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ABSTRACT

Feedback shift registers have proven to be efficient periodic binary
sequence generators. Polynomials of degree r over a Galois field
charscteristic 2 (GF(2)) characterize the behavior of shift registers with

line .r-logic feedback.

The object of this report is the algorithmic determination of the
trinomial of lowest degree, when it exists, that contains a given irreducible
polynomial over GF(2) as a factor. This corresponds to embedding the behavior
of an r-stage shift register with linear-logic feedback into that of an
n-stage shift register with a single two-input modulo 2 summer (i.e.,
Exclusive-OR gate) in its feedback. This leads to Very Large Scale Integrated
(VLSI) circuit architecture of maximal regularity (i.e., identical cells) with

intercell communications serialized to a maximal degree.
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SECTION I
BACKGROUND

The root @ of a primitive polynomial f(x) is a generator of the cyclic
group

r r
a2 a2 -2 q2°-1

s

=1

The 2° - 1 elements of the multiplicative group with the element 0 adjoined

are members of a Galois Field of order 2° (i.e., GF(2%)). The elements 0

and 1 comorise GF(2), a subfield of GF(2"), and GF(2F) is a finite
extension of GF(2).

Each element in GF(2¥) satisfies

r r
xz -x = x(x2 1. 1) =0

The element 0 satisfies x = 0 and each of the nonzero elements satisfies
r
X l_1.0
Example 1
Consider the primitive polynomial GF(2)

f(x) = x6 + xs + x2 +x+1

with one of 6 distinct roots denoted by @. Every nonzero element in GF(26)
is expressible as an integer power of @.

j - 5 4 3 2
a b5a + baa + b3a + bf’ + bla + bo
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vhere b, € GF(2) andaJ is among the 2¥ - 1 roots of unity. The

polynomial in @ is of degree 5 or less since

a® =a’ +al+a+1

The element U is the constant zero polynomial denoted by
*
a" = 0.a% + 0%+ ... 40

*
Members of GF(26), generated by g with @ adjoined, appear in Table 1-1,

The binary operation of "addition" defined on the field elements is

termwise sum modulo 2 (i.e., vector addition over GF(2)).

For example,

111100 (a'
+110111 (asl’)
001011 (a'?)

The binary operation of "multiplication" on the field elements is -

defined as

l’+, ...,+b0)(d5a5+da"+,...,+d

4 )

5
(bsa + baa 0
with the result reduced modulo

f(a) -c¢6 +as +az +a+1

Since each element is expressible as a power of a,

atal =i *+ §) mod 63



*
Adjoined

Table 1-1. GF(2%) Generated by a, a Root of £(x) = x® + x° + x* + x + 1,
with Q
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. i
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Logarithms of field elements to the base @ are provided by Table 1-1 to

simplify multiplication of nonzero elements as follows:

a* 110001

a3 wio0111)

a**a* +a?® 10110

The (multiplicative) order of a nonzero element a in GP(2%) is the
least integer m for which a® = 1. Furthermore, m divides 2t - 1, the
order of the multiplicative group, in accordance with a corollary of a

fundamental theorem due to Lagrange (see Reference 1).
As presented in Reference 2, consider the operation o which squares each
of the roots of
g(x) 'I I(x -a”)

i=1

any polynomial of degree r over GF(2). Noting that

-1= 1 mod 2 and (a + b)z - 12 + b2 over GF(2),

then

r r
(g(x)] 'n(x -azi) = I(t2 -in)

i=1 i=1
2
r | 4
= n(t -a.)2 = n(t -a.)
1 1
i=1 i=1

= [g(t)]2 = g(t2) = g(x)

1-4




The substitution c2 = x is appropriately empioyed in proving that g(x) over
GF(2) is invariaat under the operation 0. The root-sjuaring operation o on
g(x) which leaves g(x) unchanged .i: termed an automorphism. If in particular
g(x) of degree r is irreducible, thern g(x) has the following r distinct
sutomorphisms:

1, o, 02, ..., 0%}

with respect to GF(2"). An operation on a root of g(x) is an autoworphism
if and nnly if it is an integer power of 0, the root-squaring operation.

Consequently, g(x) has r distinct roots, namely,

Since o* maps @ into 02 and 02 = a (from Q@ -1, 1), o' is the identity

operation.

The product of all irreducible polynomials over GF(2) whose degrees
r
divide r is x x2 - x. Complete factorization is best illustrated by

arranging the 2" - 1 roots of unity into cyclotomic cosets (see References 2

and 3). Given a primitive polynomial f(x) of degresz r over GF(2). Each

distinct roct is of order 2° - 1, hence, a primitive root of unity.

A fundamental property associated with the multiplicative order of field

elements is as follows:
[f B has order m, then
B’ has order n/(m,j)

where (m,j) denotes the greatest common divisor of m and j. Clearly m and

m/(m,j) divide 2° -~ 1, the number of nonzero elements in GF{2¥). The

integer {m,j) is called the index of the crder of ﬁ". A primitive P

1-5




degree polynomial has @, a primitive root of unity, as a root. Each of the r

roots has order 2° - 1 since (2F - 1, 2Y) = 1 for all i.

The set of integers

{i} - {1, 2, 4, oo, 2"1}

taken from the multiplicative group of integers modulo 2" -1 form a

subgroup. The corresponding set

. r-1
{a‘} = {a, 2, d, ..., a? }

contains the r distinct roots of f(x). The "generalized cosets"
{iv} = {v, 2v, 4v, ..., (2f - l)v}

are nonoverlapping sets which together with the subgroup {i}, the special
coset where v = 1, comprise the multiplicative group modulo 2t -1, 1f

(2F - 1, v) = 1, then {iv{ is a coset as defined in group theory. The
elements of such a coset correspond to r (2" - 1st primitive roots of unity

whose minimal polynomial is a primitive polynomial over GF(2) (see

Reference 4). There are ¥(2° - 1)/r such cosets (including the subgroup)
and, therefore, ¥(2° = 1)/r primitive polynomials of degree r over GF(2).
The number-theoretic function ¢(m), known as the Euler phi-function, is the
number of positive integers no greater than m (a positive integer) that are
relatively prime to m (see Appendix A). The integers a and m are termed

relatively prime if (a, m) = 1.

An "improper coset" results for values of v where (2F - 1, v) ¥ 1. 1If
such a coset contains r distinct elements, the elements correspond to
r (2F - 1)st nonprimitive roots of unity whose minimal polynomial is an
irreducible nonprimitive rth degree polynomial over GF(2). Whereas the
elements of a coset containing s < r distinct elements (where s necessarily
divides r) correspond to s (2% - 1)st roots of unity whose minimal

polynomial is an irreducible polynomial of degree s over GF(2).

1-6
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The product of the miniual‘polynomiala associated with each of the
cyclotomic cosets (i.e., generalized cosets which include improper cosets)

r
yields x2 1. 1. The set of minimal polynomials is comprised of all

irreducible polynomials over GF(2) whose degrees divide r.

Example 2
6

The irreducible factors of x2 -1 1 over GF(2) are given in Table 1-2,

The 63 roots of unity are generated by @, a root of
F(x) =x8 + x> +x2 + x + 1
Consider the conjugate roots (i.e., roots of the same minimal polynomial)
a3, a6, cee s o33
corresponding to the cyclotomic coset

{1-3, 2:3, ..., 25-3} mod 63 = {3, 6, o0 , 33}

The minimal polynomial for these roots is determined as follows:

£ = @)° + a,@) + g, @) + ay@*)’ 4, @ a.@) +1=0

'0184-dals+daa12+d3ag+d2(l6+dla3+ 1=0

Substituting entries in Table 1-1 corresponding to the foregoing powers of @

gives




Table 1-2.

28

Irreducible Factors of x

1 1 Over GF(2)

Order of

Cyclotomic Coset Minimal Polynomial f(x) Degree Index Roots of f(x)
0 x + 1 1 63 1

1 2 4 81632 P+ +x2 +x+1 6 1 63

3 61224833 x0+x0 +xt+x? e 6 3 21
5102040 17 3% 1 + x> + x> +x2 + 1 6 1 63
71428564935 x° +x> 41 6 7 9

9 18 36 X txel 3 9 7
1122 44 25 50 37 =0 + x> + 1 6 1 63
1326 524119 38 x° + x + 1 6 1 63
1530 60 57 51 39 x® + x* + xZ 4 x + 1 6 3 21
21 42 x +x+1 2 21 3
234629 58 5343 KX+t e X ex+1 6 1 63

27 54 45 o+ x? el 3 9 7
3162 61 59 5547 x0 4+ +x' +x+1 6 1 63




110110
+dg (011111
+d, lo001111]
+d; (001101
+d, [100111]
+d,l001000]
+ 000001 ]
= (000000

The scalar multipliers, d1 through dS’ are elements in GF(2). They
represent unknowns in determining the linearly independent set of polynomials
(i.e., field elements). In this example,

de = d4 = d2 = 1 and d3 = d1 =0

The minimal polynomial containing 03 as a root (as well as a6, e 033)

is

5

x6 + x° + x4 + x2 + 1

The order of 03 (and its conjugates) is 21. Thus, a3 is a generator of 21

of the 63 roots of x63 - 1 =0 and is a nonprimitive root of unity. The

minimal polynomial is, therefore, an irreducible nonprimitive polynomial of

degree 6.

The 21 elements generated by BHQ3 are tabulated in Table 1-3 where
B =B +g + 8%+ 1

A one-to-one correspondence exists between 8 and (131 (see Table 1-1).

Furthermore,

Bi Bj - B(i+j)mod 21 Ha3(i*j)‘“°d 63 _ a3ia3j



Table 1-3. Elements Generated by B, a Root of f(x) = x6 + x5+ x4+ x2 4+ 1

i of Bi cs <, Cq c, < <y
0 0 0 0 0 0 1
1 0 0 0 0 1 0
2 0 0 0 1 0 0
3 0 0 1 0 0 0
4 0 1 0 0 0 0
5 1 0 0 0 0 0
6 1 1 0 1 0 1
7 0 1 1 1 1 1
8 1 i 1 1 1 0
9 0 0 1 0 0 1

10 0 1 0 0 1 0
11 1 0 0 1 0 0
12 1 1 1 1 0 1
13 0. 0 1 1 1 1
14 0 1 1 1 1 0
15 1 1 1 1 0 0
16 o 0 1 1 0 1
17 0 1 1 0 1 0
18 1 1 0 1 0 0
19 0 1 1 1 0 1
20 1 1 1 0 1 0

and the two sets {,31} and {a3i} are isomorphic groups under the defined
operation of "multiplication." However, the 21 elements generated by
ﬁ«——a3 with 0 adjoined do not form a group under the defined operation of
addition. Clearly

R+ +pLep+1=81-1=0
and

x6 + x5 + x% + x2 + 1 divides x21 -1

1-10



A fundamental theorem states that xd - 1 divides x" - 1 over any

field if and only if d divides n. Thus,

63

xz1 - 1 divides x ~ - 1

3

is another way of stating that the 21 roots of unity generated by B+—a
are among the 63 roots of unity in GF(26).

The roots of

x2 -1 1=0

are the nonzero elements in GF(27). If s divides r, 2% - 1 divides
2T - 1 and

s r
x2 -l 1 divides x2 L 1

and the roots of

are the nonzero elements of the subfields GF(2%) in GF(27).

In Example 2, GF(26) contains the subfields GF(22) and GF(23).
GF(2) is a subfield of GF(ZZ) and GF(23) as well as of GF(26). Although
the 21 roots of unity with 0 adjoined do not form a finite field (i.e., 21 is
not of the form 2% - 1), they contain GF(2), GF(ZZ), and GF(23).

Example 3

The irreducible factors of x21 - 1 are given in Table 1-4. The set of

integers

|
|
|




Table 1-4. Irreducible Factors of x21 - 1 Over GF(2)

Cyclotomic Minimal Order of
Coset Polynomial f(x) Degree Index Roots of f(x)
0 x+ 1 | 1 21 1

1 2 4 81611 L+ +x*+xt+1 6 1 21
1612 X e x4l 3 3 7
51020191713 xX e x' +x®+x+1 6 1 21

7 14 Fexel 2 7 3

9 18 15 O+ x% 41 3 3 7

taken from the multiplicative group of integers modulo 21 form a subgroup.

The corresponding set
i 2 4 8 16 11
[} - {8 & 6*. &%, 8. A"}
are the six distinct roots of

5 4 2

f(x)=x6+x + X +x"+1

The index of each of the 21 roots of unity {BJ} is relative to 21, the order
of B*—'a3 (i.e., the generator in Table 1-3). Whereas the index of
corresponding elements in Q3J (a subset of the 63 roots of unity) is

relative to 63, the order of a (i.e., the generator in Table 1-2),

The number of irreducible polynomials over GF(2) of degree 6 whose roots

have order 21 is
@(21)/6 = @(3)p(7)/6 = 2

That is, the order of 12 of the 21 roots of unity are relatively prime to 21

(and, thus, have an index of 1). These elements correspond to two complete

1-12




cyclotomic cosets with six members each. Each set of elements are roots of a

minimal, hence irreducible, polynomial of degree 6.

In general, if B8 has order d < 2" - 1 and d divides 2k - 1 for
k = r, but does not divide Zk - 1 for k < r, then 8 is a root of a

nonprimitive irreducible polynomial over GF(2) of degree r.

Consider the two polynomials of degree r over GF(2):

Xl o eb x" e v bxed

r
£(x) x ¢ br-l r~-i 1

g(x) = xr + b xr-'1 L bixr-l + ... + br- x + 1

1 1

The coefficient string of one is the reverse of the other.

r T

i i

£(x) E b.x g(x) E b__.x
i=0 i=0

where by and b, are necessarily equal to 1 and

£(0) = g(0) =1

. .
Thus, x =@ = 0 is not a root of f(x) or g(x).
An equivalent expression for g(x) is

r
g(x) = x £(1/x)

The polynomial g(x) is defined to be the reciprocal polynomial of f(x) and
vice versa. If a is a root of f(x), then a-l (the multiplicative inverse

ofa) is a root of g(x).
g@!) = a™"e(@) = 0

1-13



The transformation
£(x) ——ax"£(1/x)

preserves the order of the roots as well as the degree. If @ has order n,
-1
then a

= an-l has order
n/(fn=1,n) =n
A polynomial f(x) of degree r over GF(2) where
£(x) = x"£(1/x)
is defined to be self-reciprocal.

Example 4

There are a total of nine irreducible polyriomials of degree 6 over GF(2)
(see Table 1-2),

Six of the nine are primitive and comprised of three reciprocal pairs.

One such pair of polynomials and their corresponding roots are

x6 N xS . x3 + x2 .1 aS' alO’ 020, 040’ 017’ a34
x6 . xa . x3 s x4l Q23. aﬁ6‘ 029' a58’ 053, a43

The multiplicative inverse of each root in one set is contained in the other,

=5 58

. a 63-5

@)} = Q =Qq

The two nonprimitive polynomials whose roots have order 21 are

reciprocal polynomials.

1-14



The ronprimitive polynomial whose roots have order 9, namely,

x6 + x3 +1

is a self-reciprocal polynomial as implied by its corresponding cyclotomic

coset. (I1f a is a root, so is a'l.)

{7, 14, 28, 56, 49, 35} = {7, 14, 28, -7, -14, -28}

Reducible Qelf-reciprocal polynomials contain as factors irresucible
self-reciprocal polynomial(s) and/or irreducible reciprocal pairs of
polynomials. The factors of x63 - 1, in particular, and x" - 1, in
general, are examples. Irreducible self-reciprocal polynomials are of even
degree (r = 2m) with one exception (i.e., x + 1). Their coefficient strings

are of the following form:

1b, b

1 2"'mr11mrl"°b2b 1

1

Zm’ x™ and xo are 1 and each bi (1€i<mis0

The coefficients of x
or 1 (an element of GF(2)). Such a coefficient string is of odd weight (i.e.,
contains an odd number of one's). Thus, the corresponding f(x) cannot contain
x + 1 as a factor. Being of even degree and having the foregoing coefficient

string are necessary, but not sufficient conditions for f(x) to be an

irreducible self-reciprocal polynomial.

Assume the cyclotomic coset

m-l’ zm. 2m+1 22m-1)

(1, 2. eee 2

corresponds to the roots of a primitive polynomial of degree 2m. To be

self-reciprocal, the following congruence relationship must hold:

2 -1 mod 22® - 1

1-15




Applying rules of modulo arithmetic yields

(2" + 1) m 0 mod 22® - 1

(2" + 1)/ @™ - 1) = q vwhere q is an

integer
and
2"+ 1)/ - 1) = /@™ -1
Thus, 22m - 1 divides 2" + 1 only if m = 1. It follows that x: +x+1
is a self-reciprocal primitive polynomial with roots @ and 02 = 0.1 of

order 3.

x + 1 whose root is Q@

The only other self-reciprocal primitive polynomial over GF(2) is
0. (00)-1 = 1 of order 1.

Irreducible nonprimitive self-reciprocal polynomials over GF(2) exist

for every even degree greater than 2. Given a of order sz -1 in

cr(22™).

corresponds to the set of 2m distinct roots (which contain a’) of an

irreducible self-reciprocal polynomial of degree 2m.

The cyclotomic coset

{v, 2v, s Zrlv, -V, -ZV. ces -2r1V}

g s b . oo

2°v & ~v mod sz -1

(2% + 1)v = 0 mod 22™ - 1

2m

v 0 mod (22 - 1)/(2®+ 1, 22 - 1)

ve 0mod 2" - 1
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The 2™ + 1 solutions are
vegs(2"-1) vhere 0 Ss< 2™+ 1

and @’ for each v satisfies

The root av where v = 2™ < 1 has order

m |y 2™y

@™ - /@Q" -1, 2
and is a multiplicative generator of the (2™ + 1)st roots of unity. Of
these, ¢(2m + 1) have order 2" + 1, and for m>l, each is a root of one of
the (2™ + 1)/2m irreducible nonprimitive self-reciprocal polynomials. The
order of each of the remaining roots divides 2™ + 1 and is less than
2™ + 1. Those corresponding to a complete coset (i.e., having 2m elements)
are roots of a degree 2m irreducible nonprimitive self-reciprocal polynomial.
Those corresponding to cosets containing fewer than 2m elements are roots of
an irreducible self-reciprocal polynomial whose degree divides 2m and is less

than 2m. Thus, every factor of

x" - 1 where n = 2"+ 1

is an irreducible self-reciprocal polynomial over GF(2).

Example 5

Givenm = 3 and 2™ - 1 = 7. The element o is a generator of the

roots of

x" -1 =0wheren=2"4+1=9
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contained in GF(ZG). Each of the roots is a root of an irreducible
self-reciprocal polynomial whose degree divides 2m = 6. The 9 roots
represented as v of a’ are

[0, 7, 14, 21, 28, 35, 42, 45, 56}

Following are the minimal polynomials corresponding to each cyclotomic ccset:

Cyclotomic Coset Minimal Polynomial
0 x + 1
7 14 28 56(-7) 49(-14) 35(-28) x6 + x3 el
21 42(-21) x2 e+ x4+ 1
511

Form = 9 and 2™ - 1 = 511, the element Q
513

is a generator of the
roots of x - 1 = 0 contained in GF(ZIB). Included among these roots
are the 9 which satisfy

9

o lmx o+ D2 ex e DxE 3

+1)=0

each of which is member of GP(ZIB) and one, and only one, of the subfields
GF(2), GF(2%), or GF(2%).

An enumeration of all the factors (i.e., irreducible self-reciprocal
polynomials) of x513 - 1 by order of their roots and their degree is as

follows: Let B = aSll in G?(Zm). The order of Bd is

a= 513/(d4,513) where d = 0, 1, ... , 512

Those values of d that divide 513 = 33

*19 belong to distinct cyclotomic
cosets and may be chosen as representatives (refer to Table 1-5). The last
three entries correspond to factors whose roots are also members of a proper

subfield of 07(218) (as shown in the first portion of this example).
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Table 1-5. Irreducible Self-Reciprocal Factors of %313 - 1 Over GF(2)
Enumerated by the Order of their Roots and their Degree

Order of Bd in GF(218) Number of Elements r

d n = 513/(d4, 513) in Cyclotomic Coset ¢(n)/x
513 18 18
171 18 6
9 57 18 2
19 27 18 1
27 19 18 1
57 1
171 1
513 = 0 mod 513 1 1 1

@(n)/r denotee the number of irreducible self-reciprocal fsctors of
degree r whcse roots have order n. The total number of elements with

order n (i.e., B where (h, 513) = d) is equal to ¥(n).

Finite fields of the same order are isomorphic, and every finite field
is isomorphic to a Galois field (Reference 5). Thus, the study of finite
fields of order p* (namely, GF(p")) where p is a prime integer and t a
nonzero positive integer. Each element in GF(pr) is a polynomiul of
degree r with coefficients in GF(p) - i.e., 0, 1, ... , or p - 1. Only
polynowmials in GF(2¥) are discussed due to considerations associated with

practical applications.

Example 6

Given 7, a root of the degree 3 primitive polynomial x3 +x+ 1.
Thus, 7 has order 7 and is a (multiplicative) generator of the nonzero
elements in GF(23).
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Refer to Tables l-1 and 1-2, The degree 6 primitive polynomial,
x6 + xs + xz 4+ x + 1, has @ whose order is 63 as a root. Thus, (19 has
order 7 and is a generator of the nonzero elements in the subfield GF(23)
properly contained in GF(26). The minimal polynomial containing 09 and
%)% and (@)*

its conjugates [(a ] as roots is x3 + x + 1,

Refer to Tables 1-3 and 1-4., The elementB*—*a3 is a root of the
degree 6 irreducible nonprimitive polynomial x6 + x5 + xa + x2 + 1.
The order of B is 21. Whereas, [36 has order 7 and is a generator of the
nonzero elements of GF(23), a proper subset of the 21 roots of unity.

Furthermore, the minimal polynomial containing (BJ)2 and its conjugates

[33 and (33)4] as roots is x> + x + 1.

