Medium," SPACE SCI. REV., 1, 719-728, 1963.

Cauffmar., D. P., "The Effects of Photoelectron Emission on a Multiple-Probe

Spacecraft Near the Plasmapauee," Photon and Particle Interactions with
Surfaces in Space, ed. by R. J. L. Grard, D. Reidel, Hingham, Mass., 153-162,
1y73b.

Cauffman, D. P., an.: N. C. Maynard, "A Model of the Effect of the Satellite

Photosheath on a Double Floating Probe System," J. GEOPHYS. RES., 79,
2427-2438, 1974.

Grard, R. J. L., and Tunaley, J. K. E., "Photoelectron Sheath Near a Planar

Probe in Interplanetary Space," J. GEOPHYS. RES., 76, 2498-2505, 1971.

Guernsey, R. L., and Fu, J. H. M. "Potential Distributions Surroundi ►tg a
Photo-Emitting Plate in a Dilute Plasma," J. GEOPHYS. RES., 75, 3193-3199,
1970.

Gurevich, A. V., Pariiskaya, L. V., and Pitaevskii, L. P., "Ion Acceleration

Upon Expansion ccf a Rarefied Plasma," SUV. PHYS. JETP (Engl. Trans.l.), 36,
274-281, 1973.

K%

103



9.1

Gurevich, A. V., and Dimant, Ya.S., "Flow of a Rarefied Plasma Around a Disk,"
GEOMAGN. AERON. (Engl. Transl.), 16, 183-190, 1975.

Gurevich, A. V., and Pitaevskii, L. P., "Non-Linear Dynamics of Rarefied Gas,"

PROG. AEROSP. SCI., 16, 227, 1975.

Gurevich, A. V., Pariiskaya, L.V., and Pitaevskii, L. P., "Self-Similar Motion

of Rarefied Plasma," SOV. PHYS. JETP (Engl. Trans.), 22, 449, 1966.

Gurevich, A. V., Pariiskaya, L.V., and Pitaevskii, L. P., "Self-Similar Motion

of a Low Density Plasma," SOV. PHYS. JETP (Engl. Transl.), 27, 476, 1968.

Jew, H., "Numerical Studies of the Rarefied Plasma Interaction at Mesothermal
Speeds," Ph.D. thesis, Univ. of Mich., Ann Arbor, 1968.

Jew, H., "Reply," J. GEOPHYS. RES., 78, 6829, 1973.

Katz, I., ana Parks, D. E., "Space Shuttle Orbiter Charging," AIAA-82-0119,

AIAA 20th Aerospace Sciences Meeting, 1982.

Kunemann, B., "The Collisionless Flow of Unmagnetized Plasma Around Bodies,
1," J. PLASMn PHYS., 20, 17, 1978.

Latramboise, J.. G., and Whipple, E. C., Jr., "Comments on 'Comparison of

Theory With Experiment For Electron Density Distribution in the Near Wake of

an Ionospheric Satellite' by Uri Samir and Howard Jew," J. GEOPHYS. RES., 78,
6827-6828, 1973.

Lehnert, B., "Electrodynamic Effects Connected With the Motion of a Satellite

of the Earth," TELLUS, 3, 408-409, 1956.

Liemohn, H. B., "Induced Charging of Shuttle Orbiter by High Electron-Beam
Currents," Proceedings of the Spacecraft Charging Technolcgy Confereice.

AFGL-TR-77-0051/NAJA TMX•-73537, ed. by C. P. Pike and R. R. Lovell, 271-286,
1977.

Linson, L. M., "Current-Voltage Characteristics of an Electron-Emitting

Satel lite in the Ionosphere," J. GEOPHYS. RES., 74, 2368-2375, 1969.

Liu, V. C., "Ionospheric Gas Dynamics of Satellites and Diagnostic Probes,"

SPACE SCI. REV., 9, 423, 1969.

Liu, V. C., and Jew, H., "Near Wake of the Rarefied Plasma Flows at

Mesothermal Speeds," PAP. 68-169, AIAA, New York, 1968.

McCoy, J.E., and Konradi, A., "Sheath Effects Observed on a 10 Meter High
Voltage Panel in Simulated Low Earth Orbit Plasma," NASA Johnson Space Center,

Houston, 1979.

Medicus, G., "Theory of Electron Collection of Spherical Probes," J. APPL.

PHYS., 32, 2512-2520, 1961.

104

..

