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ABSTRACT

A model for simulating the remotely sensed microwave bright-
ness temperatures of soils with rough surfaces is developed.
The surface emissivity of the soil media is calculated from
one minus its reflectivity, which is obtained by integration
of the bistatic scattering coefficients for rough soil sur-
faces. The so0il brightness temperature is obtained from the
product of the surface emissivity and the effective soil
temperature which is calculated with measured soil moisture
profiles and soil temperature profiles at various soil
depths. The roughness of a soil surface is characterized by
two parameters, the surface height standard deviation o

and its horizontal correlation length &. The model calcu-
lations are compared to the measured angular variations of
the polarized brightness temperatures at both L-band

(1.4 GHZ) and C-band (5 GHz) frequencies. A nonlinear
least-squares fitting method is used to match the model
calculations with the data, and the best-fit results produce
the parameter values of o and 2 that best characterize

the surface roughness. The effect of rough surface shadow-
ing is also incorporated into the model by introducing a
shadowing function S(6), which represents the probability
that a point on a rough surface is not shadowed by other
parts of the surface. The model results for horizontal
polarization are in excellent agreement with the data, both
qualitatively and quantitatively. For vertical polariza-
tion, some discrepancies exist between the calculations and
data. Possible causes of the discrepancy are discussed.

The calculations show that the effect of surface shadowing
is important at large incident angles for rough surfaces.
Best-fit parameter values of ko show qualitative correla-
tion with the measured surface roughness.
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Recent interest in remote sensing with microwave sensors has
attracted attention on the interaction of radiation with
natural and agricultural soil surfaces. Many theoretical
models [1-16]) have been developed to simulate the remotely
sensed data obtained from airborne/spaceborne radiometers
and scatterometers. These model calculations and data have
demonstrated that the active and passive sensors are sensi-
tive to changes in the soil dielectric properties, surface
roughness, and vegetation covers over soil surfaces. Anal-
ysis of either passive or active microwave data involves
many parameters, values (: which are usually difficult to
obtain over large areas of either aatural or agricultural
fields. The parameters are the dielectric properties, sur-
face roughness and vegetation cover. Theoretical simulation
of the data can help us to understand the interaction of the
microwave radiation with the soil media.

In recent studies [6, 9], Mo et al. have successfully modeled
the measured angular distribution of radar backscattering
coefficients of vegetation-covered fields, using a rough
surface scattering model with a Gaussian distribution of
surface height. The model results (6, 9] demonstrate that
excellent agreement between the calculations and the air-
borne scatterometer data caa be achieved by a ncnlinear
least-squares fitting process and that the parameter values
which characterize the surface roughness and the vegetation
canopy may also be extracted from the calculated results
that %est match the data. This same scattering model can
also be employed to calculate the surface emissiviiy which
is the measured quantity in passive remote sensing.
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In this study, the bistatic scattering ccefficients of the
rough surface scattering model (corrected for the surface
shadowing effect) are integrated to obtain the reflectivity
at the air-soil interface and then the surface emissivity is
calculated from one minus this reflectivity. The brightness
temperature of a soil medium is then obtained from the prod-
uct of the surface emissivity and the effective soil temper-
ature. The results are compared to the data collected by
Wang et al. [17] from truck-mounted radiometers at the fre-
quencies 1.4 GHz (L-band) and 5 GHz (C-band). For a bare
field, the calculation involves two surface parameters, the
surface height standard deviation o and its correlation
length 2. A nonlinear least-squares fitting method is

used to obtain the best-fit parameter values of ¢ and %,
which can produce the brightness temperatures that best
match the angular variations of the measured brightness
temperatures.

We present a systematic analysis of a large collection of
measured brightness temperatures. Our main objective is to
test the scattering model on a large data base representa-
tive of a wide range of surface roughness condition and soil
moisture content, by reproducing the measured angular varia-
tion of the soil brightness temperatures.

Section 2 gives a brief description of the basic model and
formulas used in the calculations. The model calculation
results and the best-fit parameter values are presented in
Section 3. A discussion of these results and parameters is
given in Section 4. Appendix A contains the formulas of
polarization coefficients. Comparisons for each set of the
data and best-fit results are presented graphically in Ap-
pendix B.
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SECTION 2 - THE MODEL

The thermal emission model used in this study is based on
the Kirchhoff method for solving the rough-surface scatter-
ing of electromagnetic waves [18]. Detailed description of
this method and theoretical derivation of the bistatic
scattering coefficients have been given by Fung and Eom [2].
by Ulaby et al. [5], and by Tsang and Newton [10], respec-
tively.

