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EXPLOITING PARALLEL COMPUTING WITH LIMITED PROGRAM CHANGES 
USING A NETWORK OF MICROCOMPUTERS 

J. L. Rogers, Jr. and J. Sobieszczanski-Sobieski 

NASA Langley Research Center 

INTRODUCTION 

As the speed of a single processor computer approaches a 
physical limit, computer technology is beginning to advance 
toward parallel processing to provide even faster speeds. 
Network computing and multiprocessor computers are two 
discernible trends in this advancement. Given the two 
extremes, a few powerful processors or many relatively simple 
processors, it is not yet clear how engineering applications 
can best take advantage of parallel architecture. Neither is 
it clear at this time the extent to which engineering analysis 
programs will have to be recoded to take advantage of this new 
hardware. Initial investigations of these questions can begin 
immediately by exploiting the physical parallelism of 
selected problems and the modular organization of eXisting 
programs to solve these problems. 

To gain experience in exploiting parallel computer 
architecture without making major changes to the code, an 
existing program was adapted to perform finite element 
analysis by distributing substructures over a network of four 
Apple lIe microcomputers connected to a shared disk (Rogers 
and Sobieszczanski-Sobieski, 1983). This network of 
microcomputers is regarded merely as a simulator of a parallel 
computer because it should be obvious that substructure 
analysis of a practical problem of significant size should be 
performed on a computer with much more power than this 
particular microcomputer. In this network, one microcomputer 
controls the entire process while the others perform the 
analysis on each substructure in parallel. 

After the substructure analysis was implemented in parallel, a 
new experiment was planned using this system. In this 



experiment, the substructure analysis is used in an iterative, 
fully-stressed, structural resizing procedure to evaluate 
resizing in which the analyses of all substructures are not 
completed during a single iteration. Methods to handle the 
resulting mixture of old and new analysis data, referred to as 
asynchronous parallelism, need to be developed for parallel 
computing applications. Although the present work involves 
only structural analysis, this research gives some initial 
insight on how to configure multidisciplinary analysis and 
optimization procedures for decomposable engineering systems 
using either high-performance engineering workstations or a 
parallel processor supercomputer. In addition, the 
operational experience gained will facilitate the 
implementation of analysis programs on these new computers 
when they become available in an engineering environment. 

BACKGROUND 

In 1975 a feasibility study (Universal Analytics, 1975) was 
performed to determine the effort required to convert NASTRAN 
(NASTRAN User's Manual, 1983) to execute on the ILLIAC IV 
computer, and to assess the advantages that would be gained 
from such a conversion. The projected advantages in speed 
improvement were significant. For example, the decomposition 
of a 10,000 degree-of-freedom matrix on the ILLIAC IV was 
estimated to be 40-100% faster than on a CDC 6600 computer 
when the matrix could not be contained in central memory. The 
problem that the study pointed out was that the code 
conversion effort would require 110-140 man months over a 
period of 36-50 months. If funds had been supplied and the 
project begun in 1976, it would probably not have been 
completed until 1980. About two years later, in 1982, the 
ILLIAC IV was taken off-line. This historical example 
illustrates the difficulties that could be encountered in 
future wholesale conversions of engineering analysis codes to 
parallel processor computers which appear to be the wave of 
the future (Siewiorek, 1982; and Noor, Storaasli, and Fulton, 
1983) 

While such wholesale conversion efforts should ultimately 
provide the greatest increases in efficiency, it is also 
important in the interim to benefit from the speed 
improvements offered by parallel computing without the cost, 
manpower, and time involved in the conversion of major 
analysis codes. This research demonstrates that for 
structural analysis, the current investment in sequential, 
modular structural analysis programs can be used to exploit 
parallelism of a network of computers. 

2 



APPROACH 

The approach taken for this project was to establish reference 
results using the Engineering Analysis Language (Whetstone, 
1980), called EAL, to analyze a finite element model that was 
not substructured. An existing small finite element analysis 
code was then modified to handle substructures and applied to 
the same model on a CYBER mainframe computer. Next, this 
program was implemented on a microcomputer to test the 
substructure method sequentially. The program was then 
distributed over a network of these microcomputers with little 
change to the analysis code to test the substructure 
method executed in parallel. A Fully Stressed Design (FSD) 
capability was added to test the behavior of substructure 
analysis in an iterative process in which some of the analyses 
were completed before others. 