Consider the set of elements generated by 7, ag, and Be,

respectively, with 0 adjoined to each set.

i of j of k of
i j k

Y azalao Q b5b4b3b2b1b0 B c5~':4c:3c2c1c0
* 00O * 000000 * 000000
0 001 0 000001 0 000001
1 010 9 001101 6 110101
2 100 18 110110 12 111101
3 011 27 001100 18 110100
4 110 36 111011 3 001000
5 111 45 111010 9 001001
6 101 54 110111 15 111100

Each set of 8 elements is a different representation of the elements in

GF(23). The one-to-one correspondence between elements of each set is
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Multiplication defined on the nonzero elements of each set is as follows:

yiyd < 7(1“’_]) mod 7

73+7+1=0

~
1

—
n

i3 a(i+j) mod 63

a6+a5+a2+a+1=o

QR
t
—
"

@) - 1=@)3 s +1=0

BIBJ - B(i+j) mod 21

@+ BB =0

gt - 1=
@)1= 18 -112 =0
@ -1=0

@3+ 11% =0

@l r1=0

The foregoing illustrates that 33 and (33)2 are two of the three

conjugate roots of x3 + x + 1 adivisor of x! - 1.
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SECTION I1

GENERATORS OF PERIODIC BINARY SEQUENCES
A. FEEDBACK SHIFT REGISTERS

The Feedback Shift Register (FSR) in Figure 2-1 stores a representation

of the coefficients of the polynomial

5 4 3
bsa + baa + b3a + bza + b2a + bla + bo

Upon the application of the clock pulse (by clocking circuitry not shown), the

FSR performs multiplication by @, a root of
x6 + xS + x2 +x+1=0
and reduces the result modulo

6 5

a’ +a 2

+ QA" + 0+ 1

The content of each register stage is shifted one stage to tihe left. Overflow

resulting when b5 = 1 prior to shifting, represents

a =q +C¢2+Cl+1

which is "vector added" over GF(2) to the shifted contents. Equivalently,

a65a5+az+a+1moda6+a5+az+a+1

The contents of the FSR during two successive Clock Pulse Intervals (CPIs)
(i.e., before and after the applicable of a clock pulse) is illustrated in the

following example:
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Figure 2-1. Functional Logic Diagram of a Feedback Shift Register that

Performs Multiplication by @ Modulo (16 + QS +a2 + a+ 1

Example 7
bS’ b&’ b3, b2, bl’ b0 at CPI j
bA’ b3, bz’ bl’ bo, 0
bS’ 0, 0, bS’ bS’ b5
b5+b4, b3, b2, b5+b1, b5+b0, b5 at CPI j+l1

In particular,

110101 atCPI j

001101 at CPI j + 1

011011 atCPI j

110110 at CPI j + 1

The FSR in Figure 2-1 can assume 26 or 64 distinct states. The FSR as
configured splits the state space into two branchless cycles of states where

distinct states have distinct successor states. One cycle is comprised of 63

2-2
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nonzero states, The succession of these states are identical to those

appearing in Table i-1 where the length of the cycle (i.e., its period) is
*

equal to the order of @. The all zeros state @ 1is its own successor

state. Thus, it is the single member of a cycle of length 1.

Given a primitive polynomial f(x) over GF(2) of degree r > 2. The
number of terms in f(x) is necessarily odd (i.e., 2m + 1 where m > 1). The
FSR circuitry that realizes multiplication by @ modulo f(@) splits the state
space of 2° binary r-tuples into two disjoint branchless cycles of states.
One cycle contains 2" - 1 nonzero states identical in representation and
sequence of those nonzero elements in GF(2") generated by @. The other
cycle consists of the singleton all zeros state a*. The FSR circuitry is
comprised of r delay elements (or register stages) and 2m—1 two-input modulo

2 summers (i.e., Exclusive-OR gates). See References 4 and 6.

Of particular interest are the binary sequences appearing at the output
of each register stage. Given the sequence appearing at the output of one
stage, the output of each of the other stages is a cyclic permutation of that
sequence. The sequence is termed a Pseudonoise (PN) sequence because of its

noise-like preoperties (see Reference 3 and Section IV.A.)

Consider the primitive polynomial

f(x)=x6+x5+x2+x+l

where

f(a) = 06 + a5 + 02 + a+1=0

and



The FSR in Figure 2-2 performs division by a (i.e., multiplication by a-l)

and reduces the result modulo

06*'05*'02"'04'1

The FSR stores a representation of the coefficients of the polynomial

5 4
bsa tba + ...+ b,

Upon application of a clock pulse, the content of each register stage is

shifted one stage to the right. Overflow resulting when b, = 1 prior to

0
shifting represents

a-l = aS + a4 + g+ 1

which is vector added over GF(2) to the shifted contents. In terms of

congruences
al=e’+a*+a+1mda® +a®+a®+a+1
Note that
a—l -1 - a-l - 0?3 -1 - 62
—— -
05 a4 a3 02 a !

: -0

Figure 2-2. Functional Logic Diagram of a Feedback Shift Register that

Performs Division by @ Modulo ab + @ +aZ+a+1



is the last entry in Table 1-1. Successive nonzero states appearing in the
register of the FSR in Figure 2-2 are in reverse order of those in Table 1-1.
The binary sequence appearing at the output of a given stage of the FSR in
Figure 2-2, initialized with a nonzero state, is a PN sequence., It is the
reverse of the output of the corresponding stage of the FSR in Figure 2-1,

initialized with the same nonzero state.

The element 8 = a”! is a root of

g(x)=x6+x5+x4+x+1

where g(x) is the reciprocal polynomial of

£(x) = x° ¢ x4 xz +x+1

Thus, an FSR configured to perform multiplication by

BmoduloB6 +[35 +[34 + B+ 1

(when initialized with a nonzero state) generates a PN sequence (at the
output of each stage). This PN sequence is the reverse of the one generated
by the FSR in Figure 2-1. If the FSR is configured to shift from left to
right, the states appear in reverse order (of those associated with the FSR in

Figure 2-1).
In Example 3, the 6 distinct roots of

f(x) = x6 + x5 + x4 + x2 + 1

have order 21, and f(x) is irreducible, but nonprimitive. The 21 roots of

unity generated by B, a root of f(x), appear in Table 1-3.



Given an FSR configured to multiply the representation of
4
csﬁ5 + °£.B .ot

by B and reduce the result modulo 36 + BS + Ba +,32 + 1. The all

zeros state 8% (representing the constant zeru polynomial) is its own
successor state and lies on a cycle of length 1, Each of the 63 nonzero
states lies on one of three disjoint cycles (of states) of length 21 (see
Table 2-1). One cycle corresponds to the 21 elements in Table 1-3 generated

by B, a root of

f(x)=x6+xs+xa+x2+1

The 63 nonzero states correspond to 63 nonzero polynomials over GF(2) which
comprise a noncyclic group under polynomial multiplication reduced
modulo f(B). The remaining two cycles of 21 states correspond to cosets in

the group of order 63 relative to the subgroup generated by 8. The polynomial
y=B8+1

was arbitrarily selected as one coset leader. Each polynomial in this coset

is representable as yBJ where 0 < j < 21. The polynomial
5= Bz + 1

serves as the other coset leader in a similar manner. Each element in the

latter coset is representable as Sﬁk where 0 < k < 21.

Every polynomial over GF{2) is uniquely expressible except for order as
the product of powers of irreducible polynomials over GF(2). Irreducible
polynomials over any finite are building blocks or atoms as are the primes in

the field of integers of infinite order.

e e, e
f(x) = [£1(x)] = [f2(x)] - ... ~[£,(x)]
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Table 2-1., Equal Length FSR Cycles of (nonzero) States Corresponding

to the Decomposition of a Multiplicative Group into a

Cyclic Subgroup{ﬁi} and Cosets {yﬁj} and {SBk}

i of B c.c,cqc j of yBJ €5¢,C3€,261€0 k of SBk €5€,€4,5¢, ¢,

57473

(2]
0

~N
—
o

0 000001 0 000011 0 000101
1 000010 1 000110 1 001010
2 000100 2 001100 2 010100
3 001000 3 011000 3 101000
4 010000 4 110000 4 100101
5 100000 5 010101 5 111111
6 110101 6 101010 6 001011
7 011111 7 100001 7 010110
8 111110 8 110111 8 101100
9 001001 9 011011 9 101101
10 010001 10 110110 10 101111
11 100100 11 011001 11 101011
12 111101 12 110010 12 100011
13 001111 13 010001 13 110011
14 011110 14 100010 14 010011
15 111100 15 110001 15 100110
16 001101 16 010111 16 111001
17 011010 17 101110 17 0600111
18 110100 18 101001 18 001110
19 011101 19 100111 19 011100
20 111010 20 111011 20 111000
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where fi(X) of finite degree is irreducible over GF(2) and the integers

e, >0 (1< i< n). FSR cycles of states associated with reducible

polynomials over GF(2) are investigated in the next section.
B. FEEDBACK SHIFT REGISTERS CHAKRACTERIZED BY RECURRENCE RELATIONS

The behavior of the r—~stage shift register with linear-logic feedback,

as shown in Figure 2-3, is characterized by the linear recurrence relation
r

& © Z €i%k-i

=1

See Reference 3.

Hereafter, FSRs {as shown in Figures 2-1 and 2-2) will be called shift

registers with interstage feedback or ISFSRs. Whereas, those shown in

Figure 2-3 will be referred to as shift registers with single stage feedback
or SSFSRs.

The summation in the linear recurrence relation is to be considered a
modulo 2 summation throughout. The content of the ith stage at CPI k is

denoted by a Shifting is implied by the subscripts. The content of the

k-1i°
ith stage at CPI k becomes the content of the (i + 1)th stage at CPI k + 1.

That is,

Hei T (s )-(is1)  PEECT

The ci's are Boolean constant multipliers. The ith stage contributes to the
feedback if c; = 1. The rth stage is necessarily connected to the feedback
(switching) network (i.e., c. = 1). Otherwise, the FSR is using a shift

register comprised of less than r stages. The initial state of the



-1 -2 Uior+l “k-r

ith stage is denoted by a_; (i.e., a

r
' Z] %%
'=
Figure 2-3. Functional Logic Diagram of an r-stage Shift Register

with Linear Logic Feedback (SSFSR)

K-j at CPI k = 0). The bit being

fed back at CPI k is dencted by a, and a, becomes the content of the

k k

1%¢ stage at CPI k + 1.

Given

A" 3 (k+1)-1

) o0 r
G(x) E akxk = E E cia _; xk

k=0 k=0 \i=1
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a generating function where th- sequence of feedback bits are coefficients of

ascending powers of x. Then,

T o0
G(x) = E c.xt E a .xk-1
i k-1

i=1 k=0
and
r (2]
_E : i -i ' -i+l -1 z: k
G(x) c.x Ja_.x T+, X * o ta_x o4 ax
i=1 k=0
Thus,
r r
1 - E c.x ) G(x) = E c.x* la x'+a . x-”1 + ... +oa x-l
1 i -i -1+l -1
i=1 i=1
and

The numerator

3
- i -i -i+l -1
g(x) E e x Jax T+ a_ X *oeee +oax

i=1
is of degree less than r and its form is dependent upon the initial state of

the FSR (a_l, 8, 4 ey a_r) and the feedback connections (cl, Cpos vee s cr).

Whereas the denominator
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r r

f(x) = 1 - c.x' =1+ c.xt
:E: i :E: i

i=1 =1

(since -1 = 1 mod 2) is of degree r (i.e., e = 1) and its form is dependent
upon the feedback connections only. Clearly, g(x) and f(x) are polynomials
over GF(2).

The polynomial f(x) is called the characteristic polynomial of the
SSFSR. The behavior of the SSFSR can be described by the periodic sequence
"k* corresponding to a given initial state, Overlapping r-vit subsequences
of {ak} as seen when {ak} is bit serially passed through anr r-bit window,
correspond to the state sequence (i.e., cycle of states) assumed by the

register portion of the SSFSR.

The period of the longest sequence is governed by the properties of

f(x). Given the initial state of the SSFSR in Figure 2-3

a ~a," ... =a_ ., " 0, a_ = 1
Then, g(x) = 1 and
G(x) = 1
£(x)
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Since the SSFSR can only assume s finite number of states before

repeating, the sequence
{."}. {lo » 81 L) ._a-l}

must have a finite perind 4 < 2T, Thus,

= 1 =
G(x) m ao + .lx + XX + “e-lx

+ xﬂ (ao Yax o+ ... 4 Yy -1)
« 4 (a) + ayx + oo+ aﬂ_lx‘a_l)
+ xmﬂ (a, + a 2-1

Xt e v Ay x )

-1
a + a, x + es e +.ﬂ_lxﬂ
1 - L

X

and f(x) divided 1-x4 for some least integer value £, the periodicity of
{ak‘. Conversely, if f(x) divided 1-x2 for some least value of 4, then
f(x) characterizes an SSFSR that generates a periodic sequence of lengﬂlﬂ

when initialized by the state 0 0 , ... , 0 1. Following Reference 3

L - xd LA
T T tn*t e T7pa

2-12



f for some least integer value £{. Then,

£-1
| 1 _ Yot nmxt e WX
f(X) 1")(‘0
24 i -1
| =(1+xﬁ+x + .. +xm + v )(70+y1x+ soe +7:0-1J )
o0

a, x

k=0

n
(2]
”~~
x .
N

L]
=
=

Equating coefficients of like powers of x gives {Yk} = {ak}

Example 8

Given the linear recurrence relation

and the initial conditions a_; = a_, = 0 and a_3 = 1. The linear

recurrence relation of order 3 (a discrete analog of a linear differential
equation of degree 3 with constant coefficients) with three boundary values
(i.e., initial conditions) provides sufficient information to compute

3

8gs 8y 5 eee The same information can be extracted from f(x) = 1 + x2 + x

as follows:
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2 3.1+ x 2, X T+ x +x 7(1 + x7 + ...

X + x
x2 + x4 + X
x3 + xa + x
x3 + x5 + x
x4 + x
x4 +x6+x

and

{ak}= {1, 0,1, 1, 1, 0, o}

The importance of f(x) is that its properties provide information about the
periodicity of {ak} without the necessity of determining the components of
{ak}. Note that f(x) divides 1 - x7 and is a primitive polynomial over
GF(2) of degree 3.

identical cycle structures are transformationally equivalent. An isomorphism

It will be shown that an r-stage SSFSR and an r-stage ISFSR having
exists between the states of one and the other.
The generating function of an SSFSR lends itself to readily determining

the cycle length for a given initial state, especially when f(x) is

reducible. Consider the generating function
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associated with an r-stage SSFSR whose initial state is nonzero. The
characteristic polynomial, f(x), is of degree r and has distinct irreducible
factors h(x) and s(x) whose degree exceeds 0. An initial state corresponding
to a g(x) that has no common factor (of degree greater than 0) with f(x) lies

on a cycle of longest length. That is,
(g(x), £f(x)) = (g(x), (h(x)s(x))) =1

denoting that the greatest common divisor polynomial is 1, the nonzero
constant polynomial. The initial state 0 0 ... O 1 corresponding to

g(x) = 1 always lies on a cycle of longest length. By partial fraction

expansion
_ 1 _ulx) | vix)
GOx) h(x)s(x)  h(x) & s(x)
and
u(x)s(x) + vix)h(x) =1 )
|
i
Unique solutions exist for u(x) and v(x) in the congruential forms 1

u(x)s(x) =1 mod h(x)
v(x)h(x) =1 mod s(x) -

from finite field theory (see Reference 4). Since u(x) is of degree lower

than that of h(x) (an irreducible polynomial),
(u(x), hix)) = 1

Similarly,

((v(x), s(x)) =1
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The coefficients of ascending powers of x of the generating function

~—
<
~
»
~

G(x) = ulx

has two components. Its period is the Least Common Multiple (LCM) of the

4
periods of the two components. Thus, if h(x) divides 1 - x !, and s(x)

divides 1 - x 2 (for least integer values of £, and £7, respectively), then

f(x) = h(x)s(x) divides 1 - x2
for the least integer value
4= 1culd,, 4,)
Example 9
Given a :even-stage SSFSR with a characteristic polynomial

4 7

3
1+ x+x" +x +x

f(x)

(1 + x2 + x3) (1 + x + x2 + x3 + xa)

Corresponding to the initialization of 0 0 0 0 0 0 1 is the generating function

1 _ 1

f(x) 1+ x + x3 + x4 + x

G(x)

1

(1+ x2 + x3) (1 + x + x2 + x3 + xa)

u(x) R v(x)
1+ xz + x3 1 +x + x2 + x3 + x4
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Thus,

ulx) (1 + x + x2 + x3 + x4) + v(x) (1 + x

and

1 mod (x3

u(x) (x4 + x3 + x2 +x+ 1)

ulx) (x2 + 1) 1 mod (x3

Also,
v(x) (x3 + x2 + 1) =1 mod (x4

The polynomial u(@) is an element in GF(23) whose

is A, a root of

h(x) = x3 + x2 + 1

2, x3) =1

3

+ x7 0+ x2 +x + 1)

multiplicative generator

a primitive polynomial. The multiplicative inverse modulo x3 + x2 + 1 of

(x2

Since

and

u(x) =1 +x +x

2-17
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The polynomial v(B) is an element in GF(ZA). Multiplication of polynomials

in the field is reduced modulo

s(B)=(Ba+B3+BZ+B+ 1)4—>(x4+x3+x2*x+1)=s(x)

Since s(x) is a nonprimitive irreducible polynomial, its root B is not a
multiplicative generator (of the nonzero elements) in GF(24), i.e.,
BS = 1. It may be shown that 8 + 1 is one of ¢(15) = 8 multiplicative

generators in GF(Za) where 8 is a root of

3

s(x) = x4 + x7 o+ x2 +x+1

as follows:

. i . i
iof (B+ 1) €4¢,¢,¢g iof (B+1) €4¢,¢,¢0

10
11
12
13
14

~N O W N~ O
O = = = O O O
— O e - = o= O O
- O O = =~ O - O
O e O e e e
= = 2 R o B
©C = O O = = O
[ i = I = R = ]
©C O O = O O

The nonzero polynomials in GF(Z“) are expressible as

c3B3+c2ﬁ2+c1ﬁ1 tey B+ 1)i modB" +B3+ﬁ2 + B+

—

The multiplicative inverse modulo x4 + x3 + x2 + x + 1 of

(x3 + x%+ 1)4—033 +,32 + 1 is v(x)=—>v(B3)
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Since

(B+ 1)15 =1 andB3 +Bz + 1= (B+ l)5
vi® = (B+ D0 =p3 . g?
and v(x) = x2 + x3

A version of Euclid's method which is recursive and detailed in Reference 4 is
recommended for determining multiplicative inverses in finite fields of higher

order.

The partial fraction expansion 1s, thus, complete and

glx) _ 1

f(x) 1 +x + x3 + x4 + x

G(x)

_ 1+ x + x2 x2 + X

1+ x2 + x3 1l + x + x2 + x3 + x

The seven~stage SSFSR may be viewed as being decomposed into a three-stage and
a four-stage SSFSR. 1Its state behavior can be determined from the linear

recurrence relation
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corresponding to g(x) = 1, Successive states Q and Q

k=1 k-2 ' @-7
are tabulated in Table 2-2 for the cycle of states containing the initial state

00, «.. , 0 1. Its generating function is

1

G(x) =
1 + x + x3 + xa + X

7

The state behavior of the 3-stage SSFSR is described by

Its generating function, the first term of partial fraction expansion of G(x),

is

u(x) _ 1+ x + x¢

h(x) 1+ x2 + x3

The initial state is determined as follows:

-2 1
+ b + b, . x+b X2
-3 =2 -1
=1 + X + x2 = u(x)
Thus,
by =1 1+b_, =1 0+b_y=1
b, =0 by = 1

Successive states b and bk appear in Table 2-2 for b_

k-1 bk-2 bk-3 1
b_2 b_3 =10 1. Since its characteristic polynomial h(x) is of degree 3

and primitive, the periodicity of {bk} is 23 - 1or 7 and bk-l = b7k-1
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State Table of a 7-Stage SSFSR and Components of a Decomposition for

Table 2-2.

£(x) =1+ x+ x3 + x“ + x7 = (1 + x2 + x3)(1 + x + x2 + x3 + xa)

btdy = &

Lall

ol

~I

10
11
12
13
14
15
16
17
18
19
20
21

—|

~|

.

-~

22
23
24
25

-

~

26
27

lal}

28
29
30
31

32

33

ol ©

—~ ©

—) -

ol —~
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The behavior of the 4-stage SSFSR is described by

+ d + d

k= dk-1 g t 3t d

k=4

Its generating function, the second term of the partial fraction expaunsion of

G(x), is

2 3

vix) _ x° + x
2+

3 4

s(x) 1+ x + x x~ + x

The feedback connections and the initial state uniquely determines v(x).

-1
+ d_2 + d_lx
+ d +d x+d x2
-3 -2 -1
+ d-é + d_3x + d_2x + d_ix
= x2 + x3 = v(x)

and d_ld_zd_3d_4

in Table 2-2 with the foregoing initial state. The characteristic polynomial

=1010. Successive states d, _,d, _,d, _4d _, and d  appear

s(x) is of degree 4. It is a nonprimitive irreducible polynomial whose roots

4

have order 5, a divisor of 2“ - 1. Equivalently, s{x) divides 1 - x* for

the least integer value f of 5. The periodicity of {dk} is, thus, 5 and

deei ™ dop-y

As shown in Table 2-2

{a} = P * {4
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and {a | has period 35, the LCM of 7 (the period of {bk}) and 5 (the

period of {dk}). The LCM of two nonnegative integers a and b is

[a,b] = 22y a+b>0
]

Two meshed gears, one with seven teeth (corresponding to the period of {bk})
and one with five teeth corresponding to the period of {dk}, represent a
mechanical analog of the decomposed SSFSRs. A scribe line, joining the
centers of the gears before drive is applied to one, corresponds to the
initial state. Upon the application of drive, the scribe line of the
respective gears rotate (in opposite directions). Both scribe lines will
simultaneously first return to their criginal positions after the number of
distinct pairs of teeth that have passed through the point of contact is

[7, 5] = 35. Equivalently,
f(x) =1+ x + x3 + x& + x7 divides 1 - xﬂ

for the least value of £ equal to 35, and the period of {ak} is 35. The

order of the roots of h(x), s(x), and f(x) is, respectively

al = I,BS =1 and 8% =1

where h(a) = s(B) = £(8) = 0

Given

f(x) = I—I £,(x)

i=1
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where each factor fi(x) is an irreducible polynomial of degree r. > 0 over

GF(2) and fi(x) L fj(x) for i # j. An irreducible poly?omial fi(x) is
said to "belong to exponent ﬂi” it fi(x) divides 1 - x” ! but does not
divide 1 - x°® for s < ﬂi' Also, ﬂi is the order of ai where

fi(a) = 0,

The "period of f(x)" is

IV R PR

n

the LCM of the exponents to which the distinct irreducible factors beiong.

Every irreducible polynomial over GF{(2) of degree r < 16 can be
determined from Table C.2 in Appendix C of Reference 6. The table contains a
pa;tial list of irreducible polynomials for 16 < r < 34 where factors of
x2 gL 1 belonging to all possible exponents are given. The octal equivalent
of the binary roefficient string represents each polynomial. Associated with
each polynomial is an integer power (corresponding to an element of a
cyclotomic coset) of @, a root of the first entry, a primitive polynomial with
a minimum number of terms. Eacii polynomial listed is the minimal polynomial
of the roots corresponding to a cyclotomic coset represented by the element of
least value. See Table 1-2 of this report, but note that the primitive
polynomial whose root is @ (corresponding to 1 in the coset {1, 2, 4, 8, 16, 32})
differs from the one given in Reference 6. In Reference 6, only one of a pair
of reciprocal polynomials is listed. The order of the roots of a listed
polynomial (i.e., the exponent to which the polynomial belongs) must be

computed as shown in Section I.

Every irreducible polynomial over GF(2) through degree 19 can be
determined {rom Reference 7. As in Reference 6, an octal representation is
used for each irreducible polyuomial. The octal representations are arranged
lexicographically, and the period of each listed polynomial is given. Only
the lower-valued octal representation of a reciprocal pair of polynomials is
listed. The table enables one to readily determine whether a given polynomial

is8 irreducible.
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Reference 8 lists one primitive polynomial over GF(2) with the minimum
possible number of terms for every degree through 168. Another list where the
numbers of terms is not, in general, a minimum appears in Reference 9 for

every degree through 100.

A method of deriving every primitive polynomial of degree r from a given
rth degree primitive polynomial appears in Reference 10. Also presented is
an outline of an approach to the much more difficult problem of synthesizing a

primitive polynomial.

Example 9 is illustrative of the relationship between the period of f(x)
and the exponents to which its distinct irreducible factors belong. The
period of f(x) corresponds to the period of the longest cycle(s) of states.