-rte V



Mo a-Smith, H. M., and Langmuir, I., "The Theory of Collectors in Gaseous
Discharges," PHYS. REV., 28, 727-763, 1926.

Parker, L. W., "Computation of Collisionless Steady State Plasma Flow Past a

Charged Disk," REP. NASA CR-144156, 1976x.

Parker, L. W., "Calculation of sheath and wake structure about a

pill-box-shaped spacecraft in a flowing plasma," Proceedin g s of the Spacecraft

Charging Technology Conference, AFGL-TR-77-0051--NASA TMX-73537, edited by

C. P. Pike ani R. R. Love 11, 331-366, 1977.

Parker, L. W., "Differential Charging and Sheath Asymmetry of Nonconducting

Spacecraft Due to Plasma Flow," J. GEOPHYS. RES., 83, 4873-4876, 1978a.

Parker, L. W., "Plasma Sheath Effects and Voltage Distributions of Large Hig},

Power Satellite Solar Arrays," Spacecraft Charging Technology--1978, NASA
CP-2071/AFGL-TR-79-0082, ed. by R. C. Finke and C. A. Pike, 31.1-375, 1979.

Parker, L. W., "Plasma sheath-photosheath theory for large high-voltage space

structures," Space Systems and Their Interactions With Earth's Space

Environment, Prog. Astronaut. Aeronau t-., vol. 71, edited by H. B. Garrett and
C. P. Pike, AIAA Press, New York, 477-522, 1980x.

Parker, L. W., "Effects of Plasma Sheath on Solar Power Satellite Array,"

J. ENERGY, 4, 6, 241-244, 1980b.

Parker, L. W., and Lxframboise, J. G., "Multi-electrode Plasma Probe for

Orbit-limited-current Measurements. II. Numerical Verification," PHYS. FLUIDS,

21, 4, 58b-591, 1978.

Parker, L. W., and Murphy, B. L., "Potential Buildup on an Electron-Emitting

Ionospheric Satellite," J. GEOPHYS. RES., 72, 1631, 1967.

Parker, L. W., and Whipple, E. C.. Jr., "Theory of Spacecraft Sheath

Structure, Potential, and Velocity Effects on Ion Measurements by Traps and

Mass Spectrometers," J. GEOPHYS. RES., 75, 4720, 1970.

Parks and Katz, "Charging of a large object in low polar earth orbit,"

Proceedings of the USAF--NASA Spacecraft Charging Technology Conference ?II,

1981.

Reiff, P. H., Freeman, J. W., and Cooke, D. L., "Environmental Protection of
the Solar Power Satellite," Space Systems and Their Interactions With Earth's
Space Environment, Prog. Astronaut. Aeronaut., vol. 71, ed. by H. B. Garrett
and C. P. Pike, AIAA Press, New York, 554-576, 1980.

Samir, U., and Willmore, A.P., "The Equilibrium Potential of a Spacecraft in

the Ionosphere," PLANET. -S PACE SCI., 14, 1131-1137, 1966.

Stevens, N. J., "Space environmental interactions with biased spacecraft

eurfaces," Space Systems and Their Interactions With Earth's Space

Environment, Prog. Astronaut. Aeronaut., vol. 71, edited by H. B. Garrett and
C. P. Pike, ALAA Press, New York, 455-476, 1980.

10')

♦ -	 J



Tsien, H. S., "Super Aerodynamics, Mechanics of Rarefied Gases," J. AERONAUT.

SCI., 13, 653-664, 1946.

Walker, E. H., "Plasma Sheath and Screening Around A Stationary Charged Spt.-re

And a Rapidly Moving Charged Body," Interactions of Space Vehicles With an
Ionized Atmospher,., ed. by S. F. Singer, Pergamon, New York, 61-162, 1965.

Walker, E. H., "Plasma Sheath and Screening of Charged Bodies," Photon and

Particle Interactions With Surfaces in Space, ed. by R. J. L. Grard,
D. Reidel, Hingham, MA, 73-89, 1973.

Whipple, E. C., Jr., "Theory of the Spherically Symmetric Photoelectron

Sheath," J. GEOPHYS. RES., 81, 601-607,.1976a.

Williamson, P. R., Denig, W., Banks, F. M., and Raitt, W. J., "Vehicle

Potential Measurements Using a Mother-Daughter Tethered Rocket" (abstract),
EOS TRANS. AGU, 61, 1068, 1981.

