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ON HYBRID AND MIXED FINITE ELEMENT METHCDS

Th. H. H. Fian

Massachusetts Institute of Technology
Cembridge, Massachusettis, U.S.2A.

Three versions of the essumed siress hy-
brid model in firite element methods and the
corresponding varietionel principles for the 1\
formuletion are presented., Exemples of renk dek
ficiency for stiffness maitrices by the hybrid
stress model are given and their corresponding
kinematic deformetion modes cre identified. A
discussion of the derivstion of general semi-
Loof elements for plates and shells by the hy-

brid stress method is given. It is shown that
the equilibrium model by ¥Fraeijs de Veubeke can

be derived by the approech of the hybrid stress

model as a special case of semi-Loof elements.
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1. INTRODUCTICON
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It is generelly realized that an assumed stress <

hybrid element is based on the complementury energy 1]
principle using equilibrating stress field in lhe inte-
rior of the element and independent displacements along

the element boundary. However, when & compatible dis-
placement field can be constructed it is also possible
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to use the Hellinger-Keissner principle for the for-
mulation. Indeed, it may not be generelly knownl1]that
the original derivation of the assumed stress hybrid
element was made by using the Hellinger-Reissner prin-
ciple. In thet derivation the assumed stresses happened
to setisfy the equilibrium equetions and the resulting
element stiffness metrix is identical to that by the
complementary enerzy principle, i. e. by a model which
was leter named hybrid model. Hybrid and mized models,
thus, ere not mutuelly exclusive.
In this peper we discuss severel problems associe-

ted with this hybrid/mixed method:
1) Different formulations of the assumed stress
hybrid/mixed elements.

2) Renk deficiency in the assumed stress hybrid
elements.

3) Semi-Loof elements for pleates and shells by the
hybrid formuletion and formulation of the equi-

librium element by the procedure of the hybrid

stress model.

2, FORMULATIONS OF THE HYBRIU/MIXED ELEMENTS

Three different versions of the hybrid element
formuletion are presented here. The first one is by the
Hellinger-Reissner principle which can be expressed as:

=L ({700 +a"(D W) dV-fs,, Tu dS)

= Stationary (1)

where
o0 = stresses
u = displacements




S = elastic compliance matrix
D = matrix of differential operators thet defines
the stroin displacement relations €= D u
T = vector of surface tractions o
Vn = volume of the nth element
Son = boundery of the nth element over which trec-

tions T are prescribed

e

Here g denotes suimation over all elements, eand for
simplicity in the present illustration, bocy forces are
considered ebsent end displacements u ave assumed to
satisfy the prescribed boundary conditions.

Vhen the state of stress ¢ is in equilibrium, i.e.

QTQ =0inVp+ and v'o=T on aV, (2)

m
4 s o0 4
where D™ represerts matrix of differentizl cperusors
and v represents the directional cosine of the surfuce i

normal, then by the divergence theorem the variational i'
functionel becomes 1
. 0 Te _ T~ =T gl
m %[g[vnngdv /JVnI deJ’ngn.TQd-g]:’nmc (3) l

-

where avn is the entire boundary of the nth element,
and the displacements along the boundary are now devot-
ed by u. It is noted that the above expression would

be identical to T e where moe is the functional cor-
responding to the modified complementary ener_y prin-_
ciple associated with the assumed stress hybrid modef‘}
Vhen the body force term is included, a mixed varia-
tional principle results. This also suggests that body
force can be distributed rationally based on independ-

ently assumed displacement functions.

- e .

O

43 Y i

R Wit seb ot TS

4Y L A A A g ) A - e bt | i

el




In case that both the equilibrium and compat-

ibility conditions are sctisfied both stresses and dis-
placements can be expressed in terms of the same func-
tions. The volume integral in Eq. (3) cen be reduced

into a surface integrul elong the boundery and another
modified cogplementary energy principle can be written

as follows(’].