By initializing the SSFSR with a state corresponding to a g(x) that has a

factor in common with f(x), a minor cycle is generated.

Example 10

Consider the 7-stage SSFSR in Example 9. An initial state corresponding

to

glx) = s(x) = 1 + x + x2 4 x4

results in

6ix) = s(x) - ‘ 1

h(x)s(x) 14 x2 + x

wi

and a sequence {ak} whose period is length 7. From
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A A, » eee 0 8, is determined as follows:
|
+a.+a,x+a x2
~3 -2 -1
= a_A + a_3x + a_zxz + 8_1X3
2 3 4 5 6
ta,ta x4 G_gX +a_x" +a_ax 4+ x +a_ X
= 1 o+ x + x“ 4+ x3 + xa
«  a(x)

and the states ay.) ap.9 4 ++. , 8.7 and {ak}versus k are

k -1 k-2 k-3 -4 k-5 k-6 k-7 %

0 o o0 1 1 1 0 1 1

1 1 o o 1 1 1 0 0

2 o 1 o0 o 1 1 1 1 -
3 1 o 1 ¢ o 1 1 1

4 1 1 o 1 o0 0 1 1

5 1 1 1 o 1 0 o 0

6 0 1 1 : 0 1 0 1

0 c o0 1 1 1 o0 1 1

It may be verified that the successive states under any 3 adjacent columns
correspond to those generated by a 3-stage SSFSR described by the linear

recurrence relationship

k O %k-2 Y %3
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and appropriately initialized. In particular, a where

k-1 %k-2 %-3
a,a,8,=001 mimics the 3-stage SSFSR whose generating function is

1

1 +x" +x

G(x) =

Refer to Table 2-3. Each of the states in the foregoing length 7 cycle is
treated as an initial state and mapped onto its corresponding g(x). Each g(x)

is nonzero, of degree 6 or less, and contains

s(x) =1+ x + x2 + x3 + x4

as a factor. The remaining factor Ekx) for each g(x) must be nonzero and of

degree 2 or less. There are a total of 7 such §(x)'s where

2
+ ¢c,Xx + ¢

A -
g(x) = c X 1 0

and at least one of the three coefficients 1s nonzero. Each of the 7 states

in the length 7 cycle (when used as an initial state) yields ;

2(x) 3

Cc(x) = 3 where (g(x), 1+ x%+x ) =1

1 +x +x

It can then be concluded that the 7-stage SSFSR generates one, and only one,

cycle of length 7.
An initial state corresponding to
g(x) = BGOh() = 261 + x% + x°)
results in

’g\(x)h(x) /g\(x)

G(x) = =
h(x)s(x) 1+ x + x2 + x3 + xa
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Table 2-3. 1Initial States of a 7-Stage SSFSR that Map onto a

g(x) Containing x4 + x3 + x4+ x+1asa Factor

Initial State g(x)

a,a,aqa, ag a a, x6 x5 x“ x3 x2 x 1 g(x) = ;(x)(xa + x3 + x2 +x + 1)
000 1 1 1 6 1 0011111 ¢ DG+ e 3P e x s 1)
1 0 0 1 1 1 0 1000010 (x%+x Mx'exPexleoxs+1)
©o 1 0 0 1 1 1 0100001 ¢ x+ DGC e x0 e x2 e x4 1)
1 0 1 0 0 1 1 1011101 (x2ex+D+x>+x2ex+1)
1 1 0 1 0 0 1 1100011 (2 +D+x3+x%4ex+1)
1 i 1 0 1 0 0 1111100 (x2 yx* ¢ k3 e kP e x e 1)
0 1 1 1 0 1 0 01111160 (¢ x I e el exe )
Characteristic Polynomial f(x) = (1 + x2 + x3)(1 +x + xz + x3 + xa)

Since g(x) is of degree 6 or less, B(x) is of degree 3 or less and
(/g\(x),x‘f+x3+x2+x-r 1) =1
There are 15 nonzero initial states corresponding to
3

- 2 3 2
g(x) = (c3x *oyxT +eix 4 co)(x + x5+ 1)

where at least one ¢, is nonzero. A simplified approach to determining one

initial state is as follows:

k -1 k-2 -3 %-4 %%k-5 -6 -7 A
0 o o o 11| - - - 1
1 1 0 o0 0| - - 1
2 1 1 0 o0 | 1 - 0
3 o 1 1 0 | e 1 0
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Embedded in the left four stages is the state-behavior of a 4-stage SSFSR

whose generating function is

1
G(x) =
1 + x + x2 + x3 + xa

Furthermore,

A T -1t -2 T -3 T A,

B T -1 Y 3t (s T 3y
and

0=a_,*a,,
-7 7 %k-2

is sufficient information to fill in the dashed entries.

One cycle of length 7 and 3 cycles of length 5 accounts for 22 states.

Each of the states, when viewed as an initial state, maps onto a g(x) where
(g(x), f(x)) = xS ekl et lorxd +xt a1
The all zeros state maps onto g(x) = 0 and
(0, f(x)) = f(x)

corresponds to

with periodicity 1. The remaining 105 (28 - 23) distinct nonzero states

when viewed as initial states map onto 105 distinct g(x)'s. The greatest
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common divisor of each g(x) and
£(x) = h(x)s(x) = 1 + x + x> + xt + x!

is 1. Each of the 105 states is contained in one and only one cycle of length
35. The number of length 35 cycles is 7. The cycle structure of the SSFSR is

summarized as follows:

Length of Number of Number of
Cycle Cycle(s) States

1 1 1

5 3 15

7 1 7

35 7 105

Total 128

Given that
£(x) = [s(x)]€ where the integer e > 1

The length of the longest cycle is the least integer value £ for which
[s(x)]® divides 1 - x4
The exponent to which s(x) belongs is ﬂl and

4

s(x) divides 1 - x
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Also,

Y e
[s(x)]® divides (1 - x 1)

and

2\, 21g
(1 - x 1)2 =1-x 1 over GF(2)

for integer values i > 0. The period of [s(x)]® is thus

where 21~1<e < 2!

Example 11

Given a 9-stage SSFSR characterized by

£(x) = [s(x)]® = (1 + x2 + x°)

3
The period of the s(x) is 7.

Since

2 <3 <2

2
f(x) has period 2 + 7 = 28 and the length of the longest cycle that the

9-stage SSFSR can generate is 28. Every state that maps onto a g(x) such that

(g(x), [s(x)1%) =1
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is contained in a cycle of length 28, Every state that maps onto a g(x) such

that

(g(x), [8(x)1%) = s(x)

is contained in a cycle of length 2 * 7 = 14. Every stace that maps onto a

g(x) such that
(g(x), [s(x)1%) = [s(x)}?

is contained in a cycle of length 7. The all zeros state maps onto g(x) =0

and
(0, [s(x)13) = [s(x)]3

Thus, the all zeros state comprises a cycle of length 1.

An SSFSR characterized by

n
e.
£(x) = I I [£.(x)] J e.>1
] )
j=1

where fj(x) has period ﬂj when initialized with the state 00 , ... , 01

generates a cycle of longest length

i i

2 n
2y, oee 27 )

i
_ 1
.a- [2 ﬂlh 2 n

-

i.~1

. i.
where 2 J < ej < 2 J and the length of every cycle divides f, the length

of the longest cycle.
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SECTION III

AN ISOMORPHISM BETWEEN THE STATES OF AN r-STAGE SSFSR AND AN r-STAGE ISFSR

The sequence *akt emanating from a 4-stage SSFSR satisfies the linear

recurrence relation
k=4 (1)
The characteristic polynomial of (1) is

f(x) = (1 + x + x2 + xa) = (1 + x)(1 + x2 + x3) (2)

The cycles of states and the corresponding {ak} are tabulated in Table 3-1.
Each state in a cycle may be viewed as an initial state that maps onto a

g(x). The coefficients of g(x) are linear functions of a_

1’ 827 %3
and a_4 as follows:
a
+ a_, + a_;x ,
ta_, ta_yx+a_x +a_x

= 2 3
gx) = (a_j+a_,+a_)+(a_j+a Jx+a x +a x

(3)

The coefficients of g(x) are evaluated for each of the 16 states (when viewed
as an initial state) on the right side of Table 3-1. It may be noted by
inspection that distinct states map onto distinct g(x)'s. Thus, a one-to-one
correspondence exists between the 16 possible (initial) states and the 16
distinct g(x)'s. The states comprise a vector space over GF(2) of dimension 4
(see References 1 and 5). The linearly independent unit vectors form a

natural basis and map onto g(x)'s in accordance with (3).
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Table 3-1. The One-to-One Correspondence Between the States of
an SSFSR and the g(x) Polynomials

g(x)

k a a a a a x3 x2 X 1

k=1 k=2 "k-3 "k-4 k = = =

0 0 0 0 x* 0 0 0 0
0 0 0 0 0 0 xX* 0 0 0 0
0 0 0 0 1 1 1 0 0 0 1
1 1 0 0 0 1 xd 1 0 1 1
2 1 1 0 0 0 xs 1 1 1 0
3 0 1 1 0 1 x4 0 1 1 1
4 1 0 1 1 0 x3 1 o0 0
5 0 0o 1 0 x? 0
6 0 0 1 0 0 x 0 0 0
0 0 0 0 1 1 1 0 0 0 1
0 1 1 1 0 0 Y 1 1 0 0
1 0 1 1 1 0 yx® 0 1 1 0
2 o o0 1 1 1 y> 0 0 1 1
3 1 0o o0 1 0 yx* 1 0 1 o
4 o 1 0 o 1 y> 0o 1 0 1
5 1 0 1 0 1 yx2 1 0 o 1
6 1 1 0 1 1 yx 1 111
0 1 1 1 0 0 Y 1 1 0 0
0 1 1 1 1 1 1 1 0 1

1 1 1 1 1 ] 1 1 0 1
a, =a._, + a9 + a4 x-l = x6 = x3 + x + 1 mod f(x)
f(x) = e xZ e x + 1 Yy = x>+ x% = x2(x +1)

= (x + 1)(x3 + x2 + 1) 8= x3 + x2 + 1
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3 x2 1

3_1 3_2 8_3 a_a X X

{1 0 0 O0]Je—[1 0 1 1]
[0 1 0 O]Je—[0 1 0 1]
[0 0 1 O)}e—e0 0 1 0]
(0 0 0 1 ]=—e[0 0 0 1]

The vectors representing coefficients of corresponding g(x)'s are also
linearly independent and span a vector space over GF(2) of dimension 4., Two
vector spaces of the same dimension and oveac the same field are isomorphic.
The mapping from an SSFSR state to its corresponding ISFSR state is realized

by the linear transformation matrix

1011
10
0101 (4)
0010
0001

An SSFSR state ap_1° 32> -3 @

state - i.e., k >0, maps onto a ISFSR state as follows:

K=bp which need not be an initial

[“k-l’ 8-20 %3’ ak-4]T - [bs' Bys By bo]
where [b3, b2, bl’ bo] is the vector representation of

3 2 _
b3x + b2x + blx + by = g(x)

Let u and U denote any two SSFSR states (not necessarily distinct). Then T in

(4) yields

/\
(dyu + 4, DT = d, (uT) + d2(3T>
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where Ci» €y € GF(2) are scalar multipliers, The inverse of T,
1011
o, |oron
T =loo1o (5)
0001

is the linear transformation matrix that maps every given g(x) to its
corresponding SSFSR state. The vectors in T-1 in (5) (top to bottom),
respectively, represent SSFSR states corresponding to the natural basis

(1, 0, 0, 0}, [0, 1, 0, 01, (0, 0, 1, 0], and [0, O, O, 1], representing x>,

xz, x, and 1.

The cycles of g(x)'s mathematically describe the behavior of a 4-stage
ISFSR that performs division by a root of f(x) in (2). Let be a root of
f(x). Then,

2

fa) =0 =1 +a +a° +a

1- = 04 + az + Q

a'1=a3+a+1

Note that @ has order 7, and a‘l = 06 has order 7. The elements @ and x

are equivalent, i.e., they are the same elements in GF(ZQ) with different

labels. Thus, x<—sQ and

x-1 = x6 = x3 + X + 1 mod xa + x2 +x +1

The 4-stage ISFSR performs division by x and reduces the result modulo

xa + x2 + x + 1 (see Figure 3-1).
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Each of the 16 possible SSFSR states in Table 3-1 maps onto an ISFSR as

follows:

[‘k-x' 20 Bk-3 “k-a] R [‘k-l' 20 B-1 * -3
o101l L. L. ]
6010 k-1 * %%-2 * - (6)
0001 ‘k
T

The next SSFSR state (i.e., at CPI k + 1) is

[‘k' f-1' fk-2° ‘k-3]

where

+ a + a

-a k-2

k-1

and

[’k' -1 -2’ ‘k-B]T i [’k’ -1t % T M2t T %1t °k-3] 7

The right hand side of matrix equations (6) and (7) represent successive
transformed SSFSR states appearing in the ISFSR in Figure 3-1 at CPI k and
CPI k + 1, respectively. Given that the ISFSR stores

+ at CPI k

-1 -2 Bper T -3 B

Applying a clock pulse to the ISFSR results in

0, + a

-1 %-2° -1
a , 0, a , a
k k ¥ (8)

4 -1 et -2 A T (T s

k-3
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The ISFSR state (8) at CPI k + 1 ie identical to the transformed SSFSR state in
(7) at CPI k + 1. Thus, the succession of corresponding SSFSR and ISFSR

states is preserved under the isomorphism. The next state mappings for the
SSFSR and ISFSR are one-to-one onto and described by the following,

respective, nonsingular transformation matrices:

1100 0100
Nss =11010 NIS = 10010
0001 0001
1000 1011

The unit vectors comprising the natural basis in an SSFSR vector space

do not, in general, belong to the same cycle. However, one cycle in an ISFSR

vector space always contains the unit vectors in consecutive positions. The
mapping of the unit vectors (in the natural basis) representing SSFSR states
is related to f(x) in (2) as follows:

x2 *oogx ¢ 1

4 3
f(x) = x + c3x” + ¢,

where c3 = (0 and cz = c1 = ]

ap-1ak-2ak-3ak x3x2 x 1
[lOOO]‘—————-———-.-[lcachl]
(01 0 0] —_—— [0 1 €3 €, ]
(o 1 0] —_—w [0 0 1 ¢y ]
[0 0 0 1] — = [0 0 0 1 ]

The transformation matrix T in (4) is comprised of the foregoing image
vectors. The unit vectors (in the natural basis) representing ISFSR states
namely, x3, xz, x, and 1 are in consecutive positions {(of a cycle). Their
images may be determined directly.

xaf(l/x) =]+ xz + x3 + xa

3-7



is the reciprocal polynomial of f(x) in (2). It is the characteri:tic

polynomial of the linear recurrence relation

B = b2 * B3 * ey
that describes the state behavior of a 4-stage SSFSR with the sam2 cycle
structure as the SSFSR in Figure 3-1. Corresponding cycles will contain the
same states where successive states of one is the reverse of the other for a

configuration of the former illustrated as follows.

k T -1"%-2%-3%-4
0 90 0 ¢ 1 0 0o o0 1
1 0 0 1 0 1 0 0 ©
2 0 1 0 1 1 1 0 0
3 1 0 1 1 0 1 1 0
4 o 1 1 0 1 0 1 1
5 1 1 0 o0 0 1 o0 1
6 1 _0 0 0 00 1 0
0o o0 o0 o0 1 0o 0 0 1

shifting (right to lcft) as w21l as labeling (b

o
o
-~

k-4 Pk-3 Pk-2 By’ 18
the reverse of the SSFSR in Figure 3-1. Since

A-1%-2%-3%-4 x> x?x 1

[0 0 0 1 ]e———[0 0 0 1]

the additional images of interest are those coriesponding to the images of

. 2
three succeseive predecessors of x0 «= [ 0001 ], namely x, x , and x3.
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b

These are the three successor states of bk—a bk_3 bk-2 k=1

= [ 0001 ] in reverse order. Thus,

fk-1%k-2%%~3%~4 2 x%x 1
[ 0 1 1 ] - ([1 0 ]
[ 0 ] =— [0 1 ]
[ 0 1 0 | -=— [0 0 ]

The transformation matrix T-1 in (5) is comprised of the foregoing image
vectors. Note that T in (4) and 11 in (5) are equal for f(x) in (2).

However T and '1‘..1 are not necessarily equal for other f(x)'s.

The significance of the methods presented for determining T and ’1"-1

is

that they are applicable to every f(x) over GF(2). It obviates the need for

generating the corresponding SSFSR and ISFSR cycles which is prohibitive

except for small values of r,
The binary sequences in the feedback of the SSFSR and the ISFSR in
Figure 3-1 are identical under the isomorphism. That is, a equals the

coefficient of xU for every pair of isomorphic states in Table 3-1.

Self-reciprocal f(x)'s characterize FSRs that generate palindromic

sequences.

Recall that the generating function

G(x) = %%E%
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where

r

_ i -1 -i+1 -1
g(x) = E c X [a_ix *a_ X * ... tax ] (9a)
i=1
r
c.=1and f(x) =1 - E cix1 (9b)
i=1

characterizes the behavior of an r-stage SSFSR. As previously discussed,

each possible SSFSR state may be viewed as an initial state that maps onto a
g(x) that represents an isomorphic ISFSR state. If f(x) in (9b) is reducible,
an ISFSR state that is a member of a cycle whose length equals the period of a
particular irreducible or reducible factor may be determined directly.
Furthermore, the length of the cycle to which any given ISFSR state belongs

can be readily determined.

Example 12

The SSFSR in Figure 3-1 is characterized by
£(x) = (x + DG + x% + 1)

The nonzero ISFSR state belonging to a cycle of length 1 is represented

by
g(x) = x3 + x2 +lorl 1 0 1

Since

3 2 .1 1
+
G(x) = kX =

3 2
(x + D(x™ +x" +1) x+1

is associated with its isomorphic SSFSR state, it is contained on a cycle of

length 1 equal to the period of x + 1,
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CPlL x3 x2 x 1

k 11 0 1
0 1 0
1 0

k+1 1 0 1

and ISFSR state 1 1 0 1 is its own successor.
Example 13
Given an SSFSR described by

xlo + x9 + x7 + x5 + x + 1

£f(x)

2

(x + 1)3(x3 + x° 4+ 1)(x4 + x3 + 1)

The period of (x + 1)3 is 4, x3 -+ x2 + 1 has period 7, and x4 + x3 +1

has period 15. Therefore, the period of f(x) is
[4, 7, 15] = 420
The ISFSR state 1 1 00 11100 1 corresponding to

9 8 5 4

+ x +x + x +1

1}
<
+
%

g(x)

(x + 1)(x4 + x3 + 1)(x4 + x3 + x2 +x+ 1)

is contained in a cycle whose length is equal to the period of

f(x)/ (g(x), £(x))
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Since

3

(g(x), £(x)) = (x + D(x* + x> + 1)

the period of

3 2

E0/(x + DO+ + 1) = (x+ DA + 22+ 1)
is [2, 7] or 14. Note that 14 divides 420, the length of the longest

cycle(s). The cycle of 14 states is

i of )'xi 359 58 x7 56 xS 5& x3 x2 x 1

0 1 1.0 01 110 01

419 (-1) 1 9110 0 1 1 01
418 1 00 01 1 01 11
417 1 0 01 0 01 010
416 01 0 01 0O O 1 01
415 1 111 0 0 0 0 11
414 1 091 0 1 1 0 0 0 O
413 01 01 011 000
412 0 01 01 01 1 0 O
411 0 001 010110
410 0 0 001 01 01 1
409 1 1.0 1 0 0 0 1 0O
408 011 01 0 0 O1 O
407 (-13) 0 011 01 0 0 0 1

0 110 01 110 011

where
L= x“9 = x4 x8 + x6 + x4 + 1 mod f(x)
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The SSFSR state isomorphic to the ISFSR state y (i.e., 11 00111001) is

1

yT " =1001000011

where

'g OO O O O ©O O O © v-l
o O O O © © © © = m=~
O © © O © © O = =
©C O O © © © = = = O
© O O © O rmt et = O =

An SSFSR state (vector v) is transformed to

where

f[o o o 0o ©o ©c © o o ~l
O O O O O O O O r =
o O O O O O © = m= O
O O O O O O m = O
O O O O © m = O rm= O

O O© O O = i et O i
O O O e = = O = = O

its

©OC O O O rm = O = O e
O O O e e O = O = O

S O = = O == OO
S - -~ = O - ~ O O r
lv-- [l N < S R I o I o B S v-J

isomorphic ISFSR state by vT

©C = -~ O ~ O = O O O
li—'l—'Ol—‘O'—‘OOOr—‘l

[= I = B = = T R = T )

. -1 . . ) .
The matrices T and T = are upper triangular matrices where the elements 1in

the principal diagonal are all 1's. A right shift of the components in each

row of T and 'I‘-1 yield the respective next row of each.
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S

Consider the cycle structure of the SSFSR in Table 3-1. There are a
pair of length 1 cycles and a pair of length 7 cycles. The states in one

cycle of each pair are the 1's complement of those in the other. From

state

-1 %-2* %-3* -4

is succeeded by

B -1 -2 -3

.Whereas, state ak—l’ak-Z’ak-3’ak’ or

1+ a 1+ a oo 1+ a 3> 1+ a
1s succeeded by a8 103 9083
since
(l+a N+ Q+a )+ (Q+a )=1+a =a
and

{1 10100 0}

{ak}
{1 + ak} = <0 01011 1}

are complementary feedback sequences associated, respectively, with the

length 7 complementary cycles of states (see Reference 3).
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Consider each pair of corresponding ISFSR cycles of states. The
state(s) of one cycle of each paiir are of odd weight (i.e., contain an odd
number of 1's), whereas the state(s) of the other cycles are of even weight.
The sequence of g(x)'s, namely, {1, x6, xs, «ee , X} represent the cycle
of ISFSR states which are isomorphic to the cycle of SSFSR states

characterized by

G(x) = —b = 1

f(x) (x + 1)(x3 + X

2, 1)

The elements {1, x6, xS, cee x} form a cyclic group under

multiplication. However, they with x* adjoined do not form a group under
vector addition. The vector addition of two distinct vectors of odd weight
result in a nonzero vector of even weight. Thus, closure is not satisfied and
Ll’ x6, xs, cee x} with x* adjoined do not form a field. This is not
surprising since f(x) associated with the cycle of nonzero isomorphic states

is reducible, hence nonprimitive. The sequence of g(x)'s, namely,

Lyg yx6, yxs, e yx] where y equals x3 + x2 represent the cycle of

ISFSR states which are isomorphic to the cycle of SSFSR states characterized by

3 2
G(x) = XX = X
(x+1)(x3+x2+1) xT + x° +1

whose denominator x3 + x2 + 1 is primitive. The elements
[75 yx6, yxs, yxs, e yx} with x* adjoined form a field. The

multiplicative identity is x~ + x° or y, i.e., 725 y mod f(x)

(x3 + x2)2 = x6 + anE x3 + x2 mod x4 + x2 +x+1

7-3

The multiplicative inverse of ny is yx .

(yxj)(yx7-j) = 72x7

= y mod x4 + x2 +x +1
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The element x3 + x2 + 1 or 8 with x* adjoined form a field of two elements.