Zonov, Yu. V., "On the Problem of the Interaction Between a Satellite and the
Earth's Atmosphere and the Earth's Magnetic Field" (in Russian), ISKUSSTV.
SPUTNIKI ZEMLI, 3 (NASA TECH. TRANSL. TTF-37), 1959.

Observations/Data

Bernstein, W., et al., "Electron Beam Experiments: The Beam Plasma Discharge

at Low Pressures and Magnetic Field Strengths," GEOPHYS. RES. LETT., 5,
127-130, 1978.

Bernstein, W., et al., "Further Laboratory Measurements of the Beam-Plasma

Discharge," J(GR, 84, Al2, 7271-7278, 1979.

Bourdeau, R. E., Donley, J. L., Serbu, G. P., and Whipple, Jr., E. C.,

"Measurements of Sheath Currents and Equilibrium Potential on the Explorer

VIII Satellite," J. ASTRON. SCI., 8, b5-73, 1951.

Carignan, G. R., "Neutral Gas Mass Spectrometer on the IECM," NASA, The

Shuttle Environment Workshop, Contract NAS5-27362, A139-A146, 1983.

N
Grier, N. T., "Experimental kesults on Plasma Interactions with Large Surfaces

at High Voltages," Lewis Research Center, NASA Technical Memorandum 81423,
1980.

Hanson, W. B., McKibbin, D. D., and Sharp, G. W., "Some Ionospheric

Measurements With Satellite-Born Ion Traps," J. GEOPHYS. RES., 69, 2747-2763,
1964.

Henderson, C. L., and Samir, U., "Observations of the Disturbed Region Around

an Ionospheric Spacecraft," PLANET. SPACE SCI., 15, 1499-1513, 1967.

Hendrickson, R. A., "The Electron Echo Experiment, Observations of the Charge

Neutralization of the Rocket and Analysis of the Echo From Electrons
Artificially Injected into the Magnetosphere," TECH. REP. CP-160, Sch. of
Phys. and Astron., Univ. of Minn., M{nneapolis, 1972.

106

O



Hess, W. N., "Generation of an Artificial Auro-a," SCIENCE, 164, 1512, 1969.

isensee, U., "Plasma Disturbances Caused by the Helios Spacecraft in the Solar

Wind," J. GEOPHYS., 42, 581-589, 1977.

Jacobsen, T. A., and Maynard, N. C., "Evidence for Significant Spacecraft

Charging By an Electron Accelerator at Ionospheric Altitudes," PLANET. SPACE
SCI., 28, 291-307, 1980.

Jacobsen, T. A., and Maynard, N. C., "Polar 5--An Electron Accelerator
Experiment Within an Aurora. 3. Evidence for Significant Spacecraft Charging
by an Electron Accelerator at Ionospheric Altitudes," Planet Space Sci., 28,
291-307, 1980.

Kennerud, K. L., "High voltage solar array experiments," REP. NP-SA CR-121280,

Boeing Co., Seattle, Wash., March 1974.

Konradi, A., McIntyre, B., and Potter, A. E., "Expezimental Studies of Scaling

Laws for Plasma Collection at High Voltages," ,;. SPACECRAFT ROCK., 21,
287-292, 1984.

Krassovsky, V. I., "Exploratirn of the Upper Atmosphere With the Help of the

Third Soviet Sputnik," PROC. IRE, 47, 289-296, 1959.

McCoy, J. E., et al., "Current Leakage for Low Altitude Satellites," AiAA

79-0387, AIAA 17th Aerospace Sciences Meeting, 1979.

McCoy,	 E., Konradi, A., and Garriott, 0. K., "Current Leakage for Low
Altitud.	 -tellites," Space Systems and Their Interactions With Earth's Space
Environment, Prog. Astronaut. Aeronaut., vol. 71, ed. byH. B. Garrett and
C. P. Pike, AIAA Press, New York, 523-553, 1380.

Narcisi, R., Trzcinski, E., Federico, G., '..'lodyka, L., and Delorey, D., "The

Gaseous and Plasma Environment Around Space Shuttle," A Collection of
Technical Papers, AIAA Shuttle Envirorment and Operations Meeting, CP838,
183-190, 1983.

O'Niel, R. R., Bien, F., Burt, D., Sandock, J. A., and Stair, A. T.,

"Summarized Results of the Artificial Auroral Experiment PrecQde," J. GEOPHYS.