The Model 
The finite element model used for testing is shown in figure 
1. This model contains 16 jOints, 21 beam elements, and ij2 
degrees-of-freedom (the size of the model was limited by the 
memory of the microcomputer). The framework has three 
substructures with each substructure composed of seven beams. 
The cross-sections and material properties are identical for 
all beams. A load is applied at one of the boundary nodes as 
shown in figure 1. 

The Small Finite Element Program 
Input for the model was written for a small, undocumented 
finite element program developed in the past for a CYBER 
computer without any intent to ever use it for parallel 
processing. It did not even have an explicit substructuring 
capability. In this study, this program represented an 
"investment in existing software" that was to be salvaged. 
The results from the unchanged program were verified against 
the reference run. New code for substructuririg based on 
equations from (Przemieniecki, 1968) was then added to the 
program. The model was divided into three substructures with 
the new code used to compute the boundary stiffness matrix for 
each substructure using equation 1: 

Each of the three 18x18 substructure stiffness matrices was 
reduced to 6x6 equivalent beam stiffness matrices (figure 2). 
Thes~ three stiffness matrices were input to the program, 
assembled to represent a stiffness~equivalent framework 
composed of three beams, each beam representing one 
substructure. The forces and displacements at the boundary 
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nodes were computed for each such beam. Modifications were 
made to the program for reading these forces from a file and 
applying them to the corresponding substructures. By applying 
support conditions to the sUbstructures. solutions were 
obtained for the interior node displacements. internal forces. 
and elemental stresses. These results were also verified 
against the reference run. It should be noted that the 
substructure analysis was simplified because the external 
loads were applied only to the boundary nodes. Should any 
loads be applied to the interior substructure nodes. it would 
have been necessary to add code to transfer these loads to the 
boundary nodes. 

Conversion to the Microcomputer 
At this pOint. the program for sequentially performing 
substructure analysis existed on a CYBER mainframe computer. 
The next step was to convert the program to the microcomputer. 
Since the entire program was written in FORTRAN~77. the move 
was quite simple and the program was contained in the 
microcomputer's 64K byte memory without overlay. Although the 
program itself was entirely core resident. the test case shown 
in figure 1 was too large for analysis without substructuring. 
Therefore. the first step on the microcomputer was to run the 
substructuring sequentially. The problem took 57 minutes to 
execute. The results were verified against the reference run 
with little loss in precision (less than 1%). 

Distributing the System 
The approach selected for distributing the system was to use 
one microcomputer to execute a controller program and three 
microcomputers to analyze each of the substructures. All of 
the microcomputers were connected to a 20MB Corvus hard disk 
which was used for data communication among the computers. 
The operations assigned to each computer are shown in 
figure 3. The controller program started the system 
(operation 0). assembled the substructure stiffness matrices 
and solved for the forces on each substructure at the boundary 
nodes (operation 2). and output the data (operation 4). The 
substructure programs computed the substructure stiffness 
matrices (operation 1). and used the forces from the 
controller program to solve for internal forces. node 
displacements. and elemental stresses for each substructure 
(operation 3). Note that parallelism only exists in 
operations 1 and 3. The output of the data (operation 4) also 
could have been distributed. but it was found to be easier to 
keep "it centrally located. 

When distributing the system to four microcomputers. the 
purpose was to minimize changing the original analysis code. 
Only the procedures involved in operations O. 2. and 4 were 
retained in the controller program while only those procedures 
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involved in operations 1 and 3 were retained in the 
substructure program. 

A subroutine was added to both the controller program and the 
substructure program to schedule their execution. This 
scheduling was accomplished by using three files on the shared 
disk; one file for each substructure program. When it was 
time for the controller program to execute each of the three 
files contained a zero, and when it was time for a 
substructure program to execute, its respective file contained 
a nonzero number. Each program queried its file and if it was 
not its turn for execution it was put in a "holding pattern" 
by performing a simple multiplication loop before querying 
again. The system could have been implemented on only three 
processors with one processor doubling for executing the 
controller and substructure programs. 