Given the linear recurrence relation

a, =cy* E c,a_; (10)

where ¢; = 0,1 for 0 £i< rand ¢, = 1

oo ) r
- z : k _ E : E : k
G(x) = a x co * cia i) x
k=0 k=0 i=1
%) T oo
= c xk + c.xt a ka1
0 i k-1
k=0 1=1 k=0

0
l-x
The second term can be expressed as
r
g(x) + cix1 G(x)
i=1l

e s - e e . o ¢ e e e ——aa



where g(x) is given in ?(a). It follows that

¢
6(x) = 1= 2(:)8(X)
< + (1 - x)g(x)
(1 - x)£(x)
where f(x) is given in 9(b).
Fos cp = 0
o(x) = &2

as given in (9).
For ¢g =1

1+ (1~ x)g(x) gl(x)

) = —g o0 - £, (x) (11)

Since
gl(l) =1+ (1 -1)g(1) =1,

gl(x) does not contain x + 1 as a factor. Hence, gl(x) has an odd number of

terms.

Example 14
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and
£,(x) = (x + (x> + x2 + 1)

describe the behavior of the SSFSR in Figure 3-2., The polynomial g](x) in

(11) versus d_ d_2d_3 is derived as follows:

1

d_z + d-lx ,
+ d_3 + d_2x + d_lx
g(x) = 3
d_,+d 5+ (d_1 + d_z)x +d_;x
and
(x) =(1+d ,+d )+ (d +d J)x+d x2+d x>
& -2 7 %3 -1 7 9%3 -2 -1

The successive 3-component SSFSR state vectors map onto the gl(x)

polynomials as shown in Figure 3-2., The two cycles of gl(x)'s of odd weight
are respectively identical to the two cycles of g(x)'s of odd weight appearing
in Table 3-1. Complementation takes place in the feedback path of the SSFSR
and the ISFSR in Figure 3-2. A one-to-one correspondence exists between the

SSFSR states and ISFSR states. The linear transformation matrix

110
T=(011
001

. . 2
maps dk-ldk-zdk-z into b2b1b0 representing bzy + bly + bO'

The inverse of T is
111

T =}011
001
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de-1 %2 k-3
y
|
;1» *.-dk
d =1 +d o *d 3
i =1+ (1457 +x)
gl(x)
ko dedfis Sk oy
0 0 0 0 I I 0 0 0 1 0 0
1 1 0 0 I & 10 1 1 11 0
2 11 o0 0 > 111 0 1 0 1
3 0 1 1 ] & o 1 1 1 o1 0
4 10 1 0 3 1 0 0 0 TR
5 0o 1 0 0 $2 0 1 0 0 o 1 1
6 0 0 1 0 x 0 0 1 0 0 0 1
0 0 0 0 ] ] 0 0 0 1 0 0 0
0 R 1 5 11 0 1 ] 0
0 1 11 ] 3 1 1 0 1 ] 0
3= x3 + x2 +1
Figure 3-2. The One-to-One Correspondence Between dk-ldk-de-S
and b2y2 + bly + 1
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Interestingly, T and Trl are the same as those associated with an SSFSR

described by

B T 82 &3
and

£(x) =1+ x2 4 x°

and an ISFSR that performs division by x modulo x3 + x2 +1, i.e., where

complementation does not appear in the fecdback of the SSFSR or of the ISFSR.

The next state mappings for the SSFSR and the ISFSR in Figure 3-2 are
one to one described by affine trensformations, a transformation followed by a
translation (see Reference 1). Let u denote the present state of the SSFSR

and u' the next state. Then

u' = uyN__ + L

SS SS
where
010
NsS = 1101 and LSS =[{100]
100

Let v denote the present state of the ISFSR and v' the next state. Then,
' =
Vi T VNt Lpg
where
010

NIS = 1001 and LIS =[110])
110
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The binary sequences appearing in the feedback of the SSFSR and ISFSR in
Figure 3-2 are identical under the isomorphism. Thut is, d equals 1 + bO

(where bo is the coefficient of yo) for every pair of isomorphic states.

Example 15
The behavior of a 4-stage SSFSR is characterized by

de =1 da tdup t 4

and

£ = (14 )E(x) = (1+x) (1+x+x%+x%)
= (1 + x)[(1 + x)(1 + x2 + x3)]

= {1 4 x)2 1+ x2 + x3)

One 1 + x factor is due to complementation in the feedback, and the generating

func.ion 1is

g10) 1, (1 - 0glx)
G(x) = fl(xf T O -0

Since gl(x) cannot contain 1 - x (i.e., x + 1) as a factor, the SSFSR splits
the state space into two cycles. One is of length 14 and contains state

0000. The other 's of length 2, For

G(x) = 3

(1 + x)2 (1 + x2 + x7)
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The period of (1 + x)2 is 2+1 and 1 + xz + x3 has period 7. Thus,

4=12, 7} = 14.
For gl(x) = x3 + xz + 1

1

G(x) » ———
(x + 1)¢

and the state that maps onto gl(x) = x3 + x2 + 1 is 0101 (see Table 3-2).

B = (d_ +d, v d )+ K +d_Jdx v d_x s d_153
and
gl(x) =1+ (1 - x)g(x)
=8, ts ¢ 32x2 + s3x2 + st‘x4
where

Since (01) is the only periodic sequencz of length Z, it could be deduced that

0101 and 1010
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Cycle Structure and Isomorphism of SSFSR and ISFSR States

Table 3-2.

Whose Respective Next State Transformations are Affine

gl(x)

4 3
X X x 'x

aad |

o

1

2

0 0 0 O

0 0 0 0 1

1

1

0 01 1

11
x

0

1

1
0

1 00

X

1

1

1 0

X

1 0 0 O
1

0

1 1 0 01
09 0 O
1 0 0 O

1
0

10
11

X

0

0 01

X

12
13

0 0 0 1

0

0 0 0 1

X

0 0 0 C

1

0 0 0 O

1

1 0 0 1

0

1

1 0

8x

8= x3 + x2 +1

T

e Ty

£ = (L0l + )+ x)]

= (1 + x)z(l + xz + x3)
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are the SSFSR states comprising the cycle of length 2. State 0 1 0 1 maps onto

gl(x) exd+xl+1=8

whereas state 1 0 1 0 maps onto
81(x)=xa+x3+x=8x

Refer to Figure 3-2 and Table 3-1. The cycle structure (i.e., two cycles of
length 7 and two of length 1) is changed to that of Table 3-2 by incorporating
complemention into the feedback paths of the SSFSR and corresponding ISFSR.

Note that

1011
0101
0010
0001

is the same for both sets of isomorphic SSFSR and ISFSR states. The next

state mappings, however, are linear and affine transformations, respectively.

An r-stage SSFSR capable of generating {ak} that satisfies the

recurrence relation

a, = E c.a,_ . ¢c. =0,1 forl<cic<r,c =1 (12)
1 k-1 1 - r

has a characteristic polynomial

xEL 4 T (13)

x2 = o0 4 Cr-l

f(x) =1+ c X+,

The recurrence relation (12) and f(x) in (13) are implied in the following

theorem.
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THEOREM 1

Distinct r-stage SSFSR states when viewed as initial states map onto

distinct polynomials g(x)'s of degree less than r.

Proof

Expanding (9a) gives

g(x) = cja_,
+ c2(a_2 + a_lx)
-3
+ cr_l(a_r+1 8_ X * s +a_x
+ + a + + a r-3
a_. JUUL L PP _3X

(14)

The 2° state vectors of the SSFSR form a vector space U over GF(2) of

dimension r that is spanned by the linearly independent r unit vectors.

The

mappings of the unit vectors which are a natural basis of the r~dimensional

vector space follows from (14).

1 %2 .., %re Ar

(1 0 o0 0] xT e X
fe 1 ... 0 0] —— xr—2
(o 0 ...1 0] —

(0 o .. 0 1] —»

3-25
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The r images (i.e., g(x)'s are linearly independent polynomials that span a
vector space V over GF(2) of dimension r. Thus, each of the 2" distinct

linear combinations maps onto a distinct polynomial g(x) of degree less than r.

Q.E.D.
Each coefficient in
r-1 r-2 _
b__;¥ +b__x + ...+ by = g(x)
is a distinct linear combination of a_,, a_,, ... , and a_,
COROLLARY 1.1
The lincar transformation
r-1 r-2 r-3
X X X ves X 1
1 -1 Creg *** S cl.w
0 1 —1 " c3 c2
T = . . .onee s .
0 0 0 ... 1 € -1
0 0 0 ... 0 1 (16)

is an isomorphism of U onto V.
Proof

The linear transformation matrix T is the one-to-one mapping in (16)

where

uT

]
<

u €U and v €V
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Since the r row vectors of T are linearly independent, T is nonsingular and

its inverse 'I‘_1 exits.

. -1 . . . .
The inverse T is a linear transformation. Given (state) vectors v

and ¥ in V and scalar multipliers e, and e, in GF(2).

1 2

Av—l A
(elv + ezv)T T (elv)I + (e2v)I

[el(anl) + eZCGT—l)]T

Postmultiplying both sides by T-1 yields

A=l S | -1
(elv + ezv)T = el(vT )+ ez(QT )

-1 . . .

thus, T 1s a linear transformation.
The one-to-one onto linear transformation
T: (—»V

is an isomorphism. Every set of linearly independent vectors Uls Ugy eee
u. in U where m < r is map, 2d onto a linearly independent set of vectors Vi
Vo see s Vo in V. When m = r, the vector space U is spanned and the vectour
space V is spanned. For u, = (1,0, ... , 0] u, = [0, 1, «o. , O], vuu ,
u, = [0, 0. . ., 1], a natural basis for V, every vector u€U has a unique
expression

up ta_u, + ... +au (17)
which is a linear combination of the ui's. Given that u is expressible as

u = hlul + h2u2 + .. hrur
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Then,

"h)u +.sa*(a

u-u=0= (a_1 - hl)u1 + (a_2 94y -4

- h )u
r'r

and since Ujs Upy eee , U are linearly independent

a.-h. =0and h. = a . for all i.
-1 i i -1

Thus, (17) is unique and uniqueness of representation holds for every given

basis.

The respective images of Ups Ugy ooy Uy, U are the

polynomials in (15) where
X + ... +Cc,x + ¢

is the image of u = {1, 0, ... , 0, 0]. The components of the image vector
v, = (1, Comps **+ s So» c1]

are the ordered coefficients of the polynomial g(x) of degree r-1 excluding

¢, resulting from the mapping of

0

[a_l, 8_ys sen s a_a] = {1, 0, «.. , 0, O]

in accordance with (15). The vectors Vis Vgs ese , Vv, are 1inéar1y
independent and form a basis in V. Postmultiplying both sides of (17) by the
transformation matrix T in (16) gives

uT = (a 4 ... +a ulT

| * a-2u2 -rr

-1
= a_l(ulT) + a_2(u2T) + 0. + a_r(urT)
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Thus,

V, + «0o. + a v (18)

and every vector ve€V is uniquely expressible relative to the basis v, ,6 v

1) 2!

ss e vr.

The a_i's in (17) and (18) are scalars in the field GF(2). From
Reference 1, each basis Upy Ugy see, U in a vector space U over a field
F provides an isomorphism of U onto space Ur(F)' The isomorphism c, is
the correspondence which assigns to each vector u€U the r-tuple of its

coordiqates relative to u as follows:

(a

U, *+ +e. +a u)C = (a

u, + a
2 -rru -1

1 a

1 ser 5 a__ )€U (F)

-2 -2°
where F, in this case, is GF(2). Since the number of vectors r in a basis is
determined by the dimension r, which is invariant (as proved in References 1

and 5), every finite-dimensional vector space over a field F is isomorphic to

one, and only ome, space U (F).

Q.E.D.

A more convenient basis in V is

-1
x*"*, 0 , ..., 0, 0]

fo , X s, ses , 0, 0]

.
.

.
-

sese 4 o .

.
-
.
-
.
-
.
.

[0 , 0 , ees , X, 0]
(o ,0 , ..., 0,1}
and every element in V may be expressed as
r-1 -2 .
b__ X + b_,x * e v bix 4 by = g(x)
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From (14),

+ c,a + .50 + C a + a
r=1"-r+2 -r+l

r-28-r+2 * cr-la-r+l * 8-r (19)

= b =ca.,+c,a,+ ... +c
Given an r-stage SSFSR capable of generating {ak} that satisfies the linear
recurrence relation in (12) and has the characteristic polynomial f(x) given
in (13). The state
a ] =1[0,0, ... ,0,1]

[a a

_2, “aee -t+1’ a_r

—1’
always has [1, 0, . . ., 0, 0] as its successo. state (which may be viewed as
another initial state). The corresponding ISFSR states represented as

polynomials are

[0,0, «.. , 0, 1] — 1
r-1 r-2
(1, 0, ve. , 0, 0] — = x *e X et o tog
Note that
-1 . -1 -1 r-2
lex x = (x *e % + eeo #cox +c)) mod £(x)

and 1 divided by x reduced modulo £(x) in (13) is the polynomial representing

the ISFSR successor to 1 (the nonzero constant polynomial).
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THEOREM 2
Successor states of isomorphic SSFSR and ISFSR states are isomorphic.

Proof

[a_l, 8_os +ee s 8_ 1> a_r]T = [br-l’ br-2’ cee bl’ bo]

where T is given in (16) and each bi is a distinct linear combination of the

a_i's as shown in (19).

The next state transformation matrix N_, of the r-stage SSFSR is

SS
- -
c1 1 0...0 O
c2 o0 1...0 O
Nes = |: oo
c., 0 0...0 1
1 0O 0 ...0 O (20)
L’ —

The next state transformation matrix N s of the corresponding r-stage ISFSR

I
is

0 1 0 ...0 0]
0 0 1 ees 0 0
Mg =2 SR
0 0 0 ees O 1
{
1 Coel Speg *t* S € (21)
L _

3=31
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Denote the successor to

]

u-= {8-1’ 8_gy e a-r+1, a_.

by u' = [a'_l, a'_z, cee a'_r+1, a'_r]
and the successor to
v = (br-l' br—2’ eoe bl' bO]
' = ' [ [ '
by v (b -1 b IPYEERT b 1 b 0]

Then,
] [ ] ] ]
[8 _1| 3_2' e a_r+1’ a_r]
= [a_l, 8_y sev s 8_ L 1s a-r]NSS
= [ao, 8_ys eee 5 8 os a_r+1] (22)
and
L ] 1] [ ]
(b r-1’ b o A b 1’ b 0]
= [bpys Drogs ooe s By BylNg
= [bo, L c by + by clb0 + bll (23)
where a, = bO is expressed in (19). The assertion that
] t ) ) = ) ] " 1
[a 1 @'y eee @', 8 -r]T [b -1 b =2t 0t b 1 b 0]

15 shown as follows:
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In accordance with (19), (22), and (23)

b' = g'

d r-1 -1
| %
: [ = . ' '
bl T2 YA,
= Cr-laO * a-1
= 1P * Py
' = o 2! ' ' '
b 1 cpa’ ¢ (cBa g et ja'_ -r+1)
=cgag + leqa | v oen e a4y YA y)
Rk I
' = ' ' ' '
by crat gt legal gt e e o' ot gt
=cpag r(epay v te A Y S YA
= clb0 + b1
Thus, 1if
ul = v
then
u'lT = v'
Furthermore,

vT 1, u and v"I"-1 = g
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It may be concluded from THEOREM 2 that the cycle structure (i.e., the
rumber of cycles of a given length) is identical for an r-stage SSFSR and an
r-stage ISFSR with isomorphic state spaces. This is a consequence of the

praservation of the next-state operation under the isomorphism

T: Ul—»V

COROLLARY 2.1

Matrices N.. in (20) and N

ss in (21) are similar (see Reference 1).

I8

Proof

(uNSS)T = y'T = y' = u(NsaT)

where T is given in (16).

- = ! =
(uT)NIS vN v u(TNI )

IS S

NSST and TNI

corresponding v € V, namely v', Therefore,

S both map a given u € U onto the successor of the

N..T = fNI

SS S

and

NSS = TNIST

Q.E.D.

Consider the affine transformation

"o
ut = uNgg + Leg

where LSS = {1, 0, ... , 0] al x r vector.
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Then,

1 = .
u'T (uNss)T + LSST

andg

LooT = LI = (1, ¢

ss s r=1* Sp-20 *tr 0 S0 €l
From THEOREM 2,

a t
(uNSS)T v

prior to the translation by LcsT. Given that ue— Vv and

v = [b b }

r-1° Ppogr c00 2 Py D

J
represent.ng

r-1 r-2
br-ly + br-2y + ... 4 bly + bC

The successor to v, namely VNI” is the vector summation
o

r-1 r-2
v y ‘o Y i
io, br*l' Cee b2’ bl}
+ boll, Co_p» o0 s Sy cll
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pricr to translation by L The vector summation

18°
r-1 r-2
y y cee y 1
(o, hr-l' cee bz. bll
+ boll, Cropr =** s Spo Cl]

(where Sb

content of the rightmost ISFSR stage is b,, the scalar multiplier of the

=1 + bo) includes the effects of translation by Lige The

feedback vector (1, Cooyr *** 2 So» Cllo Translation by LIS is

realized by complementing bo which results in the fr.:dvack vector

Eb[l, Cooys == s Cp cll

The implementation of the ISFSR in Figure 3-2 is an example.

Consider the logical circuitry associated with an SSFSR whose

characteristic polynomial
f(x) = x" + x? + 1
is a trinomial. Let @ be a root of f(x). Then,

a-l - ar-l . aa-l

represents the feedback of a correspnnding r-stage ISFSP, The ISFSR performs
division by & mouulo f(Q@) on its contents. As shown in Figure 3-3, the FSRs
are topologically equivalent and of identical complexity (i.e., in the number

of switching elements and propagation delay in the feedback).
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dk" dk'z dk-a dk-a+] dk-r
I- +
dk = dk-o +d|<-r
f(x) = x" +x° +1
ar-] ar-2 o aa-] 1

fla)=a" +a” +1=0

el za" T+ @1 MODULO o + & +1

Figure 3-3. An SSFSR and its Corresponding ISFSR of Identical Complexity
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SECTION IV

THE EXISTENCE AND ALGORITHMIC DETERMINATION OF A TRINOMIAL
OF LEAST DEGREE THAT CONTAINS A GIVEN IRREDUCIBLE
POLYNOMIAL OVER GF(2) AS A FACTOR

A. PRIMITIVE POLYNOMIALS OVER GF(2)

Primitive polynomials of degree r over GF(2) correspond to r-stage SSFSRs
(and ISFSRs) capable of generating PN sequences. A PN sequence satisfies

three postulates of randomness as proven in Reference 3.

An example of a binary sequence that is random results from repeated
tosses of an ideal coin. Associated with randomness are the following

properties:
(1) The number of heads and tails are approximately equal.

(2) Short runs of consecutive heads or consecutive tails occur more
frequently than long runs. Quantitatively, approximately 1/2 of the

runs are of length 1, 1/4 of length 2, ... , 1/21'1 of length i, ...

(3) The autocorrelation of random sequences is peaked in the middle and

sharply drops at the ends.

Consider the periodic binary sequence

A = {al, 8y, «ee 3P 1, éﬂ} where £ = 2" -1

emanating from an r-stage SSFSR whose characteristic polynomial is an rth
degree primitive polynomial. The randomness postulates satisfied by {ak}

are:

e u..urn‘



Pl. Balance

Let w, and w, denote the number of 0's and 1's, respectively, in

0 1
*ak}. Then,
lwo-w1|51
The disparity is exactly 1 for a PN sequence.
P2. Runs and their lengths
Within a period with aﬂ and a; appearing consecutively, there are:

(1) One run of length r comprised of r consecutive 1's and one run of

length r - 1 comprised of r - 1 consecutive 0's,

(2) Two runs of length L for each run of length L+l for each value of L

where 1 €L <r - 1.

One-half of the runs of length L are comprised of 0's. Runs of O's
alternate with runs of 1's, and the total number of the runs of 0's are equal
to the total number of runs of 1's.

P3. Two-valued autocorrelation

The set comprised of

A1 = {al, 3y eee s 3, %ﬂ}
A, = {az, a3, e s 3, al‘
= *a3, a4, +o. , a1, ap}

>
w
[

Aﬂ = *éﬁ’ 81y ooy 9&'2’ %ﬂ‘l}

and

=10, 0, ... , 0, o}

>
\



from an Abelian group G of order 2¥ under the binary operation of "addition"

defined on G as termwise sum modulo 2.

Ai and Aj satisfy the same linear recurrence relation. Therefore,
Ai + Aj for all i and j satisfies the linear recurrence relation. Thus, G

is closed under " + " defined on G.

Denote a, b, and ¢ over GF(2) as onrresponding terms or components of

Ai’ Aj’ and Ak’ respectively. Since
(a+b)+c=a+(b+c)mod?2

elements in G are associative under "+."

The unique identity element of G is AO.

Ai + A0 = AO + Ai = Ai for all 1

Every element Ai in G has a unique (additive) inverse, namely, itself.

A. + A, = A for all i
1 1 0

|l+l|

The elements in G are commutative under since

a+b=b+a mod 2

Thus, G under "+" defined on G is an Abelian group (see References 1, 3, 4,
and 5).

The PN sequence and each of its cyclic shifts can be uniquely identified
by its first r terms (i.e., components). Each corresponds to a unique initial
state of the r-stage SSFSR. Thus, only the first r terms of Ai + Aj need

to be determined to identify the resulting sequence.



Again, consider the PN sequence
A = {a a,, o a a } where £ = 2F - 1
1 1) 2: e ﬂ-l’ l

Let
b. =1 - 2a., for all 1
i i

Then, replacing 0's by 1's and 1's by -1's in A, Al’ LY yields
Bo, Bl’ cev }n, respectively. The two tables

b,
j

b, I 1 -1

1 ‘ 1 -1

-1 11

reveal the isomorphism

(a, + a.) mod 2«——b.b,
1 ] 1]
Thus, Ai + Aj = Ak corresponds to BiBj = Bk where the product

BiBj is taken term—by-term.

The autocorrelation functjon C(T) is two-valued. Explicitly,

4
Qfort=0
dc(r) = Z b,

k+T
k=1 -1 for 0<T1<{

Note that C(T) is the dot product of one vector whose components are comprised

of 1's and ~1's (corresponding to the 0's and 1's of a PN sequence), say Bl’

and B1 cyclically shifted by T components. Since BiBj = Bk is a

vector corresponding to an element in the Abelian group G, it is comprised of
L1's if i = j (i.e., B
PN sequence is highly distinguishable from any phase shift of itself.

= BO) or one more -1 than 1 if i # j. Thus, a

i . AR AR R

> St WN?-IM‘

(T TR D S T



Example 16

A 3l-bit PN sequence is genrvated by S5-stage SSFSR described by the

linear recurrence relation

whose characteristic polynomial is

3

f(x) = x5 + K+ x2 +x +1

a primitive polynomial. A period of {a appears in Figure 4-1(a).

"
Of the 31 bits in iak}, 15 are 0's and 16 1's. The postulate Pl on

balance is thus satisfied. In general, a PN sequence of period 2% - 1 will

contain 2’:_1 1's and Zr-l-l 0's. The one less 0 is due to the absence of

the all zeros state in the cycle of the states of the PN generator.

The run length properties of the PN sequence are shown in Figures 4-1(a) |
and (b). The distribution of runs is in accordance with postulate P2. In i
general, a PN sequence of period 2" - 1 contains one run of length r and one !

1-L

of length r-1. For 1< L< r - 1, there are 2t runs of length L, half

of which are 0's.

