

A Service of:

National Aeronautics and Space Administration

Scientific and Technical Information Program Office Center for AeroSpace Information

THIS REPRODUCTION WAS MADE FROM THE BEST AVAILABLE COPY OF WHICH A NUMBER OF PAGES WERE OF POOR REPRODUCTION QUALITY.

.

,

.

.

Geometric Error Analysis for Shuttle Imaging Spectrometer Experiment

- " · · · · · ·

/ ___.

э

-1

Shyh Jong Wang Che-Hang Charles Ih

. -

December 15, 1984

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space[®] Administration

--- - -

ł

1

ļ

ł

. ر بر

٠,

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology

and the second

э

.

۰.

Acknowledgements

The authors wish to express their gratitude to Y. H. Lin and J. M. Cameron for their contributions at the early stage of this work, and to M. Herring, P. N. Kupferman, and J. B. Wellman for their support.

ABSTRACT

The demand of more powerful tools for remote sensing and management of earth resources has been steadily increasing over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed.

This report documents the error analysis study for the Shuttle Imaging Spectrometer Experiment system for the purpose of providing information for edesign, tradeoff, and performance prediction.

. 84 85

Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, earth rotation, etc., have been investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions have been generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.

- + - + - Tro

TABLE OF CONTENTS

i

らう

List	of	Illustrations
List	of	Tables
I.	INT	RODUCTION
	A.	BACKGROUND
	в.	APPROACH
	с.	SUMMARY OF MAJOR FINDINGS 5
II.	ORB	ITAL AND IMAGING SPECTROMETER CONFIGURATIONS 8
	А.	SHUTTLE NOMINAL FLIGHT CONFIGURATIONS 8
	в.	IMAGING SPECTROMETER SYSTEM DESCRIPTION
TTT.	ERR	OR SOURCES AND SHUTTLE ATTITUDE DYNAMICS.
	Δ.	
	Β.	SHUTTLE MASS PROPERTY
	c.	ASSESSMENT OF DISTURBANCES
		C.l Aerodynamic Drag Torque
		C.2 Gravity Gradient Torques and Gyroscopic Torques 25
	D.	MISALIGNMENT AND MEASUREMENT NOISE
		D.1 Misalignment Errors
		D.2 IMU Model
	E.	SHUTTLE DYNAMICS AND INSTRUMENT POINTING ERRORS
		E.1 The Equations of Motion
		E.2 The Space Shuttle State Estimator
		E.3 The System Pointing Errors.
		E.4 The Instrument Pointing Error PSD
	F.	SUMMARY OF MAJOR FINDINGS
		F.1 The Major Environmental Disturbances

v

2

47

3:5%

Page

÷

1

-

Ē

		Page
F	2 The Measurement Uncertainties	36
F	3 Ground Track Errors and Navigation Uncertainnies	36
IV.	ARAMETRIC ANALYSIS OF GEOMETRIC ERRORS	43
	. COORDINATE CONFIGURATIONS	43
	. GEOMETRIC ERRORS INDUCED BY EPHEMERIS UNCERTAINTIES	45
	B.l Geometric Errors Due to Altitude Uncertainties	45
	B.2 Geometric Errors Due to Intrack and Crosstrack Prediction Errors	50
	. GEOMETRIC ERRORS INDUCED BY ATTITUDE UNCERTAINTIES	53
	C.1 Geometric Errors Induced by Roll Error	53
	C.2 Geometric Errors Induced by P'tch Error	55
	C.3 Geometric Errors Induced by Yaw Error	58
	C.4 Geometric Errors Induced by Roll, Pitch, and Yaw Attitude Errors	60
D. G	OMETRIC ERRORS INDUCED BY ATTITUDE RATE ERRORS	68
E. G	OMETRIC ERRORS INDUCED BY MISALIGNMENT ERRORS	68
F. G	OMETRIC ERRORS INDUCED BY EARTH ROTATION	69
G. N	MERICAL RESULTS: GEOMETRIC ERRORS AND ERROR SENSITIVITIES	72
G	l Geometric Errors Due to Altitude Uncertainties	72
G	2 Geometric Errors Due to Roll Uncertainties	73
G	3 Geometric Errors Due to Pitch Uncertainties	74
G	4 Geometric Errors Due to Yaw Uncertainties	74
G	5 Geometric Errors Due to Attitude Uncertainties	74
G	6 Ground Point Shift Due to Shuttle Motion and Earth Rotation	75
н. s	MMARY OF MAJOR FINDINGS	94
GROUN	PATTERNS AND IMAGE DISTORTIONS	101

٠

v.

٠

•

*

2

vi

SF 3

·* 🔺

Ē

•

J.

ŧ

1

Ł

æ

	Page
VI. CONCLUSIONS	111
REFERENCES	113
APPENDIX A - GEOMETRIC ERROR MAPPING FUNCTION TABLE	115
APPENDIX B - NAPIER'S RULES FOR RIGHT SPHERICAL TRIANGLES	124
APPENDIX C - COMPUTER PROGRAM FOR SHUTTLE IMAGING SPECTROMETER POINTING ERROR POWER SPECTRAL DENSITIES FOR CONFIGURATION A PAYLOAD-BAY NADIR POINTING	125
APPENDIX D - COMPUTER PROGRAM FOR SHUTTLE IMAGING SPECTROMETER	
B NOSE-DOWN NADIR POINTING	129
APPENDIX E - GEOMETRIC ERROR ANALYSIS PROGRAM LISTINGS	133
APPENDIX F - GROUND PATTERN AND IMAGING DISTORTIONS GENERATION PROGRAM LISTINGS	150

•

N.

5 ----

List of Illustrations

C

-

بتر م

- --

_

1

.

Į

-

7

		Page
1.	IS Error Analysis System Block Diagram	4
2.	Payload-Bay Nadir Pointing Configuration (A)	9
3.	Nose-Down Nadir Pointing Configuration (B)	9
4.	Imaging Spectrometer Basic Operating Principles	11
5.	Shuttle Imaging Spectrometer Optical System Configuration · · · ·	12
6.	Error Sources	14
7.	Orbiter Coordinate System	16
8.	Shuttle Body and Principal Coordinates (Payload-Bay Nadir Pointing Shown)	17
9.	The Three-Plate Aerodynamic Model in Body Frame	19
10.	Simplified IMU Model	28
11.	Pitch-Axis Block Diagram (Configuration A)	31
12.	Roll and Yaw Axes Block Diagram (Configuration A)	32
13.	Instrument Pointing Error PSD, (rad) ² -sec	35
14.	Instrument Pointing Rate Error, (rad/sec) ² -sec	35
15.	Instrument Pointing Error PSD, (rad) ² -sec	38
16.	Instrument Pointing Rate Error, (rad/sec) ² -sec	38
17.	IS Ground Track Error and Rate Error PSD	40
18.	Payload-Bay Nadir Pointing Configuration and Coordinates	44
19.	Ground Point Shift in X and Y Direction Due to Altitude Error	46
20.	Change of View Angle of a Ground Point Due to Altitude Error	51
21.	Geometric Errors Induced by Intrack and Crosstrack Prediction Errors	52
22.	Shift of Ground Point Induced by Roll Error	54
23.	Shift of Ground Point Induced by Pitch Error	56

.

-

*~ - *

AN ALL THE THE

5:

Page

24.	Shift of Ground Point Induced by Yaw Error
25.	The Shift of Ground Projection of IS Line-of-Sight Due to Attitude Error
26.	Side View of Fig. 25
27.	Shift of Ground Point Induced by Attitude Errors
28.	Linear Velocity of the Earth at the Nadir Point
29.	Earth Spherical Geometry
30.	Geometric Error Due to Altitude Uncertainties (Δh)
31.	Geometric Error Due to Roll Attitude Error (\$)
32.	Geometric Error Due to Roll Uncertainty (\$) About 20° Roll Offset 80
33.	Geometric Error Due to Pitch Attitude Error (θ)
34.	Geometric Error Due to Pitch Uncertainty (0) About 22.5° Pitch Offset
35.	Geometric Error Due to Pitch Uncertainty (0) About 45 ⁰ Pitch Offset
36.	Geometric Error Due to Yaw Attitude Error (ψ)
37.	Geometric Error Due to Roll (ϕ), Pitch (θ), and Yaw (ψ) Errors 88
38.	Gecustric Error Due to Pitch (θ) and Yaw (ψ) Uncertainties About 20 ^o Roll Offset
39.	Geometric Error Due to Roll (\$\$) and Yaw (\$\$) Uncertainties About 22.5 Pitch Offset
40.	Geometric Error Due to Roll (\$) and Yaw (\$) Uncertainties About 45° Pitch Offset
41.	Geometric Error Caused by Earth Rotation for the Time Period of 1 Second
42.	Effects of Earth Curvature
43.	Ground Pattern Distortions With No Earth Rotation Effect 102
44.	Ground Pattern Distortions With 20 [°] Roll Offset and No Earth Rotation Effect

•

-2

11.2 CTL LTP. R.V.L

M-21.

•

Ľ

Page

1

...

•

List of Tables

• 4

1

.....

7

		F	age
1.	Sensor Performance Requirements	•	2
2.	Modeled Environmental Disturbances	•	39
3.	Modeled Measurement Uncertainties	•	39
4.	Expected On-Orbit Navigation Accuracies (30)	•	42
5.	Geometric Errors and Error Sensitivity Due to	•	76
6.	Geometric Errors and Error Sensitivity Due to Roll Attitude Error	•	78
7.	Geometric Errors and Error Sensitivity Due to Pitch Attitude Error	•	81
8.	Geometric Errors and Error Sensitivity Due to Yaw Attitude Error	•	85
9.	Geometric Errors Induced by Yaw, Pitch, and Roll Errors	•	87
10.	Ground Point Shift Induced by Shuttle Motion and Earth Rotation .	•	92
11.	Geometric Errors Due to Expected Cn-Orbit Navigation Uncertainty.	•	97
12.	Expected On-Orbit Navigation Accuracies (Ref. 12)	•	98
13.	Geometric Error Sensitivity	•	99
14.	Geometric Error Induced by Shuttle and Imaging Spectrometer Measurement Uncertainties	. 1	100

xi

TTTT ATTACT

I. INTRODUCTION

A. BACKGROUND

Earth resource management and utilization have experienced great-success over the last decade through the Landsat programs. In more recent years, both NASA and user communities have envisioned the need for development of better and more powerful instruments for surveying and managing earth resources. The Landsat D's new sensor, Thematic Mapper (TM), the proposed utilization of Tracking and Data Relay Satellite System (TDRSS), and a more garanced ground system represent an advancement in the earth resource satellite development [1].

The Thematic Mapper of the Landsat D (launched in 1982) has seven spectral bands, two more than those of the Multispectral Scanner associated with the carlier Landsats. However, study shows that the reflectance spectrum of earth surface materials contains a significant amount of information which can only be identified with spectral resolution much finer than those of the Thematic Mapper [2]. With the adv_ncement of area array detectors, a push broom imaging spectrometer can be realistically constructed for simultanecus imaging and registration of hundreds of spectral bands. For the case of Shuttle Imaging Spectrometer Experiment, 128 spectral channels have been proposed to cover the spectral range of 0.4 to 1.0 µm for VNIR (visible and near infrared) and 1.0 to 2.5 µm for SWIR (short-wavelength infrared) with instantaneous field of view of 30m. Table 1 shows the required sensor performance [2].

The purpose of this report is to document the error analysis study for the imaging spectrometer experiment. Error analysis is an important aspect of the overall remote sensing system, since errors from many sources, including

the spectrometer itself, the spacecraft that carries the instrument, knowledge limitations on the true spacecraft attitude and locations, earth rotation: curvature, and terrain variations, etc., will all contribute to image distortion, shift, rotation, and misregistration. Error correction or compensation are necessary and are an integral part of the image processing. This work covers the analysis of fundamental and geometric errors and error sensitivities, the development of geometric mapping functions, and the computation of ground

Table 1. Sensor Performance Requip	rements
------------------------------------	---------

Parameter	Value	Comments	
Spectral Coverage	0.4 to 2.5 µm	Although the entire spectrum is probably not required for any one discipline, in the aggregate of all remote sensing disciplines, the entire region is required	
Spectral Sampling Interval			
VNIR (0.4 to 1.0 μm) SWIR (1.0 to 2.5 μm)	0.01 μm or better 0.02 μm or better		
Instantaneous Field of View	y 30 m	Adequate for most research topics	
Swath Width	at least 10-12 km	This is adequate for research if pointing capa- bility is provided to assure target access	
Pointing Mirror Range			
Along track	at least <u>+</u> 45 deg	Essential for atmospheric and BRDF (Bidirectional	
Ccess track	not more than <u>+</u> 25 deg	Reflectance Distribution Function) Studies	
Radiometric Performance (NH	Edr)		
VNIR SWIR	<u><</u> 0.5% <u><</u> 1.0%		

pattern distortions. The results are translated into many tables, plots, and patterns for visual apprehension. It is believed that the results reported here are important for design, trade-off, and performance prediction.

B. APPROACH

This study has been performed in four progressive stages as shown in block diagram form in Fig. 1. In Stage I, the error sources were identified, dynamic disturbances and the Space Shuttle error dynamics were modeled, and the error power spectral densities for two in-orbit configurations were developed. Stage II of this study concentrated on the development of geometric error mapping functions and error sensitivity analysis. Geometric errors due to ephemeris uncertainties, attitude deviations, earth rotation, etc., were studied. In Stage III, ground pattern image distortions caused by various error effects and forward and side looking angular offsets, altitude change, and effect of earth rotation were generated. Stage IV consists of the analysis of the imaging spectrometer instrument errors. These errors include optical jitter, nonlinearities, processing errors, and repeatability. The study of Stages I, II, and III has been completed and the results are included in this report. The study called for by Stage IV has not been planned. It is emphasized here that the imaging spectrometer error model development is an important step for the overall performance prediction and design of the imaging spectrometer system.

Major findings of this work are summarized in the following subsection. In Section II, the orbital and imaging spectrometer configurations are described. The attitude dynamics and error power spectral densities are documented in Section III; and parametric analysis of geometric errors are treated in Section IV. Section V deals with the ground pattern image distortions. Conclusions are summarized in Section VI.

3

(1

.

N

.

Figure 1. IS Error Analysis System Block Diagram

. . . .

4

C. SUMMARY OF MAJOR FINDINGS

7

The following is a summary of major findings. The details of these are treated in the sections to follow.

1. The results show that the IS Experiment with image pickup period of 20 seconds at a time is feasible with the shuttle properly phased \cdots inside the control deadband. The error PSD (power spectral density) characteristic reveals that the system resonates at very low frequencies (in the 10^{-5} to 10^{-2} Hz region). Excitations at these frequencies must be avoided through design precautions. The analysis also showed that errors below 0.01 Hz are dominated by the shuttle dynamics reacting to disturbances, whereas those above 0.01 Hz are dominated by the shuttle inertial measurement system uncertainties and its inherent noise. These high frequency errors limit pointing performance and result in a one-sigma ground track error of 54.8 meters per axis. One-sigma rate errors are shown to be less than 4 meters per second per axis in the frequency range of 10^{-5} to 4×10^{-2} Hz. The image smear is not significant because of the short millisecond-level line time.

- The effects of earth curvature are very small for the application here (see Fig. 42).
- 3. Altitude uncertainties cause only moderate geometric errors. The worst lo geometric errors are 11.71 m in position and 0.133 m/sec in rate with STDN and large unmodeled perturbations at 200 km orbit. The performance improves with TDRSS. For the 300 km orbit and with small unmodeled perturbations, the lo geometric errors will reduce to 0.22m and 0.0032 m/sec (see Table 11).

 The effects of other navigation errors are significantly greater. The lσ downtrack errors range from 203m (300 km orbit) to 8128m (200 km orbit); and those for the crosstrack are 152m to 508m (see Table 12). 64

· (+

- 5. The effects of roll and pitch attitude errors are relatively large compared with, for instance, those caused by yaw errors and altitude uncertainties. The error sensitivity is 1.94 m/arc sec or approximately 7000 m/degree. The yaw sensitivity is 0 for 0° view angle and 0.028 m/arc sec for the maximum view angle of ±0.825° (see Table 13).
- 6. The error sensitivities of attitude errors increase significantly for large attitude offsets. For 20⁰ side looking, the sensitivity increases to 2.28 m/arc sec for roll errors and to 0.75 m/arc sec for yaw errors and the pitch error sensitivity is almost unaffected. For the 45⁰ forward looking case, the sensitivities for the pitch, roll, and yaw errors increase to 2.83, 4.36, and 1.97 m/arc sec, respectively (see Table 13).
- 7. The performance of the Shuttle Imaging Spectrometer is limited by the Shuttle IMU (Inertial Measuring Unit) accuracy, instrument misalignment, etc., Shuttle RCS (Reaction Control Subsystem) deadband, etc. unless some means of error reduction are employed. For instance, ground control points may be used to reduce navigation prediction errors; and precision point mounts, such as AGS (ASPS* Gimbal System) and IPS (Instrument Pointing System), may be used to reduce the

*Annular Suspension Pointing System

ATT. - 11- 1"

attitude errors.

The single axis geometric errors due to the combined Shuttle/IS misalignment, for instance, for normal nadir pointing, 20° side looking, and 45° forward looking are 169m, 198m, and 379m, respectively (refer to Table 10 for detailed breakdowns).

8. Earth rotation causes shifts of images toward the direction of rotation. The magnitude of this shift depends on the latitude of ** the object. For instance, at the equator the object moves approximately 462m in one second (for 400 km orbit), and at 60[°] latitude it moves only 231m in one second.

II. ORBITAL AND IMAGING SPECTROMETER CONFIGURATIONS

A. SHUTTLE NOMINAL FLIGHT CONFIGURATIONS

Two shuttle in-orbit configurations have been considered, the Payload-Bay Nadir and the Nose-Down Nadir, as illustrated in Figures 2 and 3, respectively. It will be shown later that the Nose-Down Configuration is gravity gradient stabilized and the Payload-Bay Nadir Configuration is not. However, the Payload-Bay Nadir Configuration offers simpler instrument mounting and less aerodynamic drag. Besides, for certain experiments that require large forward looking angles, the Nose-Down Configuration will be unsuitable.

A circular orbit of 400 km altitude has been selected for this analysis. This selection is consistent with the SIS-B parameters.*

There are a number of possible instrument mounting options that will affect the pointing and the geometric errors of the instrument. These options include:

- a) Direct mount
- b) AGS (ASPS Gimbal System) mount
- c) IPS (Instrument Pointing System) mount

Since both the AGS and IPS systems are capable of providing precision payload pointing and measurements, the system performance will be improved at the expense of significant extra cost. The direct mount approach is the least complex and most cost effective, provided that the errors are within the tolerance. In this report the direct mount approach is considered. Furthermore, the shuttle IMU

During the period when this part of the work was performed, SIS-B (Shuttle Imaging Spectrometer-Configuration B) was considered. However, the methods used here are mostly generic, and hence, can be applied to systems of similar configurations.

Figure 2. Payload-Bay Nadir Pointing Configuration (A)

Figure 3. Nose-Down Nadir Pointing Configuration (B)

(*)

(Inertial Measurement Unit) and the shuttle state estimator unit are used for obtaining attitude and rate information, without additional instrumentation. Other options may be studied in the future if necessary.

B. IMAGING SPECTROMETER SYSTEM DESCRIPTION

.1

In order to correlate the analysis reported here to the IS applications, it is desirable to understand the basic operating principle of the IS instrument. Figure 4 shows a sketch of the basic elements of the IS, except the memory banks, registers, and the processors. Some of the IS parameters that are relevant to the geometric error analysis, along with definitions of the IS terminologies, are also listed in Fig. 4. It is understood that the sketch and the parameter values used are for illustrative purposes only since the parameters may change as the development of the IS system is finalized.

Referring to Fig. 4, as the reflection from the ground objects passes through a narrow slit, it strikes the incident surface of the prism. The prism separates the incident light into spectral images projected onto an area array of light detectors. The area array consists of 384 linear arrays, corresponding to 384 spectral channels. Each linear array consists of 384 detector elements. Each detector element corresponds to an image area of 30m x 30m on the ground. Hence, each linear array corresponds to an image of a specific spectral channel of the same ground area of 30m (along-track) x 11520m (cross-track). This 11.52 km cross-track measure, referred to as the swath width, defines the IS coverage for each orbit pass. The 30m x 30m area is referred to as the pixel (picture element) which defines the resolution of the image, i.e., within this element no features can be resolved. The IS is operated based on a push broom principle. That is, a specific detector element on the instrument (moving with the spacecraft) collects photons from the 30m x 30m moving window for a specific period

10

æ

KEY PARAMETERS

- LINE TIME = 4 ms
- SPECTRUM: VISIBLE REGION 0.4 - 1.0 μm SHORT WAVELENGTH IR 1.0 - 2.5 μm

AN E-

ALL FI

×.

