
NASA Technical Memorandum 86387

NASA-TM-8638719850015007

EXPLOITING PARALLEL COMPUTING WITH LIMITED PROGRAM
CHANGES USING A NE1~ORK OF MICROCOMPUTERS

J. L~ Rogers, Jr., and J. Sobieszczanski-Sobieski

FEBRUARY 1985

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

... ", ,,......,..,-..
/;:-;.: J 0 I;jo

.LANGLEY RESEARCH CENTER
LIGi1ARY, NASA

lill!'.';?rOt),. VIRGINIA

1111111111111 IIII 11111 11111 IIIII 11111 IIII lUI
NF00583

https://ntrs.nasa.gov/search.jsp?R=19850015007 2020-03-20T18:23:37+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42845826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EXPLOITING PARALLEL COMPUTING WITH LIMITED PROGRAM CHANGES
USING A NETWORK OF MICROCOMPUTERS

J. L. Rogers, Jr. and J. Sobieszczanski-Sobieski

NASA Langley Research Center

INTRODUCTION

As the speed of a single processor computer approaches a
physical limit, computer technology is beginning to advance
toward parallel processing to provide even faster speeds.
Network computing and multiprocessor computers are two
discernible trends in this advancement. Given the two
extremes, a few powerful processors or many relatively simple
processors, it is not yet clear how engineering applications
can best take advantage of parallel architecture. Neither is
it clear at this time the extent to which engineering analysis
programs will have to be recoded to take advantage of this new
hardware. Initial investigations of these questions can begin
immediately by exploiting the physical parallelism of
selected problems and the modular organization of eXisting
programs to solve these problems.

To gain experience in exploiting parallel computer
architecture without making major changes to the code, an
existing program was adapted to perform finite element
analysis by distributing substructures over a network of four
Apple lIe microcomputers connected to a shared disk (Rogers
and Sobieszczanski-Sobieski, 1983). This network of
microcomputers is regarded merely as a simulator of a parallel
computer because it should be obvious that substructure
analysis of a practical problem of significant size should be
performed on a computer with much more power than this
particular microcomputer. In this network, one microcomputer
controls the entire process while the others perform the
analysis on each substructure in parallel.

After the substructure analysis was implemented in parallel, a
new experiment was planned using this system. In this

experiment, the substructure analysis is used in an iterative,
fully-stressed, structural resizing procedure to evaluate
resizing in which the analyses of all substructures are not
completed during a single iteration. Methods to handle the
resulting mixture of old and new analysis data, referred to as
asynchronous parallelism, need to be developed for parallel
computing applications. Although the present work involves
only structural analysis, this research gives some initial
insight on how to configure multidisciplinary analysis and
optimization procedures for decomposable engineering systems
using either high-performance engineering workstations or a
parallel processor supercomputer. In addition, the
operational experience gained will facilitate the
implementation of analysis programs on these new computers
when they become available in an engineering environment.

BACKGROUND

In 1975 a feasibility study (Universal Analytics, 1975) was
performed to determine the effort required to convert NASTRAN
(NASTRAN User's Manual, 1983) to execute on the ILLIAC IV
computer, and to assess the advantages that would be gained
from such a conversion. The projected advantages in speed
improvement were significant. For example, the decomposition
of a 10,000 degree-of-freedom matrix on the ILLIAC IV was
estimated to be 40-100% faster than on a CDC 6600 computer
when the matrix could not be contained in central memory. The
problem that the study pointed out was that the code
conversion effort would require 110-140 man months over a
period of 36-50 months. If funds had been supplied and the
project begun in 1976, it would probably not have been
completed until 1980. About two years later, in 1982, the
ILLIAC IV was taken off-line. This historical example
illustrates the difficulties that could be encountered in
future wholesale conversions of engineering analysis codes to
parallel processor computers which appear to be the wave of
the future (Siewiorek, 1982; and Noor, Storaasli, and Fulton,
1983)

While such wholesale conversion efforts should ultimately
provide the greatest increases in efficiency, it is also
important in the interim to benefit from the speed
improvements offered by parallel computing without the cost,
manpower, and time involved in the conversion of major
analysis codes. This research demonstrates that for
structural analysis, the current investment in sequential,
modular structural analysis programs can be used to exploit
parallelism of a network of computers.