— M..s..rns. i
A

The closure of two distinct elements in {BO, B oo qli under

1’
termwise multiplication is shown in Figure 4-1(c). In general,

= = 3 = r -
a, = :ia*——’b‘a b0 since £=0 mod 2 1
Also,

4 fort 0

£-1
dc(T) = Z bkbk+r =
k=0 -1 for 0<T< }
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In normalized form,

1 fort=0 mod 2F - 1
c(t) = "
_ 1 forTmO mod 2" - 1
2"-1
Specifically, in Figure 4-1(c),
31c(4) = -1
since
Br+18 = PiPies

is the same sequence as bk cyclically shifted 18 places to the left. It,
thus, has one more -1 than +1 components.
|

There are four known classes of binary sequences which satisfy both
postulates Pl and P3. See Chapter 4 in Reference 11, which terms al! sequence
in these classes as PN. Of these four classes, only the class of length
2t -1 sequences which can be generated by r-stage SSFSRs or ISFSRs satisfy
P2 as well. In this report, only the length 2t -1 sequences are referred

to as PN or maximal-length sequences.

Of particular interest are primitive trinomials over GF(2) that
characterize PN generators of minimal complexity. However, there are many
values of r for which no irreducible rth degree trinomial exists.

Furthermore, there are other values of r where irreducible rth degree
polynomials exist, but none are primitive. Irreducible trinomials over GF(2)
up to degree 1000 were determined by a sequence of four tests in References 12
and 13. The primitive trinomials are distinguished from the irreducible
nonprimitive trinomials. The period and/or the index is given for many of the

latter.

B

A B G



The only general nontrivial result on trinomials

r k
Tr,k(X) X+ x +1

was proven in Reference 14. The parity (even or odd) of the number of factors
T, k(x) is deterministic (from Corollary 5, page 1105 in Reference 14).
»

Tr k(x) has an even number of irreducible factors and, thus, must be
»

factorable if, and only if:

(1) r is even, k is odd, r # 2k, and rk/2= 0 or 1 mod 4
(2) r is odd, k is even, k does not divide 2r, and r=+ 3 mod 8

(3) r is odd, k is even, k divides 2r, and r=+ 1 mod 8

In all other cases Tr k(x) has an odd number of factors. Note that if r and
]
k are both odd, the reciprocal trinomial Tr r__k(x) is subjected to test (2)
H]
or (3).

The foregoing test preceded by two simple tests were used in References
12 and 13 to speedily eliminate reducible trinomials before applying the
fouriii test (based on an efficient method developed by Berlekamp for factoring

polynomia.s over a finite field). See Chapter 6 in Reference 4.

Example 17
The trinomials T8m,k(X) over GF(2) are reducible. If k is even,
k = 2k1, and
x8m . x2k1 +1 = (xém N xkl + 1)2
If k is odd,

8m # 2k and 8mk/2= 0 mod 4

Thus, T8m,k(x) has an even number of factors for k odd.
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A trinomial Tr k(x) is square-free if, and only if, r and k are not
»

both even. 1f

3

= r
Tr k(x) X +x +1

has a repeated factor, then its derivative

1! (x) = (r mod x4 (k mod 2)xK7!
]

is divisible by this factor. Then, T, k(x) is either: (1) a power of x
’

which is relatively prime to T k(x) or (2) is of the form xT7L 4 xkL

3

However, a divisor of both

xr-1 + xk.1 and xr + xk + 1

must also be as divisor of

x' + xk + 1+ x()t(r-1 + xknl) = 1

P———

Thus, T, k(x) where r and k are not both even is square-free (see
»

Reference 3). The period of such trinomials is the LCM of the periods of its

irreducible factors. -
The periods of square-free trinomials over GF(2), their factors, and the

periods of their factors through degree 36 are given in Reference 3. Also,

the factor of lowest degree is listed for square-free trinomials of degree 37

through 45. The wide applicability of PN sequences has been an impetus in

searching for primitive trinomials.

The remainder of this subsection deals with finding trinomials which
contain a given primitive polynomial as a factor. The state-beha> .or of an
r-stage PN generator can, thus, be encapsulated by an n-stage SSFSR (or ISFSR)
where n r. Additional register stages are the cost of reducing the

complexity of the feedback to one 2-input Exclusive-OR gate.




Every nonzero element in GF(2¥) is expressible as an in:eger power of @.

Q +b a t oeen * bla + bo (24)

where b, € GF(2) and @ is a root of a primitive polynomial f(x) of degree r
over GF(Z). Two elements, QJ and ak, are defined to be a Compatible Pair
(cP) if

ad +ad* =1 (1.e., 00 ... O1) (25)

The CP aJ and ak in (25) correspond to states in an r-stage ISFSR which
differ only in bo (the content of stage ao = 1). From (24), the two

states are

b b._, +ee Dbboandb b, ... bB

Lemma 3

Among the 2¥ - 1 nonzero elements in GF(Zr), there are 21'-1 - 1 compatible

. r .
pairs. Each of the 2 1 binary r-tuples (bt-lbr-Z oo blbo)’ excep: i
00 ... 01 is compatible with one and only one nonzero r-tuple. The 2 - 2

such eleménts comprise 21'_1 - 1 CPe. ’

THEOREM 3

Given any L degree primitive polynomial f(x) over GF(2). Let @ be a

root of f(x) = 0. Then, for everv CP @7 and a* {k >3,
f(a) divides aX + al + 1
Thus,

f(x) divides xP = xJ 41



Proof

Since @l and ak are a CP.

lj + Q" =1

and

ksals1=0

f(a) = a
Thus, f(x) and xk + xJ + 1 have a common polynomial factor (since they

have a common root @ in GF(27)). Since f(x) is irreducible over GF(2),
f(x) divides xk +xd 41

This implies that k 2 r the degree of f(x). Consider the elements (i.e., the

polynomials) 1, @, ... , and a"l where @ is a root of

r r-1 r=2
£(x) = x + b _,x + b _x + o+ bix+l

a primitive polynomial over GF(2).

j of o br-l br-Z cee b1 1
0 0 0 ... 01
0 0 ... 1 0

r-2 0 1 ... 0 O
r-1 1 o ... 0 O




No CP exists among l1,Q, .., arn1 and

f a =b a"l + br_za + e # bla'r 1

s

is compatible with a’ 1or one vaiue of j < r if and only if f(x) is a

trinomial. If f(x) is not a trinomial, then the degree k of

ak + aj +1=9

exceeds r for all CPs aJ and ak.

§
é Q.E.D.
COROLLARY 3.1
3 k
1f @’ and @ are a CP, then
. r- r- i
023 mod 2 -1 and aZk mod 27 -1 ,
|
i
are a CP in GF(2%)
Proof f;
1f1=al+ ak, then
1 = (Qj N ak)Z = azj mod 2°-1 . 02k mod 2°-1
Q.E. D.

COROLLARY 3.2

A trinomial of degree r + 1 cannot contain an irreducible polynomial,

hence, a primitive polynomial of degree r as a factor.



Proof
For a trinomial,

r+l j

T(x) = x +xd + 1

to coutain an rth degree irreducible polynomial, it must also have a degree

1 factor. However, since

T0)=0+0+1=1
x is not a factor of T(x), and since

(1) =1+1+1=1
x + 1 is not a factor of T(x).

Q.E.D.

The trinomial of least degree (among Zr_l - 1 trinomials associated

with 2r-1

- 1 CPs) that contains a given rth degree primitive polynomial

(with five or more odd number of terms) as a factor is of degree n 2 r + 2.
Let B be a root of
h(x) = X2+ x 41
Since h(x) divides x3-1, B is among the 3 roots of unity. Thus,
B3- 1=Bz4-B+ 1=0

and



A trinomial
T(x) = x" + x¥+ 1
is divisible by h(x) if and only if T(8) = 0. Thus, if

n mod 3 . pd mod 3

B B +1 = Bz + 3 + 1

T(x) contains x2 + x + 1 as a factor. It is, thus, possible for an rth

degree irreducible polynomial to be a factor of a square-free T(x) of degree

n=r+ 2,

Example 18

The trinomial
1
T(x) = x 6 + x5 + 1
. 2
contains X + x + 1 as a factor since

Bl6m°d3+[35m°d3+1=[32+ﬁ+1

It may be verified that a degree 14 primitive polynomial is the only other

factor.

Example 19
The trinomial of least degree that contains the primitive polynomial
f(x) = N

as a factor is determined algorithmically as follows:

4-14



(1) Initially,a,(zz, cee 06, and 07 are computed and stored as

a list of binary state-vectors (see Table 1-1).

i of gl bs b b3 by by by

1 0O 0 0 010

2 0 0 01 0O

3 0 01 0 O0 O

4 01 0 0 0 O

5 1 0 0 0 0 O

6 1 0 01 1 1

7 1 01 0 0 1

(2) 08 is computed and compared for compatibility witha, 02, ees

7
and Q .

(3) 1f a® is compatible with an element in the initial list, stop. If
not, append 08 to the list and repeat step 2 for a computed Q@

and the augmented list, and so on.

The first CP to be found is 011 and aa.
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e e e TR

i of al bs b, b3 by b by

1 600010

06010 0

3 00100 0

4 010000

5 10000 O

6 100111

7 1010 01

8 110101

9 001101

10 0110010

11 11010 0

all 11 1 0
o8

a® 000001

all+a8+1 00000 0

f(a)=a6+c15+az+a+1=au+aa+1=0

and

11 . 1
x

IR NP TR S B SR SR I SR SR SO

+ x° +x° + +

Congider an ll-stage ISFSR that performs multiplication by x and reduces

the result modulo x11 + x8 + 1. Successive states represent polynomials

of degree less than 11 since

x11 = x8 + 1 mod x11 + x8 + 1

4-16
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The cycle in Table 4-1 of length 63 corresponding to the order of @, a root of
f(x) = x6 + x5 + xz +x+1=90

contains the state y representing the factor

x5 + x“ + x3 +x +1 of x11 + x8 + 1
Recall the isomorphism between SSFSR and ISFSR states where an SSFSR state
maps onto g(x) that represents the corresponding ISFSR state. The isomorphism
was established using f(x), the characteristic polynomial of the SSFSR and an
ISFSR that purforms division by x and reduces the result modulo f(x) (see

Table 3-1). However, an ISFSR that performs multiplication by x and reduces

the result modulo the same f(x) has the same cycle structure with the order of

states reversed in each cycle. Thus, g(x)'s in a cycle of the former, appear

in reverse order in the corresponding cycle of the latter.

The 63-bit PN sequence under column heading bo in Table 1-1 is
identical to the partially listed sequence under column heading 1 (i.e., xo)

in Table 4-1. i

COROLLARY 3.3

The trinomial of least degree that contains a given primitive polynomial

f(x) as a factor is square-free.
Proof

Assume

x20 4+ x228 4 1 = (xD + x3 + 1)2

is the trinomial of least degree that contains f(x) as a factor. From
COROLLARY 3.1, a" and @® are compatible and
a

£(x) divides x" + x? + 1

contradicting the assumption. Q.E.D.
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A 63-State Cycle Associated with

Table 4-1.

x6 + x5 + x2 + x + 1 a Factor of x11 + x8 + 1

il

i of yxi

10
11
12
13
14

16
17
18
19
20
21

60
61

62

Y= x5 + xa + x3 + x+1
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The triromial of least degree that contains a given primitive polynomial
over GF(2) as a factor may be determined from Appendix B. One primitive
polynomial, f£(x), of every reciprocal pair is listed for degrees 5 through
12, The octal equivalent of the binary coefficients in descending powers of x

represents f(x). 1Un example 18, it was shown that

x11 + x8 +1= (x5 + xa + x3 + x + 1)(x6 + x5 + x2 +x + 1)

The octal represantations of the respective factors are 73 and 1l47. See
Appendix B for row entries associated degree r of 6 and f(x) represented by

147. Clearly,

x11+x3+1=(x5+x4+x2+x+1)(x6+xs+xa+x+1)

The respective octal representations of the factors are 67 and 163. Since 147
and 163 represent a reciprocal pair of primitive pulynomials of degree 6, only

147 (with the lower octal representation) and T(x) (n = 11, a = 8) of lowest

degree containing 147 as a factor are listed.

Consider the entries in Appendix B associated with r of 9 (degrees of

f(x)) and 1243, the octal representation of f(x).

T(x) = x30 + x+1 (n=236,a=1) f

The entries under the right-most four columns are as shown as follows:

Irreducible Factors Degree
of T(x) in Octal of Factor Period Index
1243 S 511 1
2257* 10 341 3
540663%* 17 131071 1
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All entries pertaining to f(x) represented as 1243 are in italics. The

asterisk (*) appended to the degree 10 factor (2257*) and the degree 17 factor
(540663*) indicate that

T(x) = x36 +x+1

is also the trinomial of least degree that contains each of foregoing
factors. The degree 10 factor is nonprimitive and has period 341 (i.e., the

order of its roots is 341) and index 3

10

(i.e., (277 = 1)/3 = 341)

10

In terms of Galois Fields, let 8 be a primitive root n GF(2 ") of

10
x2 L 1 =0

’I‘hus,B3 has order 341 and is the root of an irreducible nonprimitive degree
10 polynomial whose period is 341 and index is (3, 210 - 1) or 3,

The independent parameters for all entries in Appendix B are r, the
degree of f(x), and f(x), the primitive polynomial. The f(x)'s of a given
degree r are listed in ascending order of u, the degree of the respective T(x)
of lowest degree which contains f(x) as a factor. T(x)'s of degree n < 70 are
factored if they are the lowest degree trinomial containing an f(x) of degree
12 or less. Factoring a T(x) (which was determined to be the trinomial of
lowest degree containing f(x) of degree r as a factor) often yields

irreducible polynomials (primitive and nonprimitive) of degrees greater than r

which are not contained in a trinomial of lower degree. The octal

representation of these polynomials (as well as those of the same or lower

degree than r) are identified by an asterisk (%),

4-20
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Example 20

The primitive polynomial f(x) of degree ll represented by 5023 is

contained as a factor in

_ 47, 39
T47’39(x) x 4+ x +1

T4y 39(x) is the trinomial of least degree that contaius 5023 as a factor as

)

determined by the algorithm presented in Example 19. Prior to dividing

Tl.7 39(x) by 5023 and factoring the quotient polynomial, it is expedient to
»

extract factors of low degree as follows:

All irreducible factors of degree r are factors of

x2 -l 1
If
T (x)=x"+x*+1
n,a
. th
contains an r  degree factor, then
2°-1

a -1=q"+a®+1=0

where @ is a root of the rth degree factor. Let 2F -1 = w. Then,

aw= 1 and if

contains an irreducible rth degree polynomial as a factor, so does
Tn a(x). Simplification in extracting factors results only if w < n.
]

Specifically,

aa7 mod 3 + 039 mod 3 s 1= 02

4-21
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and Tyq 39(x) does not contain x> + x + 1 (the only degree 2 irreducible

polynomial over GF(2)) as a factor.

a’+7mo¢i7+(!39mod7'._1__(;!54%!4+1
3 . 5 4 3 .
and @ +a + 1 is a factor of @ +Q@ + 1. Thus, x° + x + 1 (13) is a
factor of Ta7’39(x).
Qt7mod 15 | 039 mod 15 4 L 02, 09,
4 3 . 9 2
and@ +Q” + 1 is a factor of @” +a” + 1 (see Reference 3). Thu.
4 3 .
x + x” + 1 is a factor of T47,39(x)

/
g*7 mod 31 039 mod 31 L (02,4, )8

and T47 39(x) does not contain a degree 5 irreducible polynomial as a factor.
3

Since w = 2° - 1 > 47, the foregoing test of divisibility cannot be extended
beyond irreducible degree 5 factors. Dividing out the irreducible factors 13,
31, and 5023 yields the remaining degree 29 factor h(x) represented by

7036510105, It remains to determine if h(x) is irreducible. Since

229
a # a mod h(a)

h(x) is reducible. Repeated squaring

2 29
a, 02, 02 s ees ,az

where each result is reduced module h(@) is readily realizable on a digital

computer.
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Squaring any field element in GF(2') is equivalent to multiplying the
field element (i.e., an r-bit binary vector) by an rxr binary matrix M. Each
term (i.e., power of @) is squared modulo h(@). See Chapter 2 of Reference 4

and Example 21.

The aforementioned 29':h degree factor is then subjected to Berlekamp's
factorization algorithm over GF(2) which is amenable to programming on a
digital computer. Applying Berlekamp's factorization algorithm to the 29
degree factor 7036510105 (which is known to be reducible) reveals it has 2
factors. One is 1725 of degree 9 and the other is 4772721 of degree 20. The
foregoing results are used to complete the entries in Appendix B which are

factors of T47’39(x), the trinomial of least degree that contains f(x) of

degree 11 represented by 5023 as a factor. The entries are as follows:

Coefficient Irreducible

of f(x) in T(x) Factors of T(x) Degree
r Octal n a in Octal of Factor Period Index
11 5023 47 39 13 3 7 1
31 4 15 1
1725 9 511 1
5023 11 2047 1
4772721% 20 1048575 1

The irreducibility of a factor of degree 19 or less is verified in Reference 7.
The test for irreducibility for factors of degree greater than 19 is applied
(as illustrated in Example 21). The period of each irrecicible factor of
degree 19 or less can also be determined from Reference 7. The determination
of the period of an irreducible factor of degree m > 19 is subsequentially

discussed.

It remains to ascertain whether each of the factors of T,; 39(x) other
than 5023 are factors of a trinomial of degree less than Tl‘7 39(x). Of the
four factors, only 4772721% (as denoted by (*)) of degree 20 is not a factor

of a trinomial of degree less than TA7,39(X)’
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Factors 13 and 31 of degrees 3 and 4, respectively, are trinomials, and

Tys 25(x) is the trinomial of least degree that contains factor 1725 of
1)

degree 9.

A 47-stage SSFSR or a 47-stage ISFSR, each with a single 2-input
Exclusive-OR gate in the feedback, is characterized by Ta7.39(x). Properly
initialized, the SSFSR and the ISFSR can generate a PN sequence of length 7,
15.0511, 2047, or 1,048,575, Of these, lengths 2047 (2u - 1) and 1,048,575
(2?

sequence generator. Furthermore, a binary sequence whose length is the LCM of

= 1) correspond to the most efficient use of the periodic binary

any subset of the five available periads could be generated. Initialization

is governed by the factors of T,, 37(x).
H]

Assume an ISFSR configuration where multiplication (or division) by a,
a root of Ty7 39(x) = 0, is performed. To generate a PN sequence of length
1,048,575 (22 - 1), a suitable initial state corresponds to the product of

the polynomial factors of T (x) excluding 4772721, the primitive

47,39
polynomial of degree 20. That is,

Y = (13)(31)(1725)(5023)

a polynomial of degree 27 corresponds to a state in the desired cycle.

Example 21
Given the polynomial
3

f(x) = xa + x7 + x“ + x” + x2 +x +1

Testing whether f(x) is irreducible without resorting to tables may be done as

follows:
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Any element

7 6
b7a + b6a * ..t bla + bo

represented by [b7, b6’ cee bl' bol may ve squared by post
multiplication by M over GF(2).

7 a6 05 aé 03 2 a 1
1 0 1 1 0 1 1 {T

0 1 0 0 1 0 1 0

1 1 0 1 1 1 0 1

M= 11 0 0 1 1 1 1 1
0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

where Q is a root of f(x) = 0. Row 8, 7, ... , 1 in M correspond to

polynomials
(00)2. (al)z, cee @)?  mod £(a)
respectively, Starting with
a=[0000001 0], :
|

aM = 02 2

QZH - ab . al

27 256 28

Reducing each result modulo f(a), yields
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20

a 0 0 0 0 0 0 1 0
21

a 0 0 0 0 0 1 0 0
22

Qa 0 0 0 1 0 0 0 0
23

a 1 0 0 1 1 1 1 1
26

Qa 0 1 1 1 1 1 0 1
25

Qa 0 1 0 1 1 0 0 1
26

a 1 0 0 1 0 1 0 0
27

Qa 0 0 1 1 1 0 0 ¢
28

n

2 s a mod f(a)

Since Q

for a least value of n of 8, the order of a is 28 - 1 = 255 or a divieor of

255. It may be concluded that f(x) is irreducible. However, its period is

An P degre:e irreducible f{x) polynomial over GF(2) has period d where

yet to be determined.

d divides 2¥ - 1. Then, unique subsets of

r~-1
2
Q, A 5 oo .Gz

reduced modulo f(x) are multiplied to form x4 modulo f(x). The least value
of d for which

ud = 1 mod f(a)

4-26
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is the period of f(x), i.e., the order of its roots. If the least value of d

is 2¥ - 1, then f(x) is primitive.

Example 22

In Example 21, it was shown that
f(x) = x8 + x7 + xa + x3 + x2 +x+1
is irreducible. The divisors d > 1 of 255 are

3, 5, 15, 17, 51, 85, 255

The number of irreducible polynomials of degree 8 whose roots have order d is

¢(d)/8. Values of 3 and 5 for d can, thus, be ruled out. Clearly,
d .. ‘
a = 1 mod ‘f(a) for d = 3, 5.
Since
16

a " # amod f(a)

as shown in Example 21, g does not have order 15. Also,

cz17 = q- a16 Z 1 mod f(q)

rules out d = 17 which could also be deduced from the fact that f(x) is not a

self-reciprocal polynomial. The binary equivalent of 51 is 110011, and
= a® QP ala=1 mod f(@
Thus,

f(x) = x +x +x +x° + x2 +x + 1

has period 51.
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Given a primitive polynomial f(x) of degree r over GF(2) comprised of an
odd number of terms greater than 3. No method is known of predicting the
degree of T(x), a trinomial of lowest degree, which contains f(x) of degree r

as a factor. A lower bound was shown to be degree r + 2 where

Trpp a0 = 6+ x+ DEG)

Among

1 r-bit vectors

there must be at least o;e CP. Each of the corresponding 2t
has at least one 1 in the first r - 1 components. Among these 2"-_1 r -1
bit segments (where a* and ao are excluded), there must be at least one
identical pair. Thus, an upper bound of the degree of T(x) is 2" From
entries in Appendix B for f(x)'s of degree r from 5 through 12, 271

represents a crude upper bound. This is shown tabularly as follows:

Coefficient of T(x)
r f(x) in Octal n a 2r-1
5 57 8 3 16
6 147 11 8 32
7 313 21 18 64
8 607 27 8 128
9 163 61 39 256
10 3117 83 14 512
1 5667 143 12 1024
12 1417 171 42 2048
4-28
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The following statistical model leads to a more reasonable disparity of
estimated and actual results. Every r-bit nonzero number appears once, and
only once, in an r-stage ISFSR (or SSFSR) cycle characterized by a primitive
polynomial of degree r over GF(2). The 2% - 1 numbers are, thus, uniformly
distributed. Such an ISFSR generates random numbers although a strong
dependence exists between a number (i.e., vector state) and its predecessor

(see Reference 15).

The statistical model is comprised of cells into which random placing of
balls occurs until the first time occurrence of placing a ball intec a cell
already occupied. The two balls correspond tc a Compatible Pair (CF) of ISFSR
states. This occupancy model is lucidly presented in Section 7 of Chapter II
in Reference 16. Following Feller's approach, (jl, Jgs eer s jn)
denotes that the first, second, ... , and n ball are placed in cells
numbered jl’ j2’ cee jn’ and the process terminates on the nth
step. The ji are integers between 1 and m = 2" - 1. For n, only the

values 2, 3, ... , and m + 1 are possible. Two balls cannat occupy the same

cell before the second step or after the (m + 1)st step.