RES., 83, 3273, 1978a.

O'Niel, R. R., et al., "Excede 2 Test, an Artificial Auroral Experiment:

Ground-Based Optical Measurements," J. GEOPHYS. RES., 83, 3281, 1978b.

Reasoner, D. L., et al., "Relationship Between ATS-6 Spacecraft-Charging

Occurrences and Warm Plasma Encounters," Spacecraft Charging by Magnetospheric
Plasmas, PROGRESS IN ASTRONAUTICS AND AERON., 47, 89-101, 1976.

Sagalyn, R. C., and Burke, W. J., "INJUN 5 Observations of Vehicle Potential

Fluctuations at 2500 km," Proceedings of the Spacecraft Charging Technology
Conference, AFGL-TR-77-0051/NASA TMX-73537, ed. by C. P. Pike and R. R.

Lovell, 67-80, 1977.

sk

107



Samir, U., "Charged Particle Distribution in the Nearest Vicinity of
Ionospheric Satellites--Comparison of the Main Results From the Ariel I,
Explorer 31, and Gemini-Agena 10 Spacecraft," Photon and Particle Interactions
With Surfaces in Space, ed. by R. J. L. Grard, D. Reidel, Hingham, MA,
193-220. 1973.

Samir, U. and Jew, H., "Comparison of Theory With Experiment for Electron
Density Distribution in the Near Wake of an Ionospheric Satellite,"
J. GEOPHYS. RES., 77, 6819-6827, 1972.

Samir, U. and Wrenn, G. L., "The Dependence of Charge and Potential
Distribution Around a Spacecraft on Ionic Composition," PLANET. SPACE SCI.,
17, 693, 1969.

Samir, U., Brace, L. H., and Brinton, H. C., "About the Influence of Electron
Temperature and Relative Ionic Composition on Ionic Depletion in the Wake of
the AE-C Satellite," GEOPHYS. RES. LETT., 6, 101-104, 1979a.

Samir, U., Gordon, R., Brau, L., and Theis, R., "The Near-Wake Structure of
the Atmosphere Explorer C (AF-C) Satellite: A Parametric Investigation,"
J. GEOPHYS. RES., 84, 513-525, 1979b.

Samir, U., Kaufman, Y. J., Brace, L. H., and Brinton, H. C., "The Dependence
of Ion Density in the wake of the AE-C Satellite on the Ratio of Body Size to
Debye Length in an (0+)-Dominated Plasma," J. GEOPHYS. RES., 85, 1769-1772,
1980.

Shawhan, S. D,, and Murphy, G. B., "STS-3/OSS-1 Plasma Diagnostics Package
(PDP) Measurements of the Temperature, Pressure, and Plasma," NASA, The
Shuttle Environment Workshop, Contract NAS5-27362, A207-A232, 1963.

Whipple, E. C., J. M. Warnock, R. H. Winkler, "Effect of Sate111Le Potential

on Direct Ion Density Measurements Through the Plasmapause," J. GEOPHYS. RES.,
79, 179-1b5, 1974.

Williamson, P. R., Banks, P. M., and Raitt, W. J., "Vehicle Charging and
Potential on the STS-3 Mission," NASA, The Shuttle Environment Workshop,
Contract NAS5-27362, A187-A206, 1983.

Win(Kler, J. R., "A Summary of Recent Results Under the 'Echo' Program for the
Study of the Magnetosphere by Artificial Electron Beams," COSMIC PHYS. TECH.
REP. 168, Sch. of Phys. and Astron., Univ. of Minn., Minneapolis, 1976.

Winckler, J. R., "The Application of Artificial Electron Beams to
Magnetospheric Research," REV. GEOPHYS. SPACE PHYS., 18, 659-682, 1980.

Torques/Drag

General References

Hohl, F., "The Electromagnetic Torques on Spherical Earth Satellites in a
Rarefied Partially Ionized Atmosphere," Langley Research Center, NASA
TR R-231, 1966.

;'	 108



^^1

Theoretical Models

Chang, H. H. C., and Smith, M. C., "On the Drag of a Spherical Satellite
Moving in A Partially Ionized Atmosphere," J. BR. INTERPLANET. SOC., 17,
199-205, 1960.

Observations/Data

Jastrow, R., and Pearse, C. A., "Atmospheric Drag on the Satellite,"
J. GEOPHYS. RES., 62, 413-423, 1957.