~

e =Z { Jou, (2T7u-T'0)ds +f5, T'G dS)
=stationcry (4)

In the ebove expressicn the tractions T and displace-
ments u arrive from the same stresses g

The steps to be taken in formulaeting the assumed
stress hybrid elements by these three variationel prin-
ciples uare indiceted in Table 1. Here the approximation

of the stresses in the interior of the element is a

common step for &ll methods, and althougn meny terms in
these veriaticnal functional are different, the result-
ing w-functions are of the same form, i.e. in terms of
stress parameters £ and nodal 'displacements gq. Since
the stresses are independent for different elements,
one can take veriation with respect to the g's in the
element level and obtain expressions of # in terms of
q. The final expression for m is now in terms of only
nodal displacements q as unknowns. The matrix k is the
element stiffness matrix given by

k=G"H'G (5)

Matrices k can be assembled to form the stiffness ma-
trix K for the global system. Teking variation of m with
respect to unrestrained nodal displacements leads to
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the system of matrix equations of the finite element
method:
Kgq=20 (6)

An investigation of the relative efficiency be-
tween the formulations of the element stiffness matri-
ces by TR and mre f0f4§ectangular block elements with
8-nodes was conducted and the results indicated
clearly that the computing time required for the ne
formulation is shorter than that by the = formula-

tion. The reason for this is that in the e?ZIuation of
each element ol the matrix G in Table 1, the formula-
tion by e involves & single volume integral while for
the formuletion of ; SN the corresponding surface inte-
gral must be divided into six separate ones for the six
individuel faces.

The formuletion of the assumed siress hybrid ele-
ment by T has elso becen extended to the general &-node
hexahedron elements which have straight edges but may
have non-flat faces. In formulating such a finite ele-
ment by Ty it is required to introduce over the ele-
ment a set of curvilinear coordinetes ¢, n,¢ in the
same way &s the isoparametric element in the conven-
tional essumed displacenent method. It is well known
that for conventional isopurametric elements, it is, in
general, not possible to evaluate, in closed-form, the
integrals required in the element stiffness matrix,
hence numerical integretion procedures are required.
However, in the formulation of such elements by the
assumed stress hybrid models the matrix H can be eval-
uated in closed form. By recognizing identical elements
in the H matrix, it is possible to optimize the com-

puting effort and as & result, the computer time needed
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to evaluate the atiffness matrix by m is only a few
percent higher then that for the conventional iso-
perametric element 15]. Discuscions on the derivation

of hybrid stress elements by s have also been given in
Regrs (6=11],

A typicel epplication of the variational function
"mc‘ is in two-dimensional lineer fracture mechanics.
Standerd technique of complex stress functions in plane
elasticity problems permits & proper approximate solu-
tion which satisfies the equilibrium and compatibility
equations as well as the stress free boundary condi-
tions at the surfece of the crack. A super-element
which contains an embedded crack can thus be derived
to be used jointly with conventional finite elements
for the anelysis of elastic stress intensity factorslBL

3. RANK DErFICIENCY IN ASSUMED STRESS HYBRID ELEMENT

In Table 1 the relation between the stress para-
meters Band the modal displacement q is governed by

HB =Gy (7)

It has been pointed out[2’12] that if m is the number
of stress perameters end n is the number of generalized
displecements of which r nodal displacements must be
restrained to prevent rigid body motion, then when m is
smaller than (n-r), kinematic deformation modes will
appear and the rank of the stiffness matrix will be
less than (n-r). It is well known that the condition;

m>(n-r) (8)

is only a necessary condition for preventing any kine-
matic deformation modes,and an element may still be rank

e A .- e s
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hsat et Pl i deficient even if the above inequelity is satisfied.

A kinematic mode corresponds to nodal and bound-
ary displacements for which no work is done by the as-
sumed stress distribution, hence is also called zero

energy mode. This meens thet

B=H'Gg=0 or Gg=0 (9)

Since the assumed stresses are equilibrating, all rigid
| body modes will involve no external work. A kinematic
deformetion mode refers to element boundury displace-
ments which indicecte element deformation but involve
no work from the essumed stresses. .
One of the cases that kinematic deformation modes

cree of freedom rectunguler plate element under Kir-
chhoff assumption[13]
distributions in stress couples (Mx’ My, Mxy) within
the element, end cubic distribution in latersl dis-

|
appear when the condition is satisfied is & twelve de- !
. It is derived by assuming lineer i

placement (w) and linear distribution in normal slopes
(w,n) along eech edge. The condition of Eq. (8) is sat-
isfied. The element has three ri;id body degrees of
freedom yet the stiffness matrix has five zero eigen-
values. One .can verify that the boundary displacements
depicted in Fig. 1 and represented by the following '
equations will yield no work due to linear distribu- |
tions of moments Mn and Mns and hence uniform distribu- <
tion in Kirckhoff shear Vn along the boundary:

along y =b, w=-x(a*-x?); wy=0
y =-b. w=x(a’-x?); w,, =0

dlong  x =+a, w=0: w y=2a%/b
x=-a, w=0: w y=2a’y/b

(10)
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Another kinematic mode involves similar displacements

with nonzero values of w and w y along x =*a, and y =
’

*b respectively. To suppress these kinematic modes it

is only necessary to add stress terms such as Mx =819

end M, =£,xy or M =8 1,% +513y2 which will lead
to linear distribution of

- — -

Fig. 1 Kinematic deformation mode of a rec-
tangular plate element under linear
moment distribution

shear force along the edges. For an irreguler shaped
quadrilaterel plate element, the stiffriess matrix ob-
tained by lineer distribution of Mx’ My and Mx
in general, nct be rank deficient.