The observed brightness temperature Tp(e). for a rough sur-
face of soil media having a complex dielectric constant ¢,
at an angle © from the nadir direction can be expressed by,

Tp(e) = [1 - Rp(e)] Ty (1)

where '1‘e is tie effective temperatire of the so0il media

and Rp(e) is the reflectivity of the rough surface. The
letter p (= H or V) is the polarization index, representing
either the horizontal or the vertical polarization.

The rough surface reflectivity RP(G) consists of a coherent

component Rcoh(e) and an incoherent component Rinc(e)'

(8) (2)

Rp(e) = Rcoh(e) + Rinc

Both Rcoh(e) and Rinc(e) can be obtaired from the integra-
tion of the bistatic scattering coefficients of the rough
surface [5].

If the roughness of a surface is characterized by cthe twd
parameters: the surface height standard deviation o and

2-1
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the correlation length %, then the two components in Equa-
tion (2) can be written as (2,5],

2 2 1
np(e) = IR”‘ exp(-hcos " 0) + e Z f aqpi(Q.Q')dQs (3)
q=H.V ,omi-

sphere
where h = 4k202 (k is the wavenumber) and IRPPI is the re-
flectivity of a smooth surface. The quantity °qp1(Q'Qa) is
the incoherent bistatic scattering coefficient from the in-
cidert direction Q = (6,¢) and polarization p scattered into
the outgoing direction Q8 = (Gs.¢8) and polarization q.

2

The incoher<nt bistatic scattering coefficient aqpi in Equa-
tion (3) depends on the statistical properties of a rough
surface: the surface height standard deviation and its cor-
relation length of the height distribution. Models for °qpi
have been developed by many investigators [2, 5, 10, 18, 19]
for both Gaussian ard non-Gaussian surface statistics. For
mathematical simplicity, the Gaussian form of correlation
function has been widely used in the calculation of bistatic
scattering coefficient. 1In this study, we assume a Gaussian
correlation function p(§) = exp(-Ezllz) for a rough soil
surface, where { is a distance on the surface. Then it can
be shown that the incoherent component of the bistatic
scattering coefficient can be expressed in terms of the two

surface parameters, o and & [2, 5],

2
(k®) 2 2
°qpi(Q'Qs) = 4 [laol - E;Re(aoa')(qxcos¢ + qysin¢{]u (4)

where a* is the complex conjugate of a and

® 2n 2 2\,2
(9,9) (9 + ay)2
2 2 z : 4 — X _ Yy’
M= exp(-qz g ) nin .xP[' 4n (5)
n=1
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and
9 * k(sin 9. cos ¢. - 8in © cos ¢)

q.. = k(sin 9' sin ¢. - 8in © sin ¢) (6)

Y
i - k(cos 9“ + cos 0)

The quantitiss a, and a in Equation (4) are polarization-
dependent coefficients. Explicit formulas for these polar-
ization coefficients under HH, VH, VV and HV polarization
states can be found in (2] and [5). For convenience of ref-
erence, these polarization coefficients are listed in Appen-
dix A. Since the quantity a, is proportional to Rpp.
therefore oq i will approach to zero if Rpp becomes
vanishingly small, as in the case of the vertical

polarization at large angles.

The formulas given in Equations [3)] and [5]) were derived
without including tre correction of shadowing effect of a
rough surface scattering. The shadowing effect arises when
part of a rough surface may be shadowed by other parts of
the surface at a given 1look angle. It has been shown
[20-23]) that the shadowing effect is importan” for rough
surfaces, particuiarly at large incident angles and that
energy conservation would be violated if the shadowing
effect were neglected.

However, this shadowing effect can be easily incorporated
into the model by introducing a shadowing function S(0),
which is defined as the probability that a point on a rough
surface is not shadowed by other parts of the surface.
Since the effective surface area for scattering of waves is
reduced if shadowing occurs, the reflectivity, ap(e) as
defined in Equationr (1) to (3), also decreased appro-
priately. To correct this shadowing effect, we replace




the quantity ap(e) by a moiified reflectivity R;(G). which
can be approximated by

-]
ap(e) = S(B)RP(O) (7)

where RP(B) is still defined by Equation (3). The
sh~dowing function S(©) has been studied by many
investigators ([20-23). 1In this study, the fuaction S(©)
given by Wagner [22] is used and it has the fornm,

R u—"m%‘“—'-—nl @5
where
Ve gell. (9)
o !_Vz -Jr V erfc (V) (10)
2Jm v

and erf and erfc are the error function and error-function
complement, respectively.