A COALLY

- FIELD OF VIEW: ± 0.825°
- SWATH WIDTH: 11.52 km
- POINTING ANGLES (RANGE): ± 45° (PITCH) ± 20° (ROLL)
- ORBIT: 400 km CIRCULAR

DEFINITIONS

GIFOV (GROUND INSTANTANEOUS FIELD OF VIEW): PROJECTION ON THE GROUND OF EACH SQUARE DETECTOR 4

. ÷

(æ

- LINE TIME: TIME TO MOVE ALONG THE GROUND A DISTANCE OF 1 GIFOV
- DN: DATA NUMBER, THE "BRIGHTNESS" OF OF THE ASSOCIATED PIXEL
- PIXEL: PICTURE ELEMENT (30 m x 30 m HERE, IT DEFINES THE RESOLUTION OF THE IMAGE)
- SWIR: SHORT WAVE LENGTH IR VIS: VISIBLE WAVE LENGTH

Figure 4. Imaging Spectrometer Basic Operating Principles

of time called the line time. The line time in this case is the time required to move 30m along-track, which is determined by the orbit. For a 400 km circular orbit, it is about 4 ms. At the end of each line time, the total number of photons collected by each detector is recorded and processed and the jetector/ register is reset and a new 4 ms cycle is repeated. For digital processing, the amount of light collected by a collector is assigned a number called DN (data number), which is proportional to the number of photons accumulated. Therefore, the processor has to record and process 384×384 , or approximately 1.475×10^5 DN's every 4 ms.

As the shuttle flies over an area, backs after banks of DN's are collected. By spacing the banks of DN's 30m apart, the features of the ground image emerge. The ratios of the DN's of various channels for the same area are of special interest, as these ratios are closely correlated to geological and ecological states of the earth including mineral deposits, forestry, crops,

disease and insect infestations, land and soil erosion, precipitation in the form of snow and ice, air and water quality, etc.

*

The Imaging Spectrometer optical system configuration and the arrangement of lenses, mirrors, slit, prisms, focal plane detector, etc. are shown in Fig.5 [2]. Additional information on the instrument design and requirements can be found in Refs. 2 and 3.

- 2

III. ERROR SOURCES AND SHUTTLE ATTITUDE DYNAMICS

A. ERROR SOURCES

A PERSONAL PROPERTY OF

There are two types of errors that are important to the imaging spectrometer experiment — the direct errors and the derived errors. The direct errors are those pertaining to the spacecraft and instrument pointing, ephemeris, and instrument errors as shown in Fig. 6. The derived errors are the geometric errors and pattern distortions of ground objects which result from the direct errors and the effects of earth rotation, curvature, oblateness, and local vertical uncertainties. Fig. 1 shows relationships of the error sources and the system dynamics.

- ATTITUDE DEVIATIONS, RATE ERRORS AND STRUCTURAL VIBRATION
- MEASUREMENT NOISE AND DRIFT
- MISALIGNMENT OF SHUTTLE IMU AND ATTITUDE REFERENCE FRAME
- MISALIGNMENT BETWEEN SHUTTLE AND IS INSTRUMENT REFERENCES
- EPHEMERIS PREDICTION ERRORS
- EARTH ROTATION, CURVATURE, AND OBLATENESS
- IS INSTRUMENT ERRORS INCLUDING
 - OPTICAL JITTER
 - NONLINEARITIES
 - PROCESSING
 - REPEATABILITY

Figure 6. Error Sources

In this section, the steady state analysis is performed in the frequency domain. The PSD (power spectral density) for the pointing errors and the rate errors were obtained by considering the dynamics of the Space Shuttle Orbiter, the IMU (Inertial Measurement Unit), the attitude control state estimator, the measurement noise, the misalignment of reference frames, and the disturbances including gravity gradient, gyroscopic torques, and aerodynamic drag torques.

B. SHUTTLE MASS PROPERTY

THE REAL PROPERTY OF

The shuttle mass properties employed here were obtained from the Shuttle Operational Data Book [4] for OV-102/STS-3. The mass and the c.m. are, respectively:

Shuttle mass: 102,153.73 kg (224,738.21 1bs)

Shuttle c.m.: $X_0 = 1105.5^{"}, Y_0 = 0, Z_0 = 374.3^{"}$

where the coordinates X_0 , Y_0 , and Z_0 are the Orbiter Coordinates [5] defined in Figure 7. The moment of inertia matrix (kg-m²) is, in the shuttle body frame (refer to Fig. 8),

$$I_{B} = \begin{bmatrix} 1.36 \times 10^{6} & -4.69 \times 10^{3} & -3.49 \times 10^{5} \\ -4.69 \times 10^{3} & 1.00 \times 10^{7} & -3.32 \times 10^{3} \\ -3.49 \times 10^{5} & -3.32 \times 10^{3} & 1.05 \times 10^{7} \end{bmatrix}$$

$$= \begin{bmatrix} 1.36 \times 10^{6} & 0 & -3.49 \times 10^{5} \\ 0 & 1.00 \times 10^{7} & 0 \\ -3.49 \times 10^{5} & 0 & 1.05 \times 10^{7} \end{bmatrix}$$
(1)

The magnitude of the off-diagonal terms of the inertia matrix I_B suggests strong couplings exist especially between the X_{-} and the Z_{-} -axis. To simplify the dynamic equations, it is convenient to cousider principal-axis

ORBITER COORDINATES

TYPE: Rotating, Orbiter referenced

ORIGIN: Approximately 200 inches (5.1m) ahead of the nose and approximately 400 inches (10.2m) below the centerline of the cargo bay

ORIENTATION AND LABELING:

The X-axis is parallel to the centerline of the cargo bay, negative in the direction of launch

The Z-axis is positive upward in landing attitude

The Y-axis completes the right-handed system

The standard subscript is 0

Figure 7. Orbiter Coordinate System

pointing instead of body-axis pointing, e.g., pointing $-Z_p$ rather than $-Z_B$ as illustrated in Figure 8.

 (X_{B}, Y_{B}, Z_{B}) -- Shuttle Principal Axes

Figure 8. Shuttle Body and Principal Coordinates (Payload-Bay Nadir Pointing Shown)

The orientations of the principal axes can be determined by rotating the body frame an angle α about the Y_B -axis, i.e., let B: $X_B + X_p$, then

 $B = \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix}$ (2)

(3)

and

$$I_P = B I_B B^T$$

It can be shown that

17

٠.

$$\alpha = \frac{1}{2} \tan^{-1} \left(\frac{-2 I_{BXZ}}{I_{BZZ} - I_{BXX}} \right)$$
(4)

provided that $I_{BXY} = I_{BYZ} = 0$.

For $I_{BXX} = 1.36 \times 10^6 \text{ kg-m}^2$, $I_{BZZ} = 1.05 \times 10^7 \text{ kg-m}^2$, and $I_{BXZ} = 3.49 \times 10^5 \text{ kg-m}^2$, the angle $\alpha = -2.18^\circ$. Therefore, in order to do principalaxis nadir pointing, the shuttle has to rotate 2.18° about the orbit normal (see Figure 8). The moments of inertia about the principal axes are

$$I_p = diag (1.38 \times 10^6, 1.00 \times 10^7, 1.05 \times 10^7), kg-m^2$$

C. ASSESSMENT OF DISTURBANCES

The shuttle motion is characterized in part by the environmental disturbances, the major sources of which are the aerodynamic drag, gravity gradient, gyroscopic effect, solar radiation, and on-board causes such as astronaut activities, equipment vibrations, and venting. On-board activities may be partially eliminated or reduced through mission planning and their effects will be assessed in the future. In this subsection, the gyroscopic torques, the gravity gradient torques, and the aerodynamic drag torques are estimated. The solar pressure is at least one order of magnitude less than the aerodynamic drag forces and, hence, it is not included in this analysis.

C.1 The Aerodynamic Drag Torques

To estimate the aerodynamic drag torques, an approach referred to as the three-plate model [6] has been used. Referring to Figure 9, let \overline{n}_1 , \overline{n}_2 , and \overline{a}_3 be the unit normal vectors for the equivalent plates 1, 2, and 3. Where \overline{n}_1 , \overline{n}_2 , and \overline{n}_3 are in the direction of \overline{x}_B , \overline{y}_B , and \overline{z}_B -axis, respectively. To express \overline{n}_4 in body frame,

18

F. 3 700 4

Figure 9. The Three-Plate Aerodynamic Model in Body Frame

Let A_1 , A_2 , and A_3 be the corresponding areas on which the aerodynamic pressure applies, and \overline{C}_{p1} , \overline{C}_{p2} , and \overline{C}_{p3} the three corresponding centers of pressure, respectively. The model assumes that the aerodynamic force applies to each area in the direction opposite to the vehicle velocity vector and assumes no shading among the plates. It is further assumed that the drag coefficient C_p is constant and the lift coefficient C_L is zero.

Let $\overline{v}_B = (v_{B1}, v_{B2}, v_{B3})^T$ be the inertial velocity vector in the body frame, with magnitude v. The force and torque applied on A_i are

$$\overline{\overline{F}}_{Bi} = - \left(\frac{1}{2} C_{D}^{\rho} v^{2} A_{i}\right) \left| \left(\overline{n}_{i}, \overline{v}_{B}\right) \right| \overline{u}_{B}$$
(6)

$$\overline{T}_{Bi} = \overline{r}_{Bi} \times \overline{F}_{Bi} = - \left(\frac{1}{2} C_D \rho \ v^2 A_i\right) \left| (\overline{n}_i, \overline{u}_B) \right| \overline{r}_{Bi} \times \overline{u}_B$$
(7)

where ρ is the atmospheric density at the orbital altitude, $\overline{u}_B = \overline{v}_B/v$ the unit velocity vector, and r_{Bi} the vectors of the center of pressure of A_i relative to the vehicle center of mass.

*

The total aerodynamic forces and torques on the vehicle are

$$\overline{F}_{B} = \sum_{i=1}^{3} - (\frac{1}{2} C_{D} \rho v^{2} A_{i}) | (\overline{n}_{i}, \overline{u}_{B}) | \overline{u}_{B}$$
(8)

$$\overline{\mathbf{T}}_{\mathbf{B}} = \sum_{i=1}^{3} - \left(\frac{1}{2} C_{\mathbf{D}}^{\rho} \mathbf{v}^{2} \mathbf{A}_{i}\right) | (\overline{\mathbf{n}}_{i}, \overline{\mathbf{u}}_{\mathbf{B}}) | \overline{\mathbf{r}}_{\mathbf{B}i} \times \overline{\mathbf{u}}_{\mathbf{B}}$$
(9)

The value of C_D depends on the shape of the vehicle. In Ref. 7, the values of 2.5 to 3.0 were suggested. The value of $C_D = 2.0$ is used here as it was used in Ref. 6 for Space Shuttle Simulation.

The atmospheric mass density ρ can be found in a JPL internal memorandum. For 1985 mission time, the peak density is expected to occur in April for the 400 km orbit; the densities are

2.64 x
$$10^{-12} \text{ kg/m}^3$$
 (predicted)

and

The orbital velocity v for a 400 km circular orbit is computed as v = 7669.60 m/sec or $v^2 = 5.882 \times 10^7 \text{ (m/sec)}^2$.

The plate areas, according to the attachment (SSFS On-Orbit Aero Data, 7/24/80) to Ref. 6, with Cargo Bay doors open, are

$$A_{1} = 119.45 \text{ m}^{2}$$

$$A_{2} = 229.92 \text{ z}^{2}$$

$$A_{3} = 454.46 \text{ m}^{2}$$
(10)

<u>____</u>.,

However, a different set of values are given in Ref. 8.

$$A_{1} = 64.1 \text{ m}^{2}$$

$$A_{2} = 212.7 \text{ m}^{2}$$

$$A_{3} = 367.0 \text{ m}^{2}$$
(11)

5.12.20

. ___

The values in (10) were used in this work.

1

The position vectors \overline{r}_{Bi} may be obtained using data given in Ref. 4 and Ref. 6. The values are,

$$\vec{r}_{B1} = \begin{bmatrix} 3.797 \\ 0 \\ -.231 \end{bmatrix} m$$

$$\vec{r}_{B2} = \begin{bmatrix} .927 \\ 0 \\ -.742 \end{bmatrix} m$$
(12)
$$\vec{r}_{B3} = \begin{bmatrix} 1.166 \\ 0 \\ -1.074 \end{bmatrix} m$$

The torques \overline{T}_{Bi} for the predicted density, are

$$\overline{T}_{B1} = -1.855 \times 10^{-2} |u_{B1}| \begin{bmatrix} -r_{B13}u_{B2} + r_{B12}u_{B3} \\ r_{B13}u_{B1} + r_{B11}u_{B3} \\ -r_{B12}u_{B1} + r_{B11}u_{B2} \end{bmatrix}$$

$$\overline{T}_{B2} = -3.570 \times 10^{-2} |u_{B2}| \begin{bmatrix} -r_{B23}u_{B2} + r_{B22}u_{B3} \\ r_{B23}u_{B1} - r_{B21}u_{B3} \\ -r_{B22}u_{B1} + r_{B21}u_{B2} \end{bmatrix}$$

$$\overline{T}_{B3} = -7.057 \times 10^{-2} |u_{B3}| \begin{bmatrix} -r_{B33}u_{B2} + r_{B32}u_{B3} \\ r_{B33}u_{31} - r_{B31}u_{B3} \\ -r_{B32}u_{B1} + r_{B31}u_{B2} \end{bmatrix}$$

(13)

*

21

" モレコメット"

In Eq. (13), the torques are known once the unit velocity vector \overline{u}_B is specified; \overline{u}_B varies with the pointing configuration and spacecraft attitude.

C.1.1. Drag Torques for Configuration A

Referring to Fig. 2, since this is "-Z_p" pointing, for nominal attitude, the vehicle moves in the X_p direction. Let \overline{u}_p be the unit velocity vector in the P-frame and let A_a be the rotation matrix due to a, then

$$\vec{u}_{B} = A_{\alpha}^{T} \vec{u}_{P} = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} \cos \alpha \\ 0 \\ -\sin \alpha \end{bmatrix}$$
(14)

Since $\alpha(= -2.18^{\circ} = -.038 \text{ rad})$ is small,

$$\overline{u}_{B} = \begin{bmatrix} 1\\0\\-\alpha \end{bmatrix}$$
(15)

Using Eqs. (12),(13), and (15), and

$$\overline{T}_{p} = \sum_{i=1}^{3} A_{\alpha} \overline{T}_{Bi}$$
(16)

the torques in the P-Frame, for nominal attitude, are

$$\overline{T}_{p} = \begin{bmatrix} 0 \\ 9.84 \times 10^{-3} \\ 0 \end{bmatrix} N-m$$
(17)

For small attitude errore, ϕ , θ , and ψ , from the rotating orbital frame,

 $\overline{u}_{p} = A \begin{bmatrix} 1\\0\\c \end{bmatrix}$ (18)

22

7 Statestatestatesta

-
where,

$$\mathbf{A} = \begin{bmatrix} 1 & \psi & -\theta \\ -\psi & 1 & \phi \\ \theta & -\phi & 1 \end{bmatrix}$$

and

$$\overline{u}_{B} = A_{\alpha}^{T} A \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
(20)

Using Eqs. (12), (13), and (20), the predicted aerodynamic torques become, by retaining only the first order terms, in N-m,

$$\overline{T}_{p} = \sum_{i=1}^{3} A_{\alpha} \overline{T}_{Bi}$$

$$= \begin{bmatrix} 4.29 \times 10^{-3} \psi \\ 4.29 \times 10^{-3} + 7.04 \times 10^{-2} (\theta - \alpha) + 7.58 \times 10^{-2} |\theta - \alpha| + 2.65 \times 10^{-2} |\psi| \\ 7.04 \times 10^{-2} \psi \end{bmatrix}$$
(21)

C.1.2. Drag Torques for Configuration B

Referring to Figure 3, under this configuration, X_p is in the Nadir direction and Y_n is in the direction of motion for nominal attitude. In this case,

direction and Y_p is in the direction of motion for nominal attitude. In this case, $\overline{u}_p = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ (22) $\overline{u}_B = A_{\alpha}^T \overline{u}_p = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ (23)

and from Eqs. (12), (13), and (23),

$$\overline{\mathbf{T}}_{\mathbf{p}} = \sum_{\mathbf{i}=1}^{3} \mathbf{A}_{\alpha} \overline{\mathbf{T}}_{\mathbf{B}\mathbf{i}}$$

۰.

$$= \begin{bmatrix} -3.96 \times 10^{-2} \\ 0 \\ -4.53 \times 10^{-2} \end{bmatrix}$$
 N-m (24)

In the presence of small attitude errors, $\phi,\ \theta,\ and\ \psi,$ the aero-dynamic drag torques are

$$\overline{T}_{P} = \begin{bmatrix} -2.45 \times 10^{-2} - 7.58 \times 10^{-2} |\phi| - 4.29 \times 10^{-3} |\phi| + 3.31 \times 10^{-2} \alpha \\ -3.31 \times 10^{-2} \phi + 2.65 \times 10^{-2} \psi \\ -(3.31 \times 10^{-2} + 8.23 \times 10^{-2} |\phi| + 7.04 \times 10^{-2} |\psi| + 2.65 \times 10^{-2} \alpha) \end{bmatrix}$$
(25)

C.1.3. Estimation of Disturbance PSD

Before the PSD's are estimated, the uncertainty part of the disturbance torques has to be determined. The torques of Eqs. (21) and (25) consist of static parts and the dynamic parts. The dynamic parts are functions of the attitude errors ϕ , θ , and ψ . The attitude errors are assumed to be random and timevarying with standard deviation of 1[°] (.01745 rad.) per axis. Therefore, the estimated values of the random disturbance torques are, for Configuration A

$$\overline{\sigma} = \begin{bmatrix} 7.48 \times 10^{-5} \\ 1.86 \times 10^{-3} \\ 1.23 \times 10^{-3} \end{bmatrix} N-m$$
(26)

and that for Configuration B are,

$$\overline{\sigma} = \begin{bmatrix} 1.33 \times 10^{-3} \\ 7.40 \times 10^{-4} \\ 1.89 \times 10^{-3} \end{bmatrix} N-m$$
(27)

and the corresponding PSD's are obtained by the following approximation with the correlation time of T = 180 seconds,

 $q_{T_{PA}} = 2T (\bar{\sigma}_{T_{PA}}^2)$

$$= \begin{bmatrix} 2.01 \times 10^{-6} \\ 1.25 \times 10^{-3} \\ 5.44 \times 10^{-4} \end{bmatrix} (N-m)^2 - \sec$$
(28)
$$\overline{Q}_{T_{PB}} = 2T (\overline{\sigma}_{T_{PB}}^2)$$
$$= \begin{bmatrix} 6.32 \times 10^{-4} \\ 1.97 \times 10^{-4} \\ 1.29 \times 10^{-3} \end{bmatrix} (N-m)^2 - \sec$$
(29)

4

C.2

The Gravity Gradient Torques and Gyroscopic Torques

The gravity gradient torques and the gyroscopic torques can be estimated using the following equations, respectively:

$$\vec{T}_{gP} = 3\omega_0^2 u_{RP} I_P \overline{u}_{RP}$$
(30)

and

$$\overline{T}_{GRP} = \overline{\omega}_{OP} \times \overline{H}_{P} = \omega_{OP} I_{P} \overline{\omega}_{OP}$$
(31)

Where \overline{u}_{RP} and $\overline{\omega}_{oP}$ are the unit earth vector and the spin velocity vector, respectively, in principal frame, and \overline{u}_{RP} is the skew symmetric matrix of the vector \overline{u}_{RP} . For Configuration A,

$$\overline{u}_{RP} = A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
(32a)

$$\overline{\omega}_{oP} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \omega_{o}$$
(325)

and for Configuration B,

بر --

1#

$$\overline{u}_{RP} = A \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$
(33a)
$$\overline{u}_{oP} = A \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} u_{o}$$
(33b)

the corresponding torques, to include only the first order effect, are, for Configuration A

$$\overline{T}_{gP} = 3 \omega_{0}^{2} \begin{bmatrix} (I_{PZZ} - I_{PYY})\phi \\ (I_{PZZ} - I_{PXX})\theta \\ 0 \end{bmatrix} = \begin{bmatrix} 1.92 \phi \\ 33.11 \theta \\ 0 \end{bmatrix} N-m \quad (34a)$$

$$\overline{T}_{CRP} = \omega_{0}^{2} \begin{bmatrix} -(I_{PZZ} - I_{PYY})\phi \\ 0 \\ (I_{PYY} - I_{PXX})\psi \end{bmatrix} = \begin{bmatrix} -.64 \theta \\ 0 \\ 11.04 \psi \end{bmatrix} \quad (34b)$$

and for Configuration B

$$\overline{T}_{gP} = -3 \omega_{0}^{2} \begin{bmatrix} 0 \\ (I_{PZZ} - I_{PXX})\theta \\ (I_{PXX} - I_{PYY})\psi \end{bmatrix} = \begin{bmatrix} 0 \\ -35.03 \theta \\ 43.71 \psi \end{bmatrix}$$
(35a)
$$\overline{T}_{GRP} = \omega_{0}^{2} \begin{bmatrix} -(I_{PZZ} - I_{PYY})^{\circ} \\ (I_{PZZ} - I_{PXX})\theta \\ 0 \end{bmatrix} = \begin{bmatrix} -.64 & \phi \\ 11.68 & \theta \\ 0 \end{bmatrix}$$
(35b)

Since the gravity gradient torques and gyroscopic torques are proportional to the attitude errors, they may be included in the equations of motion

26

_

- - -

as part of the vehicle dynamics rather than disturbances to the plant.