Radio Frequency

Observations/Data

Shawhan, S. D., and Murphy, G. B., "STS-3/OSS-1 Plasma Diagnostics Package
(PUP) Measurements of Orbiter Transmitter and Subsystem Electromagnetic
Interference," NASA, The Shuttle Environment Workshop, Contract NAS5-27362,
A233-A250, 1983.

Smiddy, M., Sullivan, W. P., Girouard, D., and Anderson, P. J., "Observation
of Electric Fields ; Electron Densities and Temperature from the Space
Shuttle," A Collection of Technical Papers, AIAA Shuttle Environment and
Operations Meeting, CP838, 118-126, 1983.

Contamination/Debris

General References

Jemiola, J. M., "Proceedings of the USAF/NASA International Spacecraft
Contamination Conference," REP. AFML-TR-78-190/NASA-CP-2039, 1978.

Jemiola, J. M., "Spacecraft Contamination: A Review," Space Systems and Their
Interactiuns With Earth's Space Environment, Prog. Astronaut. Aeronaut.,
vol. 71, ed. by H. B. Garrett and C. P. Pike, AIAA Press, New York, 680-706,
1980.

Kruger, R., Triolo, J., and McIntosh, R. , "OSS-1/Contamination Monitor," NASA,
The Shuttle Environment Workshop, Contract NAS5-27362, A163-A178, 1983.

Liemohn, H.B., et al., "Charging and Contamination During Geosynchronous Orbit
Insertion," Society of Photo-Optical Instrumentation Engineers Meeting, SHE
216-09, 1980.

Oberg, J. E., "Control of RCS Plume Effects During Proximity Operations on STS
Missions," A Collection of Technical Papers, AIAA Shuttle Environment and
Operations Meeting, CP838, 68-71, 1983.

Theoretical Models

Cauffman, D. P., "Ionization and Attraction of Neutral Molecules to a Charged
Spacecraft," AIR FORCE REPORT NO. SAMSO-TR-73-263, AEROSPACE REPORT NO.
TR-0074(9260-09)-1, 1973a.

109



0

Observations/Data

Barengoltz, J., Maag, C., and Kuykendall, F., "STS-3 'Snowflake' SL,:dy," NASA,

The Shuttle Environment Workshop, Contract NAS5-27362, A289-A294, 1983.

Bunner, A., Bartoe, J. D., and Triolo, J., "Test for Contamination of

MgF 2-Coated Mirrors," NASA, The Shuttle Environment Workshop, Contract
NAS5-27362, A179-A186, 1983.

Cofer 111, W. R., Bendura, R. J., Sebacher, D. I., Pellett, G. L., Gregory,
G. L., and Maddrea Jr., G. L., "Airborne Measurements of Space Shuttle Exhaust

Constituents," A Collection of Technical Papers, AIAA Shuttle Environment and

operations Meeting, CF838, 36-41, 1983.

Fraundorf, P., et al., "Erosion of Mylar and Protection by Thin Metal Films,"

A Collection of Technical Papers, AIAA Shuttle Environment and Operations
Meeting, CP838, 131--137, 1983.

Leger, L. J., "Oxygen Atom Reaction with Shuttle Materials at Orbital
Altitudes," NASA, The Shuttle Environment Workshop, Contract N:.S5-27362, 1983.

Leger, L. J., Spiker, I. K., Kuminecz, J. F., Ballentine, T. J., and

Visentine, J. T., "STS Flight 5 LEO Effects Experiment--Background Description
and Thin Film Results," AIAA Shuttle Environment and Operations Meeting,

AIAA-83-2631-CP, 1983.

Miller, E. R., "Induced Environment Contamination Monitor Ascent/Entry,

Optical and Deposition Measurements," NASA, The Shuttle Environment Workshop,
Contract NAS5-27362, Al23-A138, 1983.

Murphy, G. B., Shawhan, S. D., and Pickett, J. S., "Pertut)ations to the

Plasma Environment Induced by the Orbiter's Maneuvering Thrusters," A
Collection of Technical Papers, AIAA Shuttle Environment and Operations

Meeting, CP838, 59-65, 1983.

Weinberg, J. L., Giovane, F., Schuerman, D. W., and Hahn, R. C., "OSS-1/STS-3

Shuttle Induced Atmosphere Experiment," NASA, The Shuttle Environment
Workshop, Contract NAS5-27362, A251-A266, 1983.