The ideal is to reduce the time required to solve the same 
problem sequentially on a single processor to (time/n) where n 
is the number of processors used to solve the problem. 
However, it is seen in figure 3 that. not all of the 
calculations can be executed in parallel. In addition, some 
time was lost in an inevitable overhead such as checking and 
looping while waiting for a substructure or controller program 
to finish executing. Thus, the parallel system with 
substructures took about 27 minutes to complete execution, 
.47 of the time required for the reference run. This is short 
of the ideal, .25, but is still more than twice as fast as the 
sequential system. 

The particular division of the structure from figure 1 into 
substructures is, of course, not the only one possible. If a 
larger number of smaller substructures was used, larger 
numbers of parallel computers could have been employed. 
However, the larger the number of substructures the larger the 
dimensionality of the assembled structure stiffness matrix 
(ultimately, if each substructure· represents a Single beam 
component, the assembled stiffness matrix would return to the 
size it would have had if no substructuring was used). 
Consequently, to minimize the overall computer time, an 
attempt should be made to balance the size of the assembled 
structure stiffness matrix against the size and number of the 
substructure stiffness matrices. The degree of the time 
reduction depends also on the number of substructuring levels 
(Sobieszczanski-Sobieski, James, and Dovi, 1983). ThUS, 
tailoring the analysis process for a particular application to 
take advantage of multiprocessor efficiency is an important 
issue that faces an analyst using a multiprocessor system. 
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Resizing 
An FSD algorithm was added to examine the behavior of parallel 
substructure analysis in an iterative process (figure 4). The 
FSD was performed by resizing all the beams in a given 
substructure according to the ratio of the maximum absolute 
normal stress occuring in the substructure to a specified 
allowable stress. The stress ratio was used as a scale factor 
to modify the beam cross-sectional moment of inertia. 
Consistently, the cross-sectional area was multiplied by the 
square root of the scale factor, and the cross-section linear 
dimensions were all multiplied by the scale factor to power 
1/4. At this pOint, resizing was synchronized, which means 
the process would always wait until all data were updated 
before processing rather than mixing old and new data. An 
iteration history of the changes in the design variable 
(plotted as the factor on cross-section linear dimension) for 
each substructure is shown in figure 5. 

Asynchronous Resizing 
Since most of the engineering calculations performed in 
support of design are iterative in nature, the computational 
behavior of an iterative distributed process in which some 
subtasks are completed later than others because of unequal 
computational requirements for various subtasks is of 
significant interest (Baudet, 1978; and Sobieszczanski
Sobieski, 1982). If such an imbalance of computational 
requirements occurs, a choice can be made to let the iterative 
process continue, temporarily using old data for those 
processes which are late. The process then becomes 
asynchronous as it mixes new and old data. The effect of this 
mixing on the convergence and efficiency can easily be tested 
in a parallel system such as described above. The tests are 
conducted by bypassing analysis of selected substructures in 
some iterations. Obviously during the first loop through the 
system, all of the substructures will be analyzed to provide a 
starting pOint. 

There is a large number of different ways in which an 
asynchronous iterative process can proceed. USing the 
framework structure from figure 1 as an example, it is 
conceivable to have at least the following variants. 

1. Referring to figure 3, consider being at the outset of 
iteration Hi". Operations 1.1, 1.2, and 1.3 are expected to 
yield the boundary stiffness matrices for substructures 1.2 
and 3. all of which having been resized as a re'sult of an FSD 
operation at the end of the previous iteration "i-1". Assume 
that operation 1.1 is late but the process moves on anyway 
using the old boundary stiffness matrix from iteration "i-1". 
that does not reflect the "i-1" resizing. That means that 
operation 2 combines the updated matrices for substructures 2 
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and 3 with an outdated matrix for substructure 1. In 
operations 3.1, 3.2, and 3.3, consistently, an old stiffness 
matrix that does not reflect the "i-1" resizing is used, while 
the updated stiffness matrices are used in operations 3.2, and 
3.3. After this analysis based on the partially incorrect 
data, all substructures, including substructure 1, are subject 
to the FSD resizing. 