D. THE MISALIGNMENT AND MEASUREMENT NOISE

In this subsection, the errors that will contribute to pointing uncertainties are estimated. These error sources include the misalignment errors of the IMU and the IS instrument, and the sensor noise.

D.1 The Misalignment Errors

Let b_{MS} be the misalignment between the IMU and the shuttle reference frame; let b_{SI} be the misalignment between the shuttle and the imaging spectrometer reference frame.

Based on the space shuttle performance requirement [5], the IMU 3o misalignment uncertainty is $\pm .133^{\circ}/axis$, hence,

$$\sigma_{\rm bMS} = .044^{\rm o}/\rm{axis} = 159.6 \quad \rm{arc-sec/axis} \tag{36a}$$

However, based on a JPL internal memorandum, the shuttle flight test performance is much better,

$$\sigma_{\rm bMS} = 82 \, \rm{arc-sec/axis} \tag{36b}$$

The performance data Eq. (36b) was used in this report.

The misalignment data for the IS instrument is not directly available. Based on Ref. 9, the estimated LANDSAT D initial alignment bias between the sensor optical axis and the vehicle pointing vector was \pm 200 arc-sec. The alignment bias can be measured before launch and can be removed from the image data. The variation part that cannot be removed without ground control points was estimated as \pm 30 arc-sec. This latte[,] rumber was used in this work,

$$\sigma_{b_{\text{ST}}} = 30 \text{ arc-s} \qquad (37)$$

Therefore, the total misalignment error becomes

$$\sigma_{b_{0}} = (\sigma_{b_{MS}}^{2} + \sigma_{s_{I}}^{2})^{1/2}$$

= 87.32 arc-sec. (38)

D.2 The IMU Model

The sensor dynamics for the shuttle IMU was modeled approximately by the first order low pass filter as shown in Figure 10.

Figure 10. Simplified IMU Model

Where τ is the time constant and v the white gaussian noise. The time constant was estimated from a DRIRU II Model,

$$\tau = \frac{1}{\omega_{g}} = \frac{1}{14\pi} = .023 \text{ sec}$$
 (39)

That is, this measurement is assumed to have a 7 Hz bandwidth.

To determine v, from Ref. 5, the 3 σ IMU readout error is \pm .073[°]/axis. Assume that the measurement noise is the readout error, then

 $\sigma_{\rm r} = .0243^{\circ}/{\rm axis} = 87.6 \ {\rm arc-sec}/{\rm axis}$ (40)

However, the actual performance of the shuttle IMU was much better; it has a 1 σ gyro resolution error (σ_{RESO}) of 20 arc-sec/axis. If we assume the random noise has the same amplitude as that of the resolution noise, then

$$\sigma_{\mathbf{v}} = \sqrt{2} \sigma_{\text{RESO}}$$
(41)

The corresponding measurement noise PSD, R, is estimated as,

$$R = 2\left(\frac{1}{14\pi}\right) \sigma_{v}^{2}$$

= 8.55 x 10⁻¹⁰ (rad)² -sec (42)

E. SHUTTLE DYNAMICS AND INSTRUMENT POINTING ERRORS

E.1 The Equations of Motion

Consider Configuration A. For simplicity, the subscript P for principal axes is dropped from all equations. Again, let ϕ , θ , and ψ be the small roll, pitch, and yaw angles, respectively. Let $\overline{\omega} = (\omega_{\chi}, \omega_{\chi}, \omega_{\chi}, \omega_{Z})^{T}$ be the angular velocity vector of the shuttle, then for small attitude errors,

$$\omega_{\rm X} = \dot{\phi} + \psi \, \omega_{\rm o}$$

$$\omega_{\rm Y} = \dot{\theta} + \omega_{\rm o} \qquad (43)$$

$$\omega_{\rm Z} = \dot{\psi} - \phi \, \omega_{\rm o}$$

and

$$\dot{\omega}_{X} = \dot{\phi} + \dot{\psi} \omega_{o}$$

$$\dot{\omega}_{Y} = \ddot{\theta} \qquad (44)$$

$$\dot{\omega}_{Z} = \ddot{\psi} - \dot{\phi} \omega_{o}$$

With this simplified relation between the inertial rates and the attitude error rates, one can show that the equations of motion may be summarized as follows, accounting only for first order effects:

$$\begin{bmatrix} \mathbf{I}_{\mathbf{X}} \ddot{\phi} + (\mathbf{I}_{\mathbf{X}} - \mathbf{I}_{\mathbf{Y}} + \mathbf{I}_{\mathbf{Z}}) \omega_{0} \dot{\psi} + 4 (\mathbf{I}_{\mathbf{Y}} - \mathbf{I}_{\mathbf{Z}}) \omega_{0}^{2} \phi \\ \mathbf{I}_{\mathbf{Y}} \ddot{\theta} + 3 (\mathbf{I}_{\mathbf{X}} - \mathbf{I}_{\mathbf{Z}}) \omega_{0}^{2} \theta \\ \mathbf{I}_{\mathbf{Z}} \ddot{\psi} - (\mathbf{I}_{\mathbf{X}} - \mathbf{I}_{\mathbf{Y}} + \mathbf{I}_{\mathbf{Z}}) \omega_{0} \dot{\phi} - (\mathbf{I}_{\mathbf{X}} - \mathbf{I}_{\mathbf{Y}}) \omega_{0}^{2} \psi \end{bmatrix} = \overline{\mathbf{T}}_{\mathbf{d}} + \overline{\mathbf{T}}_{\mathbf{c}}$$
(45)

The left-hand side of Eq. (45) accounts for the body dynamics and the gravity gradient and the gyroscopic torques; and on the right-hand side of Eq. (45) \overline{T}_{d} and \overline{T}_{c} are the disturbance torques and the control torques, respectively.

E.2 The Space Shuttle State Estimator

The Shuttle State Estimator consists of two parallel Kalmen-type filters, one for acceleration estimation and one for rate estimation [10]. The attitude estimate is the extrapolation of the measured attitude and the rate estimate may be approximated by using a second order filter with parameters determined by the filter gains. With the current baseline filter data, the equivalent damping coefficient and the corner frequency for the rate filter are .8 and .04 Hz (for vernier rate filter), respectively [11].

E.3 The System Pointing Errors

E.3.1. The Fitch Loop (Configuration A)

From Eq. (45) and ignoring the initial conditions, one has the following output function,

$$\Theta(S) = \frac{1}{I_{Y}S^{2} + 3\omega_{0}^{2}(I_{X}-I_{Z})} (T_{dY} + T_{cY})$$
(46)

Figure 11 shows the open-loop block diagram for the dynamics of the instrument pointing error excited by the random disturbances. Included in the diagram are the dynamics of the vehicle, the IMU, and the rate filter. Measurement error and the misalignment error are also included.

E.3.7. The Roll and Yaw Loops (Configuration A)

The output equations for the coupled roll and yaw dynamics are, from Eq. (45)

$$\begin{bmatrix} \phi(S) \\ \psi(S) \end{bmatrix} = \frac{1}{D(S)} \begin{bmatrix} I_{Z}S^{2} + \omega_{o}^{2} (I_{Y} - I_{X}) & -\omega_{o}(I_{X} - I_{Y} + I_{Z})S \\ \omega_{o} (I_{X} - I_{Y} + I_{Z})S & I_{X}S^{2} + 4\omega_{o}^{2} (I_{Y} - I_{Z}) \end{bmatrix} \begin{bmatrix} T_{X} \\ T_{Z} \end{bmatrix} (47)$$

where

$$D(S) = I_{X}I_{Z}S^{4} + \omega_{0}^{2} (I_{X}I_{Z} + I_{Y}^{2} + 3I_{Y}I_{Z} - 3I_{Z}^{2})S^{2} + 4\omega_{0}^{4} (I_{Y} - I_{X}) (I_{Y} - I_{Z})$$
(48)

and

.

$$\mathbf{T}_{\mathbf{y}} = \mathbf{T}_{\mathbf{y}\mathbf{y}} + \mathbf{T}_{\mathbf{y}\mathbf{y}} \tag{49a}$$

$$T_{7} = T_{c7} + T_{d7}$$
 (49b)

Figure 12 shows the block diagram for the roll and yaw instrument error dynamics. The block diagrams for the pitch and the roll-yaw loops are similar except for

30

э

the coupling terms for the roll and yaw axes.

E.4 The Instrument Pointing Error PSD

.

E.4.1 The Pitch Error PSD (Configuration A)

The PSD's for the pitch-axis instrument pointing error and the rate error are,

$$P_{\theta}(\omega) = F_{\theta}^{*}(\omega) F_{\theta}(\omega) Q_{Y}^{} + R + \sigma_{bo}^{2} \delta(\omega)$$
(50)

$$P_{\theta}^{*}(\omega) = (F_{\theta}^{*}(\omega) F_{\theta}(\omega)Q_{Y} + R) H_{r}^{*}(\omega) H_{r}(\omega)$$
(51)

where $Q_{Y} = Q_{T_{PA}Y}$ and $Q_{T_{PA}Y}$ is the second component of Eq. (28), and where R, and σ_{bo} are defined in preceding sections, and $\delta(\omega)$ is the Dirac delta function; and where,

$$F_{\alpha}(\omega) = G_{\alpha}(\omega) H(\omega)$$
 (52a)

$$G_{\theta}(\omega) = \left[\frac{1}{I_{Y}S^{2} + 3 \omega_{0}^{2}(I_{X}-I_{Z})}\right]_{S=j\omega}$$
(52b)

- - - A. Ma

-.

31

Figure 12.

Roll and Yaw Axes Block Diagram.

.

(Configuration A)

$$H(\omega) = \left[\frac{1}{\tau S + 1}\right]_{S=j\omega}$$
(52c)

$$F_{\theta}^{*}(\omega) = F_{\theta}^{-}(-\omega)$$
 (52d)

$$H_{r}(\omega) = \left[\frac{S \omega_{r}^{2}}{S^{2} + 2\zeta_{r}\omega_{r}S + \omega_{r}^{2}}\right] S=j\omega$$
(52e)

The output power spectral density for the system is closely related to the frequency response of the system, which characterizes the steady state dynamics of the system, and, hence, it is meaningful only if the system is stable. Unfortunately, in Eq. (52b), $I_x < I_z$ which implies that the system is unstable. The destabilizing term comes from the gravity gradient because the nadir pointing axis is not the axis of minimum inertia. To proceed, one has to consider the gravity gradient as external disturbance rather than a part of the dynamics. Figure 13 shows the instrument pointing error PSD in $(rad)^2$ -sec as a function of frequency in Hz. Figure 14 shows the rate error PSD in $(rad/sec)^2$ -sec as a function of frequency.

E.4.2. The Roll and Yaw Error PSD (Configuration A)

_...

The instrument pointing error PSD's for the roll and yaw axes are,

.

$$P_{\phi}(\omega) = F_{\phi}^{*}(\omega) F_{\phi}(\omega) Q_{x} + F_{\phi\psi}^{*}(\omega) F_{\phi\psi}(\omega) Q_{z}$$

$$+ R + \sigma_{bo}^{2} \delta(\omega)$$

$$P_{\psi}(\omega) = F_{\psi}^{*}(\omega) F_{\psi}(\omega) Q_{z} + F_{\phi\psi}^{*}(\omega) F_{\phi\psi}(\omega) Q_{x}$$

$$+ R + \sigma_{bo} \delta(\omega)$$
(53b)

and the instrument pointing rate error PSD's for the roll and yaw axes are,

$$P_{\phi}^{*}(\omega) = \left[F_{\phi}^{*}(\omega) F_{\phi}(\omega) Q_{x} + F_{\phi\psi}^{*}(\omega) F_{\phi\psi}(\omega) Q_{z} + R\right] H_{r}^{*}(\omega) H_{r}(\omega)$$
(54a)

33

$$P_{\psi}^{\bullet}(\omega) = \left[F_{\psi}^{\star}(\omega) F_{\psi}(\omega) Q_{z} + F_{\phi\psi}^{\star}(\omega) F_{\phi\psi}(\omega) Q_{x} + R\right] H_{r}^{\star}(\omega) H_{r}^{\bullet}(\omega)$$
(54b)

where

• :

$$F_{\phi}(\omega) = G_{\phi}(\omega) H(\omega)$$
(55a)

$$G_{\phi}(\omega) = \begin{bmatrix} \frac{1}{z} & \frac{1}{y} & \frac{1}{y} & \frac{1}{y} \end{bmatrix} S = j\omega$$
(55b)

$$F_{\phi\psi}(\omega) = G_{\phi\psi}(\omega) H(\omega)$$

$$\left[\begin{array}{c} \omega_{0}(\mathbf{I}_{\mathbf{x}} - \mathbf{I}_{\mathbf{y}} + \mathbf{I}_{\mathbf{z}}) \end{array} \right]$$
(56a)

$$G_{\psi\psi}(\omega) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} S = j\omega$$
 (56b)

$$F_{\psi}(\omega) = G_{\psi}(\omega) H(\omega)$$
(57a)

$$G_{\psi}(\omega) = \left[\frac{\mathbf{I}_{\mathbf{x}} \mathbf{S}^{2} + 4\omega_{0}^{2} (\mathbf{I}_{\mathbf{y}} - \mathbf{I}_{\mathbf{z}})}{\mathbf{D}(\mathbf{S})} \right] \mathbf{S} = \mathbf{j}\omega$$
(57b)

and Q_x and Q_z are the first and the third components of $\overline{Q}_{T_{PA}}$ in Eq. (28).

For the same reason discussed earlier, the roll and yaw dynamics are also unstable (referring to Eq. (48), D(s) has roots in the right-half complex plane). The PSD's for this case are obtained again by treating gravity gradient and gyroscopic torques as disturbances. Figures 13 and 14 show the roll and yaw power spectral densities.

E.4.3. The Error PSD's for Configuration B

The stability problem may be resolved by reorienting the shuttle from payload-bay nadir (Configuration A) to nose-down nadir (Configuration B). The advantage of this new configuration is that it is a gravity gradient stabilized system. However, there are drawbacks for this configuration. First, it will require a larger support-tower for the IS instrument, and the second drawback is that the aerodynamic forces and torques have increased significantly over the payload-bay nadir case.

To obtain the error power spectral density for Configuration B, it is only necessary to replace $\begin{bmatrix} X \\ Y \\ -Z \end{bmatrix}$ and the corresponding notations of the equations in this section by $\begin{bmatrix} Y \\ -Z \\ -X \end{bmatrix}_B$. That is, for instance, Eq. (52b) becomes,

$$= G_{\theta}(\omega) = \left[\frac{1}{I_{z}S^{2} + 3 \omega_{o}^{2}(I_{y}-I_{x})}\right] S=j\omega$$
(58)

where $G_{\partial}(\cdot)$ here still represents the pitch dynamics. Since $I_{\chi} > I_{\chi}$, Eq. (58) is stable.

The instrument pointing error PSD's are shown in Figure 15 and the rate error PSD's are illustrated in Figure 16.

The computer programs that are used for generating these results are included in Appendices C and D.

F. SUMMARY OF MAJOR FINDINGS

<u> 74 - + -</u>

F.1 The Major Environmental Disturbances

The major disturbance sources that are modeled are the aerodynamic drag torques, the gravity gradient torques, and the gyroscopic torques. The unmodeled disturbances are the solar pressure torques, the on-board equipment vibrations, crew motions, and venting. Table 2 shows the static disturbance torques in N-m and the stochastic torque PSD's in $(N-m)^2$ -sec for both Configura-tions A and B with a circular orbit of 400 km altitude.

F.2 The Measurement Uncertainties

The modeled measurement uncertainties are summarized in Table 3.

F.3 Ground Track Errors and Navigation Uncertainties

The power spectral densities for the ground track errors and the rate errors due to instrument pointing uncertainties for Configurations A and B are shown in Figure 17. It is important to note that strong resonances occur within

the frequency band of 10^{-5} Hz to 10^{-3} Hz. The ground track errors at higher frequencies, .01 Hz and above, are dominated by the measurement noise. Recall that the 10 measurement noise is 28.28 arc-sec/axis. The corresponding ground track error is 54.84 m/axis or 77.56 m/lateral motion.

The 3σ ground track errors due to navigational uncertainties are about one order of magnitude greater than the attitude errors with the aid of TDRSS; and the error is greater with STDN as indicated in Table 4 [12]. Note that the values tabulated in Table 3 are the 3σ rms values.

(*)

,		Static, N-m			Stochastic PSD, (N-m) ² -sec			
Sources .		x _p	Ч _Р	Z _P	× _P	YP	Z _P	
Aerodynamic Drag Torques	Config. A	0	68×10^{-2}	0	2x10 ⁻⁶	1.2×10 ⁻³	5.4x10 ⁻⁴	
	Config. B	-2.78×10^{-2}	` ٥	-3.21×10^{-2}	6.3x10 ⁻⁴	1.9×10^{-4}	1.2×10^{-3}	
Gravity Gradient and Gyroscopic Torques		0	0	0	Proportional to attitude error		le errors	

Table 2. Modeled Environmental Disturbances

39

Table 3. Modeled Measurement Uncertainties

Sources	Performance (1g)	Requirement (1o)		
IMU/Shuttle Misalignment	82 arc-sec	160 arc-sec		
IMU Resolution	20 arc-sec	20 arc-sec		
IMU Noise	(20) arc-sec	-		
IMU Derived Rate	See filter	dynamic model		
Rate Gyro	-	60 arc-sec/sec		
Shuttle/IS Misslignment (10)	30 arc-вес	ha <u>n - 11 - 11 - 11 - 12 - 12 - 12 - 12 - 1</u>		

ан 18 х ^н бастан

1

à

.:

40

. بر بر بر **بر**

Figure 17. (Continued)

*

Table 4.	Expected	On-Orbit	Navigation	Accuracies	(3a))
----------	----------	----------	------------	------------	------	---

WINNESS E

		DESCRIPT	LON	_					
, Case	NAVIGATION TRACKING SYSTEM	UNMODELED PERTURBATION	MINIMUM PERIGEE n.mi.	RADIAL	POSITION, FEET DOWNTRACK	CROSSTRACK	RADIAL	VELOCITY, FP: DOWNTRACK	S CROSSTRACK
1	STDN*	NOMINAL	105	5,000	34,500	5,000	38.4	5.9	9.8
	TDRSS**		105	3,600	18,500	4,000	22.1	3.3	4.0
2	STDN	SMAL1.	105	3,000	22,000	1,500	24.6	, 3.3	2.0
			150	1,200	5,500	1,000	5.8	1.0	1.8
l	TDRSS		105	1,800	10,000	2,000	11.0	· 1.8	2.9
{	23		150	800	2,000	1,500	2.2	0.9	2.1
3	STDN	LARGE	105	8,000	80,000	5,000	91.2	8.0	8.0
L	TDRSS		105	6,000	50,000	5,000	56.0	6.2	7.8

NOTE:

_ L

ч. 25

The correlation between downtrack position and radial velocity is -0.95

The correlation between radial position and downtrack velocity is -0.80

* Spaceflight Tracking and Data Network

****** Tracking Data Relay Satellite System

*

IV. PARAMETRIC ANALYSIS OF GEOMETRIC ERRORS

In section III, the steady state error dynamics of the Shuttle Imaging Spectrometer system has been analyzed with the major error sources and disturbance effects estimated. In this section, the emphasis is on the geometric error analysis. Geometric errors are consequences of the more direct errors including attitude and rate errors, ephemeris uncertainties, misalignment errors, earth rotation and curvature, etc. Figure 1 shows how the various errors propagate and how the geometric errors and the ground pattern distortions can be generated through dynamic analysis and simulation. The block that is considered in this section is II. Due to mounting and other practical considerations, only the payload-bay principalaxis nadir pointing configuration is considered (see Fig. 2).

The geometric error mapping functions due to the individual error sources as well as the aggregated errors are derived. The earth curvature effect is incorporated in all of the results. For the purpose of quick reference, the key mapping functions are tabulated in Appendix A. A list of the source code of the computer program that has been used for generating the geometric error characteristic curves is given in Appendix E.

A.