IMPS

ESWG Minutes

Reports

Johnston, A. R., and Bergman, L. A., "Fiber Optic Experiment for the Shuttle

Long-Duration Exposure Facility," SPIE Vol. 296, Fiber Optics in Adverse
Environments, 125-133, 1981.

110



APPENDIX A

I	 CONTRIBUTORS

Dr. Hugh R. Anderson
SAI

13400B Northrup Wy #36

Bellevue, WA 98005

Lt. Col. Rick Babcock
AFGL-PH

Hanscom AFB
Bedford, MA 01731

Dr. Jack Barengoltz
JPL (MS 157-507)

4800 Oak Grove Dr.

Pasadena, CA 91109

Dr. Joe Binsack

M1T Center for Space Research
Bldg. 37-241
Cambridge, MA 02139

Mr. Robert M. Broussard

The Aerospace Corp.
P.O. Box 92957
Los Angeles, CA 90009

Dr. Rebecca Chaky
TRW 135-3367

1 Space Park

Redondo Beach, CA 90278

Lt. Ray Cull
AFWAL-MLBT
Wright Patterson AFB

Dayton, OH 45433

Dr. William E. Denig
AFGL-PHK

Hanscom AFB
Beford, MA 01731

Mr. Robert Ebbett

JPL (MS 233-307)
4800 Oak Grove Dr.

Pasadena, CA 91109

111



TTR 777,..

Dr. Jeffery M. Forbes
Dept. of Elec., Comp., and Sys. Eng.
Boston ITniversity
110 Cummingron St.
Boston, MA 02215

Capt. David Founds
AFWL-ARTC
Kirtland AFB
Albuquerque, NM 37117

Mr. A.R. Frederickson
ESD-ESR-RADC
Hanscom AFB
Bedford, MA 01731

Mr. Robert E. Freeland
JPL (MS 157-410)
4800 Oak Grove Dr.
Pasadena, CA 91109

Dr. Henry B. Garrett
JPL (MS 144-218)
4800 Oak Grove Dr.
Pasadena, CA 91109

Dr. Donald A. Guidice
AFGL-PHK
Hanscom AFB
Bedford, MA 01731

Mr. William N. Hall
AFGL-PHK
Hanscom AFB
Bedford, MA 01731

Dr. David Hall
Aerospace (M2-271)
P.O. Box 92957
Los Angeles, CA 90009

Dr. Moshe Harel
JPL (MS 144-218)
4800 Oak Grove Dr.
Pasadena, CA 91109

Dr. Michael Heinemann
AFGL-PHK
Hanscom AFB
Bedford, MA 01731

112

...... C 



(.a. l

Capt. Terry Hinnerichs
AFWL-ARTC
Kirtland AFB
Albuquerque, NM 87111

Mr. Curtis Horton
JPL (MS 144-218)
4800 Oak Grove Dr.
Pasadena, CA 91109

Di. George Inouye
TRW, STG M2-1145
1 Space Park
Redondo Beach, CA 90278

Dr. I. Katz
Systems: Science and Software
P.O. Box 1620
La Jolla, CA 92038

Mr. Clyde King
JPL (MS 158-224)
4800 Oak Grove Dr.
Pasadena, CA 91101

Mr. Gene K. Komatsu
	 1n

TRW 135-3972
1 Space Park
Redondo Beach, CA 90278

Ms. Cindy Lebel
JPL (MS 168-222)
4800 Oak Grove Dr.
Pasadena, CA 91109

Dr. Carl R. Maag
JPL (MS 157-507)
48UO Oak Grove Dr.

Pasadena, CA 91109

Lt. Patricia Morse
AFWL-ARBE
Kirtland AFB
Albuquerque, NM 87117

Mr. Rory Ninneman
AFWL-ARBC
Kirtland AFB
Albuquerque, NM 87117

113

^
Ir

-A



(.4.)