Another 12 DOF plate elements derived by assuming
lineer distributions in stress-couple is a trienguler

element with w, w % end w at each corner and w n at
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the midpoint of each side as nodal dicplacements (14,15)
as shown in Fig. 2. For the twelve nodal displacements
shown in the figure, the distribution of normal rota-

tion w n elong all edges ere in the form of
wo = 1(s) =Cl1-6(s/2) +6(s/e)’) an ,
[
g w=0
Wx =G {
w,=C

e
W o ==7Sin a5 C0S a

< TS U M 3. T

-

W.X=C| ¢ |

w, =(, w, = (,;

Fig. 2 hinemctic deformu ticn modes of e 12-
LOF plute element under linear moment
distribution

where 8 is the coordinate along the edce wnd ¢t is the
length of the edge. Here f(s) is symmetric about the
midside point and its integrel over ¢ venishes, thus
the integral over the product of f(s) end any linear
function in s will be zero. Also, along ull edges the w
distribution is cubic and is antisymmetric about their

10 v
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midpoints. Now under lineer distributions in stress

couples, the bending moment Mn is lineer along s &and
the Kirchhoff sheer Vn is censtant. They should do no
work under the boundary of displacements described
ebove. Since w is zero at ull corners, the corner
forces also do no work. The deformation pattern shown
in Fig. 2 represents the combinction of two independent
kinemetic modes and the runk of the stiffness matrix is
seven.

Finelly, a remerk chould be made epbout the recten-
gular membrene element derived by usinz 5 g terms which
wes used es an example when the essumed stress hybrid
element wes first introduced. The element hes eight
degrees of freedonm cnd three rigid body modes, herce,
Eq. (8) 1s satisfied end for generual arrangement of the
reference axes the resulting element stiffness matrix
will have & rark of five. iiowever, for e square element
if the diaponel lines ere used &£s the reference axes es
sho@n in Pig. 3, the resulting stiffness matrix will
have & rank of only tnrce. If the stress assumption is

(o4 =By *Bd)’
Oyzﬂz st X (12)
le=ﬂj

then in the § - n coordinate system the corresponding
essumed stress is

0‘=a”a4€ tan
On=a;tdgétasn (13)

Txy:a.l-alr/'as g
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Fig. 3 Squure membrenc element with reference

exes for stresses wlong the diujonuls

In this cese the fcllowing two nocdal displucement pat-
terne are kinemetic modes:

(a) U£' = -ng = Uh = -y, =
and Up = Un, = Uy = Uy, =0
(b) UE. = U, Sl = Y, =0
and -Up = Up, ==Up = Uy, =|

Similarly, if the x-exis coincides with one diegonal of
& general rectengular membrane element, the resulting
element stiffness metrix by 5-; assumption will have

a rank of only four.

Spilker et al. (') heve studied the problem of
rank deficiency ci the 5-p squore element by first
identifying &1l independent deformation modes thut can
uniquely define any displecements of the element eand
then substituting into Eg. (9) to see whether G, q
venishes. By chunging the angle 0 between x und t-axes
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they wer2 able tn detect the two kinematic deformation
at 6 = 45, This example cn t.e membrane element also
illustrates the danger of not taling complete poly<
nomials in the stress terms in the hybrid element for-
mulation. In that cese, the resulting element stiff-
ness matrix will be leck of invarinance on and, indeed,
it may be renk deficiency under cer*ain reference coor-
dinates.

For any newly developed hybrid stress elements it
is suzcested, in eddition to ratcn-test, en eigenvelu2
survey should be conducted in order to detect any ki-
nematic deformetion modes. If inveriance of the stif{f-
ness netrix cennot Le mainta ..ed, such & survey will
huve to be made for different coorédinute systems used
for the stresses. It should be noted thnct kinenmctic
deformet: 'n modes cen always be suppressed by addirg
appropriate stress terms.