COORDINATE CONFIGURATIONS

In Fig. 18, the coordinate frame (X_p, Y_p, Z_p) on the Shuttle c.m. consists of the principal body axes. For the purpose of geometric analysis, another set of coordinates is used, i.e., the (X, Y, Z) frame centered at the nadir point on the ground. This frame is the nadir projection of the orbital rotating frame centered at the Shuttle c.m. Specifically, the X-axis is in the direction of the projected motion on the ground, or the along-track direction, the Z-axis is in the nadir direction, and the Y-axis is in the cross-track direction, so that a right-hand coordinate system is formed.

For the purpose of this report, it is assumed that the Imaging Spectrometer is attached to the payload bay with its optical axis aligned with the body

·- ·

 Z_p -axis. For normal IS operations, this is the desired configuration. However, for some IS experiments, such as those for accessing the atmospheric effects on the images, the IS instrument is required to point up to $\pm 45^{\circ}$ about the pitch axis (Y) from nadir (forward and backward looking) or up to $\pm 20^{\circ}$ about the roll axis (X) (side looking). For those cases, it is assumed that the instrument is gimbal mounted. However, since the analysis performed here is not primarily concerned with dynamics, no specific details are made at this time regarding mounting configurations.

в.

GEOMETRIC ERRORS INDUCED BY EPHEMERIS UNCERTAINTIES

• Ephemeris uncertainties include radial, along-track, and cross-track prediction errors. The geometric errors induced by ephemeris uncertainties are discussed in the following subsections.

B.1 Geometric Errors Due to Altitude Uncertainties

When the altitude of the shuttle varies, the ground point will shift in both the X and Y directions accordingly. This can be investigated in the following two ways.

B.1.1. With Fixed Viewing Angles

Referring to Figure 19, when the shuttle flies at nominal altitude h (position A), a ground point B with coordinates (Xo, Yo) corresponding to a view angle λ from the shuttle IS is located. After the shuttle elevates Δh to position A', point B' with coordinates (Xo', Yo') corresponding to the same view angle λ is located. The problem is to determine the shift of image due to the altitude change. Consider that when the altitude increases, the image of ground objects tends to move toward the nadir point, which causes reduction in image size and increase in field of view. Mathematically, the shift of image may be characterized by computing ΔX and ΔY , where

 $\Delta X = Xo - Xo'$ $\Delta Y = Y - Yc'$

Starting by assuming (Xo, Yo) known, the task is to determine (Xo', Yo') by first computing the view angle λ . Figure 19b is generated by taking a side view from Fig. 19a in the direction perpendicular to Plane A'AOC B'. Apparently,

ot

$$\beta = \sin^{-1}\left(\frac{\sqrt{\chi_0^2 + \chi_0^2}}{R}\right)$$
(59)

and

$$\alpha = 180^{\circ} - \lambda - \beta \tag{60}$$

From triangle ABC_e , we have

$$\frac{R}{\sin\lambda} = \frac{R+h}{\sin\alpha}$$
(61)

Substituting Eqs. (59) and (60) into.(61), it becomes

$$\frac{R}{\sin \lambda} = \frac{R+h}{\sin \left[180^\circ - \lambda - \sin^{-1}\left(\frac{\sqrt{\chi_o^2 + \gamma_o^2}}{R}\right)\right]}$$

which leads to

$$\tan \lambda = \frac{\sqrt{xo^2 + yo^2}}{R + h - \sqrt{R^2 - xo^2 - yo^2}}$$

٠,

21

hence,

$$\lambda = \tan^{-1} \left(\frac{\sqrt{xo^2 + Yo^2}}{R + h - \sqrt{R^2 - Xo^2 - Yo^2}} \right)$$
(62)

To determine $\sqrt{Xo'^2 + Yo'^2}$, triangle A'B'C_e is used,

$$\frac{R}{\sin\lambda} = \frac{R+h+\Delta h}{\sin\alpha'}$$

$$\therefore \alpha' = \sin^{-1} \left[\left(1 + \frac{h+\Delta h}{R} \right) \sin\lambda \right]$$
(63)

and

•.

4

$$\sqrt{X \alpha'^2 + Y \alpha'^2} = R \sin \beta'$$

$$= R \sin (\lambda + \alpha')$$
(64)

ć

48

......

3.51

J.

Substituting Eq. (63) into (64),

1 4

. 1

.

$$\sqrt{\chi_{0'}^{2} + \gamma_{0'}^{2}} = R \sin \left\{ \lambda + \sin^{-1} \left[\left(1 + \frac{h + \Delta h}{R} \right) \sin \lambda \right] \right\}$$
(65)

Expanding the right hand side of Eq.(65), and adopting the "-" sign for

 $\cos\left\{\sin^{-1}\left[\left(1+\frac{h+\Delta h}{R}\right)\sin\lambda\right]\right\}, \text{ since } 90^{\circ} < \sin^{-1}\left[\left(1+\frac{h+\Delta h}{R}\right)\sin\lambda\right] < 180^{\circ},$ one has

$$\sqrt{\chi_0'^2 + \gamma_0'^2} = R \left[\left(1 + \frac{h + \Delta h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h + \Delta h}{R} \right)^2 \sin^2 \lambda} \right] \sin \lambda$$
(66)

Now, referring to Fig. 19(a), since B' is on the line OB, the angle c is determined by

$$\rho = \sin^{-1} \frac{x_0}{\sqrt{x_0^2 + y_0^2}}$$

$$= \cos^{-1} \frac{y_0}{\sqrt{x_0^2 + y_0^2}}$$
(67)

Hence, from Eqs. (66) and (67),

$$Xo' = \sqrt{Xo'^{2} + Yo'^{2}} \sin \rho$$

$$= \frac{RXo \sin \lambda}{\sqrt{Xo^{2} + Yo^{2}}} \left[\left(1 + \frac{h + \Delta h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h + \Delta h}{R} \right)^{2} \sin^{2} \lambda} \right]$$
(68)

$$Yo' = \sqrt{Xo'^{2} + Yo'^{2}} \cos \rho$$

$$= \frac{RYo \sin \lambda}{\sqrt{Xo^{2} + Yo^{2}}} \left[\left(1 + \frac{h + \Delta h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h + \Delta h}{R} \right)^{2} \sin^{2} \lambda} \right]$$
(69)

where λ is obtained by Eq.(62).

Hence, from Eqs. (68), (69), and (62) the values for $\Delta X = Xo - Xo'$ and $\Delta Y = Yo - Yo'$ can be obtained.

2

1

When point A' is below point A, the negative value for Δh should be used in the above equations.

However, if one starts with given view angle λ and ρ , the values of Xo, Yo, Xo', and Yo' can be readily obtained using Eqs. (68) and (69) directly (set Δ h to 0 for Xo and Yo).

B.1.2 With Fixed Ground Points

Referring to Fig.20, the view angle for the fixed ground point B will change as the shuttle altitude varies. Follow the same approach of paragraph B.1.1, the view angles Ω and Ω' can be found,

$$\Omega = \tan^{-1} \left(\frac{\sqrt{x_0^2 + y_0^2}}{R + h - \sqrt{R^2 - x_0^2 - y_0^2}} \right)$$
(70)

and

ĸ

23

$$C' = \tan^{-1} \left(\frac{\sqrt{xo^2 + yo^2}}{R + h + \Delta h - \sqrt{R^2 - xo^2 - yo^2}} \right)$$
(71)

Using Eqs. (70) and (71), the value of $\Delta \Omega = \Omega' - \Omega$ can be obtained. Again if point A' is below point A, the negative value for Δh should be used in the above equations.

B.2. Geometric Errors Due to Intrack and Crosstrack Prediction Errors

The intrack (along X-direction or direction of orbit) and the crosstrack (along Y-direction or "-" orbit normal direction) prediction errors will cause the ground objects to shift along the X and Y directions, respectively, as shown in Fig.21. To determine the overall geometric errors associated with ephemeris uncertainties, the intrack error ΔX^* and the crosstrack error ΔY^* can be incorporated in ΔX and ΔY found in Section B.1.1, respectively.

ĩ

50

÷

3

:

t

(a) INTRACK ERROR (ΔX^*)

(b) CROSSTRACK ERROR (ΔY^{+})

-

C. GEOMETRIC ERRORS INDUCED BY ATTITUDE UNCERTAINTIES

Attitude uncertainties refer to the angular errors with respect to the nominal roll (ϕ), pitch (θ), and yaw (ψ) axes. The effects of these errors to the images of ground objects are studied in this subsection first on the individual error basis and then on the aggregated basis. For convenience, in the subsequent discussions, the term nominal flight condition will be used to signify the condition of the shuttle flying in a 400 km circular orbit with the attitude of payloadbay nadir pointing.

C.1 Get tetric Errors Induced by Roll Error

Referring to Fig. 22, consider the nominal flight condition with ϕ_0 offset angle about the roll axis. The IS slit in this case is directed at the Y-axis on the ground. For a given view angle λ , the image point (or pixel) on the ground is P_0 with coordinates (0,Y*). For the same roll offset and view angle the ground point P'_0 is located after a roll error ϕ is introduced. The coordinates of P'_0 are (0, Y*'). Equivalently, by rotating the optical instrument to the "left," the image recorded on the film appears to move to the "right." Therefore, the geometric error may be defined as the displacement of the object image after error is introduced relative to the image before the error is introduced. Mathematically, this is $\overline{P}_0 - \overline{P}'_0$ or $\overline{P}_{\phi_0,\lambda} - \overline{P}_{\phi_0+\phi,\lambda}$. Since, in the case being considered, the image is on the Y-axis, one has

$$\Delta X = 0 \tag{72}$$

$$\Delta \mathbf{Y} = \mathbf{Y}^{\star} - \mathbf{Y}^{\star \dagger} \tag{73}$$

where Y* and Y*' are,

$$Y^{*} = -R \sin (\lambda + \phi_{0}) \left[\left(1 + \frac{h}{R} \right) \cos (\lambda + \phi_{0}) - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2}} \sin^{2} (\lambda + \phi_{0}) \right]$$
(74)

53

÷

ہ تھ

LEGEND:

5

 λ = VIEW ANGLE

 $\phi_0 = ROLL OFFSET ANGLE$

 ϕ = ROLL ERROR

- P_o = THE GROUND POINT CORRESPONDING TO VIEW ANGLE λ AND ROLL OFFSET φ_o P_o = THE GROUND POINT CORRESPONDING TO THE SAME λ AND φ_o AFTER ROLL ERROR φ IS INTRODUCED

Figure 22. Shift of Ground Point Induced by Roll Error ٤

-_--.

X

5

$$Y^{**} = -R \sin \left(\lambda + \phi_{o} + \phi\right) \left[\left(1 + \frac{h}{R}\right) \cos \left(\lambda + \phi_{o} + \phi\right) - \sqrt{1 - \left(1 + \frac{h}{R}\right)^{2} \sin^{2} \left(\lambda + \phi_{o} + \phi\right)} \right]$$
(75)

C.2 Geometric Errors Induced by Pitch Error

Consider the case of pitch attitude error. Let θ_0 be the offset angle about the pitch axis (desired attitude), and θ be the pitch error. Referring to Fig.23, for a given view angle λ , projecting the slit onto the XY-plane forms two line segments: \overline{BC} , corresponding to null pitch error ($\theta = 0$), and $\overline{B^+C^+}$, corresponding to arbitrary pitch error θ . Projecting along the line of view \overline{AC} onto the ground, P(X*,Y*) is obtained; similarly, P'(X*',Y*') is obtained, corresponding to line of view $\overline{AC'}$. The geometric error here is defined the same way as that for the roll case, i.e., $\overline{P}_{\theta_{c},\lambda} - P_{\theta_{c}+\theta,\lambda}$, or

$$\Delta X = X^* - X^{*'}$$
(76)

The formulae for computing X*, Y*, X*', and Y*' are derived as follows. In Fig.23, assume that h, θ , θ_0 , and λ are known. The lengths of the line segments \overline{OB} and \overline{OB} ' are

 $\overline{OB} = h \tan \theta$ (78a)

and

 $\overline{OB'} = h \tan \left(\theta_0 + \theta\right)$ (78o)

and that of \overline{AB} and \overline{AB} ' are

$$\overline{AB} = \frac{h}{\cos \theta_{o}}$$
(79a)

$$\overline{AB'} = \frac{h}{\cos (\theta_0 + \theta)}$$
(79b)

λ = VIEW ANGLE

- $\theta_0 = PITCH OFFSET ANGLE$
- θ = PITCH ERROR
- P = THE GROUND POINT CORRESPONDING TO VIEW ANGLE λ AND PITCH OFFSET θ_0
- P' = THE GROUND POINT CORRESPONDING TO THE SAME λ AND θ₀ AFTER PLICH ERROR θ IS INTRODUCED

t

(*)

יו ווערישישיעיי, בערך

 \overline{BC} and $\overline{B'C'}$, with respect to Y-axis, can be obtained as

$$\overline{BC} = -\overline{AB} \tan \lambda = \frac{-h \tan \lambda}{\cos \theta_0}$$
(80a)

and

$$\overline{B'C'} = -\overline{AB'} \tan \lambda = \frac{-h \tan \lambda}{\cos(\theta_0 + \theta)}$$
(80b)

implies that the signs of \overline{BC} and $\overline{B'C'}$ are opposite to that of λ . 2 and 2' are, referring to Fig. 23,

$$\lambda = \sqrt{\overline{OB}^2 + \overline{BC}^2} = h \sec \theta_0 \sqrt{\sin^2 \theta_0 + \tan^2 \lambda}$$
(81a)

and

$$\ell' = \sqrt{\overline{OB'}^2 + \overline{B'C'}^2} = h \sec(\theta_0 + \theta) \sqrt{\sin^2(\theta_0 + \theta) + \tan^2 \lambda}$$
(31b)

the angles τ and ξ (see Fig.23) can then be determined,

$$t = tan^{-1}\left(\frac{k}{h}\right) = tan^{-1}\left(\sec \theta_0 \sqrt{\sin^2 \theta_0 + tan^2 \lambda}\right)$$
(82a)

and

$$\zeta = \tan^{-1}\left(\frac{\ell'}{h}\right) = \tan^{-1}\left[\sec\left(\theta_{0} + \theta\right)\sqrt{\sin^{2}\left(\theta_{0} + \theta\right) + \tan^{2}\lambda}\right]$$
(82b)

Finally,

$$X^{\star} = \sqrt{X^{\star^2} + \gamma^{\star^2}} \frac{\overline{OB}}{\lambda}$$
$$= R \left[\left(1 + \frac{h}{R} \right) \cos \tau - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \tau} \right] \frac{\sin \tau \sin \theta_o}{\sqrt{\sin^2 \theta_o + \tan^2 \lambda}}$$
(83a)

$$Y \star = \sqrt{X \star^{2} + Y \star^{2}} \frac{\overline{BC}}{L}$$
$$= -R \left[\left(1 + \frac{h}{R} \right) \cos \tau - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \tau} \right] \frac{\sin \tau \tan \lambda}{\sqrt{\sin^{2} \vartheta_{0} + \tan^{2} \lambda}}$$
(83b)

$$X^{\star \prime} = \sqrt{X^{\star \prime 2} + Y^{\prime 2} \frac{\overline{OB}^{\prime}}{\ell^{\prime}}}$$
$$= R \left[\left(1 + \frac{h}{R} \right) \cos \xi - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \xi} \right] \frac{\sin \xi \sin (\theta_0 + \theta)}{\sqrt{\sin^2 (\theta_0 + \theta) + \tan^2 \lambda}}$$
(83c)

$$Y^{\star \prime} = \sqrt{X^{\star \prime}}^{2} + Y^{\star \prime}^{2} \frac{B^{\prime}C^{\prime}}{\ell^{\prime}}$$
$$= -R \left[\left(1 + \frac{h}{R} \right) \cos \xi - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi} \right] \frac{\sin \xi \tan \lambda}{\sqrt{\sin^{2} (\theta_{0} + \theta) + \tan^{2} \lambda}}$$
(83d)

However, if one starts with (X*, Y*) given, then λ and θ_{0} would have to be computed. In that case,

$$\lambda = -\tan^{-1} \left[\frac{Y^{*}}{\left(R + h - \sqrt{R^{2} - X^{*}^{2} - Y^{*}^{2}} \right) \sqrt{1 + \left(\frac{X^{*}}{R + h - \sqrt{R^{2} - X^{*}^{2} - Y^{*}^{2}} \right)^{2}}} \right]$$
(84a)

3

1

and

.: --

$$\theta_{o} = \tan^{-1} \left(\frac{X^{*}}{R + h - \sqrt{R^{2} - X^{*}^{2} - Y^{*}^{2}}} \right)$$
 (84b)

Once λ and θ are determined, τ and ξ can be computed using (82), and X*' and Y*' are determined using (83).

C.3 Geometric Errors Induced by Yaw Error

For a given yaw offset angle, ψ_0 , and the view angle, λ , the ground point $P(X^*, Y^*)$ is located. A new point $P'(X^{*'}, Y^{*'})$ is found as yaw attitude error, ψ , is introduced (see Fig.24). The values for X*, Y*, X*', and Y*' can be computed as follows:

$$X^{\star} = \left[\left(1 + \frac{h}{R} \right) \hat{\cos} \lambda - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \lambda} \right] R \sin \lambda \sin \psi_0$$
(85a)

:*

$$Y^{*} = -\left[\left(1 + \frac{h}{R}\right)\cos\lambda - \sqrt{1 - \left(1 + \frac{h}{R}\right)^{2}\sin^{2}\lambda}\right] R \sin\lambda\cos\psi_{0} \quad (85b)$$
$$X^{*} = \left[\left(1 + \frac{h}{R}\right)\cos\lambda - \sqrt{1 - \left(1 + \frac{h}{R}\right)^{2}\sin^{2}\lambda}\right] R \sin\lambda\sin(\psi_{0} + \psi) \quad (86a)$$

and

$$Y^{\star \prime} = -\left[\left(1 + \frac{h}{R}\right)\cos\lambda - \sqrt{1 - \left(1 + \frac{h}{R}\right)^2}\sin^2\lambda\right]R\sin\lambda\cos\left(\psi_0 + \psi\right)$$
(86b)

From Eqs. (85) and (86), we can obtain

 $\Delta X = X^* - X^{**}$ $\Delta Y = Y^* - Y^{*}$

C.4

Geometric Errors Induced by Roll, Pitch, and Yaw Attitude Errors C.4.1. The Shift of IS Line-of-Sight due to Attitude Error

Referring to Fig.25, the shuttle is flying at an arbitrary attitude (ϕ, θ, ψ) . Consider the 3-2-1 sequence, i.e., the yaw, pitch, and roll rotation sequence. After yaw and pitch rotations, the Imaging Spectrometer line-of-sight will shift to \overline{AB} , where $B(X_1, Y_1)$ is its intersection with the XY-plane. The (x_1, Y_1) coordinates are determined as follows:

$$X_{1} = X_{0} + h \tan \theta \cos \psi$$
(87a)
$$Y_{1} = Y_{0} + h \tan \theta \sin \psi$$
(87b)

Through a roll angle rotation, point B will move to $C(X_2, Y_2)$ on the XY-plane, where

$$X_{2} = X_{0} + h \tan \theta \cos \psi + \frac{h}{\cos \theta} \tan \phi \sin \varphi$$
 (88a)

$$Y_2 = Y_0 + h \tan \theta \sin \psi - \frac{h}{\cos \theta} \tan \phi \cos \psi$$
 (88b)

ĩ

F

The interest here is to determine the coordinates of O'(X,Y) corresponding to the final line-of-sight projected onto the ground. By taking a view normal to the ACO-plane, Figure 26 is obtained. The quantities ε , ℓ , and ρ are obtained as follows,

$$\varepsilon = \tan^{-1} \left(\frac{\sqrt{x_2^2 + y_2^2}}{h} \right)$$

$$\varepsilon = R \sin \varepsilon \left[\left(1 + \frac{h}{R} \right) \cos \varepsilon - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \varepsilon} \right]$$
(89a)
(89a)
(89b)

and

$$\rho = \sin^{-1} \left(\frac{Y_2}{\sqrt{x_2^2 + Y_2^2}} \right) = \cos^{-1} \left(\frac{X_2}{\sqrt{x_2^2 + Y_2^2}} \right)$$
(89c)

Hence, the coordinates of X and Y are,

$$X = \ell \cos \rho = R \sin \varepsilon \left[\left(1 + \frac{h}{R} \right) \cos \varepsilon - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \varepsilon} \right] \frac{X_2}{\sqrt{X_2^2 + Y_2^2}}$$
(90a)
$$Y = \ell \sin \rho = R \sin \varepsilon \left[\left(1 + \frac{h}{R} \right) \cos \varepsilon - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \varepsilon} \right] \frac{Y_2}{\sqrt{X_2^2 + Y_2^2}}$$
(90b)

where X_2 and Y_2 are given in Eq. (88).

Note that this derivation is general enough so that the formulae are valid if one replaces the attitude errors with errors plus offsets, i.e., replacing ϕ , θ , and ψ by $\phi_0 + \phi$, $\theta_0 + \theta$, and $\psi_0 + \psi$, respectively.