Attributed to each sample point (jl’ j2’ cee jn) involving exactly n

balls is the probability m .

The aggregate of all sample points (jl’ j2, cee in) for a fixed n

) th
corresponds to the event that the process terminates on the n step.

. P(m, n - ) - (a-1)

n m" (26)

q

is the probability a CP is found on the nth step. The permutation of m

things taken n - 1 at a time is denoted by

P(my n=-1)=m(m=-1) ... (m=-n+2)
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The numbered cells jl’ jZ’ ese , and jn-l can be selected in P(m, n - 1)

ways. The probability q, in (26) can be expressed as

() - e

where q = 0 and q, = 1/m

The probability that the process continues for more than n steps is

p,=1-( +q+ ... +q)

n n

where P = 1. By induction,

P =M=(1-l)(1_3)“. (1_n-1)
n ot m m m

For n << m, cross products can be dropped and

_,_1+2+...4+4(-1)_, nln-1)
pn~1 m —1 2m

Since
Ln(l - x) = -x for small x >0
where Ln denotes the natural logarithm,

1+2+ ...+(n-1)_ _ nn-1)
n 2m

Ln pn::—

and

- .2
Ln p,=n /2m
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Consider n for which

Pp ¥ Pyt e tp < 1/2
and

p1+p2+...+pn>1/2

This value of n 1s the median of the distribution of {pn}. The first CP is
as likely to be found in n steps as for the process to continue beyond n steps
for the first CP to be found. The value of n corresponding to the median of

the distribution {pn} is closely approximated by

n=(2m - Ln2)0'5 (31)

(see Reference 16.) Each primitive polynomial of a given degree r in
Appendix B may be considered as corresponding to an experiment. Each
represents a different random number generator. The median of the value of n
of {Tn,a(X)} in Appendix B associated with primitive polynomials of a given
degree r (5 throush i2) is compared with n computed in (31). This is shown

tabularly as follows:

Median of n
r in %Tn,a(X)} [ZZm . Ln2)0°§1
5 7
6 8 10
7 14 14
8 20 19
9 29 27
10 42 38
11 63 54
12 82 76
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Note that m = 2¥ - 1 and x7] denotes the smallest integer n 2 x. The

computed value of n corresponding tv the median of the distribution {pr}

increases with the square root m = 2 - 1. 1In determining n of Tn a(x)
?

algorithmically; each r-stage ISFSR initially generates the identical ordered

set of r r-bit vectors, namely,

and a CP could not appear before step r + 3 [or r + 1 in the case where f(x)
is a trinomial of degree r]. The statistical model does not account for

this. Each initialization and succeeding numbers (i.e., vectors) are randomly
selected. The low value of n corresponding to he median of the distributions
of {Tn’a(x)* and {pn} compared to the crude upper bound of 21 for n is
encouraging. Among primitive polynomials of degree r > 12, one would expect
to find some contained in a Tn a(x) where n < 10r. See Appendix B where

every 'I'n a(x) for values of n < 70 is factored if it contained a primitive
»
polynomial of degree 12 or less. Irreducible polynomial factors up to degree

55 were found.

A partial list of primitive polynomials from degree 13 through 19 appears
in Appendix B. Every (row) entry lists r, the degree of f(x), f(x) of index
1, its reciprocal x"f(1/x), and the powers of x (n and a) of T(x), the
trinomial of lowest degree containing f(x) (or its reciprocal) as a factor.
Another factor of T(x) is given if it is an entry that appears elsewhere in
Appendix B or Appendix C. If the degree of the second factor is 12 or less,

it serves as a cross reference. For example, consider the following row entry:

Factor of T(x)
Listed Elsewhere

f(x) of T(x) Coefficient
r Index 1 xT£(1/x) n a r in Octal Period Index
1% 70767 73707 53 28 10 2305 1023 1
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TS3,28(X) was found to be the trinomial of lowest degree to contain the

degree 10 polynomial 2305 as a factor. The period of 2305 is 1023 and its
index is 1, hence, 2305 is primitive. Among the entries of degree 10 in
Appendix B, f(x) represented by 2305 is listed followed by n of 53 and a of 28
associated with T(x), i.e., T53,28(x). The factors of T53,28(X) include

the polynomial 73707* of degree 14 whose period is 16,383 and index is 1. The
factorization of T53,28(X) led to the primitive degree 14 polynomial

73707*%, Note that the degree 14 reciprocal polynomial has a lower octal
representation, namely, 70767. However, since 73707 is the factor of
T53,28(X)’ it is italicized in the foregoing example of a listing of a

degree 14 primitive polynomial.

Thére are entries in Appendix B of primitive polynomials of degree l4
through 19 for which no other factor of Tn,a(X) is given. Each of the other
irreducible factors are either a factor of a trinomial of degree less than n
or the degree of each exceeds 19, In the latter cases, the single factor of
T a(x) vas found in the table of factors of square-free trinomials through

]
degree 36 in Reference 3.

In Appendix B (as well as Appendix C), the period (and index) of
irreducible factors of Tn a(x) whose degrees exceed 19 were not determined

]
in many cases. These entries are blank.

B. IRREDUCIBLE NONPRIMITIVE POLYNOMIALS OVER GF(2)

Unlike primitive polynomials, there are irreducible nonprimitive
polynomials over GF(2) which are not factors of any trinomial. Irreducible
nonprimitive polynomials over GF(2) from degree 6 through 12 that are factors

of trinomials are listed in Appendix C.
Every irreducible polynomial of degree r over GF(2) where 2" -1 is
prime is primitive (see Appendix A). Thus, every irreducible polynomial of

degree 2, 3, 5, 7, 13, 17, 19 or 31 are primitive. Primes of the form

M o=2F-1
r
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are known as Mersenne primes. A necessary, but not a sufficient condition for
Hr to be prime, is that r is prime. See Chapter IX in Reference 3 for a

list of 27 of 30 known Mersenne primes.

The Mersenne number (Reference 4)

Mjp = 211 - 1 = 2047 = 2389

is composite through 11 is prime. Of the 186 irreducible polynomials of
degree 11, 176 are primitive and 10 are nonprimitive. None of the 10, degree
11 irreducible nonprimitive polynomials (2 of period 23 and 8 of period 89)

divide a trinomial.

Given h(x), a degree r irreducible nonprimitive polynomial over GF(2),
with an odd number of terms exceeding 3. The subset of elements of GF(2%)
generated by a, a root of h(x) = 0, are

2 d-1 d
a,a’oou,a ,d.l.

The order of @ is dd where d<2° - 1 and d divides 2k - 1 for k = r, but

does not divide 2F¥ - 1 for r < k. Since

d

a4 -1 =nw@ o, "

the r distinct roots of h(x) = 0 are among the d roote of unity. Assume

d = sv, Then

2v' o}s-l)v’ sV

a",a a =1

are among the d roots of unity. Substituting 8 for a¥ yields

8 BZ' ’ps—l’ﬂs -1

which comprise the s roots of unity. The s roots of unity are thus a subset

of the d roots of unity if s divides d. Furthermore, every element whose
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order s divides ¢ must be a power of @, since an element of order s is a

generator of the s roots of unity. If the integer s is of the form
s=2"-1>1

then

av’ a2v’ a(s-l)v’ Q=1

are roots of

u
x2 1 1=20

and are the nonzero elements of GF(2"). Among the 2" - 1 nonzero elements
of GF(2"), there are vl o Compatible Pairs (CPs). This means that
h(x), the irreducible nonprimitive polynomial of degree r, is a factor of a

trinomial if the order of a root of h(x) = 0, say d, is divisible by s of the

form

s =2%-1 H

S——

Example 23

o

The irreducible polynomial

h(x) = x6 + x5 + x4 + x2 +1,

as discussed in Examples 2 and 3, has period 21 (and index 3). Its roots are

among the 21 roots of unity. Thus,
BZI"I=B6"BS+BA+BZ+1=O

and h(x) divides x21 - 1. The 21 roots of unity are a subset of GF(26)

and form a group under the defined operation of "multiplication." However,
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the 21 roots with 0 (B*) adjoined do not form a group under the defined

operation of "addition." Contained within the 21 roots of unity

B BZ’ ee BZO’ BZI =1

are the nonzero elements of the subfields GF(22) and GF (23),

respectively. Each nonzero element of GF(22) is a root of

2
X2l 1ax3-1=0

whereas, each nonzero element of GF(23) is a root of
2 o o1=x-1=0

Let {Bw} be the set of 3 roots of unity.

(Bw)S mod 21 _ 1 'BO

and
3w = 0 mod 21
w =0 mod 21/(3,21)
= 0 mod 7
=0, 7, 14
Thus,
w 0 7 14
{g* = g. g, p"t

are the 3 solutions. From Table 1-3,

B'=011111 and g =011110

are a CP.

Similarly, let {By} be the set of 7 roots of unity. Then,

(By)7 mod 21 _ 1 'BO
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and

7y = 0 mod 21

y =0 mod 21/(7,21)

y =0 mod 3

y=3k for k=0, 1, ... , 6

Thus,
o 3 6 9 .12 .15 Al18
{By}*{ﬁ,ﬂ.ﬁ,ﬁ.ﬁ » B ,B}
are the 7 solutions. Placing the nonzero y's into cyclotomic cosets yields

3 6 12
9 18 15

as shown in Table 1-4. Since each coset has an odd number of entries, each
member of a CP is associated with a different coset. This is a consequence of
Corollary 3.1. It may be verified in Table 1-3 that ﬁ3 and 39 are a CP.
Hence, B6 and 318 as well as Blz and Bls (due to Corollary 3.1) are

CPs.

Applying the algorithm described in Example 19 to

h(x) = x6 + c5 + x4 + x2 + 1

in this example reveals that

_ .9 3
T9,3(x) x* +x +1

is the trinomial of least degree that contains h(x) as a factor. It
corresponds to the CP 133 and Bg in the subfield GF (2°). The reciprocsl

of h(x), namely, x6h(1/x) represented by 127 contained in T 6(x) is an

9,
entry in Appendix C.

e
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Example 24

The order of the roots of the degree 12 irreducible nonprimitive
polys nial

h(x) = x12 . x10 . x9 . x8 + x7 . x3 . x2 x4+ 1

is 585. The prime factors of 585 are 32, 5, and 13. Since 15 is a divisor
of 585, the nonzero elements of GF(Z“) are contained among the 585 roots of
unity. Let{Bw} be the set of 15 roots of unity. Then

15w = 0 mod 585
w =0 mod 585/(15,585)
w=0 mod 39
w=239 for k=0, 1, ... , 14

The cyclotomic cosets containing the 14 nonzero values of w are as follows:
39 18 156 312
117 234 468 351
195 390

273 546 507 429

Dividing each entry by 39 yields
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which correspond to the 15 roots of unity (excluding ao = 1) in the

4

isomorphic CF(24) generated by a root of x + x + 1 = 0 (or a root of its

reciprocal xa + x3 + 1 = 0). Consider the 7 CPs in the 15 roots of unity
gencvated by a where al‘ +a+1=0, the CP a" and Q@ correspond to the CP

ﬂ156, and B”, respectively, and

ﬁ156 +‘;39 +1=h(B) =0,

156

the CP a“ and 03 correspond to the CP 3 and 3117. respectively, and

6156 + Bll? + 1 - Blz - h(Blz) - 0.

Thus, h(x) is a factor of T (x) and x* h(1/x) is a factor of

156,39
T156,117(“)t the reciprocal of T156,39(X)' There are

@(585) _ 0(39)e(5)p(13) = 24
12 12

degree 12 irreducible nonprimitive polynomials over GF(2) of period 585 and

index 7. (x) contains one of each reciprocal pair (12 total) as

Ti56,39
factors and a degree 12 irreducible nonprimitive polynomial of period 45 (a

divisor of 585) and index 91. These are listed as follows:

Irreducible Factors Degree

of T156,39(x) in Octal of Factor Period Index
11001 12 45 91
10245 12 585 7
11433 12 585 7
11637 (h(x)) 12 585 7
12153 12 585 7
12673 12 585 7
13113 12 585 7
13145 12 585 7
13567 12 585 7
14043 12 585 7
14177 12 585 7
14315 12 585 7
17315 12 585 7
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The reciprocal of each of the foregoing degree 12 factors of
T156.117(x), the reciprocal of T156'39(x).

Among the 15 roots of unity are Bo, Bl”, and 3390

, the 3 roots of
unity. All 24 degree 12 irreducible nonprimitive polynomials whose roots have

order 585 are factors of T390.195(x)'

Although 1156'39(x) is the trinomial of lowest degree derived from the
7 CPs in the 15 roots of unity, it is not the trinomial of lowest degree to
contain h(x), whose octal representation is 11637, as a factor. By applying
the z2igorithm illustrated in Example 19, the first CP is found to be Bu and
323 vhere

11

B =100000000000

g3 =100000000001

Thus,

x23 . xll + 1

- T23.11(x)

is the trinomial of least degree to contain h(x) of degree 12 and period 585
(and index 7) represented by 11627 (see Appendix C). Note that /311 and ,323

among the 585 roots of unity are not membere of GF(Z“).

Example 25

The order of the roots of the degree 8 irreducible nonprimitive polynomial

h(x)'xs*x6*xs+xa*x2+x+i

is 85. The prime factors of 35 are 5 and 13, and 85 has no divisors of the
form 2" - 1. It may be verified that

xll + xs + 1= Tll,S(x)
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contains h(x) represented by 567 as a factor, although no subset of 85 roots of
unity are the nonzero element of a Galois field. Furthermore, T11 5(x) is
]

the trinomial of least degree containing h(x) as a factor (see Appendix C).

THEOREM 4

A sufficient but not a necessary condition for an irreducible
nonprimitive polynomial, h(x), over GF(2) with an odd number of terms
exceeding 3 to be a divisor of a trinomial is:

The order of its roots d contains a factor of the form s = 2" - 1 > 1.

Proof

Given h(x) of degree r over GF(2) whose roots have order d where d < 2¥ - 1

and d divides 2k - 1 for k = r, but does not divide 2k - 1 for k< r, Each
root of h(x) = 0 generates the d roots of unity. If d = sv and

s = 2"

-1>1,

then, a subset of the d roots of unity is comprised of the nonzero elements of
GF(2"). Each element is a polynomial of degree less than r representable by
an r-bit vector. These elements are isomorphic to the nonzero elements in
GF(2") representable as u-bit vectors. Clearly, u divides r. The 2% - 1
u-bit vectors contain 2"-1 - 1 CPs. The isomorphic 2" - 1 r-bit vectors

also contain 2"'-1 - 1 CPs where a compatible pair of r-bit vectors are

isomorphic to a compatible pair of u-bit vectors (see Example 6).

The d roots of unity can contain CPs and no subset of elements that

comprise a Galois field (see Example 25).

Q.E.D.
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COROLLARY 4.1

If BJ and Bk are a CP among the d roots of unity, then

BZJ mod d and BZk mod d

are a CP contained in the d roots of unity.

n@)|g* + g3 + 1
and
h(x)lxk +xd 41
Thus,
h(x) (x* + 3+ 1)2 = x2k 4 42
since

[g(x)]z = g(xz)

where g(x) is any polynomial over GF(2). Then,

BZk mod d BZj mod d

and

are each members of the d roots of unity
B8, 32, 'Bd—l»Bd =1

which form a group under "multiplication' where

BwBy - B(w+y) mod d
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Since

h(x) XZk + sz +1

h(B)=ﬁ2km°dd+Bsz°dd+l=0
and

BZk mod d and sz mod d

are a CP. Q.E.D.

Example 26

The cyclotomic cosets associated with ﬁs and [3“, where 8 is a root

of h(x) = 0 given in Example 25, respectively, are:

5 10 20 40 80 75 65 45
11 22 44 3 6 12 24 48

The entries in each cf the 8 columns are associated with a CP (Bk, BJ)
which corresponds to a trinomial divisible by

5

h(x)=x8+x6+x +x4+x2+x+1

representable by 567. The square-free trinomials divisible by 567 are listed

in ascending order of degree as follows:

11 5

X X

xloO . x3 + 1
48 45

X x

65 24

X X

75 12

X
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The additional square-free trinomials ave another source of trinomials of
lowest degree that contain an irred cible polynomial of degree greater than

19, e.g., the factors of

4
x+0 . x3 + 1

are 567 (i.e., h(x) of degree 8 and period 85 and 54556457063, an irreducible

polynomial of degree 32. The factors of 232-1 are
-yt sn @@
— e | “————— —— N s’

3 5 17 257 65,537

32 _

and the period of the degree 32 irreducible polynomial divides 2 1.

Each of the prime factors :iay be expressed as .

for

These are known as Fermat primes. Every Fn Fermat number where n > 4, whose

character has been determined to date, is composite.

It may be verified that Tso 3(x) is the trinomial of least degree that
contains the degree 32 irreducible polynomial 54556457063 over GF(2) as a

factor.

The following theorem and corollaries are due to Golomb (see Reference 3).
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THEOREM 5

A self-reciprocal polynomial over GF(2), h(x), divides a trinomial only

a

if the three roots of unity Bza, B°, and BO for some a are a subset of

the elements generated by 8, a root of h(x) = 0.

Proof
Assume
h(x)lxn + x? 1
Then,
x h(1/x)[x" + x"? 41
Given
h(x) = x* h(1/x)
Then,
hGOPx™ + x4 1) + (x" + x"72 41) = xTF 4 x®
Therefore,
h(x)|x'a(x“-'a P e P e e 1) = X2
and

h(g) =% + %+ 1=0
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The elements BZa and Ba are a CP, and the 3 roots of unity
3
Ba. BZa’ B3 =1

are a subset of the elements generated by B. The period of h(x) must,

therefore, contain 3 (i.e., 22 ~ 1) as a factor.

COROLLARY 5.1

No trinomial is divisible by both x3 +x + 1 and x3 + x2 + 1.

Proof

2 6 5 4 3

u(x)'—'(x3+x+1) (x3+x

Q.E.D. .

2
+1) =x +x +x +x +x"+x+1

a self-reciprocal polynomial whose roots have order 7, and 7 is not divisible

by 3.

The elements generated by 3, a root of u(x) = 0 are

i of Bl €5 ¢4 €3 c2 €1 ¢
0 0 0 0 o0 o0 1
1 0O 0 o0 0 1 0
2 0O 0 O 1 0 O
3 0 0 1 0 0 O
4 6 1 0 0 0 o0
5 1 0 0 0 0 O
6 1 1 1 1 1 1

and no CP is among them.
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COROLLARY 5.2

No trinomial is divisible by
h(x) = e et e xe
an irreducible self-reciprocal polynomial whose roots have order 5.

Since 3 is not a divisor of 5,

x3 ~ 1 does not divide xs -1

and all 3 roots of unity are not a subset of the 5 roots of unity.

The 5 roots of unity generated by B, a root of h(x) = 0, do not contain a
CP.
Q.E.DI

Example 27

There are 6 self-reciprocal irreducible polynomials of degree 18 whose

roots have order 171 (and index 1533). See Table 1-5.

Let{[?a} be the set of 3 roots of unity which are a subset of the 171

roots of unity.

@H3 ™d 171 g0

and

3a =0 mod 171

a =0 mod 171/(171/3)
a =0 mod 54

a=0, 57, 114

I
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Thue,
h@ =M% 47 v 120

and

114 | x57

h(x)|x + 1

where h(x) is any one of the 6 self-reciprocal irreducible polynomials of
degree 18. Thus, Tll& 57(x) has 6 degree 18 factors when multiplied
?

together over GF(2) yields a degree 108 polynomial.

The remaining degree 6 self-reciprocal pclynomial is one of the following:

Self-Reciprocal Polynomials

Binary Coefficients of

x6 x5 x4 x3 x2 X 1 Factors
(1) 1 0 0 1 0 0 1 irreducible
(2) 1 0 1 1 1 0o 1 (111)(11111)
(3) 1 1 0 1 0 1 1 (111)(111)y(C111)
(4) 1 1 1 1 1 1 1 (1011)(C1101)

Polynomials (2) and (4) can be ruled out due to Corollaries 5.2 and 5.1,

respectively. Since T)14 57(x) is square-free, polynomial (3) cannot be a
’
factor. Thus, '

with period 9 (and index 7) is the remaining factor. The irreducible factors

of T114’57(x) are listed as follows:

4-48



Irreducible Factors of Degree

T114,57(x) in Octal of Factor Period Index

111 6 9 7
1055321 18 171 1533
1167671 18 171 1533
1315315 18 171 1533
1331155 18 171 1533
1505213 18 171 1533
1635347 18 171 1533

Note that BIM and [357 is the only CP among the 171 roots of unity. This

is independent of the generation of the 171 roots of unity. Thus, applying
the algorithm to each of the 6 self-reciprocal polynomials of degree 12 yields
T114,54(*) as the trinomial of least degree containing the given

self-reciprocal polynomial as a factor.

The polynomial hl(x) represented by 1055321 is listed in Appendix C of
Reference 6 appended to its index 1533. The minimal puiyromial hl(ﬁP) =0
was determined by a computer program to be hz(x) represented by 1167671,
etc. The 6 self-reciprocal polynomials of degree 18 given in the foregoing
table are listed in Reference 7. However, they are erroneously classified as

primitive.

Golomb, in Reference 17, discusses irreducible polynomials,

synchronization codes, and primitive necklaces in the context of cyclotomic

algebra.
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SECTION V

VERY LARGE SCALE INTEGRATED CIRCUIT CONSIDERATIONS

Switching elements comprise less than 10X of the active chip area of a
Very Large Scale integrated (VLSI) circuit chip. Interconnections make up the

balance.

A static shift register ia made up of identical stages or cells.
Identical cells lead to a maximally regular topology in a VLSI layout known as
a floor plan. The geometric design of one cell is replicated to a desired
number to form a cascade. Each cell is a clocked memory element called a
static flip-flop. The flip-flop is a bistable device capable of assuming one

of two state-values.

A functional logic diagram of a JK flip-flop is shown in Figure 5-1. The
state of the flip-flop is defined by its assertion output q at a particular

CPI. The negation output is § (the complement of q).

The logic inputs are J and K. A change in the state of the flip-flop can
only occur after the application of a clock pulse denoted by Cp. The logical

behavior of the JK flip-flop is reflected in the following state table:

e = e OO0 O O
- OO = = O O
- O =~ O = O =~ O
-0 O O = = O -
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J and K represent present inputs, and q represents the present
(assertion) output or state of the flip~flop. Let k denote a CPI, the time

between two consecutive clock pulses., Then,
q(k) — q(k+l) = Q

where Q denotes the state the flip-flop assumes after the application of a
clo.k pulse. Q is referred to as the next (assertion) output or state of the
flip~flop. The next state Q is a Boolean function of J, K, and q. Expressed

in minimal (logical) sum of (logical) products form
Q= J3V kg (31)

Juxtaposition denotes the logical product or the AND operation (e.g., K
AND q is expressed as Kq). The symbol V denotes the OR (i.e., Inclusive-OR
operation). A detailed presentation on switching (Boolean) functions and
clocked memory elements appears in Reference 18. The reader is cautioned to
note that the symbols for the OR and Exclusive-OR operations in Reference 18
differ from those in this report. Expression (31) is the characteristic
function of the JK flip-flop. It is a Boolean difference equation where time

dependency is implied.
Let J = K in (26). Then,

J =K
and Q = KgV Kq = K

Thus, when inputs J and K are complementary, the next state Q, after the
application of a clock pulse Cp, is the state-value of K prior to application
of Cp. The assertion output, in effect, '"copies'" the state-value of K. The
behavior of the JK flip-flop under the condition J equals K is that of a D
flip-flop (i.c., a delay flip-flop). Let q; and 3, denote the assertion

t

and negation output of the i k JK flip-flop in a cascade. Let Ji+1

denote the respective inputs to the (i + 1)th JK flip-flop whose

and

Ki+1

-



assertion output is q; Connecting q; te Ki+ and Ei to results in

e+ Con0 1 Jie
shifting the content of the i flip-flop (i.e., qi) to the (i + 1)th

flip-flop upon the application of a Cp.