2

APPROACH

The approach taken for this project was to establish reference
results using the Engineering Analysis Language (Whetstone,
1980), called EAL, to analyze a finite element model that was
not substructured. An existing small finite element analysis
code was then modified to handle substructures and applied to
the same model on a CYBER mainframe computer. Next, this
program was implemented on a microcomputer to test the
substructure method sequentially. The program was then
distributed over a network of these microcomputers with little
change to the analysis code to test the substructure
method executed in parallel. A Fully Stressed Design (FSD)
capability was added to test the behavior of substructure
analysis in an iterative process in which some of the analyses
were completed before others.

The Model
The finite element model used for testing is shown in figure
1. This model contains 16 jOints, 21 beam elements, and ij2
degrees-of-freedom (the size of the model was limited by the
memory of the microcomputer). The framework has three
substructures with each substructure composed of seven beams.
The cross-sections and material properties are identical for
all beams. A load is applied at one of the boundary nodes as
shown in figure 1.

The Small Finite Element Program
Input for the model was written for a small, undocumented
finite element program developed in the past for a CYBER
computer without any intent to ever use it for parallel
processing. It did not even have an explicit substructuring
capability. In this study, this program represented an
"investment in existing software" that was to be salvaged.
The results from the unchanged program were verified against
the reference run. New code for substructuririg based on
equations from (Przemieniecki, 1968) was then added to the
program. The model was divided into three substructures with
the new code used to compute the boundary stiffness matrix for
each substructure using equation 1:

Each of the three 18x18 substructure stiffness matrices was
reduced to 6x6 equivalent beam stiffness matrices (figure 2).
Thes~ three stiffness matrices were input to the program,
assembled to represent a stiffness~equivalent framework
composed of three beams, each beam representing one
substructure. The forces and displacements at the boundary

3

nodes were computed for each such beam. Modifications were
made to the program for reading these forces from a file and
applying them to the corresponding substructures. By applying
support conditions to the sUbstructures. solutions were
obtained for the interior node displacements. internal forces.
and elemental stresses. These results were also verified
against the reference run. It should be noted that the
substructure analysis was simplified because the external
loads were applied only to the boundary nodes. Should any
loads be applied to the interior substructure nodes. it would
have been necessary to add code to transfer these loads to the
boundary nodes.

Conversion to the Microcomputer
At this pOint. the program for sequentially performing
substructure analysis existed on a CYBER mainframe computer.
The next step was to convert the program to the microcomputer.
Since the entire program was written in FORTRAN~77. the move
was quite simple and the program was contained in the
microcomputer's 64K byte memory without overlay. Although the
program itself was entirely core resident. the test case shown
in figure 1 was too large for analysis without substructuring.
Therefore. the first step on the microcomputer was to run the
substructuring sequentially. The problem took 57 minutes to
execute. The results were verified against the reference run
with little loss in precision (less than 1%).

Distributing the System
The approach selected for distributing the system was to use
one microcomputer to execute a controller program and three
microcomputers to analyze each of the substructures. All of
the microcomputers were connected to a 20MB Corvus hard disk
which was used for data communication among the computers.
The operations assigned to each computer are shown in
figure 3. The controller program started the system
(operation 0). assembled the substructure stiffness matrices
and solved for the forces on each substructure at the boundary
nodes (operation 2). and output the data (operation 4). The
substructure programs computed the substructure stiffness
matrices (operation 1). and used the forces from the
controller program to solve for internal forces. node
displacements. and elemental stresses for each substructure
(operation 3). Note that parallelism only exists in
operations 1 and 3. The output of the data (operation 4) also
could have been distributed. but it was found to be easier to
keep "it centrally located.

When distributing the system to four microcomputers. the
purpose was to minimize changing the original analysis code.
Only the procedures involved in operations O. 2. and 4 were
retained in the controller program while only those procedures

4

involved in operations 1 and 3 were retained in the
substructure program.

A subroutine was added to both the controller program and the
substructure program to schedule their execution. This
scheduling was accomplished by using three files on the shared
disk; one file for each substructure program. When it was
time for the controller program to execute each of the three
files contained a zero, and when it was time for a
substructure program to execute, its respective file contained
a nonzero number. Each program queried its file and if it was
not its turn for execution it was put in a "holding pattern"
by performing a simple multiplication loop before querying
again. The system could have been implemented on only three
processors with one processor doubling for executing the
controller and substructure programs.

The ideal is to reduce the time required to solve the same
problem sequentially on a single processor to (time/n) where n
is the number of processors used to solve the problem.
However, it is seen in figure 3 that. not all of the
calculations can be executed in parallel. In addition, some
time was lost in an inevitable overhead such as checking and
looping while waiting for a substructure or controller program
to finish executing. Thus, the parallel system with
substructures took about 27 minutes to complete execution,
.47 of the time required for the reference run. This is short
of the ideal, .25, but is still more than twice as fast as the
sequential system.