62

見る

Figure 26. Side View of Figure 25

į

C.4.2. The Shift of Ground Image Due to Attitude Error

- ----

For simplicity, ϕ , θ , and ψ are used to represent the attitude angles as sums of attitude offsets and attitude errors. To fix the derivation, the yaw (ψ), pitch (θ), and roll (ϕ) Euler sequence is assumed.

In this subsection, the results of subsection C.4.1 are extended to cover the entire field of view of the IS slit. First consider the case of a nominal flight with zero attitude offset. Referring to Fig. 27, let 0 be the nadir point which is the origin of the XY-Frame and the X'Y'-Frame. The X'Y'-Frame is formed by rotating the XY-Frame through an angle ψ about the yaw axis. Let P be a point corresponding to a view angle λ (negative value shown in Fig. 27) on the Y-axis before any rotation occurs. After a ψ rotation, for the same view angle, the IS is sighting point P₁. Similarly, after a pitch (θ) and then roll (ϕ) rotation, the points P₂ and then P₃ are sighted, respectively.

The coordinates of P_2 in the X'Y'-Frame are, from the results of subsections C.1 and C.2 and Fig. 23, · - -

ł

$$X_{2}^{t} = \frac{R \sin \theta \sin \xi_{2} \left[\left(1 + \frac{h}{R} \right) \cos \xi_{2} - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{2}} \right]}{\sqrt{\sin^{2} \theta + \tan^{2} \lambda}}$$
(91a)
$$Y_{2}^{t} = -\frac{R \tan \lambda \sin \xi_{2} \left[\left(1 + \frac{h}{R} \right) \cos \xi_{2} - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{2}} \right]}{\sqrt{\sin^{2} \theta + \tan^{2} \lambda}}$$
(91b)

where the angle ξ_2 is the angle ξ defined in Fig. 23 corresponding to point P_2 here, and

$$\xi_2 = \tan^{-1} \left(\sec \theta \sqrt{\sin^2 \theta + \tan^2 \lambda} \right)$$
(91c)

- -

/

The coordinates of P3 in the X'Y'-Frame are

$$X'_{3} = \frac{R \sin \theta \sin \xi_{3} \left[\left(1 + \frac{h}{R} \right) \cos \xi_{3} - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{3}} \right]}{\sqrt{\sin^{2} \theta + \tan^{2} (\lambda + \phi)}}$$
(92a)

$$Y'_{3} = -\frac{R \tan (\lambda + \phi) \sin \xi_{3} \left[\left(1 + \frac{h}{R} \right) \cos \xi_{3} - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{3} \right]}{\sqrt{\sin^{2} \theta + \tan^{2} (\lambda + \phi)}}$$
(92b)

where $\boldsymbol{\xi}_3$ is similarly defined as $\boldsymbol{\xi}_2$ and

$$\xi_{3} = \tan^{-1} \left(\sec \theta \sqrt{\sin^{2} \theta + \tan^{2} (\lambda + \phi)} \right)$$
(92c)

or, finally, in the XY-Frame

 $X_3 = X'_3 \cos \psi - Y'_3 \sin \psi$ (93a)

$$Y_3 = X'_3 \sin \psi + Y'_3 \cos \psi$$
 (93b)

21 - 14 . . e.s. 6. 1 = 1 .

where X'_3 and Y'_3 are given in (92).

The geometric error caused by the attitude errors is therefore,

 $\Delta X = X - X_3 \tag{94a}$

$$\Delta Y = Y - Y_3 \tag{94b}$$

where

. 3]

ų

$$X = 0$$

$$Y = -R \sin \lambda \left[\left(1 + \frac{h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \lambda} \right]$$

Now, consider the case of the shuttle (or the IS) flying at a nominal attitude $(\phi_0, \theta_0, \psi_0)$ with attitude uncertainties of (ϕ, θ, ψ) . Let $P_0(X_0, Y_0)$ be a ground point that is sighted by the IS with a view angle λ and attitude $(\phi_0, \theta_0, \psi_0)$. After (ϕ, θ, ψ) attitude rotations from the nominal, the ground point $P_2(X_3, Y_3)$ is sighted with the same view angle. In this case, the geometric error is

$$\Delta X = X_0 - X_3$$
 (95a)
 $\Delta Y = Y_0 - Y_3$ (95b)

/

where

$$X_{0} = X_{0}^{*} \cos \psi_{0} - Y_{0}^{*} \sin \psi_{0}$$
(96a)

$$Y_{o} = X'_{o} \sin \psi_{o} + Y'_{o} \cos \psi_{o}$$
(96b)

$$X_3 = X_3^* \cos(\psi_0 + \psi) - Y_3^* \sin(\psi_0 + \psi)$$
 (96c)

$$Y_3 = X'_3 \sin(\psi_0 + \psi) + Y'_3 \cos(\psi_0 + \psi)$$
 (96d)

and

$$X_{o}^{\prime} = \frac{R \sin \theta_{o} \sin \xi_{o} \left[\left(1 + \frac{h}{R} \right) \cos \xi_{o} - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{o}} \right]}{\sqrt{\sin^{2} \theta_{o} + \tan^{2} (\lambda + \phi_{o})}}$$
(97a)
$$Y_{o}^{\prime} = -\frac{R \tan (\lambda + \phi_{o}) \sin \xi_{o} \left[\left(1 + \frac{h}{R} \right) \cos \xi_{o} - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{o}} \right]}{\sqrt{\sin^{2} \theta_{o} + \tan^{2} (\lambda + \phi_{o})}}$$
(97b)

where

$$\xi_{o} = \tan^{-1} \left(\sec \theta_{o} \sqrt{\sin^{2} \theta_{o} + \tan^{2} (\lambda + \phi_{o})} \right)$$
(97c)

and

$$X_{3}^{*} = \frac{R \sin \left(\theta_{0} + \theta\right) \sin \xi_{3} \left[\left(1 + \frac{h}{R}\right) \cos \xi_{3} - \sqrt{1 - \left(1 + \frac{h}{R}\right)^{2} \sin^{2} \xi_{3}}\right]}{\sqrt{\sin^{2} \left(\theta_{0} + \theta\right) + \tan^{2} \left(\lambda + \phi_{0} + \phi\right)}}$$

$$Y_{3}^{*} = -\frac{R \tan \left(\lambda + \phi_{0} + \phi\right) \sin \xi_{3} \left[\left(1 + \frac{h}{R}\right) \cos \xi_{3} - \sqrt{1 - \left(1 + \frac{h}{R}\right)^{2} \sin^{2} \xi_{3}}\right]}{\sqrt{\sin^{2} \left(\theta_{0} + \theta\right) + \tan^{2} \left(\lambda + \phi_{0} + \phi\right)}}$$
(98b)

- 8-

and where
$$\xi_{3} = \tan^{-1} \left[\sec \left(\theta_{0} + \theta\right) \sqrt{\sin^{2} \left(\theta_{0} + \theta\right) + \tan^{2} \left(\lambda + \phi_{0} + \phi\right)} \right]$$
(98 c)

To include errors caused by altitude uncertainties, one can replace h by h_0 in Eq. (97), and h by $h_0 + \Delta h$ in Eq. (98), where h_0 is the nominal or estimated altitude and $h_0 + \Delta h$ is the actual altitude.

D. GEOMETRIC ERRORS INDUCED BY ATTITUDE RATE ERRORS

3

Attitude rates cause attitude angle changes which in turn cause geometric errors. To account for attitude rates, one integrates the rates to obtain the attitude angles, and then uses the formulae derived to obtain the corresponding time-varying geometric errors. The instantaneous attitude angles are:

$$\phi' = \phi_0 + \int_{t_0}^{t} \dot{\phi} d\tau$$
 (99 a)

$$\theta' = \theta_0 + \int_{t_0}^{t} \dot{\theta} d\tau$$
 (99b)

$$\psi' = \psi_{0} + \int_{t_{0}}^{t} \dot{\psi} d\tau \qquad (99c)$$

E. GEOMETRIC ERRORS INDUCED BY MISALIGNMENT ERRORS

The misalignment errors can be incorporated in the attitude errors. Let (z_b, θ_b, ψ_b) be the attitude bias or misalignment, then the effective IS attitude angles will be

$$s = s_0 + s_b + s \tag{100a}$$

$$e' = e_0 + e_b + e_1$$
 (100b)

$$J = v_0 + v_b + J$$
(100c)

6ē

The corresponding geometric errors can be determined using the formulae derived in subsection C.

F. GEOMETRIC ERRORS INDUCED BY EARTH ROTATION

The effect of earth rotation on images varies with the position of the Shuttle relative to the earth and the Shuttle orbital elements. In general, ground images become skewed as a result of earth rotation.

Referring to Fig. 28. Let 0 be the nadir point at which the latitude is ζ . Let ω_e be the spin rate of the earth, where $\omega_e = \frac{2\pi}{86400} = 7.2722 \times 10^{-5}$ rad/sec. Let V_e be the linear velocity of the earth at 0,

$$V_{\rho} = \omega_{\rho} R \cos \zeta \tag{101}$$

Let Γ be the orbital inclination at the equator, and let Λ be the orbital inclination to the local meridian at 0. From Fig. 29 and Appendix B, one has the following spherical geometrical relation,

$$\cos \Gamma = \cos \zeta \sin \Lambda$$

or

$$\sin \Lambda = \frac{\cos \Gamma}{\cos \zeta}$$
(102a)

and

$$\cos \Lambda = \sqrt{1 - \sin^2 \Lambda} = \sqrt{1 - \left(\frac{\cos \Gamma}{\cos \zeta}\right)^2}$$
(102b)

From Fig. 29 again, 1 is also the angle between the linear velocity vector V_{e} and the Y-axis. Hence, velocity components V_{eX} and V_{eY} are, using (102),

$$V_{eX} = V_{e} \sin \Lambda = \frac{V_{e} \cos \Gamma}{\cos \zeta}$$
(103a)

and

$$V_{eY} = V_{e} \cos \Lambda = V_{e} \sqrt{1 - \left(\frac{\cos \Gamma}{\cos \zeta}\right)^{2}}$$
(103b)

LEGEND:

- ω_e = angular velocity of earth spin
- $\zeta = LATITUDE AT POINT O$
- Ve = LINEAR VELOCITY OF THE EARTH AT POINT O

Figure 28. Linear Velocity of the Earth at the Nadir Point

(*

5

.

1-1-20

2

(*)

1

1

i

Ą

ちとうこう たけいや利利

AND TARABLE AT A STATE AND A

ł

(*

ł

(a) INTRACK AND CROSSTRACK COMPONENTS OF EARTH LINEAR VELOCITY VECTO:: AT THE NADIR POINT

ORBITAL	NORTH LATITUDE, degrees									
(degrees)	0	20	40	60	80					
0	90	_		-	_					
18.5	71.5	1	-	-	-					
40	50	54.61	90	-	i –					
60	30	32.15	40.75	90	-					
85	5	5.32	6.53	10.04	30.13					
90	0	0	0	0	0					

(b) ORBIT INCLINATION TO THE LOCAL MERIDIAN (Λ), degrees

Figure 29. Earth Sperical Geometry

r

During the time interval from t_1 to t_2 , the ground point has moved from P(X, Y) to P'(X', Y'), the corresponding position changes are,

$$\Delta X = \int_{t_1}^{t_2} V_{eX} dt = \int_{t_1}^{t_2} \frac{V_{e} \cos \Gamma}{\cos \zeta} dt$$
(104a)

$$\Delta Y = \int_{t_1}^{t_2} \nabla_{e_{\underline{Y}}} dt = \int_{t_1}^{t_2} \nabla_{e_{\underline{Y}}} \sqrt{1 - \left(\frac{\cos r}{\cos \zeta}\right)^2} dt$$
(104b)

Note that for small time intervals, ζ may be considered constant and (104) may be approximated as

$$\Delta X \approx \frac{\cos \Gamma}{\cos \zeta} V_{e} (t_{2} - t_{1})$$
(105a)

$$\Delta Y \equiv \sqrt{1 - \left(\frac{\cos r}{\cos \zeta}\right)^2} \quad V_e(t_2 - t_1)$$
(105b)

and

27

$$X' = X + \Delta X$$
 (1062)
 $Y' = Y + \Delta Y$ (106b)

G. NUMERICAL RESULTS: GEOMETRIC ERRORS AND ERROR SENSITIVITIES

Numerical results of error sensitivities and geometric errors due to various direct errors have been generated. These data are summarized in Tables 5-10 and discussed in the following subsections.

G.1 Geometric Errors Due to Altitude Uncertainties

~

Table 5 shows the geometric error for a 1 km altitude change and error sensitivity caused by altitude uncertainty. The nominal altitude of 400 km was used to generate these data. This result is also plotted in Fig. 30 as a function of view angles for altitude changes ranging from 1 km to 4 km. As indicated in this figure, the geometric errors are quite linear with the view angles and the altitude errors for the range shown.

For the Imaging Spectrometer illustrated in Fig. 4, the view angles are limited by the field of view of $\pm .825^{\circ}$. Using the various expected on-orbit navigation accuracies shown in Table 4, and the sensitivity data of Table 5, the corresponding geometric error can be determined. For instance, from Table 4, the 3 σ altitude uncertainty, with TDRSS in the tracking system for the 150 nmi.orbit, if the small unmodeled perturbation is used, is 800 feet (or \sim 244 m) and with the STDN system and large unmodeled perturbation and 105 nmi.orbit, the 3 σ altitude uncertainty is 8000 feet (or \sim 2440 m). From Table 5, the corresponding 3 σ geometric errors for the largest view angle (.825°) are 3.51 m and 35.1 m, respectively. Note that the nominal pixel size is 30 m.

G.2 Geometric Errors Due to Roll Uncertainties

The geometric errors for view angles ranging from -9° to $+9^{\circ}$ due to a roll error of 1° are tabulated in Table 6. The error sensitivity at the nominal attitude is also tabulated in Table 6. By comparing the errors for 1° and the sensitivity for the same view angle, it is found that the differences are.2% or less. That is, for small angles, the error sensitivity data can be used to compute errors. Fig. 31 shows the plots of geometric errors for roll errors of up to 5° . Unlike the errors corresponding to altitude uncertainties, these curves are relatively flat. The geometric error is about 7 km per 1° of roll error.

It is noted from Fig. 31, that for small roll errors, the geometric errors are nearly symmetrical with the view angles. For larger roll angles, the geometric errors are greater for view angles that have the same sign of ϕ . This is more visible from Fig. 32 which shows the plots of geometric errors corresponding to roll errors of 1[°] and 2[°] from a roll offset of 20[°].

Geometric Errors Due to Pitch Uncertainties

G.3

Table 7 shows the error sensitivity and the geometric errors corresponding to the 1° pitch error for the view angles of up to $\pm 9^{\circ}$. The geometric errors caused by pitch errors are about the same in amplitude as those caused by roll errors. Fig. 33 shows that pitch curves are rather flat, unlike the corresponding roll curves. Figs. 34 and 35 show the 1° and 2° pitch uncertainty induced geometric error curves with 22.5° and 45° pitch offsets, respectively. These curves, especially those in Fig. 35, are more similar to the roll curves in shape. G.4 Geometric Errors Due to Yaw Uncertainties

Geometric errors due to rotations about the yaw or the local vertical axis (assuming zero offsets) are tabulated in Table 8 for 1° and plotted in Fig. 36 for up to 5° . Linearity applies for both the view angles and the yaw angles for the ranges covered here. Unlike roll and pitch errors, yaw errors induce much smaller geometric errors.

G.5 Geometric Errors Due to Attitude Uncertainties

Table 9 shows the geometric errors due to 1° error in each of the roll, pitch, and yaw axes. The error magnitude for a given view angle is approximately the vector sum of the roll and pitch induced errors.

Fig. 37 shows the plots of geometric errors caused by up to 5° roll, pitch, and yaw errors. Fig. 38 shows two curves, one corresponding to 1° pitch error and the other, 1° yaw error, with the roll offset of 20° .

Comparing pitch curve with that of Fig. 33, the 20° roll offset has no noticeable effects on the geometric errors. On the other hand, the effects on the yaw curve are quite pronounced, as a large bias of approximately 2.5 km results due to the 20° roll.

Fig. 39 shows the 1° roll and 1° yaw curves for a pitch offset of 22.5°. Fig. 40 shows the same curves for 45° pitch offset.

With the large angular pitch offsets, the yaw curves appear quite different from those without pitch offset, as noted in Figs. 36, 39, and 40. With these offsets, yaw-induced error curves look quite similar to those induced by roll errors in shape. By offsetting the pitch angle to 45° , the yaw-induced geometric errors increase to about sevenfold from zero pitch offset, and more than twofold over the 22.5° pitch offset.

The roll-induced geometric errors were less drastically affected by pitch angular offsets. For instance, for 22.5° pitch offset, the error has increased about 7% from that with zero offset, and about 46% for 45° pitch offset. G. 6 Ground Point Shift Due to Shuttle Motion and Earth Rotation

The earth rotation effect on the shift of the ground image varies with the latitude of the shuttle, and the combined effects of the earth rotation and shuttle motion vary with the orbital inclination in addition to the latitude. Table 10 shows the tabulation with latitude ranging from 0° to 80° . The largest earth rotation effect occurs at the equator, .46 km in one second, and diminishes to .08 km in one second at the latitude of 80° as shown in Fig. 41.

The combined effects are dominated by the motion of the shuttle since ,at 400 km altitude the projected ground speed is much greater than the earth rotation speed. In a one-second period, the image will shift more than 7 km for any latitude.

Table 5. Geometric Errors and Error Sensitivity Due to Altitude Uncertainties

• Nominal Earth Radius = 6356.785 km (Polar) • Nominal Altitude = 400 km

View Angle, deg.	0	1	2	3	4	5	6	7	8	9
Geometric Error Induced by i km Altitude Error, km	0	0.01746	0.03492	0.05242	0.06995	0.08753	0.1052	0.1229	0.1407	0.1586
Geometric Error Sensitivity, km/km	0	0.01746	0.03492	0.05242	0.06995	0.08753	0.1052	0.1229	0.1407	0.1586

in the second

{

. . . .

75

こ、 ころのないであるので、 こ

.

2

Figure 30. Geometric Error due to Altitude Uncertainties (Δh)

Table 6. Geometilc Errors and Error Sensitivity Due to Roll Attitude Error

•	Nominal	Earth Radius	• 6356	.785 km	(Polar)
•	Nominal	Altitude = 40) km		

View Angle, deg.	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
Geometric Error Induced by +1° Roll Error, km	7.153	7.114	7.081	7.052	7.029	7.010	6.996	6.987	6.982	6.982
Geometric Error Sensitivity, km/deg.	7.173	7.133	7.097	7.066	7.040	7.019	7.002	6.991	6.984	6.981
	نصحصه بيرزه كخنا سعبارة						the second s		أستحصد والمجروب ومستقل المتناق	
View Angle, deg.	1	2	3	4	5	6	7	8	9	
View Angle, deg. Geometric Error Induced by +1° Roll Error, km	1 6.987	2 6.996	3 7.010	4 7.029	5 7.052	6 7.081	7 7.114	8 7.153	9 7.196	

é

ş,

ŧ

.

.

78

ia. · • •

v

<u>,</u>

.

٧

٩,

2

and the second

-

۰.

e

.

--

ŵرج

į

Figure 32. Geometric Error due to Roll Uncertainty (ϕ) About 20^o Roll Offset

TIME THE TREET

»- -

80

Table 7. Geometric Errors and Error Sensitivity Due to Pitch Attitude Error

View Angle, deg.	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
Geometric Error Induced by 1° Pitch Error, km	6.988	6.986	6.985	6.985	6.984	6.983	6.983	6.982	6.982	6.982
Geometric Error Sensitivity, km/deg.	6.987	6.986	6.985	6.984	6.983	6.982	6.982	6.982	6.981	6.981
View Angle, deg.	1	2	3	4	5	6	7	8	9	<u> </u>
Geometric Error Induced by 1° Pitch Error, km	6.982	6.982	6.983	6.983	6.984	6.985	6.985	6,986	6.983	
Geometric Error Sensitivity, km/deg.	6.981	6.982	6.982	6.982	6.983	6.984	6.985	6,986	6.987	

4 S. Mar 18

٠

....

• Nominal Earth Radius = 6356.785 km (Polar)

• Nominal Altitude = 400 km

- u

18

ų.

こまて きょういい

٠

4

•

4

r

- -----

, **i**

.

، بر ، . ^ .

۶

Figure 33. Geometric Error due to Pitch Attitude Error (θ)

82

.

•

1

ر. تر بند

Figure 34. Geometric Error due to Pitch Uncertainty (θ) About 22.5° Pitch Offset

ə.

- A. - A.

.

×.