The JK flip-flop in Figure 5-1 is comprised of 8 NOR (OR-NOT) gates and
one inverter for developing a two-phase clock. The JK flip-flcp is made up of
two clocked cross-coupled NOR gates called latches. One serves as a master
and is clocked by ¢ﬁ = Cp. The slave is clocked by ¢2 = Cp (the
complement of Cp). The state of the master it determined by the J and K
inputs when Cp = 0, while the inputs to the slave are disabled Cp=1. 1he
master (clocked latch) assumes a stable state prior to the time Cp becomes 1
as Cp becomes 0. The state of the slave then assumes the state of the master
during which time the inputs to the master (J and K) are disabled. Feedback
from the assertion output q to the NOR gate, which has J and Cp as other
inputs and feedback from the negation output q to the NOR gate, which has K
and Cp as other inputs provide input gate steering. Gate steering allows a
state-value of 0 to simultaneously be applied to the J and K input. The J
input when at state-value 0 (and K = 1) is a set input which causes the
assertion output q to assume a state-value of 1 (via the slave). Whereas, the
K input when at state-value 0 (and J = 1) is a clear (or reset) input which
caus2s the assertion output, q, to assume a state-value of 0 (vis the slave).
When J and K are both at state-value 0, the state of the JK flip-flop

changes. From (26)
Q = J3V Kq
=03V o0q=3
Thus, J = K= 0 is a toggle input which is not employed in a shift register

configuration. A J = K = 1 cause no change in q. A condensed state table of

a O-enable JK flip-flop is listed as follows:
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o

0o o q
0o 1 1
1 0 0
1 1 q

The second and third entries where J and K are complementary correspond
to D flip-flop behavior where Q copies the K input. Spe And Roc in
Figure 5-1 are asynch.onous 3set and clear inputs, respectively. SDC when at
state-value 1 sets the flip-flop, and Rpe when at state-value 1 resets the
flip-flop.

is a constraint. That is, a state~value of 1 should not be applied to SDC
and RDC simultaneously since q will assume an indeterminate state-value

(i.e., ¥, a 0 or a 1). Both SDC and R . override the clocked logical

DC
inputs J and K. The SDC and RDC inputs with added control logic provide a

means for on-chip initialization of each flip~flop.

Another configuration of the 0 enable JK flip-flop where J = K = T is of

interest. From (26)
Q=TqVTq=T+q
= ] + T + q (32)

The next state Q is the complement of the Exclusive~OR of the T input and
the present state q of the flip-flop. Connecting J and K inputs together
results in a trigger or T flip-flop whose characteristic function is linear.
In a subsequent report, it will be shown that the feedback of an SSFSR

characterized by a trinominal may be reduced to a wire when the register



portion is made up of a combination of D and T flip-flops. The conditions
under which the properties and the length of a given periodic sequence is

preserved will be discussed.

An N channel Metal-Oxide-Semiconductor (NMOS) circuit of the O-enable JK
flip-flop appears in Figure 5-2. Each transistor is an N channel
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). Those operating
in the depletion mode serve as pull-ups and are labeled MD. Those operating
in the enhancement mode are served as pull-downs and are labeled ME. The
optimal length-to-width ratios of the gate geometries are discussed in
Reference 19. The NOR gate configuration was chosen because its delay time
for falling transitions is decreased as more or its inputs are active. Added

stray capactance does, however, offset this decrease.

A functional logic diagram of an on-stage SSFSR characterized by

T (X) = X" +x% +1

n,a
is given in Figure 5-3. Clock and initialization circuitry is omitted. The
two-level logic function comprised of three NOR gates is effectively a 2-input
Exclusive-OR circuit. Thirty transistors comprise the NMOS cell (i.e., JK

flip-flop) in Figure 5-2. Intracell connections are highly localized.

Whereas, intercell connections are simply two wires due to the fact that the

shift register is a serial device. The celluarity of a shift register and the
serialization of intercell connections leads to topological regularity

amenable to VLSI chip designs.

Introducing feedback to the shift register enchances its usefulness
beyond all expectations of the early 1950s when independent discoveries were
surfacing (Reference 3). The combinational logic in feedback of a shift
register, however, adversely affects the topological layout of a VLSI design.
This is particularly true in a SSFSR where a two-level linear-logic function
grows sharply with the number of arguments (Reference 18). A feedback network

with a single 2-input modulo 2 summer (i.e., Exclusive-OR gate) is the least
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complex without resulting in cycles (of states) of trivial length. Isomorphic
SSFSR and ISFSR with such a feedback function are of identical complexity in

terms of transistor count and propagation delay.

This report discusses the embedding of the behavior of an r-stage shift
register with linear-logic feedback into that of an n-stage shift register
with a single 2-input modulo summer in its feedback in Section IV. The sole
purpose is to realize VLSI architecture of maximal regularity (i.e., identical

cells) with intercell communications serialized to a maximal degree.
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SECTION VI

SUMMARY

Feedback shift registers have proven to be efficient periodic binary
sequence generators. Polynomials of degree r over a Galois Field
characteristic 2 (GF(2)) characterize the behavior of shift registers with
linear-logic feedback. Such FSRs are amenable to analysis and synthesis.
Furthermore, the synthesis of shift registers with nonlinear feedback is often
the result of "adding" nonlinear terms to a linear recurrence relation. See'
Reference 23 and Chapter VI entitled "Nonlinear Shift Register Sequences' in

Reference 3.

Application of periodic binary sequences include random number generation
(Reference 15), spread spectrum communications (Reference 20), and radar
ranging (a forerunner of spread spectrum communications (Reference 11)), and

VLSI testing (References 21 and 22).

Other applications of FSRs include encryption and decryption
(Reference 23), algebraic error-detection and error-correction encoding and
decoding (References 4 and 6), and FSR synthesis of sequential machines

(Reference 24).

The vast intrinsic combinatorics of an FSR accounts for its varied and
significant applications. This reports deals solely with shift registers with
linear-logic feedback (the SSFSR and ISFSR) characterized by polynominals over
GF(2). The objective is the algorithmic determination of the trinomial of
lowest degree, when its exists, that contains a given irreducible polynomial
over GF(2) as a factor. It was proven that every primitive polynomial of
degree r is a factor of 21.-1 - 1 trinomials and the one of lowest degree is
square-free, A sufficient, but not a necessary condition, was proven for a
nonprimitive irreducible polynomial to be a factor of a trinomial. Methods
for determining the initial state of a SSFSR and ISFSR required to generate

the periodic sequence associated with a factor of the trinomial was given.

6-1



A measure of complexity of a binary periodic sequence is the length of
the shift register with linear-logic feedback which, when properly
initialized, can generate the sequence (see References 4 and 25). It is
proposed that a measure of complexity of an irreducible polynomial is the

degree of the trinomial of least degree, if it exists, that contains the

irreducible polynomial as a factor.
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APPENDIX A

NUMBER~THEORETIC FUNCTIONS

A number-theoretic function is any function that is defined over
positive integral arguments. A number-theoretic function f(m) is
multiplicative if

f(ab) = f(a)f(b) whenever (a,b) =1

The prime-power factorization of a positive integer m > 1 is

i=1

where k and e, are positive integers and Py prime integers. A prime is
defined as an integer p > 1 that is divisible by 1 and p only. Thus, a

multiplicative number-theoretic .iunction over m may be expressed as

k k
e, e
' f(m) = I I P, )= I I £ <;i )
i=1 i=1

since

ei e,
pi,ij = 1  forimj

The Euler-phi function ¢(m) is defined as the number of positive

integers no greater than m that are relatively prime to m. Furthermore, ¢(m)




is multiplicative, The ii.cegers no greater than pk that are not relatively

prime to pk are those that contain p as a factor, nsmely,

k-1
P> 2P, <o 4P P

There are a total of pk.1 such integers. Therefore,

k-1

Lk K k-1
() =p -p ~=p (p-1)

The integer 1 is neither a prime nor a composite., To be complete, ¢(1) is

defined to be 1.

In general,

(1 form = 1
p-1 form = p
p(m) = <
ﬁ p?i—l(p.-l) for m = ﬁ pe.i
i i i
\ i=1 i=1

As discussed in Section 1, the number of primitive polynomials of degree

r over GF(2) is

e(2" - /r
Also, the number of irreducible nonprimitive polynomials of degree r and
period d over GF(2) is ¢(d)/r. The value of d is such that d < 2%-1 and 4

divides 2k - 1 for k = ¢, but does not divide 2k -1 fork«<r,

The set of all cosets (proper and improper) relative to the

multiplicative subgroup

{1, 2, 4, on., 2”'1}
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correspond to the 2" - 1 roots of unity arranged into cyclotomic cosets.

The number of cyclotomic cosets is

c r
dir

N e l{z od) 27/9] -1

where dir denotes '"d divides r." The summation is taken over all d 2 1 that

divide r.

Another multiplicative number-theoretic function of interest is the

Mobius function denoted by u(m). The MObius function is defined by

1 if m=1
pim) = o if a’lm for a > 1
-1k if m=p;p, ... P, Where p. are distinct primes

The Mobius function shows up frequently in number theory, particularly in the
Mobius inversion formula. If f is any number-theoretic function, not

necessarily multiplicative, and

F(m) = z:f(d)

dim

then

E(m) = ZF(d)#(n/d) = Y Fa/d)pa)
dim dlm

The number of irreducible polynomials of degree r over GF(2) is I where

r _ N\
2 = E dld

dlr

For r = 6, 16 is determined recursively. Divisors of 6 are 1, 2, 3, and 6.



2! a 11 I, =2
. 1 1

2" = 20212 I, =1
) 2
2« 2431, I, =2
6 3
2°= 24246461 I, = 9

A closed form for Ir follows from applying the Mobius inversion formulas.

For
F(r) = 2¥ and f£(d) = d1,
(1= ZZr/dp.(d) IR RED )
dir djr
For r = 6,
p.(l) =], ’,L(Z) = -], #(3) = -], p.(6) =]
37 .2

l1,.6
I6 €(2-2-2 + 2] 9

The number-theoretic functions for determining the number of primitive
and irreducible polynomials over GF(2) is applicable to GF(p). The number of

primitive polynomials of degree r is a subset of I over GF(p). That is,

r
op -1 1 Sﬂr/d
< p p(d)
r U L
dir

Equality arises only for the case of GF(2) when 2° - 1 is prime. The reader

ir invited to see References 3, 4, and 17 for detailed presentations on ¢(m),

p#(d), and the Mdbius inversion fo:mula.
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APPENDIX B

TRINOMIAL OF LEAST DEGREE THAT CONTAINS A GIVEN PRIMITIVE
POLYNOMIAL OF DEGREE r OVER GF(2) AS A FACTOR

E
\
4

E‘ OOEFF. OF IRREDUCIBLE
) r f(x) IN T(x) FACTORS OF T(x)  DEGREE
: OCTAL 1 a IN OCTAL OF FACTOR PERIOD INDEX
3 45 3 2 45 3 31 1
61 7 2 7 2 3 1
61 - 31 1
57 8 3 13 3 7 1
21 3 31 1
[ 103 [ 1 103 [1 63 1
133 8 7 7 2 3 1
133 [1 63 1
141 11 8 73 5 31 1
141 6 63 1
1 203 1 203 1 121 1
211 3 211 1 127 1
% 235 10 9 15 3 7 1
§ 235 1 127 1
E 271 13 3 133 6 63 1
; 211 1 127 1
241 14 13 7 2 3 1
45 5 31 1
247 1 127 1
233 19 7 283 1 121 1
12067¢ 12 4095 1
211 19 13 211 1 127 i
10663% 12 4095 1
351 19 17 7 2 3 1
331 1 127 1
2035 10 341 3




CQOEFF. OF JRREDUCIBLE

r f(x) IN T(x) FACTORS OF T(x) DEGREE
OCTAL n s IN OCTAL OF FACTOR PERIOD INDEX
1 313 21 18 313 1 121 i
72127+ 14 381 43
8 531 13 11 7 2 3 1
15 3 7 1
331 - 233 1
453 13 12 61 5 31 1
453 8 233 1
455 16 15 4353 8 235 1
675 8 85 3
543 20 9 13 3 7 1
343 8 233 1
10559 9 511 1
435 21 10 435 8. 235 1
. 21615¢ 13 8191 1
518 23 1 7 2 3 1
315 8 2355 1
34641 13 8191 1
11 27 2 13 3 7 1
n 8 233 1
375715¢ 16 65535 1
607 27 8 607 8 255 1
3745133 19 524287 1
2 1021 9 4 1021 9 511 1
1533 11 7 7 2 3 1
1533 9 311 1
1333 11 10 1 2 3 1
1333 ) 11 1
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COEFF. OF IRREDUCIBLE

r f(x) N T(x) FACTORS OF T(x)  DEGREE
OCTAL 12 a IN OCTAL OF FACTOR PERIOD INDEX
9 1157 13 6 23 4 15 1
1157 2 11 i
1473 15 13 147 6 63 1
1473 9 211 1
1207 19 8 7 2 3 1
15 3 7 1
51 5 31 1
1207 ] 211 1
1175 19 9 1175 9 511 1
2355¢ 10 341 3
1055 20 9 13 3 7 1
543 8 255 1
1055 9 211 1
1275 26 1 7 2 3 1
15 3 7 1
1275 S 511 1
12515+ 12 4095 1
1267 27 15 1267 9 511 1
1234653 18 1533 1711
1517 29 4 7 2 3 1
313 7 127 1
1517 3 311 1
7723 11 2047 1
1437 29 7 7 2 3 1
15 5 31 1
1437 9 511 1
32461 13 8191 1
1137 29 14 1137 8 311 1
4533443 20 349525 1
1033 29 24 13 3 7 1
73 5 31 1
1033 9 511 1
17233 12 1365 3
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OOEFF. OF IRREDUCIBLE
f(x) IN T(x) FACTORS OF T(x) DEGREE

OCTAL n a IN OCTAL OF FACTOR PERIOD INDEX
1243 36 1 1243 ] 311 1
2257 10 341 3
540663°* 17 131071 1
1131 36 19 15 3 7 1
1131 9 511 1
171611245¢ 24 16777215 1
1225 39 16 1225 9 11 1
7137+ 11 2047 1
3411757 19 524287 1
1617 39 18 16117 s 511 1
10011 12 45 91
1540753 18 1533 1711
1167 41 33 325 7 127 1
1167 9 511 1
373334507* 25 33554431 1
1423 44 41 13 3 7 1
31 4 15 1
1423 9 311 1
3323 10 1023 1
1635423* 18 262143 1
1257 45 20 12517 9 311 1
1205764323423* 36 2555 26896077
1571 55 S0 7 2 3 1
23 4 15 1
31 4 15 1
1571 ] 311 1
16270067173 43¢ 36 255$ 26896077
1317 57 49 1317 9 311 1

13555371+ 21

1004427273¢ 27
1063 61 39 13 3 7 1
1063 9 511 1
11643 12 4095 1

2541445310153 37
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COEFF. OF IRREDUCIBLE

r f(x) IN T(x) FACTORS OF T(x) DEGREE
OCTAL n a IN OCTAL OF FACTOR PERIOD INDEX
10 2011 10 3 2011 10 1023 1
2627 13 9 13 3 7 1
2627 10 1023 1
23217 14 3 23 4 15 1
2327 10 1023 1
2415 17 8 13 3 7 1
23 4 15 1
2475 10 1023 1
2617 17 13 7 2 3 1
75 5 31 1
2617 10 1023 1
2157 23 7 7 2 3 1
2157 10 1023 1
6435¢ 11 2047 1
3133 23 8 141 6 63 1
247 7 127 1
3133 10 1023 1
2761 24 11 27617 10 1023 1
55753 14 16683 1
2773 26 3 75 5 31 1
2713 10 1023 1
7173% . 11 ) 2047 1
2707 32 31 7 2 3 1
2707 10 1023 1
3067¢ 10 1023 1
3607¢ 10 341 3
30617 32 31 7 2 3 1
2707 10 1023 1
3067 10 1023 1
3607 10 34 3
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COEFF. OF IRREDUCIBLE
r f(x) N T(x) FACTORS OF T(x)  DEGREE

OCTAL 1o a IN OCTAL OF FACTOR PERIOD INDEX
10 2347 s 22 1 2 3 1
141 6 63 1
2347 10 1023 i
430005 17 131071 1
2443 37 18 2443 10 1023 1

1272414137¢ 27
2033 39 A0 23 4 15 1
1321 9 511 1
2033 10 1023 1
210435¢ 16 65535 1
2213 40 1 1 2 3 1
13 3 7 1
2213 10 1023 1
347702607 25 33544431 1
2415 49 24 455 8 255 1
2415 10 1023 b §
27371170361% 31 2147483647 1
2047 49 36 211 7 127 1
2047 10 1023 1

43207520343 ¢ 32
2503 49 45 57 5 31 1
1151 9 511 1
2303 10 1023 1
4445 11 2047 1
46215¢ 14 16383 1
3117 51 4 13 3 7 1
3111 0 1023 1
317313 16 21845 3

23644571 22
2308 53 28 1 2 3 1
2305 10 1023 1
73707 14 16383 1

1321420701% 27
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QOEFF, OF IRREDUCIBLE

f(x) IN  T(x) FACTORS OF T(x)  DEGREE

OCTAL 1 a IN OCTAL OF FACTOR PERIOD INDEX
3421 55 14 1 2 3 1
3427 1023 i

241461026171065° 43
2033 55 28 2033 10 1023 i
15317555 21 2097152 1

164050421 24
2521 57 30 1033 9 511 1
2321 10 1023 1
3465 10 341 3
3507 10 1023 1
1022707 18 1533 17
2553 57 51 111 6 9 7
235 7 127 1
2533 10 1023 i
3301 10 1023 1
3367 10 341 3
43445¢ 14 & 43
3023 60 41 1s 3 7 1
3023 10 1023 1

5444507177561433¢ 47
2363 61 9 1207 9 511 1
2623 10 1023 1
53623¢ 14 16383 1

2310747647% 28
23171 65 6 13 3 7 1
23711 10 1023 1
6227 11 2047 1
60575% 14 16383 1

1062067767¢ 27
2145 65 34 7 2 3 1
13 3 7 1
2145 10 1023 1
2605 10 1023 1
3573 10 341 3
111041+ 15 1057 3
135407¢ 15 1057 31
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f(x) OF T(x)
r INDEX 1 n a
10 3337 79 73
3117 83 14
COEFF. OF IRREDUCIBLE
£ f(x) IN T(x) FACTORS OF T(x) DEGREE
OCTAL a s IN OCTAL OF FACTOR PERIOD INDEX
il 4005 i1 2 4005 11 2047 1
66713 13 5 7 2 3 1
6613 11 2047 1
4565 16 9 45 s 31 1
4363 1l 2047 1
5235 20 7 7 2 7 1
357 7 127 1
5235 11 2047 1
5615 22 13 31 4 15 1
325 7 127 1
3615 i1 2047 1
5613 23 16 7 2 3 1
3661* 10 1023 1
3613 11 2047 1
5331 24 5 3331 il 2047 1
24703* 13 8191 1
4237 25 24 163 6 63 1
561 8 258 1
42317 11 2047 1
4261 26 5 4261 1 2047 1
105621 15 32767 1
6741 26 23 57 [ 31 1
3375 10 1023 1
6741 11 2047 1

e o e R =i



COEFF. OF IRREDUCIBLE

r f(zx) IN T(x) FACTORS OF T(x) DEGREE
OCTAL n . IN OCTAL OF FACTOR PERIOD INDEX
11 6211 29 25 7 2 3 1
323 7 127 1
1713+ 9 511 1
6211 i1 2047 1
4671 30 7 4671 11 2047 1
2313171¢ 19 524287 1
6367 31 20 7 2 3 1
6361 11 2941 1
1147625+ 18 262143 1
3025 32 17 5025 11 2047 1
12575505¢ 21 2097151 1
5733 33 14 23 4 15 1
3733 11 2047 1
1255515 18 37449 7
5253 33 27 5253 11 2047 i
24246667 22 6141 683
4653 37 12 4653 11 2047 1

460401267¢ 26

53173 37 33 163 6 63 1
217 7 127 1
3313 11 20417 1
35147¢ 13 8191 1
5575 38 3 235 7 127 1
455 8 255 1
3515 1] 2041 1
13245¢ 12 4095 1
7131 39 16 1225+ 9 511 1
n 1 2047 1
34117579 19 524287 1

i
!
'
H
g




IRREDUCIBLE

COEFF. OF
r f(x) IN T(x) FACTORS OF T(rz)  DEGREE
OCTAL 13 o IN OCTAL OF FACTOR PERIOD INDEX
11 5471 39 19 13 3 7 1
51 s 31 1
247 7 127 1
2411 i1 2047 i
20213¢ 13 8191 1
5651 39 24 111 6 9 7
5657 i1 2047 1
245462139 22 6141 683
5007 39 28 67 5 31 1
3007 il 2047 i
64425725 23 8388607 1
4761 4 551 8 255 1
4761 i1 2047 1
24577263 22 4194303 1
6013 43 6 23 4 15 1
155 6 63 1
6013 i1 2047 1
24064321 22 60787 69
4225 43 11 7 2 7 1
15 5 31 1
4225 11 2047 i
260330363 25 33554431 1
6441 43 15 1207 9 511 1
3411 10 341 3
6447 il 2047 i
24637 13 8191 1
4423 g 1 13 3 7 1
4423 il 2047 i
126643071475% 33
5023 41 39 13 3 7 1
31 4 15 1
1725 9 511 1
5023 11 2047 1
4772121 20 1048575 1

3-10



COEFF. OF IRREDUCIBLE

r f(x) IN T(x) FACTORS OF T(x)  DEGREE

OTAL a2 a IN OCTAL OF FACTOR PERIOD INDEX
1 67121 48 21 67 5 31 1
3453 10 93 11
6121 il 2047 1
34424513 22 6141 683
5351 48 29 23 4 15 1
155 6 63 1
3331 il 2047 1

1456104075 27
4365 49 17 ! 2 3 1
51 ] 31 1
4365 11 2047 1
12165 12 4055 1
3321023¢ 19 524287 1
6307 4 30 67 5 31 1
613 8 85 3
765 8 255 1
6307 il 2047 1
542667 17 131017 1
4305 49 39 4503 i 2041 1
117767 15 4681 7
42000367 23 8338607 1
4445 49 45 57 5 31 1
1151 9 511 1
2503+ 10 1023 1
4443 il 2047 i
46215¢ 14 16383 1
6557 53 17 23 4 15 1
6557 11 2047 1
12727 12 4095 1