The particular division of the structure from figure 1 into
substructures is, of course, not the only one possible. If a
larger number of smaller substructures was used, larger
numbers of parallel computers could have been employed.
However, the larger the number of substructures the larger the
dimensionality of the assembled structure stiffness matrix
(ultimately, if each substructure· represents a Single beam
component, the assembled stiffness matrix would return to the
size it would have had if no substructuring was used).
Consequently, to minimize the overall computer time, an
attempt should be made to balance the size of the assembled
structure stiffness matrix against the size and number of the
substructure stiffness matrices. The degree of the time
reduction depends also on the number of substructuring levels
(Sobieszczanski-Sobieski, James, and Dovi, 1983). ThUS,
tailoring the analysis process for a particular application to
take advantage of multiprocessor efficiency is an important
issue that faces an analyst using a multiprocessor system.

5

Resizing
An FSD algorithm was added to examine the behavior of parallel
substructure analysis in an iterative process (figure 4). The
FSD was performed by resizing all the beams in a given
substructure according to the ratio of the maximum absolute
normal stress occuring in the substructure to a specified
allowable stress. The stress ratio was used as a scale factor
to modify the beam cross-sectional moment of inertia.
Consistently, the cross-sectional area was multiplied by the
square root of the scale factor, and the cross-section linear
dimensions were all multiplied by the scale factor to power
1/4. At this pOint, resizing was synchronized, which means
the process would always wait until all data were updated
before processing rather than mixing old and new data. An
iteration history of the changes in the design variable
(plotted as the factor on cross-section linear dimension) for
each substructure is shown in figure 5.

Asynchronous Resizing
Since most of the engineering calculations performed in
support of design are iterative in nature, the computational
behavior of an iterative distributed process in which some
subtasks are completed later than others because of unequal
computational requirements for various subtasks is of
significant interest (Baudet, 1978; and Sobieszczanski
Sobieski, 1982). If such an imbalance of computational
requirements occurs, a choice can be made to let the iterative
process continue, temporarily using old data for those
processes which are late. The process then becomes
asynchronous as it mixes new and old data. The effect of this
mixing on the convergence and efficiency can easily be tested
in a parallel system such as described above. The tests are
conducted by bypassing analysis of selected substructures in
some iterations. Obviously during the first loop through the
system, all of the substructures will be analyzed to provide a
starting pOint.

There is a large number of different ways in which an
asynchronous iterative process can proceed. USing the
framework structure from figure 1 as an example, it is
conceivable to have at least the following variants.

1. Referring to figure 3, consider being at the outset of
iteration Hi". Operations 1.1, 1.2, and 1.3 are expected to
yield the boundary stiffness matrices for substructures 1.2
and 3. all of which having been resized as a re'sult of an FSD
operation at the end of the previous iteration "i-1". Assume
that operation 1.1 is late but the process moves on anyway
using the old boundary stiffness matrix from iteration "i-1".
that does not reflect the "i-1" resizing. That means that
operation 2 combines the updated matrices for substructures 2

6

and 3 with an outdated matrix for substructure 1. In
operations 3.1, 3.2, and 3.3, consistently, an old stiffness
matrix that does not reflect the "i-1" resizing is used, while
the updated stiffness matrices are used in operations 3.2, and
3.3. After this analysis based on the partially incorrect
data, all substructures, including substructure 1, are subject
to the FSD resizing.

2. Proceed as above, but do not resize that particular
substructure for which the old stiffness matrix was used in
the analysis (substructure 1 in this example).

3. Complicate variants 1 and 2 by changing: the number of
substructures that are assumed to be "late", the number of
iterations over which the old data are being used for each
substructure, etc. Obviously, a very large number of
possibilities can be considered.

It was expected that, for this particular model, the
asynchronous processing would have little effect on the
convergence other than slowing it down by going through more
iterations. In fact, the asynchronous operation in this case
may be regarded as a continuation of the FSD process from an
artificially injected new starting point. In addition, an
analogy can be made between this process and other iterative
methods such as the Gauss-Seidel iterative algorithm for
solving linear algebraic equations. These methods are error
insensitive, i.e. if an error is entered into the process, the
process recovers after several iterations and proceeds as if
no error had been introduced. One may speculate that a
different behavior will be observed in cases when nonlinear
programing is used instead of FSD for nonconvex cases. Then,
there will be a potential for such an asynchronous operation
to trigger a switch to another path through the design space
that could end up at a different local minimum.