LOAD SECTION AND THE PARTY OF THE PARTY OF

÷.,

: 1

Figure 35. Geometric Error due to Pitch Uncertainty (θ) About 45[°] Pitch Offset

· · ·

-____

٢

----- • - - - -

Table 8. Geometric Errors and Error SensitivityDue to Yaw Attit de Error

Nominal Earth Radius = 6356.785 km (Polai)
Nominal Altitude = 400 km

View Angle, deg.	0	1	2	3	4	5	6	7	8	9
Geometric Error Induced by 1 Yaw Error, km	0	0.1219	0.2438	0.3659	0.4883	0.6109	0.7340	0.8576	0.9818	1.107
Geometric Error Sensitivity, km/deg.	0	0.1219	0,2438	0.3659	0.4883	0.6109	0.7340	0.8576	0.9818	1,107

1. *

1

۰ e

85

۱

ł

1

1.

•

1

. .

reverses we do a set with the set of the

. . .

.

Figure 36. Geometric Error due to Yaw Attitude Error (ψ)

-

~ B

• -

2

ご-み

Table 9. Geometric Errors Induced by Yaw, Pitch, and Roll Errors

- Nominal Earth Radius = 6356.785 km (Polar)
- Nominal Altitude = 400 km
 Yaw Error = +1°
 Pitch Error = +1°
 Roll Error = +1°

 \sum

View Angle, deg.	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
Error, km	9.245	9.296	9.353	9.414	9.480	9.551	9.625	9.704	9.788	9.875
View Angle, deg.	1	2	3	4	5	6	7	8	9	
Error, km	9.966	10.06	10.16	10.27	10.37	10.48	10.60	10.72	10.85	

.,**,**

•

3

۰.

87

1.

1

.

Η Ν.

(

ĩ

e

۰.

Figure 39. Geometric Error due to Roll (ϕ) and Yaw (ψ) Uncertainties About 22.5° Pitch Offset

Figure 40. Geometric Error due to Roll (ϕ) and Yaw (ψ) Uncertainties About 45° Pitch Offset

••••

ہنہ

7.00 -

.

•

٠.

Table 10. Ground Point Shift Induced by Shuttle Motion and Earth Rotation

• Nominal Earth Radius = 6356.785 km (Polar)

• Nominal Orbit Inclination = 85°

Man alter

• Nominal Shuttle Ground Speed = 7,202 km/sec

Latitude, deg.	0	20	40	60	80
Ground Point Shift Velocity due to Earth Rotation, km/sec	0,4623	0.4344	0.3541	0.2311	0.08027
Ground Point Shift Velocity Relative to Nadir Point, km/sec	7.177	7.175	7.171	7.166	7.162
Angle of Velocity Vector with Y-axis, deg.	-86.32	-86.54	-87.19	-88,18	-89.44
Shift in 0.1 sec, km	0.7177	0.7175	0.7171	0.7166	0.7162

92

1

1

٠

· (*

Lite

.

Figure 41. Geometric Error Caused by Earth Rotation for the Time Period of 1 Second

*

H. SUMMARY OF MAJOR FINDINGS

In this section geometric errors caused by the "direct error sources" are analyzed. Equations that map the direct errors onto the geometric errors are derived in Subsections B through G. Extensive illustrations of geometry are used to assist the derivations. Direct error effects included here are those of pointing errors and angular rates, ephemeris prediction errors including altitude, intrack, and crosstrack uncertainties, earth rotation and curvature, and shuttle and instrument misaligment. For quick reference the key error mapping functions are listed in Appendix A. A program list is given in Appendix E.

The numerical results for both the geometric errors and error sensitivities are tabulated in Tables 5 through 10 and also plotted in Figs. 30 through 41. To illustrate the effects of view angles and linearity, an extended range of $\pm 9^{\circ}$ is used. For the push broom imaging spectrometer studied here, the field of view is limited by $\pm .825^{\circ}$ (see Fig. 4). The following are the specific findings resulting from further analysis:

!

 The effects of earth curvature are very small for the applications here. For instance, the linear displacement of a 10 km arc is 9.9999...km. Fig.
 42 illustrates several cases of earth curvature effects.

Figure 42. Effects of Earth Curvature
2. Altitude uncertainties cause only moderate geometric errors. Table 11 shows that the worst 10 geometric error is 11.71 m and the corresponding rate is .133 m/sec. The worst case associates with the STDN system and large unmodeled perturbation and 200 km orbit. The least 10 errors are .22 m and .0032 m/sec corresponding to the TDRSS system and small unmodeled perturbation and 300 km orbit. The effects of other navigation uncertainties such as downtrack and crosstrack position errors are not small, however. Table 12 shows the 30 uncertainties in feet. Downtrack and crosstrack position errors are mapped directly to the geometric errors.

3. Geometric errors caused by altitude uncertainties are, within the range of interest here, proportional to the view angle and altitude error (see Table 5 and Fig. 30).

4. The effects of roll and pitch attitude errors are relatively large compared with those of altitude errors and yaw attitude errors. Table 13 shows thac, for nominal flight conditions, the error sensitivity is approximately 1.94 m/arc sec, or $\sim7000 \text{ m/degree}$. The yaw sensitivity is very small, from 0 for 0° view angle to .0279 m/arc sec for maximum IS view angle ±.825°.

The effects of attitude errors increase significantly for large attitude offsets. For instance, for 20° roll offset (side looking), the roll sensitivity increases to 2.28 m/arc sec from 1.94 and yaw sensitivity increases to .75 m/arc sec from .0279. The pitch sensitivity, in this case, is nearly unaffected. By offsetting the pitch angle to 45° (forward looking), the roll sensitivity increases to 2.83 m/arc sec, the pitch to 4.36 m/arc sec, and the yaw to 1.97 m/arc sec. Table 13 shows the error sensitivities and 1° geometric errors for many combinations of interest.

11-

5. Without attitude offsets and within the IS field of view, the geometric errors are almost proportional to roll errors (Fig.31), pitch errors (Fig.33), and yaw errors (Fig.36), and are independent of the view angle except for the yaw cases (for which the error is proportional to the view angle). For the cases of large roll or pitch angular offset, most of the properties change only slightly (see Figs. 32, 34, 35, 38, 39, and 40).

6. The performance of the Imaging Spectrometer is limited by the shuttle Inertial Measuring Unit accuracy, the shuttle reference misalignment, and the misalignment between the shuttle and the Imaging Spectrometer, unless means of error reduction, such as using ground control points and a precision point mount between the shuttle and the IS instruments, are employed.

On top of these uncertainties, the shuttle deadband is another source of error that can cause gross geometric errors. This problem, of course, can be resolved by using a precision point mount.

Table 14 shows geometric errors caused by the IMU/shuttle misalignment, IMU resolution, IMU noise, rate gyro drift, and combined shuttle/IS misalignment, for nominal attitude and attitude offsets. Single axis geometric errors corresponding to the combined shuttle/IS misalignment are 169 m, 198 m, and 379 m, respectively, for nominal, 20° roll offset, and 45° pitch offset, for instance. Other cases are shown in detail in Table 14.

ابتر

7. Earth rotation causes images to shift toward the direction of rotation. The magnitude of this shift depends on the latitude of the object (see Fig. 41). For instance, at the equator, the object moves approximately 462 m in 1 second, while at 60° latitude, it moves only 231 m in one second.

Navigation Tracking System	Unmodeled Perturbation	Minimum Perigee, km	lo Altitude Error, m	Max. Geom. Error in FOV, m	lơ Radial Velocity, m/s	Max. Geom. Error in FOV, m/s
STDN	Nominal	200	508	7.32	3.87	.056
TDRSS	NOMILIAT	200	366	5.27	2.25	.032
STIN	•-	200	305	4.39	2.50	.036
SIDA	Small	300	122	1.76	.59	.0085
TORSS		200	183	2.63	1.12	.016
10.00		300	81	1.17	.22	.0032
STDN		200	813	11.71	9.27	.133
TDRSS	Large	200	6 10	8.78	5.69	.082
STDN - Sp TDRSS - T	aceflight Trac Tracking Data H	king and Relay Sate	Data Network llite System	• <u></u>		

Table 11. Geometric Errors Due to Expected On-orbit Navigation Uncertainty

-,

~

-

Navigation	Unmodeled	Minimum	3σ Po	sition,	Feet	3 σ Ve	locity,	FI'S
Tracking System	Pertur- bation	ertur- Perigee, ation n.mi.	Radial	Down Track	Cross Track	Radial	Down Track	Cross Track
STDN	- Nominal	· · 105	5,000	34,500	5,000	38.4	5.9	9.8
TDRSS	Nominal	105	3,600	18.500	4,000	22.1	3.3	4.0
STDN	••	105 150	3,000 1,200	22,000 5,500	1,500 1,000	24.6 5.8	3.3 1.3	2.0 1.8
TDRSS	Small	105 150	1,800 800	10,000 2,000	2,000 1,500	11.0 2.2	1.8 0.9	2.9 2.1
STDN		105	8,000	80,000	5,000	91.2	8.0	8.0
TDRSS	Large	105	6,000	50,000	5,000	56.C	6.2	7.8
NOTE: The cor The cor	NOTE: The correlation between downtrack position and radial velocity is -0.95. The correlation between radial position and downtrack velocity is -0.80.							

Table 12. Expected On-Orbit Navigation Accuracies (Ref. 12)

•

-

,

-

•

-

STDN - Spaceflight Tracking and Data Network TDRSS - Tracking Data Relay Satellite System

• • •

,

Table 13. Geometric Error Sensitivity

÷.,

•

Nominal Orbit: 400 km Circular

.

3

3(

٠,

		Error Sensit	Geometric Error	
Error Source	Attitude Offset	For View Angle = 0°	For View Angle = ±.825°	for l° Angular Error, m
Roll angle		1.939	1.940	6,987
Pitch angle	No offset	1.939	1.939	6,982
Yaw angle		0	.0279	101
Roll angle		2.25	2.28 2.22	8,200
Pitch angle	20° roll	1.94	1.94	7,000
Yaw angle	offset	.72	.75 .70	2,683
Roll angle	22.5°	2.11	2.11	7,600
Pitch angle	pitch	2.31	2.31	8,300
Yaw angle	offset	.83	.83	3,000
Roll angle	45°	2.82	2.83	10,200
Pitch angle	pitch	4.33	4.36	15,700
Yaw angle	offset	1.94	1.97	7,100
Altitude unce	rtainty	0	.0144 m/m	<pre>14.4 m per 1 km altitude change max in FOV</pre>

ł

İ

1

5

•.,

`۰,

5.

Nominal Orbit: 400 km Circular

Source	Attitude Offset	Per Axis, arc • sec	Per Axis Geometric Error, m	2 Axes,† Geometric Error, m
IMU/Shuttle Misalignment		82	159	225
IMU Resolution*	ſ	20	39	55
IMI Noise	No Offset	20	39	55
Rate Gyro		60 arc sec/sec	116 m/s	165 m/s
Combined Shuttle/IS Misalignment		87	169	239
IMU/Shuttle Misalignment		82	187	245
IMU Resolution	200	20	46	60
IMU Noise	Roll	20	46	60
Rate Gyro	Offset	60 arc sec/sec	137 m/s	180 m/s
Combined Shuttle/IS Miszignment		87	198	260
IMU/Shuttle Misalignment		82	358	426
IMU Resolution	45°	20	87	104
IMU Noise	Pitch	20	87	104
Rate Gyro	Offset	60 arc sec/sec	262 m/s	312 m/s
Combined Shuttle/IS Misalignment		87	379	452

V. GROUND PATTERNS AND IMAGE DISTORTIONS

- •_

The extent that direct errors and earth geometric properties affect the performance of the Shuttle Imaging Spectrometer are analyzed and extensively illustrated with charts and tables in section IV. The advantages of tables and charts are that they carry precise and specific information which is invaluable for design and performance prediction. However, it is difficult to relate this information directly to images of ground objects by human brains. To compensate for this and to make direct observation of how errors in the system affect ground images, sclected ground patterns as seen through this optical system are studied here.

The patterns that are readily generated and, most importantly, suitable for exhibiting imaging distortions are square grid patterns.

To cover a large ground that is comparable to the field of view of the imaging spectrometer, a 10 km field is selected and the field is evenly divided into 10 segments of 1 km each. Since the imaging spectrometer employs a push broom principle, each field is then 10 km wide (cross track) and 30 m "long" (along track). However, to see a large ground area, a 10 km x 10 km field is employed with the along track grids tagged with time. Considering a perfectly spherical earth, an imaginary 10 x 10 grid is painted on the ground. As the satellite flies through this region, in the direction from the bottom to the top of the paper, a push broom camera should see a pattern just like that of Fig. 43(a). This pattern is referred to as the nominal ground pattern.

Fig. 43 shows how the ground pattern changes when simple attitude error occurs without considering the effect of Earth rotation. To show the effect of errors, the solid pattern (actual) is overlayed with the "+" pattern (the undistorted nominal pattern). Fig. 43(b) shows that when a 0.1° roll attitude error occurs, the IS instrument points 0.1° left of the object field and the image on

-

Ŀ,

; ¹

Fig. 43. Ground Pattern Distortions With No Earth Rotation Effect

102

4

ł

T

the "film" has shifted to the right; therefore, the solid pattern has shifted to the right of the "+" pattern. The same explanation applies also to the 0.1° pitch error as shown in Fig. 43(d), except that, for pitch, the pattern image has shifted to the "-along track" direction. A 5° yaw error (clockwise rotation) will make the pattern appear skewed as shown in Fig. 43(c).

Fig. 44 shows the effects of simple attitude errors with 20° roll offset. With the large roll angle, the nominal pattern itself has suffered cross track distortions, i.e., the pattern image appears shrunk cross-trackwise as shown in Fig. 44(a). In Fig. 44(b), (c), and (d), the "+" patterns represent the distorted nominal patterns due to roll offset alone and the solid patterns represent those due to attitude errors on top of roll offset. The distortions are similar to those found in Fig. 43 except that with the 20° roll offset the images appear narrower.

The effects of simple attitude errors with 45° pitch offset are shown in Fig. 45. The effect of pitch offset is similar to roll offset, i.e., the nominal pattern image has shrunk cross-trackwise. One might expect also along-track shrinkage. The reason that there is no along-track shrinkage is because of the push-broom effect. Shrinkage will occur for a frame camera, however. It is noted that the pattern images associated with the 45° pitch offset are narrower than those of the 20° roll offset. This is due to the fact that 20° is a lot less than 45° .

The effects of constant attitude rate errors are shown in Fig. 46. Rate errors cause accumulation of attitude errors, i.e., the attitude errors grow with time t. Take the 0.1 deg/sec rate error for the roll axis for instance, the roll error is 0.1 t; whereas, the 0.1° roll error (Fig. 43(b)) at t = 0 is 0; therefore, the "+" pattern image coincides with the solid one at a very

A PERSONAL AND PROVIDENT

TE

;

Fig. 44. Ground Pattern Distortions With 20⁰ Roll Offset and No Earth Rotation Effect

· LITTI . . M

104

٠

`,

アンドイ

ı,

.

ľ

۰.

Υ.

5.

Ģ

105

A

1 III THE POLY OF ALL A

The state and the

- ;

4

(÷

Fig. 46. Ground Pattern Distortions With Constant Rotation Rate and No Earth Rotation Effect

Han Allen

106

*)

small t. Shown in Fig. 46(b) is the solid pattern shift to the right at a constant slope with time, which is quite different from Fig. 43(b). Similar comment applies to Fig. 46(c) and (d).

T,

The effects of sinusoidal attitude rates on the pattern images are shown in Fig. 47. For instance, the sinusoidal rate causing a 0.2 sin (4.51378t) degree roll error will make the image appear as the shape "S", as shown in Fig. 47(b). The same function applied to the pitch axis will cause along-track distortions with densely packed grid lines followed by loosely packed ones, etc., as illustrated in Fig. 47(d).

Altitude change causes images to vary in size. Again, it affects the cross-track much more than the along-track due to the push-broom principle. As shown in Fig. 43, the solid image has shrunk cross-trackwise but expanded along-trackwise. The former is due to the altitude increase of 40 km which has no amplification effect on push-broom camera; the latter is due to the fact that, at higher altitude, the orbital rate is decreased, i.e., it will take a longer period of time to fly through the same ground area.

Finally, the effects of earth rotation are shown in Fig. 49. Earth rotation will cause the image to skew toward the direction of earth rotation. As discussed in section IV, the effect of the image shift is most pronounced when the satellite flies through the equator, and reduces as the latitude increases. Earth rotation will not cause along-track distortions.

Computer programs that are used to generate these patterns and distortions are listed in Appendix F.

. . . .

. / :

- - - ·

4

.

Fig. 47. Ground Pattern Distortions With Sinucoidal Rotation Rate and No Earth Rotation Effect

.

Let a market

₩)

2

 \hat{i}

15

· .

4

2

.

Fig. 48. Ground Pattern Distortions With Effect of Altitude Change (increase) of . 40 km and No Earth Rotation Effect

1 Ch " "

21. a

#

Lander to 1.

37

(4

. .

Fig. 49. Ground Pattern Distortions With Effect of Earth Rotation for 40⁰ Latitude and Orbit Inclination of 85

Nº 4-

X.

VI. CONCLUSIONS

- The effects of earth curvature are very small for the application here (see Fig. 42).
- 2. Altitude uncertainties cause only moderate geometric errors. The worst lo geometric errors are 11.71 m in position and C.133 m/sec in rate with STDN and large unmodeled perturbations at 200 'm orbit. The performance improves with TDRSS. For the 300 km orbit and with small unmodeled perturbations, the lo geometric errors will reduce to 0.22 m and 0.0032 m/sec (see Table 11).
- 3. The effects of other navigation errors are significantly greater. The lo downtrack errors range from 203 m (300 km orbit) to 8128 m (200 km orbit); and those for the cross track are 152 m to 508 m (see Table 12).
- 4. The effects of roll and pitch attitude errors are relatively large compared with, for instance, those caused by yaw errors and altitude uncertainties. The error sensitivity is 1.94 m/arc sec or approximately 7000 m/degree. The yaw sensitivity is 0 for a 0° view angle and 0.028 m/arc sec for the maximum view angle of $\pm 0.825^{\circ}$ (see Table 12).
- 5. The error sensitivities of attitude errors increase significantly for large attitude offsets. For 20° side looking, the sensitivity increases to 2.28 m/arc sec for roll errors and to 0.75 m/arc sec for yaw errors, and the pitch error sensitivity is almost unaffected. For the 45° forward looking case, the sensitivities for the pitch, roll, and yaw errors increase to 2.83, 4.36, and 1.97 m/arc sec, respectively (see Table 13).
- 6. The performance of the Shuttle Imaging Spectrometer is limited by the Shuttle IMU (Inertial Measuring Unit) accuracy, instrument misalignment, Shuttle RCS (Reaction Control Subsystem) deadband, etc. unless some means of error reduc-

tion are employed. For instance, ground control points may be used to reduce navigation prediction errors; and precision point mounts, such as AGS (ASPS⁺ Gimbal System) and IPS (Instrument Pointing System), may be used to reduce the attitude errors. The single axis geometric errors due-to-the combined Shuttle/IS misalignment, for instance, for normal nadir pointing, 20° side looking, and 45° forward looking are 169 m, 198 m, and 379 m, respectively (refer to Table 14).

- 7. Earth rotation causes shifts of images toward the direction of rotation. The magnitude of these shifts depends on the latitude of the object. For instance, at the equator the object moves approximately 462 _ in one second (for 400 km orbit), and at 60° latitude it moves only 231 m in one second.
- 8. Distorted images for selected ground patterns provide revealing information of the effects of system errors to the images of ground objects.

2 7.1

رید ریکند.

+ Annular Suspension Pointing System

REFERENCES

1. "LANDSAT D Position Determination and Correction Study," Final Report prepared for NASA Goddard Space Flight Center by General Electric-Space Division, GE DOC #76SDS4277, NASA CR-144829, 22 Nov. 1976. 1

- "Shuttle Imaging Spectrometer Experiment, Vol. I: Investigation and Technical Plan," Proposal submitted to NASA, JPL internal document D-755, July 18, 1983.
- 3. Wellman, J.B., Breckinridge, J.B., Kupferman, P.N., and Salazar, R., "Imaging Spectrometer: An Advanced Multispectral Imaging Concept," Vol. I, Digest of 1982 International Geoscience and Remote Sensing Symposium, Munich, West Germany, June 1-4, 1982.
- 4. <u>Shuttle Operational Data Book</u>, JSC-08934, Vol. II, Rev. B, August 1980; Amendment 46, January 6, 1982.
- 5. <u>Space Shuttle System Payload Accomodations</u>, JSC-07700, Vol. XIV, Rev. G, September 26, 1980, Change No. 35, August 21, 1981.
- 6. "Three-Plate On-Orbit Aerodynamic Torque Model," SSFS Doc. Series AER037, JSC-12604 (LEC-10294) Johnson Space Center, Houston, TX, March 1977.
- 7. "General Consideration of Control Disturbances for Large Space Structures," Final Report for JPL, contract #955345, prepared by Lockheed Missiles and Space Co., Sunnyvale, CA, January 18, 1980.
- Space Transportation System User Handbook, N77-82346, NASA, Washington, D.C., June 1977.
- 9. "LANDSAT D Position Determination and Correction Study," Final Report prepared for NASA Goddard Space Flight Center by General Electric-Space Division, CR-144829, November 22, 1978.
- 10. Space Shuttle Orbiter Flight Test, Level C, Functional Subsystem Software Requirements, Guidance, Navigation, and Control, Part C, Flight Control, Part 2, SD 76-SH-0009 Book 2B, September 15, 1980.
- Sackett, L.L., and Kirchway, C.B., "Dynamic Interaction of the Shuttle On-Orbit Flight Control System with Deployed Flexible Payload," Paper #82-1535, AIAA Guidance and Control Conference, San Diego, CA, August 9-11, 1982.
- 12. Osborne, D., Update of JSC-07700, Vol. XIV, July 1982.
- 13. Wertz, J.R., <u>Spacecraft Attitude Determination and Control</u>, D. Reidel Publishing Co., Dordrecht, Holland, pp. 730-731, 1978.