4, SEMI-LCOF EILMENTS FOR PLATES AND SHELLS
BY THE HY3RID FORMULATICN

For the analyses of pletes and shells, one of the
difficult tasks is to match the compatipvility at 2 node
at which the reference planes of the elements are not
coplenar. At such nodes a2ll six degrees of freedom
should be considered but for plcte and sliell elements
a maximum of five degrees of freedom cen be used ot a
node. Irons(18) has suggested the use of the sc-called
semi-Loof elenent for which the normal rotations along
each edge are defined et nodes which are not located at
corneras of tne element. By the conventional assumed
displacement metnod it is still a difficult task to
construct shape functions for & semi-Loof element. But,
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it is a more or less routine procedure to formulale l
such an element for plates and for simple shells by the ;
assumed stress hybrid methced. '
The equilibrium model of Fraeijs de Veubekel19)
alweys results to semi-Loof elements. It has been shown
that tnis model and the assumed stress hybrid model can
both be derived by the modified complementary energy
( 2]. The only difference is that for the

principle
former, tractions along each boundary are represented |
by generalized loading parameters and the corresponding
fictitious nodal displacements are weighted integrals
of the boundory displecements, while for the latter,
boundary displacements care interpolated in terms of
nodal displecements end the corresponding nodal forces
sre obteined from the variational sense. The expression
for stiffness matrices are the same for both models ex-
cept the G matrices in Eq. (5) are derived differently
for the two mocels.

T A

.e can nov show that the equilibrium model can
also be fornulated by boundary displacement interpola-

T AN D

tion in the same way as for Mo in Teble 1. Consider

a problem for which certain nodal displacements are of :
the Semi-Loop type, hence, the corresponding boundary . f
displacements are independent from one edge to the ;
other. This meens that for each element the bourndary

displacement continuity is not mainteined at the cor-
ners.

For simplicity let us consider a straight boundary 1
0<s<l, with its traction T (s) represented by 2 poly- *
nomial of order m.

Such traction distribution can be represented by
m+1 nodal forces Q1""’Qm+1 at arbitrary locations
when the following conditions are satisfi-

81,’.., sm+1

14




ed: :
m¢|
T 0 si=[5T(s)s"ds, forn=0,, m (14)

We can easily show that if the boundary displacement
u(s) is also a polynomizl of order m then

[;T(s)u(s)ds;g' Q; u, | (I5)

where Uy is the nodu:l displacement at S Conversely,
it the boundary displacement is interpoleted throiugh
the nodul displacements at the m+1 nodes elong the
bounduary, the corresponding nodel forces Qi obtained by
Eq. (15) will setisfy the condéitions given by £q. (14),
hence, will be equipollent to the boundary traction
distribution ?(s). Wnen the boundaries of two neich-
boring elements ure approximated by polynomials of the
same order, a compatibility of the nodal displacements
will then necessarily guarantee the reciprocity of the
nodal forces &nd, hence, the pointwise interelement
equilibrium condition is maintained. The equilibrium
model by Fraeijs de Veubeke, thus, is a special semi-
Loof element by the assumed stress hybrid model when .
the number of nodes along a boundary exceeds by one the
order of the polynominal which represents the corre-
sponding traction. An exception in thie case is that
for constant traction distribution there is only one
node which should be located at the midpoint of the
edge. For exemple, for the linear moment trianguler
plate element by Fraeijs de Veubeke[17], the nodal dis-
Placements are lateral displacements w at the three
corners and the three midside points and two normal
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rotations along eech edge. Here, the normel bending
moment Mn is linear along each edge, hence, by using

two corresponding nodal displace. ents w along the

edze, the equilibrium conditiors are sa%?sfied exactly.
It should be remerked that in this case the locations
of the semi-Loof nodes mey be arbitrary.

For the equilibrium model, kinematic deformation
modes often exist in one element or in a group of ele-
ments and appropriate superelement technique is often
reguired to suppress the mechanisms[zol. On the other
hend, for the scme choice of nodal displecements, the
nunber of siress terms cen be increased by the assumed
stress hybrid model, hence, the posscibility of eny
kinemetic deformetion modes can always be elimincted.
Thus, the essumed stress hybrid method is a most prom-

ising epproaech for the semi-Loof element.
5. CONCLUDING RENAKKS

For the formulation of the assumed stress hybrid
finite elements there are different methods of approach
to choose from and the selection of the appropricte
stress fields requires sufficient physical insight. It
is not likely that, in the future, hybrid stress ele-
ments can be formulated as simply as the use shape
function routines and numerical integration techniques
in the conventional assumed displacement method. But
ebundant knowledge about this method has been collected
and future development of hybrid stress elements should
be and can be made fool proof and should be implement-
ed according to the most efficient method of approeach.
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