615627213 26
4107 54 25 13 3 7 1
2047 10 1023 1
4107 i1 2047 i
51303 14 16383 1
232031 16 13107 5
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(EFF, OF IRREDUCIBLE
z f(x) IN T(x) FACTORS OF T(x) DEGREE

OCTAL n 2 IN OCTAL OF FACTOR PERIOD INDEX
11 558 $5 10 3331 i1 2047 i

577532413432723¢ 44
4415 56 41 57 5 31 1
1728 F) 511 1
4415 i1 2047 i
37157355273 31 2147483647 1
4341 s$1 11 23 4 15 1
4347 i1 2047 1

112443714550031°¢ 42
1231 $8 55 13 3 7 1
1237 il 2047 1

731154217564031¢ 44
4311 59 2§ 7 2 3 1
4311 11 2047 i
11103+ 12 1368 3

312004430753 ¢ 34
4333 59 29 13 3 7 1
4333 i1 2047 i
26761°¢ 13 8191 1

40561341405° 32
4603 61 43 15 3 7 1
73 5 31 1
1563 9 511 1
4603 u 20417 1
75273 14 16383 1
2041035¢ 19 524287 1
6121 64 47 7 2 3 1
15 3 7 1
6127 1 2047 1

17141473700110531°* 48
6227 65 6 13 3 7 1
2377 10 1023 1
6221 1 20417 i
60575¢ 14 16383 1

1062067767¢ 27

B-12



OOEFF. OF IRREDUCIBLE
4 f(x) IN T(x) FACTORS OF T(x) DEGREE
OCTAL n 2 IN OCTAL OF FACTOR PERIOD INDEX
11 4161 65 7 7 2 3 1
7 8 85 a
4161 11 2047 i
514561+ 17 131071 1
110..74323* 27
4563 65 28 7 2 3 1
4553 i 2047 i
307036250332170431+ 52
4145 65 40 ? 2 3 1
23 4 18 1
kD1 4 15 1
4145 i1 2047 1
404454203214625% 44
4053 68 3 4033 i1 2241 >
452075* 17 131071 1
22540240100253* 40
3531 68 55 7 2 3 1
3331 11 2947 1
3751431316172617015* 58
4473 69 21 111 6 9 7
4413 i1 2047 1
20342647¢ 22
10001101111¢ 30
4215 6) 41 271 1 127 |
4215 11 2047 1
4361545°* 20 1
26622761641° 31 2147483647
f(x) of f(x) of
T INDEX 1 n 'y 4 INDEX 1 a a
11 4055 71 14 11 5607 93 14
4173 n 47 5177 93 61
4418 72 56 6417 94 83
7047 71 68 5263 96 61
B-13



f(x) of f(x) of

b 4 INDEX 1 n a r INDEX 1 n a
11 4251 72 1§ 11 4655 97 90
6153 3 11 6037 99 62
4451 73 34 4027 100 35
6163 73 40 5403 101 79
5155 5 1712 4577 101 82
4617 7% 39 5247 103 18
6507 79 61 6637 107 85
5747 81 38 5623 109 1
7317 82 17 4143 109 27
5265 82 23 4707 111 106
4533 86 9 5463 117 25
5513 88 75 6263 133 39
4745 89 87 6233 142 99
5667 143 12
(OEFF. OF IRREDUCIBLE
r f(x) IN T(x) FACTORS OF T(x) DEGREE
OCTAL n (] IN OCTAL OF FACTOR PERIOD INDEX
12 12067 19 7 253 7 127 1
12067 12 4095 1
10663 19 13 217 7 127 1
10663 12 4095 1
12753 25 21 45 5 31 1
573 8 85 3
12753 12 4095 1
12515 26 1 1 2 3 1
15 3 7 1
1275+ 9 511 1
12518 12 4095 1
10353 31 29 7 2 3 1
13 3 7 1
10353 12 4095 1
60147 14 16383 1
10175 34 5 7 2 3 1
51 5 31 1
10175 12 4095 1
163767 15 327617 1




COEFF. OF IRREDUCIBLE

f(z) IN T(x) FACTORS OF T(x) DEGREE
OCTAL u ] IN OCTAL OF FACTOR PERIOD INDEX
12117 37 3 15 3 7 1
345 7 127 1
12117 12 4095 1
120403* 15 327617 1
12165 37 30 12165 12 4695 1
250303445+ 25 33554431 1
12255 38 35 271 7 127 1
551 8 255 1
2135¢ 11 2041 1
12255 12 4095 1
11177 42 17 11177 12 4095 1
11066515603 30
10737 47 13 7 2 3 1
10737 12 4095 1
151421301615% 33
11643 49 18 31 4 15 1
: 1713 9 511 1
7113 11 2047 1
11643 12 4095 1
31273+ 13 8191 1
11313 50 9
11313 12 4095 1
4502237720127* 38
11163 53 16 7 2 3 1
73 5 31 1
11163 12 4095 1
277357101057% 34
12727 53 17 23 4 15 1
65574 11 2047 1
12721 12 4095 1
615627213+* 26
16317 55 1 357 7 127 1
16317 12 4095 1
1264522723457* 36

R.-15



OOEFF. OF IRREDU CIBLE
r f(x) IN T(x) FACTORS OF T(x)  DEGREE
OCTAL n IN OCTAL OF FACTOR PERIOD INDEX
12 11015 55 8 7 2 3 1
235 7 121 1
11015 iz 4095 1
53043 14 5461 3
7054651+ 20 95325 11
10731 58 49 10731 12 4095 X
2161250565777231¢ 46
11147 60 25 11147 12 4095 1
13223 12 819 5
13611 12 4095 1
14227¢ 12 4095 1
16273+ 12 4095 1
142217 60 25 11147% 12 4095 1
13223 12 819 5
13611¢ 12 4095 1
14227 12 4095 1
16273 12 4095 1
11075 60 35 11075 12 4095 1
14455 12 819 5
15467+ 12 4095 1
16311% 12 4095 1
16443 ¢ 12 4095 1
15467 60 35 11075+ 12 4095 1
14455 12 819 5
15467 12 4095 1
16311* 12 4095 1
16443¢ 12 4095 1
11067 64 1 23 4 15 1
11045 12 1365 3
11067 12 4095 1
11441¢ 12 4095 1
11463 12 819 5
11515¢ 12 4095 1

R.lb



COEFF. OF IRREDUCIBLE
r f(x) IN T(x) FACTORS OF T(x) DEGREE
OCTAL n a IN OCTAL OF FACTOR PERIOD INDEX
12 11515 64 1 23 4 15 1
11045 12 1365 3
11067+ 12 4095 1
11441+ 12 4095 1
11463 12 819 5
11515 12 4095 1
12007 64 27 12007 12 4095 1
252442144723171333» 52
10231 64 63 31 4 15 1
10231 12 4095 1
12211 12 1365 3
13131* 12 4095 1
14631 12 819 5
16611+ 12 4095 1
10605 67 61 13 3 7 1
10605 .12 4095 1
55317733* 23 8388608 1
4017247741+ 29
f(x) of T(x} f(x) of T(x)
r INDEX 1 n a r INDEX 1 L a
12 16027 70 29 12 13275 103 56
15437 71 26 14433 103 57
13677 71 41 105217 104 43
11435 71 52 10123 107 97
17057 72 19 16047 109 76
12247 73 38 11477 109 91
12323 78 53 13503 115 2
12435 79 40 15033 117 80
10173 80 43 14357 119 44
15677 83 19 10407 125 94
14573 83 73 16237 129 48
10443 85 9 10473 135 53
10553 85 67 11271 136 1
14613 86 7 12735 145 108
13663 87 72 12135 152 37
14717 87 72 15527 153 75
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f(x) of T(x) f(x) of T(x)
r INDEX 1 n a b o INDEX 1 n [
12 10517 ()1 19 12 13107 161 84
10437 91 64 12147 161 107
11471 93 34 10321 162 151
10151 93 52 14127 163 143
12417 99 93 14747 164 113
15053 101 67 11417 17 42
12623 102 13
FACTOR OF T(x) LISTED ELSEWHERE
f(x) of T(x) COEFF. IN
r INDEX 1  xTf(1/x) n s T OCTAL PERIOD INDEX
13 25627 35165 16 3
22631 37151 18 1
21135 27221 20 1
21615 26161 21 10 8 435 235 1
20547 34641 23 1 8 313 255 i
23737 3B1L 23 4
24703 30345 24 3 11 53171 2047 1
30057 36403 25 6 9 113 13 1
23005 24031 25 9
24061 21405 27 11
25775 2716S. 23 (-1 16 2667435 65535 1
21453 32461 29 1 9 1437 511 1
22075 27411 31 4 14 525417 5461 3
20715 26341 31 5 16 3373711 4369 15
24513 32245 31 21 10 3277 341 3
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FACTOR OF T LIS SEWHERE
f(x) of T(x) QOEFF. 1IN

r INDEX 1 xTf(1/x) n a r OCTAL PERIOD  INDEX

13 25333 a332s 35 4 14 60367 16383 1
34627 35147 31 33 11 8373 2047 1
20213 32100 39 19 11 3471 2047 1
24637 37145 43 13 1 6447 2047 1
31273 33523 4 18 12 11643 4095 1
21557 36661 50 31 12 16276 2713 15
21755 26761 59 29 11 4531 2047 1
30357 367 63 38 12 133711 819 -

14 666173 63777 16 s
45627 12351 11 2
55153 65755 24 11 10 2761 1023 1
40275 57201 26 11 2 1027 511 1
60147 71403 31 29 12 103 4095 1
42335 52621 32 11 18 1206221 262143 1
60367 73603 35 4 13 25333 8191 1
51145 51445 35 U 21 12624165 2097151 1
42645 51321 38 11
46215 54231 49 45 10 2503 1023 1
70767 73707 53 28 10 2305 1023 1
51303 60645 54 25 11 4107 2047 1
53623 62365 61 9 10 2363 1023 1
67257 75273 61 43 11 4603 204 1

s A 1,7 G P
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ACTOR ELSEWH

f(x) of T(x) OOEFF. IN
r INDEX 1 x%f(1/x) n a r OCTAL PERIOD INDEX
14 57503 60515 65 (1 10 v 2311 1023 1

40473 67101 66 31 12 12315 385
15 100003 140001 15 i

100021 100201 15 4

100201 100401 - 15 1

134567 167235 18 s

104657 172621 19 3

103653 134741 23 3

121 147305 25 12

104721 105621 26 1 11 4261 2047 1

163327 1655 31 14

117143 143171 33 8

153677 176753 33 8

163767 167747 34 s 12 11735 4095 1

113625 124751 24 13 19 225730 524287 1

102643 142641 35 [ 20 664741 1048575 1
15 120403 140205 37 3 12 12117 4095 1

145453 152223 45 3

123453  1%2345 45 12

123433 154435 45 21

113637 174751 41 41 12 11731 1365 1
16 263677 375715 21 2 8 111 255 1

B~20



FACTOR OF T(x) LISTED ELSEWHERE

f(x) of T(x) QOEFF. IN
r INDEX 1 x¥Ff(1/x) n a T OCTAL PERIOD INDEX
16 266745 247555 29 (] 13 21165 8191 i
306313 231 36 13 16 372705 21845 3
210435 270421 P 10 2033 1023 1
274577 376475 40 13
11 400011 440001 17 3
00041 410001 17 s
400101 404001 17 6
666 673333 19 ]
4312771 7712461 22 ]
454765 537151 22 1
443573 675611 25 11
437265  §32761 29 10
431455 551461 29 3
436407 701361 34 ‘ 11
441715 411 35 8 18 1352111 262143 1
430005 500061 35 22 10 " 2033 1023 1
540663 63301 36 1 10 2257 1023 1
542667 733215 49 30 11 6307 2047 1
4377171 477761 50 17 12 13773 1365 3
452075 5702711 68 3 11 4053 2047 1
18 1000201 1004001 18 1
1147625 1247631 31 20 11 6367 2047 1
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FACTOR OF T(z) LISTED ELSEWHERE

f(x) of T(x) OOEFF. IN

INDEX 1 x%f(1/x) n a2 r OCTAL PERIOD INDEX
1044604 1206221 32 11 14 32621 16383 1
1110535 1352111 35 8 11 347411 131071 i
1037433 1543741 31 i 19 342043 324281 1
1443347 1633423 4 4 2 1423 311 1
2713457 3647235 22 3

2327423 3107531 23 2

2352103 3021271 27 7 8 411 85 3
322 3745133 27 8 8 607 255 1
2746113 3221475 28 11

2516543 3065625 29 21 10 2431 341 3
2313171 2363231 30 1 11 4671 2041 L

B~-22
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APPENDIX C

TRINOMIAL OF LEAST DEGREE THAT CONTAINS
A GIVEN IRREDUCIBLE NONPRIMITIVE POLYNOMIAL
OF DEGREE r OVER GF(2) AS A FACTOR

COEFF, OF IRREDUCIBLE
k(x) IN T(x) FACTORS OF T(x) DEGREE

OCTAL a a IN OCTAL OF FACTOR PERIOD INDEX
i1l [ 3 111 [ s 1

121 9 6 13 3 7
121 [ 21 3
561 11 S 13 3 7 1
361 8 83 3
513 16 1 551> 8 255 1
313 8 83 k1
411 27 7 471 8 83 3
2352103+ 19 524287 1
613 33 18 13 3 ? 1
127 6 21 3
561 8 255 1
607 8 255 1
613 8 83 3
433 34 17 7 2 3 1
4320 8 31 1
661 8 51 )
637 8 51 s
763¢ 8 51 5
631 34 17 7 2 3 1
4330 8 51 5
661% 8 51 5
631 8 21 -3
763 8 51 5
1003 2 1 1003 3 13 1
1143 17 10 7 2 3 1
147 6 63 1
1143 ] 13 1

Cc-~1



COEFF. OF IRREDUCIBLE

r b(x) IN T(x) FACTORS OF T(x)  DEGREE
OCTAL 1o a IN OCTAL OF FACTOR PERIOD INDEX
9 1113 25 ¢ 15 3 7 1
1113 ] 3 1
36403¢ 13 8191 1
1021 26 11 13 3 7 1
1027 9 13 1
57201 14 16383 1
10 3247 15 6 73 5 31 1
247 10 23 3 Y
2355 19 9 11175 9 511 1
2353 19 341 3
2035 19 17 7 2 3 1
357 1 127 1
2033 10 341 3
2413 21 1S 57 5 31 1
111 6 9 7
2413 10 23 i1
2251 22 11 7 2 3 1
2231 10 33 31
3043 10 33 31
3043 22 11 7 2 3 1
2251 10 33 31
3043 10 33 3l
2065 24 15 13 3 7 1
45 s 31 1
127 6 21 3
2065 10 23 i1
2633 26 9 2633 10 341 3
272107* 16 21845 3
2431 29 21 2431 10 4 i
2516543 ¢ 19 524287 1

c-2



OOEFF. OF IRREDUCIBLE

h(z) N  T(x) FACTORS OF T(x)  DEGREE
OTAL o a IN OCTAL OF FACTOR PERIOD INDEX
3211 31 2 537 8 258 1
211 10 341 ]
322450 3 8191 1
3417 32 1 7 2 3 1
' 3417 10 341 3
3435 10 1023 1
3543 10 1023 1
2251 3¢ 1 12430 9 511 1
2251 10 341 3
540663° 17 131071 1
2017 48 23 13 3 7 1
217 7 127 1
2011 10 24} 3

2654016113¢ 28

2107 55 22 75 5 31 1
2101 10 341 3
2671 1 341 3
32550 10 341 3
3315 10 341 3
3367 10 34 3
3361 55 22 75 s 3 1
2107 10 341 3
2671 i0 341 3
3255 10 341 3
3s 10 241 3
3361 10 341 ]
2653 55 23 57 5 31 1
2355 10 341 3
2633 10 341 3
2633 10 341 3
3421¢ 10 34 3
3573 10 341 3




(DEFF, OF IRREDUCIBLE
£ h(x) N T(x) FACTORS OF T{zx) DEGREE
OCTAL n . IN OCTAL OF FACTOR PERIOD INDEX
10 25417 51T 1541 9 s11 1
23541 19 34 3
3427 10 1023 1
3528 10 1023 1
1616441° 18 1533 i
2143 68 61 7 2 3 1
2143 10 341 3
6421727313413061551¢ 56
OOEFF. OF bix) T(x)
£ IN OCTAL PERIOD INDEX 2 a
10 2123 341 3 78 62
2231 34 3 78 19
OOEFF. OF IRREDUCIBLE
Py h(x) IN T(x) FACTORS OF T(x) PEGREE
OCTAL 2 s IN OCTAL OF FACIOR PERIOD INDEX
12 10011 12 3 100i1 12 43 21
10041 12 s 10041 12 819 -
13621 15 10 13 3 1 1
136217 12 33 117
14531 17 16 1 2 3 1
15 3 1 1
14337 12 213 15
11631 23 11 51 5 31 1
133 6 63 1
11637 12 383 1
13611 26 13 7 2 3 1
13617 12 39 105
17078+ 12 39 105

3
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QEFF. OF IRREDUCIBLE

r h(x) IN T(x) FACTORS OF T(x) DEGREE
OCTAL n s IN OCTAL OF FACTOR PERIOD INDEX
12 10538 28 21 23 4 15 1
105535 12 105 39
11073+ 12 105 39
11073 28 21 23 4 15 1
10555+ 12 105 39
11073 12 105 39
15457 29 5 15 3 7 1
67 5 31 1
1541¢ 9 511 1
15451 12 2365 3
14373 30 s 133 6 63 1
14373 12 315 13
15128¢ 12 315 13
1251 30 25 155 6 63 1
12513 12 315 13
15743+ 12 315 13
11727 33 31 11721 12 1365 3
13554513 21 2097151 1
13003 39 13 15 3 7 1
11721 12 91 45
13003 12 28 45
15173+ 12 91 45
15173 39 13 15 3 7 1
11721 12 91 45
13003 12 91 45
15173 12 91 45
10571 39 26 13 3 7 7
10571 12 91 45
14015* 12 91 45
15713¢ 12 91 45




CQOEFF. OF IRREDUCIBLE

r hi(zx) N T(x) FACTORS OF T(x)  DEGREE

OCTAL n IN OCTAL OF FACTOR PERIOD INDEX
12 11108 40 S 7 2 3 1
23 4 15 1
3 4 15 1
147 6 63 1
11105 12 313 Y1
16547¢ 12 315 13
16327 40 35 7 2 3 1
' 23 4 15 1
3 4 15 1
163 6 63 1
12111¢ 12 315 13
16327 12 315 13
12133 41 10 7 2 3 1
12133 12 1365 ]

160162 4601¢ 27
11657 43 16 11657 12 1365 3
23757171023¢ 31 2147483647 1
11045 44 35 221 7 127 1
11045 12 1365 3

202314645 25
13157 46 43 13157 12 585 1

255372610323 34
11735 47 4 15 5 31 1
163 6 63 1
1707 9 511 1
11735 12 1365 3
174751% 15 32767 1
13773 50 17 13 3 7 1
13713 12 1365 3
477761 17 131071 1
1151665 18 87381 3
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COEFF. OF IRREDUCIBLE
T h(x) IN T(x) FACTORS OF T(x) DEGREE
OCTAL a a IN OCTAL OF FACTOR PERIOD INDEX
12 16261 50 31 7 2 3 1
13 3 7 1
16267 12 2713 13
36661¢ 13 8191 1
6435053% 20
11463 51 3 15 3 7 1
11463 12 1365 3
144559 12 819 5
17235 12 1365 3
17403¢ 12 819 5
13223 51 48 13 3 7 1
111 6 9 7
127 6 21 3
13223 12 819 3
14037¢ 12 819 5
14631* 12 819 5
14037 51 48 13 3 7 1
111 6 9 7
127 6 21 3
13223 12 819 5
14037 12 819 s
14631 12 819 5
13143 51 49 313 7 127 1
13143 12 585 1
73716032155¢ 32

10065 52 13 31 4 15 1
100635 12 195 21
15347 12 195 21
16701* 12 195 21
172717+ 12 195 21
15347 52 13 31 4 15 1
1065* 12 195 21
15347 12 195 2l
16701% 12 195 21
17277¢ 12 195 21




CDEFF. OF IRREDUCIBLE

4 h(x) IN T(x) FACTORS OF T(x) DEGREE
’ OCTAL n a IN OCTAL OF FACTOR PERIOD INDEX
12 171211 52 13 3 4 1§ 1
10065* 12 195 21
15347* 12 195 21
16701% 12 195 21
17211 12 195 2
10161 52 39 23 4 15 1
10167 12 195 a
12601+ 12 195 21
16353+ 12 195 21
17657+ 12 195 21
10027 55 15 45 5 31 1
141 6 63 1
10027 12 a1s 13
17513 12 315§ 13
4454725 20 155 6765
15137 55 40 51 5 31 1
' 103 6 63 1
15137 12 31s 13
16401+ 12 315 13
5271511 20 155 6765
16457 56 33 - 357 7 127 1
16457 12 1365 3
254375+ 16 4369 15
10416231% 21
16017 5T 14 16017 12 1365 3
1212717¢ 18 87381 3
1601251105+ 27
12613 59 17 12613 L2 585 1
5162322607102347¢ 47
11103 59 25 7 2 3 1
4317* 11 2047 1
11103 12 1365 3

312004430753* 34
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COEFF. OF IRREDUCIBLE
r h(x) IN T(x) FACTORS OF T(x) DEGREE

OCTAL n a IN OCTAL OF FACTOR PERIOD INDEX
12 133711 63 38 13317 12 819 3
36703¢ 13 8191 1
7210220000101* 38
12315 66 37 15 3 7 1
' 765 8 258 1
1715 9 511 1
12315 12 583 1
67101¢ 14 16383 1
5267531+ 20
10317 67 20 7 2 3 1
15 3 7 1
10317 12 213 13
42527114525216661% 50
COEFF OF h(x) T(x)
r IN OCTAL PERIOD INDEX n a
12 10467 819 5 70 3
13475 1365 3 76 69
10377 117 35 78 39
13413 117 35 78 39
16757 117 35 78 39
10063 819 5 78 65
10115 819 5 78 65
10243 819 5 78 65
11031 819 5 78 65
11673 819 5 82 33
10461 273 15 82 53
13077 273 15 83 46
13113 585 7 83 69
12265 1365 3 85 5
13033 1365 3 85 5
14667 1365 3 85 35
12153 585 7 89 21
12177 819 5 92 57
13563 585 7 93 61
10743 273 15 97 11
13303 819 5 97 69
11763 1365 3 99 29

c-9



QUEFF OF h(x) T(x)
t 3 IN OCTAL PERIOD INDEX n s
12 11545 1365 3 102 53
13347 819 5 104 13
14513 819 5 104 13
11265 819 5 107 14
14177 585 7 107 96
13363 1365 3 109 81
11433 585 7 116 83
10245 585 1 118 87
14007 1365 3 122 35
13737 1365 3 125 103
13527 1365 3 126 115
10653 819 5 139 133
10077 1365 3 145 123
10355 1365 3 146 61
14043 585 7 156 39
10757 1365 3 160 109
10603 455 9 195 65
11703 455 9 195 65
11765 455 9 195 65
12023 455 9 195 65
15617 455 9 195 65
10213 455 9 195 i30
11023 455 9 195 130
12337 455 9 195 130
13517 455 9 195 130
14313 455 ¢ 195 130
14557 455 9 195 130
16137 455 9 195 130
14067 1365 3 217 201
-
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