To determine if the above expectations were correct, numerous
test cases were executed. The existence of coupling among the
substructures was demonstrated by holding substructure 1
constant. As seen in figure 6, this case converged to
different results than is seen in the following figures thus
showing that the sUbstructures are coupled. Next, variants 1
and 2 were tested. The results shown in figures 7 and 8,
respectively, indicate that the asynchronous operation, shown
as connected lines, had only a slight influence on the
convergence as manifested in small discrepancies that can be
seen between the lines and symbols from the synchronous
sizing. For instance, asynchronous results for substructures
2 and 3 (figure 7) are above the sy"nchronous ones but both
results converge after about eight iterations.

7

Variant 3, complicating variant 2, was tested using seven
different cases. It was decided to complicate variant 2 rather
than 1 because of the ease of implementing the variables.
Table 1 lists the substructure(s) and iteration(s) that were
delayed for each test case. In each of the test cases the
results led to the expected behavior. Figures 9 and 10 (test
cases 6 and 7 respectively) demonstrate typical results.

CASE

1
2
3
4
5
6

7

Table 1 Test Cases for Asynchronous Processing

SUBSTRUCTURE DELAYED

2
1,2

1
2

1,2
1

and 2

Random combinations

ITERATIONS DELAYED

2
2

Every other iteration
Every other iteration
Every other iteration
Even iterations
beginning with 2
Odd iterations
beginning with 3
Random

CONCLUDING REMARKS

An experiment was conducted to determine if advantage can be
taken of parallel processing without making major changes to
an analysis code. This experiment used a network of four
microcomputers to simulate a parallel processing computer. A
small finite element analysis computer program with a
substructuring capability was applied to a framework of beams.
One microcomputer controlled the system while the other three
analyzed the substructures. The results verified that the
computer time was indeed reduced relative to the time required
for solution on a single computer. The reduction was achieved
with almost no change to the analysis portion of the code. The
experiment also included resizing of the design variables
using a Fully Stressed Design algorithm to simulate an
iterative optimization to obtain an indication of the effect
of asynchronous parallel computing on the convergence of an
iterative process. Results from 10 test cases indicated that,
for this model, asynchronous processing did not affect
convergence other than possibly causing the process to go
through more iterations.

These results are not completely general in that they only
apply to an iterative process which is monot~nically
convergent. This process is typical of many processes in
design. In general, if an iterative process is nonconvex
(dependent on the starting point and the path taken) then this

8

conlusion would not apply and the asynchronous process may
lead to different results.

REFERENCES

Baudet, G. (1978) The Design and Analysis of Algorithms for
Asynchronous Multiprocessors. Ph.D Thesis, Department of
Computer Science, Carnegie Mellon University.

Noor A.; Storaasli, 0.; and Fulton, R. (1983) Impact of New
Computing Systems on Finite Element Computations. ASME
Publication H00275, pp. 1-32.

Przemieniecki, J. (1968) Theory of Matrix Structural Analysis.
Ch. 9, McGraw-Hill Book Co.

Rogers, J., Jr. and Sobieszczanski-Sobieski, J. (1984) Initial
Experiences with Distributing Structural Calculations Among
Computers Operating in Parallel. NASA CP 2335, pp. 45-54.

Siewiorek, D. (1982) State of the Art in Parallel Computing.
Abstracted from Computer Structures: Principles and Examples;
McGraw-Hill Book Co.

Sobieszczanski-Sobieski, J. (1982) A Linear Decompostition
Method for Large Optimization Problems. Blueprint for
Development. NASA TM-83248.

Sobieszczanski-Sobieski, J.; James, B.; and Dovi, A. (1983)
Structural Optimization by Multilevel Decomposition. AIAA
Paper No. 83-0832.

The NASTRAN User's Manual (1983) NASA SP-222.

Universal Analytics Inc. (1975) Feasibility Study for the
Implementation of NASTRAN on the ILLIAC IV Parallel Processor.
NASA CR-132702.

Whetstone, D. (1980) EISI-EAL: Engineering Analysis Language.
Proceedings of the Second Conference on Computing in
Engineering, ASCE, pp. 276-285.

9

55

.~ 16 NODES

SS
#2

P

55
#3

" . 21 ELEMENT 5 • PHYSICAL MODEL - RIGID JOINT
..