٩

APPENDICES

.

....

۰.

-- - .

;

4

_

•

- -

ť

(1

APPENDIX A

GEOMETRIC ERROR MAPPING FUNCTION TABLE

Part A: Given the attitude offsets and a view angle, find the coordinates of the corresponding ground points before and after the errors are introduced.

Ú

~

Error Sources	Geometric Error Mapping Function	Comments
Altitude Error, Δh	At nominal altitude h, a view angle λ is given which sights a ground point $P(0, Y_0)$. After elevating Δh , the same view angle will sight another ground point $P'(0, Y'_0)$. The following equations are for obtaining Y_0 and Y'_0 : $Y_0 = -R \sin \lambda \left[\left(1 + \frac{h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \lambda} \right]$ $Y'_0 = -R \sin \lambda \left[\left(1 + \frac{h + \Delta h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h + \Delta h}{R} \right)^2 \sin^2 \lambda} \right]$	R = Earth Radius
Yaw Error, ψ	Given: a yaw offset ψ_0 and a view angle λ which sights a ground point $P(X^*, Y^*)$. The same view angle will sight another ground point $P'(X^{**}, Y^{**})$ after yaw error ψ is introduced. The following equations are for obtaining X^*, Y^*, X^{**} , and Y^{**} : $X^* = \left[\left(1 + \frac{h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \lambda} \right] R \sin \lambda \sin \psi_0$ $Y^* = - \left[\left(1 + \frac{h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \lambda} \right] R \sin \lambda \cos \psi_0$	R = Earth Radius h = Nominal Altitude

.^{*}

.

 $\langle |$

115

١

Error Sources	Geometric Error Mapping Function	Comments
	$X^{**} = \left[\left(1 + \frac{h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \lambda} \right] R \sin \lambda \sin (\psi_0 + \psi)$ $Y^{**} = -\left[\left(1 + \frac{h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \lambda} \right] R \sin \lambda \cos (\psi_0 + \psi)$	
Roll Error, ∲	Given: a roll of fset ϕ_0 and a view angle λ which sights a ground point P(0, Y*). The same view angle will sight another ground point P'(0, Y*') after roll error ϕ is introduced. The following equations are for obtaining Y* and Y*': $Y^* = -R \sin(\lambda + \phi_0) \left[\left(1 + \frac{h}{R} \right) \cos(\lambda + \phi_0) - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2(\lambda + \phi_0)} \right]$ $Y^{*'} = -R \sin(\lambda + \phi_0 + \phi) \left[\left(1 + \frac{h}{R} \right) \cos(\lambda + \phi_0 + \phi) - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2(\lambda + \phi_0 + \phi)} \right]$	R = Earth Radius h = Nominal Altitude
Pitch Error, θ	Given: a pitch offset θ_0 and a view angle λ which sights a ground point $P(X^*, Y^*)$. The same view angle will sight another ground point $P'(X^{**}, Y^{**})$ after pitch error θ is introduced. The following equations are for obtaining X*, Y*, X*', and Y*': $X^* = R \left[\left(1 + \frac{h}{R} \right) \cos \tau - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \tau} \right] \frac{\sin \tau \sin \theta_0}{\sqrt{\sin^2 \theta_0 + \tan^2 \lambda}}$ $Y^* = -R \left[\left(1 + \frac{h}{R} \right) \cos \tau - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \tau} \right] \frac{\sin \tau \tan \lambda}{\sqrt{\sin^2 \theta_0 + \tan^2 \lambda}}$	R = Earth Radius h = Nominal Altitude For τ and ξ, refer to Fig. 23.

 $\mathbf{x}^{\mathbf{i}}$

١

١

, **x**

.

1

١

116

ا بنیم

「今年まない」」

.

Sources	Geometric Error Mapping Function	Comments
	$X^{*'} = R \left[\left(1 + \frac{h}{R} \right) \cos \xi - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \xi} \right] \frac{\sin \xi \sin (\theta_0 + \theta)}{\sqrt{\sin^2 (\theta_0 + \theta) + \tan^2 \lambda}}$	
	$Y^{\star \prime} = -R \left[\left(1 + \frac{h}{R} \right) \cos \xi - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \xi} \right] \frac{\sin \xi \tan \lambda}{\sqrt{\sin^2 (\theta_0 + \theta) + \tan^2 \lambda}}$	
	$\tau = \tan^{-1} \left(\sec \theta_0 \sqrt{\sin^2 \theta_0 + \tan^2 \lambda} \right)$	
	$\xi = \tan^{-1} \left[\sec \left(\theta_0 + \theta\right) \sqrt{\sin^2 \left(\theta_0 + \theta\right) + \tan^2 \lambda} \right]$	
Yaw Error ¥, Followed by pitch	Given: a yaw offset ψ_0 , followed by a pitch offset θ_0 , then a roll offset ϕ_0 . A view angle λ is also given which sights a ground point $P_0(X_0, Y_0)$. After the errors ψ , θ , and ϕ are introduced, the same view angle will sight another ground point $P_3(X_3, Y_3)$. The following equations are for obtaining	R = Earth Radius h = Nomina Altitu
error θ, then roll error φ	$X_{o}, Y_{o}, X_{3}, \text{and } Y_{3}:$ $X_{o}' = \frac{R \sin \theta_{o} \sin \xi_{o} \left[\left(1 + \frac{h}{R} \right) \cos \xi_{o} - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{o}} \right]}{\sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{o}}}$	Fig. 23.
	$Y'_{o} = -\frac{R \tan (\lambda + \phi_{o}) \sin \xi_{o} \left[\left(1 + \frac{h}{R} \right) \cos \xi_{o} - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{o} \right]}{\sqrt{\sin^{2} \theta_{o} + \tan^{2} (\lambda + \phi_{o})}}$	

1. -

. . 2

117

A

Error Sources	Geometric Error Mapping Function	Comments
	$x' = \frac{R \sin (\theta_0 + \theta) \sin \xi_3 \left[\left(1 + \frac{h}{R} \right) \cos \xi_3 - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \xi_3} \right]}{R \sin^2 \xi_3}$	
	$\sqrt{\sin^2(\theta_0 + \theta) + \tan^2(\lambda + \phi_0 + \phi)}$	
	$Y'_{3} = -\frac{R \tan (\lambda + \phi_{0} + \phi) \sin \xi_{3} \left[\left(1 + \frac{h}{R} \right) \cos \xi_{3} - \sqrt{1 - \left(1 + \frac{h}{R} \right)^{2} \sin^{2} \xi_{3} \right]}{\sqrt{\sin^{2} (\theta_{0} + \theta) + \tan^{2} (\lambda + \phi_{0} + \phi)}}$	
:	$\xi_{o} = \tan^{-1} \left(\sec \theta_{o} \sqrt{\sin^{2} \theta_{o} + \tan^{2} (\lambda + \phi_{o})} \right)$	
	$\xi_{3} = can^{-1} \left[sec \left(\theta_{0} + \theta\right) \sqrt{sin^{2} \left(\theta_{0} + \theta\right) + tan^{2} \left(\lambda + \phi_{0} + \phi\right)} \right]$	
	$X_{0} = X'_{0} \cos \psi_{0} - Y'_{0} \sin \psi_{0}$	
:	$Y_{0} = X'_{0} \sin \psi_{0} + Y'_{0} \cos \psi_{0}$	
	$X_3 = X_3' \cos(\psi_0 + \psi) - Y_3' \sin(\psi_0 + \psi)$	
	$Y_3 = X_3^* \sin(\psi_0 + \psi) + Y_3^* \cos(\psi_0 + \psi)$	
	;	

х , х., ,

ł

¥...

A MARKEN STATE

2

3

1

ł

. Ci

L

1

1

.

~

118

٨

٢

١

 $(\mathbf{*})$

1

Ń

•	•		143
		the second	

.

۰.

*•• 2

• •

۰. ۱

•

Part B: Given the coordinates of a ground point, find the attitude offsets, the corresponding view angle and the coordinates of the point with the same view angle after the errors are introduced.

Sources	Geometric Error Mapping Function	Comments
ltitude rror, h	At nominal altitude h, a ground point P(X _o , Y _o) corresponding to view angle λ is given. After elevating Δh , the same view angle λ will aim at another ground point P'(X' _o , Y' _o). The following equations are for obtaining X' _o and Y' _o : $\lambda = \tan^{-1} \left(\frac{\sqrt{X_o^2 + Y_o^2}}{R + h - \sqrt{R^2 - X_o^2 - Y_o^2}} \right)$ $X'_o = \frac{RX_o \sin \lambda}{\sqrt{X_o^2 + Y_o^2}} \left[\left(1 + \frac{h + \Delta h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h + \Delta h}{R} \right)^2 \sin^2 \lambda} \right]$ $Y'_o = \frac{RY_o \sin \lambda}{\sqrt{X_o^2 + Y_o^2}} \left[\left(1 + \frac{h + \Delta h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h + \Delta h}{R} \right)^2 \sin^2 \lambda} \right]$	R = Earth Radius
	•	

(Statician

Eiror Sources	Geometric Error Mapping Function	Comments
Roll Error, ∲	A ground point P(0, Y*) corresponding to roll offset ϕ_0 and view angle λ is given. After roll error ϕ is introduced, the same view angle λ will aim at another ground point P'(0, Y*'). The following equations are for obtaining Y*': $\lambda + \phi_0 = -sgn(Y*) tan^{-1} \left(\frac{ Y* }{R + h - \sqrt{R^2 - Y*^2}} \right)$ Y*' = -R sin' ($\lambda + \phi_0 + \phi$) $\left[\left(1 + \frac{h}{R} \right) \cos (\lambda + \phi_0 + \phi) - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 (\lambda + \phi_0 + \phi)} \right]$	R = Earth Radius h = Nominal Altitude

، ،

in and in the and

1.4

120

1 1

le contra te

(#)

121

(*****)*

Error Sources	Geometric Error Mapping Function	Comments
Pitch Gror,	A ground point P(X*, Y*) corresponding to pitch offset θ_0 and view angle λ is given. After pitch error θ is introduced, the same view angle λ will aim at another ground point P'(X*', Y*'). The following equations are for obtaining X*' and Y*': $\lambda = \tan^{-1} \left[\frac{\chi *}{\left(R + h - \sqrt{R^2 - X*^2 - Y*^2} \right) \left(\sqrt{1 + \left(\frac{X*}{R + h - \sqrt{R^2 - X*^2 - Y*^2} \right)^2} \right)} \right]$ $\theta_0 = \tan^{-1} \left[\frac{\chi *}{R + h - \sqrt{R^2 - X*^2 - Y*^2}} \right]$ $\xi = \tan^{-1} \left[\sec \left(\theta_0 + \theta \right) \sqrt{\sin^2 \left(\theta_0 + \theta \right) + \tan^2 \lambda} \right]$ $X*' = \frac{R \sin \left(\theta_0 + \theta \right) \sin \xi \left[\left(1 + \frac{h}{R} \right) \cos \xi - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \xi} \right]}{\sqrt{\sin^2 \left(\theta_0 + \theta \right) + \tan^2 \lambda}}$ $Y*' = -\frac{R \tan \lambda \sin \xi \left[\left(1 + \frac{h}{R} \right) \cos \xi - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \xi} \right]}{\sqrt{\sin^2 \left(\theta_0 + \theta \right) + \tan^2 \lambda}}$	R = Earth Radius h = Nominal Altitude For ξ , refer to Fig.23.

÷

ł

L'a

[]

Start .

N,

ı

6

Error Sources	Geometric Error Mapping Function	Comments
Yaw Error, Ψ	A ground point $P(X^*,Y^*)$ corresponding to yaw offset ψ_0 and a certain view angle is given. After yaw error ψ is introduced, the same view angle will aim at another ground point $P'(X^{*'},Y^{*'})$. The following equations are for obtaining $X^{*'}$ and $Y^{*'}$:	R = Earth Radius h = Nominal Altitud
	$\psi_{0} = -\tan^{-1}\left(\frac{X^{*}}{Y^{*}}\right)$	
	$\lambda = - \text{sgn} (Y^*) \tan^{-1} \left(\frac{\sqrt{X^* + Y^*}}{R + h - \sqrt{R^2 - X^*} - Y^*} \right)$	
	$X^{*'} = \left[\left(1 + \frac{h}{R} \right) \cos \lambda - \sqrt{1 - \left(1 + \frac{h}{R} \right)^2 \sin^2 \lambda} \right] R \sin \lambda \sin (\psi_0 + \psi)$	
	$Y^{**} = -\left[\left(1+\frac{1}{R}\right)\cos\lambda - \sqrt{1-\left(1+\frac{h}{R}\right)^2\sin^2\lambda}\right]R\sin\lambda\cos\left(\psi_0+\psi\right)$	
Earth Rotation	Let Γ be the shuttle orbital inclination at the equator, and ζ be the latitude of the nadir point. A given point P(X,Y), after time period Δt , will move to P'(X',Y'). The following equations are for obtaining X' and Y':	V _e = Linear Velocity of Ground Point at Latitude ζ
	$V_e = \omega R \cos \zeta$ $\omega = \frac{2\pi}{36 + 00}$ radians/sec	ω = Angular Velocity of Earth Rota- tion
	$X' = X + \frac{\cos \Gamma}{\cos \zeta} V_e \Delta t$	∆t is assumed small.
	$Y' = Y = \sqrt{1 - \left(\frac{\cos \Gamma}{\cos \zeta}\right)^2} V_e \Delta t$	1

.

;

ţ

•

4

123

· .

ì

(#)

S

i

¥

APPENDIX B

1.

NAPIER'S RULES FOR RIGHT SPHERICAL TRIANGLES*

A right spherical triangle has five variable parts. If these components and their complements (complement of $\Gamma \equiv 90^\circ - \Gamma$) are arranged in a circle, as illustrated below

then, the following relationships hold between the five components in the circle: The sine of any component equa' the product of either:

1. The tangents of the adjacent components, or

2. The cosines of the opposite components

For our case, from 2:

 $\sin (90^\circ - 7) \cos \zeta \cos (90^\circ - \Lambda)$

i.e.,

in the second second

_1

, 1

4

• 1

 $\cos \Gamma = \cos \zeta \sin \Lambda$

*See Ref. 13

لريته

APPENDIX C

• .

.3

*

ج مند م

COMPUTER PROGRAM FOR SHUTTLE IMAGING SPECTROMETER POINTING ERROR

POWER SPECTRAL DENSITIES FOR CONFIGURATION A -- PAYLOAD-BAY NADIR POINTING

ELT MED-10/20/82-10:20:28-(52,) 12537#IS(1).SRMR/PROG(52) 1:PROGRAM IMAGING SPECTROMETER SHUTTLE RIGID MOUNT - A 2:INITIAL 3: VARIABLE T=0.0 41 INTEGER FNUM, NPOINT 5: 6: 7:CONTENT INITIALIZE SOME PARAMETERS 8: CONSTANT NPOINT-641 9: CONSTANT FNUM-39 10: CALL FOPEN(FNUM) TFINAL=1.0+NPOINT-1.0 11: CONSTRNT FRCTOR-0.0 CONSTRNT SCREAC-1.0E+5 12: 13: SCFAC2=SCAFAC*SCAFP 14: 15: SCF2DB+10.0+FL0G10(SCFRC2) 16: 17; COMMENT SET VARIOUS MATHMATICAL CONSTANTS PI-3.14159265 RSRCC-PI/(180.0*3600.0) RSHZCC-1.0/(2.0*PI) 18: 19: 20: 21: 22: COMMENT DEFINE MOMENTS OF INERTIA CONSTANT IX-1.38E+6 CONSTANT IY-1.00E+7 CONSTANT IZ-1.05E+7 23: 24: 25: IX2=IX#IX IY2=IY#IY 26: 27: 28: 1Z2+IZ#IZ 1XYZ-IX-IY+IZ 29: IXYZ2+IXYZ+IXYZ 30: 31: 2:COMMENT DEFINE WO 33: CONSTANT WO-0.0011315 34: WO2-WO4WO 35: W04 - W02 + W02 35: HU4-HU2-HU2 36: CONSTANT THO-0.0 39: CONSTANT THO-0.0 39: CONSTANT PHIO-0.0 40: CONSTANT PHIO-0.0 41: CONSTANT PHIOD-0.0 41: CONSTANT PHIOD-0.0 42: CONSTANT PHIOD-0.0 43: CONSTANT PHIOD-0.0 43: CONSTANT PHIOD-0.0 44: THO2-THO#THO 45: THOD2 = THCD + THOD 46: PHIO2 • PHIC*PHIO PHIOD2 • PHICB • PHIOD PSIO2 • PSIO • PSIO 47: 48: PSIOD2 - PSIOD+PSIOD 49: 50: 51:COMMENT DEFINE O'S 52: CONSTANT 0X=2.014E-6 53: CONSTANT 0X=1.251E-3 52: 53· 54: CONSTANT 02-5.438E-4 55: 56:COMMENT DEFINE RATE FILTER PARAMETERS 57: CONSTANT HD-0.2513 CONSTANT ZETAD-0.8 58: 59: WD2=WD=WD WD4 - WD2 + WD2 60: ZD2-ZETAD+ZETAD 61: 62: 63: COMMENT DEFINE VARIOUS CONSTANTS 64: CONSTANT R-8.55E-10

```
CONSTRNT SIGBO-87.32
 65:
              SI GBO + SI GBO + ASRCC
 66:
              SIGBO2-SIGBO*SIGBO
CONSTANT TAU-0.023
TAU2-TAU+TAU
 67:
 68:
 69:
              DELH=1.0
 70:
 71:
 72:COMMENT DEFINE W CONSTRNTS AND INITIRLIZE W
73: CONSTRNT WLO+6.20318531E-7
74: CONSTRNT WFRCT+1.029200527
 75:
              H-HLO/WFACT
 76:
77:END
 78: DYNRMIC
 79:CINTERVAL CI+1.0
 80:
 81: COMMENT COMPUTE W
 82:
             H-H+WFACT
 83:
              PROCEDURAL(DELW-W)
 84:
85:
                DELW-0.0
IF(W.LE.O.) DELW-1.0
              END
 86:
             WHZ+W*RSHZCC
FREQ+ALOG10(WHZ)
 87:
 88:
              WZ-N+W
 89:
 90:
              H4-H2+H2
 91:
 92:COMMENT COMPUTE HW2 AND DW2
93: HW2=1.0/(TAU2+W2+1.0)
              HDH2+WD4+W2/((W2-WD2)++2+4.0+ZD2+WD2+W2)
 94:
 95: DH2-IX#IZ#H4-H02#(IX#IZ+IY2+3.C IY#IZ-3.0#IZ_)#H2
96:COMMENT DH2-DH2+4.0#H04*(IY-IX)#(IY-IZ)
97: DH2-DH2/SCRFRC
 97:
98:
              DWZ - DW2 + DW2
 99:
100.COMMENT COMPUTE F'S
101:COMMENT FTHW2+HW2*SCFRC2/((1Y+W2+3.0+W02+(1Z-IX))++2)
102: COMMENT FRW2 - (12+W2-W02+(1Y-IX))++2+HWZ/DW2
103:COMMENT FYN2=(1X+W2+4.0*W02*(1Z-1Y))**2*HW2/DW2
104: FTHW2=HW2*SCFRC2/((7Y+W2)**2)
104:
             FRH2+(12+H2)++2+HH2/DH2
105:
106:
              FRYW2=WC2#IXYZ2+W2#HW2/DW2
107:
              FYH2=(IX#W2)##2#HW2/DW2
108:
109: COMMENT COMPUTE PSD'S
110:
111: COMMENT PITCH PSD COMPUTATIONS
             PPW1 -F THW2 +I Y2 + THOD2
PPW2 -F THW2 +I Y2 + THO2 +W2
112:
113:
             PPW3+FTHW2+QY
PPW-R+SIGB02*DELW+(PPW1+PPW2+PPW3)/SCFRC2
114:
              PPWD+PPW#HDW2
116:
118: COMMENT ROLL PSD COMPUTATIONS
             PRH1=FRW2#IX2#PHIOD2
PRH2=FRW2#IX2#PHIO2#W2
119:
120:
121.
              PRH3+FRH2+H02+1XY22+PSI02
             PRH4 +FRH2 +0X
PRH5 +FRYH2 +IZ2 +PSI 0D2
PRH6 +FRYH2 +IZ2 +PSI 02 +H2
122:
123:
124:
125:
              PPW7=FRYW2=W02=IXYZ2=PHI02
PRW8=FRYW2=0Z
126:
127:
              RS-R+SIGBOZ #DELW
128:
              PRW=RS+(PRW1+PRW2+FRL3+PRW4+PRW5+PRW6+PRW7+PRK8)/SCFAC2
129:
              PRWD-PRW+HDW2
```

••

. . . .