The shadow function S(6) depends upon the surface slope

m = (0/%) only, and Figure 1 shows S(8) as a func-ion of the
angle © for three values of m = 0.1, 0.5, and 1.0, respec-
tively. These curves demonstrate that the shadowing func-
tion S(O) has little effect on the scattering at small
incident angles, but its effect becomes significant at large
angles and as the slope of a rough surface increases.
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Replacing np(e) by n;(e) in Equation (1), one has the
expression for the brightness temperature, including the
shadowing effect,

8
TP(Q) = [1 - RP(O)JT. - GPT‘ (11)

where ep = 1-R;(9) is the surface emissivity. Equation (1l1)

will be use) in this study to calculate the brightness
temper.ture TH(O) and TV(O). The results are presented in
the next section.
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Figure 1. Shadowing Function S(6) Versus Incident

Angle 6. The function S(®) is Defined in
in Equation (8). The three curves
correspond to three different o/2 values
(as labelled).
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ON 3 - THE R T

The radiometer data of brightness temperatures collected by
Wang et al. [17) were used in this study to match the calcu-
lated results from the formulae, given in the previous
section. These data at L-band (1.4 GHz) and C-band (5 GHz)
frequencies were obtained with two truck-mounted radiometers
in 1981 over three field plots of a test site at the USDA
Beltsville Agricultural Research Center (BARC), Beltsville,
Maryland. Angular distributions for both 'rH and TV were
measured for incident angles from 6 = 10° to 70° in 10°
steps. Soil moisture samples were taken within the four
depth intervals of 0-0.5 cm, 0-2.5 cm, 2.5-5 cm, and

5-10 cm, while soil temperativre profiles were taken at the

depths of 1.25, 2.5, 7.5, and 15 cm, respectively.

Jhe soil texture of one plot (identified as 121) is Elinsboro
sandy loam consisting of 75% sand, 10% clay, and 15% silt,
while those of other two plots (221 and 223) are silty loams
with 34% sand, 24% clay, and 42% silt [17]. All three plots
were bare fields with little vegetation cover during the
period of data collection.

These ground truth data were used to calculate the soil di-
electric constant ¢ [25]., the effective soil temperatures,
and the smooth surface reflectivities IRpplz, which are
needed in the model calculations. The surface condition for
plot 121 was smooth, however, plots 221 and 223 were rela-
tively rough and very rough, respectively. The surface
roughness, which can be characterized by the two param-
eters o and 2 (the surface height standard deviation and
correlation length), has significant effect on the observed
and calculated brightness temperatures. In this section,

the individual effect of each parameter will be demonstrated.
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A nonlinear least-squares fitting method is used to match
the theoretical model calculations with the data.

Angular distributions of measured brightness temperature
were fitted with Equation (11) by varying the two parameters
ko and k2. It is convenient to take the dimensionless
quantities ko and k%, instead of o and %, as the adjustable
parameter, because the wave number k always a 'pears with o and
2 in the theoretical formulae. Before matchking with the
data, the calculated brightness temperatures for both TH and
TV components were averaged over the beamwidth of the radio-
meter antenna gain patterns which were assumed in Gaussian
form with 3-dB beamwidth of 13° for both L- and C-band fre-
quencies [17].

Representative best-fit results and comparison to the data
at both L- and C-bands are shown in Figures 2 to 4, respec-
tively, for each of the field plots. In these figures, the
solid and dashed curves represent the calculated results
obtained with the best fit parameters for the TH and TV
polarizations. The best-fit parameter values are listed at
the top of each figure, and the soil moisture content (in
weight-%) within the 0-2.5 cm surface layer is given on the
lower part, together with the date (month/day/year) when the
data were taken. The effective soil temperature Te is

also listed.