1

Charles P. Pike
. , L-PHK

i	 Hanscom AFB

Bedford, MA 01731

Dr. Carolyn K. Purvis

'ewis National Res Cntr (MS77-4)
21000 Brookpark Road
Cleveland, OH 44135

Dr. D.L. Reasoner

NASA Marshall Space Flt Cntr

Code ES 53
Huntsville, AL 35812

Capt. Dana Rush
AFGL-PHK

Hanscom AFB

Bedford, MA 01731

Mrs. Rita C. Sagalyn
AFGL-PH
Hanscom AFB

Bedford, MA 01731

Mr. Frank Schutz
JPL (MS 180-600)

48UO Oak Grove Dr.
Pasadena, CA 91109

Mr. Ron Sessions
AFWL-ARBC

Kirtland AFB

Albuquerque, NM 87117

Dr. Stanley D. Shawhan

Solar lerr. and Astrophysics Div.
NASA Hdqts. (CODE EE-8)

Washington, D.C. 20546

Dr. Jim Slavin

JPL (MS 169-506)

4800 Oak Grove Dr.
Pasadena, CA 91109

Dr. M. Smiddy
AFGL-PHG

Hanscom AFB

Bedford, MA 01731

114

E

/	 fE

a



Mr. N. John Stevens
Space and Comm. Grp., Hughes
P.U. Box 92919
Los Angeles, CA 50009

Mr. Edward W. Taylor

AFWL-NTCO
Kirtland AFB

Albuquerque, NM 87117

Mr. Joseph F. Wise
AFWAL-APL(POOC)

Wright Patterson AFb
Dayton, OH 45433

Dr. Michael J. Wiskerchen

Solar Terr. and Astrophysics Div. (EE)
NASA Hdqts.

Washington, D.C. 20546

Maj. S. Peter Worde n
OUSDRE-ADEW

Rm. 3E-1034, Pentagon
Washington, D.C. 20301

94

115

a



l	 • :L ^

t
	 APPENDIX B

ESWG MEMBERS

Dr. H.R. Anderson

Charged particle beams, wake charging, SEUs
206-747-7152

Lt. R. Cull
'	 Cryogenic systems, contamination, surface erosion

513-255-7377

Dr. J.M. Forbes

Ionospheric physics, glow
617-353-4782

Mr. A.R. Frederickson

Material properties, space-based radar, dielectric charging
617-861-4033

Mr. R.E. Freeland

Large structures
818-354-3540

Mr. H.B. Garrett

Space environment, spacecraft charging
818-354-2644

Capt. T. Hinnerichs

Space-based weapons requirements
505-844-2986

Dr. G. Inouye

Arcing and SC design, high-voltage arrays, EMI
213-535-8448

Dr. I. Katz

Interaction modeling, wake charging
619-453-0060

Dr. D.L. Reasoner

Magnetospheric physics
205-453-3037

Dr. S.D. Shawhan

Engineering measurements - EMI, radio frequency transmissions,
induced environment

202-453-1676

Dr. M. Smiddy

Magnetospheric physics, induced environment
617-861-2431
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Mr. J.F. Wise

High-voltage array3
513-255-6235

Maj. S.P. Worden

Natural environment, space-based weapons requirements
202-695-02U8
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GLOSSARY

AF Air Force

AFGL Air Force Geophysics Laboratory

AIAA American Institute of Aeronautics and Astronautics

AFSTC Air Force Space Technology Center

AEC Atomic Energy Commission

CEM Contamination affects Monitor

CRAW Coordinated Data Analysis Workshops

DME Dielectric charging, material proper effects,	 and electrostatic

discharge

DMSF Defense Meterological Satellite Project

EIM Environment and	 interactions Monitor

EIS Electron-ion beam-induced interactions

EMi Electromagnetic interference

EPD Electrical properties degradation

ESD Electrostatic discharge

ESWG Engineering/Science Working Group

EUV Extreme ultraviolet

EVA Extra-vehicular activity

GLW Glow measurements

HVA High-voltage array

IMPS interactions Measurements Payload for Shuttle

1R Infrared

ITO Indium tin oxide

JPL Jet Propulsion Laboratory

LIDAR Laser detection and ranging system
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LSS	 Large space structure

MIL-STDS	 Military Standards

MMU	 Manned Maneuvering Unit

MSSTP	 Military Space System Technology Plan

NASA	 National Aeronautics and Space Administration

PLY	 Plasma Diagnostic Package

PEU	 Polar Earth Orbit

QCM	 Quartz crystal microbalance

RADC/0C	 Rome Air Development Center, Section OC

RTF	 RF transmission distortion

SBR	 Space-based radar

SCATHA	 The Spacecraft Charging at High Altitudes Program

SDD	 Space debris detection

SEU	 Single-event upset

TEUM	 Tapered element oscillating microbalances

TQCM	 Thermally controlled quartz crystal microbalances

TVM	 Low-light TV monitor

WCE	 Wake charging effects
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