42 DOF • MATH MODEL - NODE
Figure 1 - Framework used for testing

r I I • •
(6 x 6)

(18 x 18)

(12 x 12)

FIND FORCES ON EACH A... ~
SUBSTRUCTURE AT -..~)-+
BOUNDARY NODES

4 SOLVE FOR INTERNAL FORCES AND NODE
~ ~ DI SPLACEMENTS, AND ELEMENTAL STRESSES

Figure 2 - Actions being taken at
each step

10

Time, min
0.25

6.50

5.00

8.75

6.75

,

2

SolveSS#2 13.2

+
Output

4

Figure 3 - Flowchart of substructure
analysis

I I nitalize I
, ,

Iss #1 stiff Mat 1 1 55 #2 Stiff Mat 1 Iss #3 Stiff Mat 1

+
I Assemble and Solve I

I

+
1 Solve 55#11 I Solve 55 #2 I 1 Solve 55 #31

+ I Output I
I I

+ I Resize I I

Figure 4 - Flowchart of substructure
analysis with resizing

11

15

10

Linear
Dimension

5

0

15

10

linear
Dimension

5

o

0 0 0 0 0 0 0 0 0
0

0
o Substructure 1

8 .6 Substructure 2
.6 w Substructure 3
0 .6

0 .6
0 .6

0 tl ~ a a f] £]

2 4 6 8 10 12
Iterations

Figure 5 - Synchronous resizing

o
o 0 000 000 0

o

2 4 6
Iterations

8

Fig~re 6 - Asynchronous resizing
showing coupling

12

o Substructure 1
.6 Substructure 2
o 5 ubstructure 3

10 12

Linear
Dimension

Linear
Dimension

15

10

5

o

15

10

5

o

2 4 6
Iterations

o Substructure 1
b. Substructure 2
o Substructure 3

8 10

Figure 7 - Asynchronous resizing
(variant 1)

o

2 4 6
Iterations

o Substructure 1
~ Substructure 2
o Substructure 3

8 . 10

Figure 8 -Asynchronous resizing
(variant 2)

13

12

12.

15

10

Linear
Dimension

5

0

. ~

15

10

Linear
Dimension

5

o

2

Figure

2

4 6 8
Iterations

o S ubstr ucture 1
l::. Substructure 2
o Substructure 3

10 12

9 - Asynchronous resizing
(delay substructure 1
on even iterations and
substructure 2 on odd
iterations)

4 6
Iterations

8

o Substructure 1
l::. Substructure 2
o S ubstr ucture 3

10 12

Figure 10 - Asynchronous resizing
(random)

14
/ ,.

NASA TM-86387
I 2. Government Accession No. 1. Report No.

4. Title and Subtitle

Exploiting Parallel Computing with Limited Program
Changes Using a Network of Microcomputers

7. Author(s)

J. L. Rogers, Jr., and J. Sobieszczanski-Sobieski

3. Recipient's Catalog No.

5. Report Date
February 1985

6. Performing Oraanization Code

505-33-53-12
8. Performing Organization Report No.

..-.----------------------------1 10. Work Unit No.
9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

11. Contract or Grant No.

..-. _________________________ ----j 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National A~ronautics and Space Administration
Washington, DC 20546

15. Supplementary Notes

16. Abstract

Technical Memorandum
14. Sponsoring Agency Code

As the speed of a single processor computer approaches a physical limit, computer
technology is beginning to advance toward parallel processing. Network computing and
multiprocessor computers are two discernible trends in this advancement. It is not
clear at this time the extent to which engineering analysis programs will have to be
recoded to take advantage of these new hardware opportunities.

Since most calculations supporting design are iterative, the computational behavior of
an iterative distributed process in which some subtasks are completed later than others
because of an imbalance in computational requirements is of significant interest. If
such an imbalance occurs, the iterative process can continue choosing either to
temporarily use old data for those processes which are late (asynchronous processi.ng)
or waiting for the completion of all processes (synchronous processing).

To study the effects of asynchronous processing, a small existing program was converted
to perform finite element analysis by distributing substructure analysis over a network
of four Apple lIe microcomputers connected to a shared disk, simulating a parallel
computer. The substructure analysis uses an iterative, fully stressed, structural re
sizing procedure. A framework of beams divided into three substructures is used as the
finite element model. The effects of asynchronous processing on the convergence of the
design variables are determined by not resizing particular substructures on various
iterations. Numerous test cases were executed.

17. Key Words (Suggested by Author(s)) I 8. Distribution Statement

Parallel processing, finite element analysis,
substructuring, microcomputers, fu11y-stres~ed
design

19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified

Unclassified - Unlimited
Subject Category 61

21. No. of Pages· 22. Price

15 A02

t. ,

l " , r
r L-___________ .l.-__________ --L ______ L-________ --' pL"

[
r'

N-lOS For sale by the National Technical Information Service, Springfield, Virginia 22161

,Ii ,.

End of Document