Figure 2 shows the best-fit results and comparison to the
data collected from the smooth field plot 121 on July 22,
1981. The field was relatively dry and it had only

3.6% soil moisture content in the 2.5-cm surface layer. The
L-band results are shown on the left part and the C-band on
the right part of the figure. The results in Figure 2
demonstrate that the agreements between the calculations and
the data are reasonably good, especially for the horizontally
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polarized brightness temperatures, which can be accurately
reproduced at all incident angles.

However, the agreement for the vertical polarization is not
as sood as the horizontal case, particularly for the large
incidence angles. Also the differences are greater at
L-band than at C-band. There are three causes for this
discrepancy which we have considered. One is related to the
Brewster's angle effect, the second is polarization mixing
in the collectted data, and the third is a possible
calibration error in the L-band radiometer.

At Brewster's angle, which occurs around 60° for moist
soils, both the smooth surface reflectivity |RVV|2

and the rough surface reflectivity Rv(e) defined by
Equation (3) vanish, and thus perhaps we are observing a
limitation on the applicability of the Kirchhoff
approximation when the reflectivity is very small.

Polarization mixing in the collected data might happen if the
scattering surfaces were not smooth. The fact that the angular
variations of the observed TV component for the L-band case
(Figures 2 and 3) follow the TH data so closely may imply
possible polarization mixing. For example, it can be shown [7]
that if a 20% polarization mixing is assumed for the L-band
case in Figure 2, the calculated Tv value at 70° would be

265K, instead of 290K as shown in Figure 2. However, the
assumption of polarization mixing is not employed in this

study, because other uncertainties may exist.

Calibration error of up to 7-8K could present in the L-band
vertical polarization measurements at large incidence
angles. This possible uncertainty in the measurements was
pointed out in [24] when calibration of the microwave
radiometers over a smooth water surface was described. It
was observed there that the L-band vertically polarized

3-6
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measurements always gave a higher brightness temperature at
@ = 10° - 20° and a lower value at 8 = 50° - 7o°. showing
the same trend in the data presented in this study. This
observed effect could be caused by a possible antenna side
lobe looking far away from the main beam. At small 6, the
side lobe would aim at the trees surrounding the water tar-
get, resulting in a higher brightness temperature. At large
O, it would look into the cold sky, resulting in a lower
brightness temperature. The measurements over water surface
at L-band horizontal polarization and at both polarizations
of the C-band radiometer did not show the same phenomenon.

Typical best-fit results to the data collected over the
field plot 221 are shown in Figure 3. The surface roughness
of this plot is larger than that of plot 121 (see Figure 2),
therefore the best-fit results provide larger values of ko
than those given in Figure 2, as expected. Figure 3 shows
that the angular distributions calculated with the best-fit
parameters agree well with the measurements, particularly
for the TH components.

Figure 4 displays one set of the best fits to the data taken
over the very rough field plot 223, which was plowed at the
beginning of the data collection period. The data shown in
Figure 4 have much smaller angular variations (particularly
for the C-band case) than those of field plots 121 and 221,
which had relatively smooth surfaces. The best-fit results,
including the shadowing effect, are shown by the solid
curves in Figqure 4. It can be seen that the agreements
between the calculated and measured 'I‘H component are
remarkably good, but the Tv components have discrepancies
similar to those as appeared in Figure 2.

It is expected that the shadowiug functioan S(6), as shown
in Figure 1, has significant effect on che brightness
temperature in the case of very rough surface. This
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shadowing effect is demonstrated in Figure 4 by the dashed
curves, which are obtained by excluding the shadowing effect
from the calculations. The ko and k& values used in
obtaining the solid and dashed curves in Figure 4 are iden-
tical. Comparison of the results in Figure 4 shows that the
shadowing effect produces big changes in the calculated
values of the brightness temperatures at large angles, while
there are little noticeable changes in the results at angles
less than 30o for the '1‘H component, and up to 60° for the
Tv component. Varying the parameter ko or k& to re-fit the
data would not make up these big differences without de-
stroying the best-fit results at the forward angles. The
combined results in Figure 4 demonstrate that one can not
ignore the shadowing effect in the modeling of microwave
emissivity of rough soil surfaces particularly at angles
greater than 30°. 1In addition, it has been shown that the
energy-conservation principle would not hold in the reflect-
ing and absorbing of incident waves at the interface of the

scattering media, if the shadowing effect is omitted [5, 23].