2. Proceed as above, but do not resize that particular 
substructure for which the old stiffness matrix was used in 
the analysis (substructure 1 in this example). 

3. Complicate variants 1 and 2 by changing: the number of 
substructures that are assumed to be "late", the number of 
iterations over which the old data are being used for each 
substructure, etc. Obviously, a very large number of 
possibilities can be considered. 

It was expected that, for this particular model, the 
asynchronous processing would have little effect on the 
convergence other than slowing it down by going through more 
iterations. In fact, the asynchronous operation in this case 
may be regarded as a continuation of the FSD process from an 
artificially injected new starting point. In addition, an 
analogy can be made between this process and other iterative 
methods such as the Gauss-Seidel iterative algorithm for 
solving linear algebraic equations. These methods are error 
insensitive, i.e. if an error is entered into the process, the 
process recovers after several iterations and proceeds as if 
no error had been introduced. One may speculate that a 
different behavior will be observed in cases when nonlinear 
programing is used instead of FSD for nonconvex cases. Then, 
there will be a potential for such an asynchronous operation 
to trigger a switch to another path through the design space 
that could end up at a different local minimum. 

To determine if the above expectations were correct, numerous 
test cases were executed. The existence of coupling among the 
substructures was demonstrated by holding substructure 1 
constant. As seen in figure 6, this case converged to 
different results than is seen in the following figures thus 
showing that the sUbstructures are coupled. Next, variants 1 
and 2 were tested. The results shown in figures 7 and 8, 
respectively, indicate that the asynchronous operation, shown 
as connected lines, had only a slight influence on the 
convergence as manifested in small discrepancies that can be 
seen between the lines and symbols from the synchronous 
sizing. For instance, asynchronous results for substructures 
2 and 3 (figure 7) are above the sy"nchronous ones but both 
results converge after about eight iterations. 
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Variant 3, complicating variant 2, was tested using seven 
different cases. It was decided to complicate variant 2 rather 
than 1 because of the ease of implementing the variables. 
Table 1 lists the substructure(s) and iteration(s) that were 
delayed for each test case. In each of the test cases the 
results led to the expected behavior. Figures 9 and 10 (test 
cases 6 and 7 respectively) demonstrate typical results. 

CASE 

1 
2 
3 
4 
5 
6 

7 

Table 1 Test Cases for Asynchronous Processing 

SUBSTRUCTURE DELAYED 

2 
1,2 

1 
2 

1,2 
1 

and 2 

Random combinations 

ITERATIONS DELAYED 

2 
2 

Every other iteration 
Every other iteration 
Every other iteration 
Even iterations 
beginning with 2 
Odd iterations 
beginning with 3 
Random 

CONCLUDING REMARKS 

An experiment was conducted to determine if advantage can be 
taken of parallel processing without making major changes to 
an analysis code. This experiment used a network of four 
microcomputers to simulate a parallel processing computer. A 
small finite element analysis computer program with a 
substructuring capability was applied to a framework of beams. 
One microcomputer controlled the system while the other three 
analyzed the substructures. The results verified that the 
computer time was indeed reduced relative to the time required 
for solution on a single computer. The reduction was achieved 
with almost no change to the analysis portion of the code. The 
experiment also included resizing of the design variables 
using a Fully Stressed Design algorithm to simulate an 
iterative optimization to obtain an indication of the effect 
of asynchronous parallel computing on the convergence of an 
iterative process. Results from 10 test cases indicated that, 
for this model, asynchronous processing did not affect 
convergence other than possibly causing the process to go 
through more iterations. 

These results are not completely general in that they only 
apply to an iterative process which is monot~nically 
convergent. This process is typical of many processes in 
design. In general, if an iterative process is nonconvex 
(dependent on the starting point and the path taken) then this 
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conlusion would not apply and the asynchronous process may 
lead to different results. 
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