The brightness temperature sensitivity to the variation of
the individual surface roughness parameters is illustrated
in Figure S5, where the solid curves are the best fits to the
data. Tne dashed curves in Figure 5a were obtained by keep-
ing k2 = 2.65 at the best-fit value, but increasing the
value of surface height standard deviation to ko = 1.64
(which is 50% larger than the best-fit value). As one would
expect for an increasingly rough surface, the larger ko
value produces higher brightness temperatures. On the other
hand, the dot-dashed curves in Figure Sa which were obtained
with ko = 1.09 (the best-fit value), and k% = 3.97

(50% larger than the best-fit value) show colder brightness
temperatures.
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Studying the results given in Figure 5a shows that the two
parameters can be compensatory to each other in the non’ .near
least-squares fit to the data, and that the pair of best fit
parameter values may be not unique, unless one of the param-
eters is pre-determined. However, the slope ratio m = (ko/kR)
is probably more unigquely determined from best-fit results,
as shown in Figure S5b where the dashed curves represent the
effect of a 50% increment in both ko and kR. However,

the slopes for the solid and dashed curves in Figure 5b re-
main constant (m=0.41). It can be seen from Figure 5b that
the dashed curves approximately coincide with the best-fit
results (the solid curves), except for the TH component at
angles greater tha. 50°. These dashed curves could be con-
sidered in ¢;reement with the data within experimental
errors, although they were obtained with soil surface param-
eters which are 50 perce.t larger than the best-fit values.

Figure 6a presents the calculated results if either ko or k%
were twice their best-fit values and Figure 6b shows the re-
sults (the dashed curves) for both ko and k& being twice as
large as the best-fit values. Figure 6b demonstrates that

there are large discrepancies between the calculated doubled

value TH results (the dashes) and the best fit curves at 6>50°.

Besides those shown in Figures 2 to 4, additional fits to
the data were also performed. Totally, 90 sets of bright-
ness temperature datz (45 L-band and 45 C-band) have been
satisfactorily fitted. The best-fit parameter values ob-
tained from these fits are listed in Tables 1 and 2. The
former contains the pa.ameters for the data taken over field
plot 121, and the latter gives the parameters for data from
plots 221 and 223. The m values are also listed in these
tables. The soil effective temperature (in K) and the
measured soil moisture content within the surface 2.5-cnm
layer are given in the last two columns, respectively. Mean
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Table 1. B8est-fit parameters obtained from fits to the
brightness temperature data collected over the
bare field plot 121 (smooth). The slope is
denoted by m = (ko/kt). The mean values of
the parameter values are given in the bottom row.

L-Band C-Band Effective Soil
Texpecature Moisture

_Date ko kt m ko kt ] Plot (X) (wet-%)
6 24 81 0.71 2.%50 0.28 0.94 1.82 0.52 121 3os 5.4
71381 1.07 5.90 0.18 0.74 1.74 0.42 309 5.5
7 14 81 0.87 S.11 0.17 o0.82 2.22 0.37 309 4.5
72101 0.11 19.07 0.01 0.04 7.24 0.01 3os 9.5
7 22 81® 0.44 9.54 0.05 1.01 3.1 0.32 3os 3.6
7 23 81 0.96 11.79 Gc.08 0.83 2.25 0.17 311 2.1
8 381 1.34 10.86 0.12 0.57 1.87 0.30 297 . 4.6
8 4081 2.46 19.59 0.13 0.30 18.12 0.02 299 11.8
8 58l 0.89 S.11 0.l18 0.47 1.89 0.25 300 9.7
8 26 81 0.7% 10.42 0.07 0.60 1.66 0.36 297 S.4
8 27 81 1.7¢ 13.13 0.13 0.73 2.09 0.35 299 5.7
8 28 81 2.3 20.15 0.12 0.70 1.43 0.49 300 5.3
$ 181 0.73 9.93 0.07 0.07 1le.18 0.00 298 14.9
9 2081 1.76 13.52 0.1) 0.04 18.48 0.00 296 12.5
9 Jal 0.47 9.55 0.05 0.03 12.00 0.00 295 11.0
9 17 81 0.07 8.91 0.01 0.25 17.98 0.0l 295 14.7
9 18 81 0.03 20.65 0.00 0.28 18.08 0.02 289 16.0
9 28 8) 1.28 20.20 0.05 0.36 1.41 0.25 292 6.2
9 29 81 0.44 17.67 0.03 0.39 1.43 0.27 209 7.0
9 30 81 0.22 18.49 0.01 0.49 1.89 0.26 291 5.8
Mean 0.93 13.00 0.07 0.48 6.74 0.07

—_—_—
_———— Y - - - - kM

a. Data are shown in Figure 2.
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Table 2., Best~fit parameters obtained from fits to the
brightness temperature data collected over the
bare field plot 221 (medium rouch) and plot 223
(very rough), respectively. The slope is denoted
by m= (ko/kt). The mean values (for each plot)
of the parameter values are listed at the bottom
rows.

_L-Band C-Band Effective 52:)
Temperature Mol!sture
Date ko kt  m ko k! m Piot AK) (wi=%)

€ 29 81 0.3 1.11 0.29 1.09 2.65 0.41 221 298 10.8
7 30 81 0.36 9.66 0.04 1.76 9.34 0..i9 Jol 9.8
73181 0.68 2.62 0.26 0.78 2.23 0.35 295 14.7
8 10 81 0.54 2.18 0.25 0.7¢ i.84 0.40 297 11.4
8 11 81 9.70 3.27 0.21 1.12 4.53 0.25 298 10.2
8 13 61 2.19 14.96 0.15 2.71 18.19 0.15 293 20.0
8 13 8l 3.36 25.25 0.13 3.31 42.78 0.!5 Jo2 18.0
8 14 52° 0.74 3.59 0.21 2.27 16(.64 0.21 295 19.0
8 14 81 1.99 14.47 0.14 2.07 8.66 0.24 306 15.4
8 17 8l 0.69 3.19 0.22 Z.61 1..43 0.2 290 17.5
8 18 81 0.60 2.72 0.22 0.98 2.3 0.42 295 14.1
8 19 81 0.35 1.2¢ 0.28 1.03 3.32 0.31 291 12.4
8 20 81 3.3 27.2) 0.12 0.87 2.55 0.34 291 10.5
Mean 1.22 8.58 0.14 1.62 7.73 ¢.21
7 30 81 1.60 4.17 0.38 3.09 4.70 0.66 223 Jo3 11.7
7 31 81 1.06 1.35 0.79 4.50 S.50 0.82 296 21.0
8 10 81 1.9 4.07 0.39 2.66 4.36 0.61 296 9.1
8 11 81 1.29 2.42 0.53 2.44 4.4 0.54 256 10.5
8 13 81 1.53 3.43 0.45 3.01 6.91 0.44 291 23.5
8 13 81 1.33 2,74 0.49 Z.67 4.94 0.54 3ol 21.0
8 14 81 1.92 6.55 0.29 .13 9.2) 0.34 304 16.5
8 14 R) 1.2 2.22 0.5 3.00 3.3) 0.9 294 19.¢
8 17 81 1.32 3.30 0.40 3.02 7.02 0.43 292 16.7
6 18 81 1.84 S.56 0.3) 3.20 5.23 0.6l 294 12.4
8 19 81 1.90 4.42 0.43 3.10 5.02 0.62 290 15.1
8 20 a1" 1.77 4.39 0.40 3.10 5.17 0.60 291 12.0
Mean 1.%3 3.72 0.41 3.07 5.50 0.56




values of these parameters (in Tables 1 and 2) are listed at
the bottom row for each field plot.

Comparisons for each of the best-fit results to the data are
presented graphically in Appendix B.

Physically, the two surface roughness parameters o and % can

be 'measured' from the surface height orofiles. Table 3

gives a set of the measured values of o and 2. These values

of o and % were extracted from a group of photographs that
recorded the surface height profiles during the data collec-
tion period. These photographic surface height profiles

were digitized and used to calculate the o and % values, as
listed in Table 3, which also contains the slope values from the
best-fit results.

A typical surface height profile is shown in the upper part
of Figure 7, which displays the surface height z as a func-
tion of the surface distance X from an arbitrary reference
point (the origin). The 2z values in Figure 7 are relative
to the mean height value, therefore the mean value of the
2's is zero (i.e., <z> = 0).

The lower part of Figure 7 shows the autocorrelation (or
correlation) function for this profile. This function
provides a measure of similarity of two surface heights
separated by a spatial displacement X and was calculated
according to the method given in [5].

The surface correlation length % is defined as the displace-
ment X at which the autocorrelation function is equal to
p(!)-e'l (= 0.37). For example, the estimated value of cor-
relation length from Figqure 7 is 2 = 4 cm, as listed in
Table 3.

The measured o and 2 values given in Table 3 only provide
the conditions of the surface roughness for one day, while
the data were collected over a period of three months.
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Table 3. Measured values of surface height standard
deviation o and correlation length 2.
The m represents the measured slope, while mp,
and mc denote the L- and C-band slope values
from the best fit results, respectively.

Surface
Field ID o(cm) L(cm) m mg, mc Condition
121 0.24 4.0 0.06 0.07 0.07 Smooth
221 0.82 3.5 0.23 0.14 c.21 Medium rough
223 2.79 8.0 0.37 0.41 0.56 Very rough

m o/l
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Figure 7. Surface height profile (upper part)

and the corresponding autocorrelation
function.
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Therefore, one would not expect that these measured param-
eter values (in Table 3) agree well with the best-fit values
(in Tables 1 and 2), which have large variations over the
data-collection period.

These large variations in the best-fit values of the
parameters, particularly during adjacent dates, are probably
due to uncertainties in the measured soil moisture profiles,
which are used to compute the soil dielectric constant and
surface emissivity. For example, Table 2 gives the soil
moistures (in 0-2.5 cm) for July 30 and 31, 1981 as 9.8% aad
14.7%, respectively. Iilowever, the observed brightness
temperatures on these two days exhibit approximately
identical angular variations within experimental errors, as
shown in Figure 8. Because of the difference in the soil
moistures, best fits to the two sets of data lead to quite
different numerical values for the parameters ko and k%,

as listed in Table 2. This shows that the uncertainty in
the soil moisture can introduce large variations in the
best-fit values of the parameters.

To understand the effect of the uncertainty in the measured
soil moisture on the best-fit values, we performed some
simulation studies of the sensitivity of the ko and k&
determination to the soil moisture variations. The results
are given Table 4, which listy the best-fit values that
would result, if the measured soil moisture profile (for
July 30, 198l1) were arbitrarily increased by 10% to 50% over
the measured value. Table 4 shows that the slope m increases
as the soil moisture is increased, and that it approaches to
the same value as of the adjacent day (July 31, 1981) as
given in Table 2, when the soil moisture is increased by
50%, which makes the soil moisture profile on July 30
approximately equal to that of July 31, 1981.

3-17
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Table 4. Sensitivity Study of the Best-Fit Parameters to
the Uncertainty ir the Measured Soil Moistuce.
The Parameters Listed Below Were Obtained From
the Best Fits to the Data Collected on July 30,
1981, if the Measured Soil-Moisture Profile Were
Increased by A = 10% to 50% Over its Measured
Value. The increased Soil Moisture Values (in
weight percent) are denoted by SM.
L-Band C-Band
a
(3) SM kg k& m_ kg k& m
0 9.8 0.36 9.66 0.04 1.76 9.34 0.19
10 110.8 0.50 5.00 0.10 1.48 6.88 0.22
20 11.8 0.60 4.62 0.13 1.22 5.02 0.24
30 12.7 0.66 4.34 0.15 0.88 3.14 0.28
40 13.7 0.61 3.54 0.17 0.85 2.76 0.31
50 14.7 0.61 3.10 0.20 0.84 2.57 0.33

3=19



It is interesting to compare the mean values of the slope m
(in Tables 1 and 2) to the measured m values in Table 3. It
is believed that the m values can be more uniquely deter-
mined than the individual ko and k& values (as described
earlier). Table 1 shows that for plot 121, the mean value
of m (defined as ko/k®) is 0.07, while the corresponding
measured one is 0.06 (see Table 3). The agreement in these
two values is remarkable given the experimental uncer-
tainties. Similar comparison of the mean m valu2s for the
other two field plots with the corresponding measured ones
in Table 3 provide the same conclusion.

Some of the m values for L-band (in Tables 1 and 2) are
smaller than those of C-band. Similar behavior was observed
in the study of the radar backscattering coefficient [6].
The reason for this wavelength dependence of m values is not
well known at the present time, although it may indicate
that the parameters o and % are inadequate to completely
specify the surface roughness. Further study of this
problem is required.
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SECTION 4 - SUMMARY AND DISCU'LSION

We have developed a model for simulating the remotely sensed
microwave brightness temperature of rough soil surfaces.

The model is successfully applied to reproduce a series of
measured angular distributions of polarized brightness tem-
perature at both L-band and C-band frequencies. The model
is based on the Kirchhoff approximation of electromagnetic
wave scattering at a rough air-soil interface, and its bi-
static scattering coefficients are integrated (over the
scattered angles) to obtain the surface reflectivity R:(O).
which also contains a correction factor of a shadowing func-
tion S(0), that represents the probability of a point on a
rough surface not being shadowed by other parts of the
surface.

A nonlinear least-squares fitting method is used to obtain
the best-fit surface roughness parameters, which can gener-
ate brightness temperatures that best match the data of the
horizontal and vertical polarizations of the soil brightness
temperatures. The best-fit results, as shown in Figures 2
to 4, demonstrate that the TH component of the measured
brightness temperatures can be satisfactorily reproduced at
all angles. However, discrepancies exist for the Tv com-
ponent, particularly at the L-band frequency. It is believed
that some combinations of the reduced reflectivity at the
Brewster angle, the uncertainties in the radiometer cali-
bration performance, and polarization mixing contribute
mostly to the discrepancies. Further investigation of this
problem is required.

The best-fit ko values (as listed in Tables 1 and 2) are

in qualitative agreement with the measured roughness of the
soil surfaces of the three field plots. The mean ko

values in Tables 1 and 2 indicate that the field plot 121
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with the smoothest surface has the lowest ko values, and
that the roughest plot 223 is associated with the largest
ko values. Similarly, the mean m valuas in Tables 1 and 2

also correlate with the measured surface roughness, and in
good agreement with the measurements (as listed in Table 3)
within experimental errors.

Acknowledgment: We would like to thank P. O'Neill for pro-
viding the digitized data of the soil surface height pro-
files. Helpful discussion with B. J. Choudhury concerning
the theoretical fits to the data is gracefully acknowledged.
T. Mo is funded by NASA/Goddard Space Flight Center under
contract NAS5-28188.



APPENDIX A

This appendix gives the polarization coefficients a, and a
which appear in Equations (4) and (5). The following

formulas are taken from Reference [5].

HH-field:

a, = -Byy

a = Ruu [sin 93 - 8in © cos (¢3 - 9)]

(cos © + cos 98) cos (¢8 - ¢)

- Ryyy (cos Og + cos O) cos (¢g - @)
VH-field:

‘o = 'RHH (1 + cos O cos 68) sin (¢8 - 9)

a = -[RHH sin O cos 98 + RHHl

Vv-field:

ao = va (cos © + cos 68) cos (¢s - 9)

a = RVVl (cos ea + cos O) cos (¢s - 9)

- va [sin 88- sin 6 cos (o, - $)]
HV-field:

a = -va (1 + cos 6 cos © ¢s) sin(¢8 - ¢)

a = -[va sin 6 cos es + RVVL

where IRm,l2 represents the reflectivity of smooth

surface with polarization PP(= HH or VV), and RPpl is a

component of the reflectivity. Formulas for Rppl

(1 + cos O cos Os)] sin(¢s - 9)

(1 + cos O cos es)lsin (¢B - %)



expressed in terms of Rpp are given in References [2,5],
and it can be shown that

2 sin 8
R

cos O + /e - sin“#6

Ryn1 = ~Ryy

and

(e - 1)sin®
B

€ COS 0 + \/s-sine

* Ryy

Ryyy = -

(e + 1)sin®

2

ccos § +Ve - sin‘e

where e is the soil dielectric constant.



APPENDIX B

A complete set of the best-fit results and comparison with
data are prerented graphically in this appendix. Totally,
it contains 90 nonlinear least-squares fits to the measured
angular variations of brightness temperatures (consisting of
45 measurements each at L-band and C-band frequencies). The
best-fit parameters are listed at the top of each graph, and
are also given in Tables 1 and 2. The following notations
apply to each figure:

1. The crosses (X) are the measured horizontal compo-
nent of the brightness temperatures

25 The asterisks (*) are the measured vertical compo-
nent of the brightness temperatures

3. The solid curve (labelled by TH) represents the
calculated horizontal component of brightness tem-
perature

q. The dashed curve (labelled by Tv) denotes the
calculated vertical component of brightness temper-
ature.

The figures are arranged according to the field plots and
data-collection dates. It appears in the following order:

Field Plot 121: Figures B-1l through B-20
Field Plot 221: Figures B-21 through B-33, and
Field Plot 223: Figures B-34 through B-45.
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