Ľ

1

....

130:

7

- -

-

```
131: COMMENT YAN PSD COMPUTATIONS
132: PYM1 • FYW2 * IZ2 * PSI 0D2
133: PYW2 • FYW2 * IZ2 * PSI 02 * W2
      132:
133:
134:
                       PYW3-FYW2+HO2+IXYZ2+PHIO2
                       PYW4-FYW2+0Z
PYW5-FRYW2+IX2+PHI002
       135:
      136.
                       PYWS=FRYW2+IX2+P-IO2+W2
       138:
                       PYW7-FRYWZ+WOZ+IXYZ2+PSI02
       139:
                       PYW8 - FRYW2 + OX
      140:
                       PYW=RS+(PYW1+PYW2+PYW3+PYW4+PYW5+PYW6+PYW7+PYW8)/5CFRC2
       141:
                       PYWD=PYW+HDWZ
       142:
      143:
144:COMMENT PREPARE VAPIABLES FOR OUTPUT
       145:
                       RSIG-P+SIGBOZ +DELW
       145:
                       RSIGDB=10.0#ALAG10(RSIG)+FACTOR
      147:
148:
149:
                       PPW3DB=10.0*AL0G10(PPW3)-SCF2DB+FACTOR
PPWDB=10.0*AL0G10(PPW3)+FACTOR
                      PPWBB=10.0#AL0G10(PPW)++HC1DK

PRW4DB=10.0#AL0G10(PPW4)-SCF2DB+FACTOR

PRWBDB=10.0#AL0G10(PRW)+FACTOR

PRWDB=10.0#AL0G10(PRW)+FACTOR

PYW4DB=10.0#AL0G10(PYW4)-SCF2DB+FACTOR

PYW8DB=10.0#AL0G10(PYW4)-SCF2DB+FACTOR
       150:
      151:
152:
153:
      154:
155:
156:
                       PYWD8-10.0*ALOG10(PYW)+FACTOR
                      PPWDDB=10.C*ALOG10(PPWD)+FACTOR
PRWDDB=10.O*ALOG10(PPWD)+FACTOR
       157:
       158:
                       PYWDDB=10.0+ALOG10(PYWD)+FACTOR
      159:
      160:COMMENT SAVE NUMBERS IN FILE
161: CALL FSAVE (FREO, PPWDB, PRWDB, PYWDB, FNUM)
       162:
      163:
      164: TERMT(T.GE
165:DERIVATIVE
166:ALGORITHM IALG-3
                      TERMT(T.GE.TFINAL)
      167:
168:END
                      GQ-INTEG(1.0,0.0)
       169:END
       170: TERMINAL
      171:
172: COMMENT CLOSE FILE
       173:
                      CALL FCLOSE (FNUM)
      174:END
175:END
EOF: 175
```

 - -

.

~

F

• •

```
0:>ELT WED-10/20/82-10:30:02-(3,)

12537*IS(1).SRMP./FSUBS(3)

1:0FOR,IS FF.FOPEN

2: SUBROUTINE FOPEN(N)

3: REWIND N

4: RETURN

5: END

6:0FOR,IS FF.FSRVE

7: SUBROUTINE FSGVE(W,P1,P2,P3,N)

8: WRITE(N,100)W,P1,P2,P3

9: 100 FCRMR7(4G14.8)

10: RETURN

11: END

12:0FOR,IS FF.FCLOSE

13: SUBROUTINE FCLOSE(N)

14: ENDFILE N

15: RETURN

16: END

EDF:16
```

٠

....

. . . .

.

- •

-

.

ļ

2

- -

٠

~

•

128

2

/

.

APPENDIX D

4

1

Ĵ

ч ;

تر

. • بر • ټې

COMPUTER PROGRAM FOR SHUTTLE IMAGING SPECTROMETER POINTING ERROR

---- --- --

۰.

۰.

.

POWER SPECTRAL DENSITIES FOR CONFIGURATION B -- NOSE-DOWN NADIR POINTING

ELT WED-10/20/82-10:36:41-(14,) 12537#IS(1).SRM8/PROG(14) 1: PROGRAM IMAGING SPECTROMETER SHUTTLE RIGID MOUNT - B 2:INITIAL 3: VARIABLE T-0.0 INTEGER FNUM, NPOINT 4: 5: 6: 7: COMMENT INITIALIZE SOME PARAMETERS CONSTANT NPOINT-641 CONSTANT FIRM-39 8: 9: CALL FOFEN(FNUM) 10: TFINEL=1.0*NP0INT-1.0 11: 12: CONSTRNT FACTOR-0.0 CONSTANT SCAFAC-1.0E+10 SCFAC2-SCAFAC*SCAFAC 13: 14: SCF208-10.0*AL0G10(SCFAC2) 15: 16: 17:COMMENT SET VARIOUS MATHMATICAL CONSTRNTS 18: PI-3.14159265 19: RSRCC-PI/(180.0+3600.0) 19: 20: R5HZCC=1.C/(2.0+P1) 21: 22:COMMENT DEFINE MOMENTS OF INERTIA 23: CONSTRNT IX=1.00E+7 24: CONSTRNT IY=1.05E+7 25: CONSTANT IZ-1.38E+6 26: IX2=IX#IX IY2=IY#IY 27: 28: IZ2+IZ#IZ 29: I>~Z=IX-IY+IZ IXYZ2=IXYZ#IXYZ 30: 31: 32: COMMENT DEFINE WO CONSTRNT W0-0.0011315 33: W02=W0=W0 34: H04-H02+H02 35: 36: 37:COMMENT DEFINE.INITIAL ANGLES AND RATES 38: CONSTANT THO-0.0 39: CONSTANT PHIO-0.0 CONSTANT PSIO+0.0 40: CONSTANT THOD-0.0 CONSTANT PHIOD-0.0 41: 42: CONSTRNT PSIOD-0.0 43: 44: THO2=THO=THO THOD2 - THOD + THOD PHIO2 - PHIO + PHIO 45: 46: PHIOD2-PHIOD+PHIOD 47: P5102+P510+P510 48: 49: PSIOD2+PSIOD+PSIOD 50: S1: COMMENT DEFINE O'S CONSTRNT 0X+1.970E-4 CONSTRNT GY+1.286E-3 CONSTRNT 02+6.320E-4 52: 53: 54: 55: 56: COMMENT DEFINE RATE FILTER PARAMETERS CONSTANT HD-0.2513 CONSTANT ZETAD-0.8 57: 58: 59: WD2=WD#WD WD4-WD2+WD2 60: ZD2 -ZETAD+ZETAD 61: 62: 63: COMMENT DEFINE VARIOUS CONSTANTS 64: CONSTANT R+0.55E-10 64:

```
CONSTRNT SIGBO-87.32
 65:
                 SI GBO-SI GBO#RSRCC
  65:
                 SIGBOZ-SIGBO#SIGBO
CONSTANT TAU=0.023
TRU2+TAU#TAU
  67:
 68:
 69:
                 DELH-1.0
 70:
  71:
 72:COMMENT DEFINE W CONSTRUTS AND INITIALIZE W
73: CONSTRUT WLO+6.28318531E-7
74: CONSTRUT WFRCT+1.029200527
  75:
                 H-HLO/NGACT
  76:
 77.END
  78: DYNAMIC
  79:CINTERVAL CI-1.0
 80:
 BI COMMENT COMPUTE W
 82:
                 H-HHHFRCT
  83:
                 PROCEDURAL (DELH-H)
 84: 85:
                    DELN-0.0
                     IF(H.LE.O.) DELH-1.0
                 END
  86:
  97:
                 HHZ-W#RSHZCC
                 FREQ-ALOGIO(WHZ)
 88:
                 HZ-N=H
 89:
                 H4 -H2+H2
  96:
  91:
 31:

52:COMPENT COMPUTE HW2 AND DM2

53: HW2=1.0/(TRU2#W2+1.0)

54: HCH2=WC4#W2/((W2-ND2)##2+4.0#2D2#WD2#W2)

55: DW2=IX#IZ=W4=NO2#(IX=IZ)#Y2+3.0#IY#IZ-3.0#IZ2)#W2

56: DW2=DW2+4.0#NO4#(IY-IX)#(IY-IZ)

57: DW2=DW2-5CRFAC

57: DW2=DW2-5CRFAC
                 DH2 - DH2 - DH2
 98:
  99:

      J.00:COMMENT COMPUTE F'5

      101:
      FTHM2+HM2#SCFRC2/((IY#M2+3.0#M02#(IZ-IX))##2)

      102:
      FRW2+(IZ=W2+W02#(IY-IX))##2#HM2/DM2

      103:
      FYW2+(IX=W2+4.0#M02#(IZ-IY))##2#HM2/DM2

      104:
      FYW2+W02#IXY22#W2#HM2/DM2

104: 105:
106: COMMENT COMPUTE PSD'S
107:
108: COMMENT PITCH PSD COMPUTATIONS
                 PPH1 -FTHH2 +IY2 +THOD2
109:
110:
                 PPW2=FTHW2=IY2=TH02=W2
                 PPW3+FTHW2+QY
111:
                 PPH=R+SIGB02 #DELH+ (PPH1+PPH2+PPH3)/SCFRC2
112:
                 PPWD-PPW*HDW2
113:
114:
115: COMMENT ROLL PSD COMPUTATIONS
116 PRW1+FRW2+IX2+PHI0D2
117: PRW2+FRW2+IX2+PHI02+W2
118:
                 PRW3=FRW2=WG2=IXYZ2=PSI02
                 PRH4 = FRH2 = 0X
PRH5 = FRYH2 = I Z2 = PSI 002
PRH6 = FRYH2 = I Z2 = PSI 02 = H2
119:
120: 121:
122:
                 PRW7=FRYW2#W02#IXY22#PHI02
                 PRH8 - FRYH2 = GZ
RS - R+SIGBO2 = DELH
123:
124:
125:
                 PRW=RS+(PRW1+PRW2+PRW3+PRW4+PRW5+PRW6+PRW7+PRW8)/SCFFC2
126:
                 PRWD-PRW+HDW2
127:
128: COMMENT YAW PSD COMPUTATIONS
129:
                 PYW1 +FYW2 #IZ2 #PSIOD2
                 PYW2+FYW2+IZ2+PSI02+W2
130:
```

- Ata ----

- 1.

ر___

1

المراجع والمراجع والمعطور
```
131:
                          PYW3=FYW2#W02#IXYZ2#PHI02
                          PYW4-FYW2+0Z
       132:
                          PYWS+FRYW2+IX2+PHIOD2
       133:
134:
                          FYW6=FRYW2#IX2*PHI02*W2
        135:
                          PYW7=FRYW2*W02+1XYZ2*PSI02
       135:
137:
138:
                          PYW8-FRYW2+OX
                          PYW-RS+(PYW1+PYW2+PYW3+PYW4+PYW5+PYW6+PYW7+PYW8)/SCFAC2
                          PYWD-PYW*HDWZ
        135:
       140:
141:COMMENT PPEPARE VARIABLES FOR DUTPUT
                         NT PPEPARE VARIABLES FOR OUTPUT

RSIG=R+SIGB02*DELW

RSIGDB=10.0+RL0G10(RSIG)+FACTOR

PPW3DB=10.0+RL0G10(PPW3)-SCF2DB+FACTOR

PPWDB=10.0+RL0G10(PPW4)-SCF2DB+FACTOR

PRWBDB=10.0+RL0G10(PRW6)-SCF2DB+FACTOR

PYWBBD=10.0+RL0G10(PYW4)-SCF2DB+FACTOR

PYWBBD=10.0+RL0G10(PYW6)-SCF2DB+FACTOR

PYWBBD=10.0+RL0G10(PYW6)-SCF2DB+FACTOR

PYWBBD=10.0+RL0G10(PYW6)-SCF2DB+FACTOR
        142:
       143:
144:
145:
145:
        147:
        148:
       149:
       150:
        151:
                          PYWDB=10.0#ALOG10(PYW)+FRCTOR
        152:
                         PPWDDB=10.0#ALDG10(PPWD)+FACTOR
PFWDDB=10.0#ALDG10(PRWD)+FACTOP
PYWDDB=10.0#ALDG10(PYWD)+FACTOR
       153: 154:
        155:
       156:
157:COMMENT SAVE NUMBERS IN FILE
158: CALL FSRVE (FREO, PPWDB, PRWDB, PYWDB, FNUM)
       160:
       161:
                         TERMT(T.GE.TFINAL)
       162: DERIVATIVE
        163: ALGORITHM IALG-3
       164:
165:END
                         QQ-INTEG(1.0,0.0)
       166:END
        167: TERMINAL
       168:
       169:COMMENT CLOSE FILE
170: CALL FCLOSE (FNUM)
       170:
171:END
       172:END
EOF: 172
```

٠

.

۰.

Ľ

1

3

- · ·

131

-

ELT NED-10/20/82-10:50:42-(G,) 12537#IS(1).SRMB/FSUBS(0) 1:0FOR,IS FF.FOPEN 2: SUBROUTINE FOPEN(N) 3: REWIND N 4: RETURN 5: END 6:0FOR,IS FF.FSAVE 7: SUBROUTINE FSRVE(W,P1,P2,P2,N) 9: WRITE(N,100)W,P1,P2,P3 9: 100 FORMAT(4G14.8) 10: RETURN 11: END 12:0FOR,IS FF.FCLOSE 13: SUBROUTINE FCLOSE(N) 14: ENDFILE N 15: RETURN 16: END EOF:18

٠

.

.

-

. . · · ·

- in the second

.

...

.

....

.

- ^{- -} - -

.

í

. -

Ľ

.

-

.

-

- ----و بودن محد الام سطام

APPENDIX E

/

GEOMETRIC ERROR ANALYSIS PROGRAM LISTINGS

100	D	004552	DOLTA	0000	R 000263	DPITCH	0000	R	000156	DPSA	0000 R	090067	(
100	R	000064	DPS12	0000	R 000244	DROLL	0000	D	002262	DSXY	0000 R	000170	i
100	R	000125	DTETAL	0000	R 000130	DTETAS	0000	R	000213	DTHETA	0000 0	003214	ī
100		001300	6v		P 000225	DVAH	0000	0	033474	600		.294.09	è
	•	AA1540	UT	4044	N UUUEEJ	VI	0000		445010	E NA	0000 0	022105	ε
>00	D	013626	FI	0000	D 000352	FI1	0000	D	000360	₹12	0000 A	000000	ŧ
)00	I	030711	J	0000	1 030705	ĸ	0000	D	000302	LAMDA	0000 0	000626	i.
100	D	001530	PDXY	0000	D 013540	PDV	0000	R	030710	PI	0000 0	017165	F
100	D	004252	PSI	0000	D 201776	PSYY	0000	D	C03264	PXY	0000 D	000742	6
190	Ď	004266	RA	0000	0 006520	RHO	0000	D	010254	RHO1	0000 0	010434	ŝ.
100		A74537	Dot		0 443833	•	0000		004047	80M		417754	
100	v	AC03CC	FU1	9999	0 002322	e e	~~~		004047	e U n	A000 h	013330	ε
100	0	013166	SHFT	0000	D 022532	SLUMDA	0000	D	015576	SQURT	0000 D	010620	٤
100	D	027614	SOUTI	0000	D 002236	8XY	0000	D	003240	T	0000 D	022502	1
300	R	000032	TDH2	0000	0 607314	TETA1	0000	D	007322	TETAZ	0000 D	014732	1
100	D	007526	1112	0000	0 007330	TĪt	0000	D	007336	112	0500 0	003144	1
100	D	015552	TI	0000	D 025372	T11	0000	Ď	005130	12	0000 D	023206	1
	-					New							
100	0	022/50	VP .	0000	0 022/36	VPX .	0000	0	962134	V D	vgg g u	946330	۱
100	D	014756	XI	0000	R 000075	XO	0000	D	925000	XY	0000 8	000133	>
100	Ð	012074	X2	0000	0 -011530	X22	0000	D	017224	X3	0000 D	030674	١.
100	•	014114	¥ Ŧ	0000	D 005062	¥Å	0000	D	021140	¥6	0000 0	A1134A	•
140		014130	1	0000	0 003005	10	0000		AE 31-A	1.0	0000 0	0113-0	•
100	0	011712	¥22	0000	0 020316	T 3							

.....

.....

.....

1.4	Ģ	THIS PROGRAM COMPUTER THE ERROR SCHOLTAITIES AND REDMETHIC
2*	C	ERRORS OF GROUND POINTS INDUCED BY ALTITUDE+ROLL+YAW AND
3*	C	PITCH ERRORS AS WELL AS EARTH ROTATION AND SHUTTLE MOTION
4 *		
5*		
5.		
7+		PARAMETER NLAMDAW10,NLOMDAW19,NDMES,NFI#3,NPSI#3,NTETAW3
8.4		S. NOTAS. NOETARS. NOFIRS. NOPAAR10. NOTHESTO. NCOMBIS. NSDHO?
4.		REAL NOR OH (NDH) OLAMDA (NI AMDA) OLOMDA (NLOHDA) OBH (NBDH) O
105		STONISTON2 DETI(NET) DET2(NET) DESI(NES) DESI(NES).
118		SDPSI(MPSI) - DEFIALMPSI) - XO(MI (MDA) - DFI(MDFI) -
128		SOTETAL (NTETA), DTETA2 (NTETA), XO(N) OMDA), OPSA (NDPSA)
178		S.D.T. (NOT) - OTALL-OFTA (NOTA) - DAL FA (NOBSA) - DTHETA (NOTHE)
1.37		4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
167		DOURSE BEFFETON LANCALUMATIN ANDALLETIANTAL ANDALLETIANTAL
134		CUARTNOW SNI SNUP (UTURAL STATE AND ALL AND
107		SIVAT (NUMINGACANDA) TEUNDANA CAEDAY TAEUNDA) TTAUY (TAEUNDA)
104		BEAT (NEATUR) \$00AT (NEATUR) 70(NEATUR) 70/11 ANDAS (NEATUR) \$0
144		BIAT I (NEADA) BIAT CONEADA) BUTAT CONEADA) BIOCATA (NUMBRE AND
20+		SAJEDYZ(NYIENCUMA)EDET(NYIENCUMAJEDINYIENCUMA)EPI(NYEI)E
\$1+		SDETA(NPSI)+RA(NEAPDA)+DELIA(NPSI+NEAPDA)+D(NPSI+NEAPDA)+
22.		SPSA(NDPSA) + ALFA(NDPSA) + DOLTA(NDPSA+NLANDA) + TU(NLUNDA) +
23*		SY2(NDTHE+NLOHDA)+DEL(NDTHE+NLOHDA)+HNO(NDTHE+NLOHDA)
244		SOTETAS (NTETA) OTETAZ (NTETA) OTIS (NTETA) OTIZ (NTETA) O
25*		STILL(NTETA+NLOWDA)+TIL2(NTETA+NLOHDA)+DEL1(NTETA+NLOHDA)+
29a		SDEL2(NTETA+NLOMDA) + RHO1(NTETA+NLOMDA) + RHO2(NTETA+NLOMDA) +
27*		SSOURTI (NTETA, NLOMDA) + SOURTZ (NTETA+NLOMDA) + X11 (NTETA, NLOMDA) +
28+		\$Y11{NTTTA+NLOMDA}+X22{NTETA+NLOMDA}+Y22{NTETA+NLOMDA}
54+		DOUBLE PRECISION X2(NCOM+NLOMDÅ)+
30*		\$\$HFT(NTETA+NLOMDA)+8EN(NTETA+NLOMDA)+VAW(NCOM)+ROLL(NCOM)+
31*		\$FICNDFI)+PDYCNDFI+NLOMDAJ+YICNDTHE+NLOMDA)+THETACHDTHE)+
32*		\$XI(HDTHE+NLOMDA)+T1(NDTHE)+SQURT(NDTHE+NLOMDA)+
330		\$8HF (NOTHE+NLOMDA) +PITCH(NCOH) +

133

.

ŧ

21

. . .

4.7**4**.

.

Original page is of poor quality

34*	\$X3(NCCM+NLOHDA)+Y3(NCOM+NLOHDA)
34#	S.DTFF(NCDIANI ONDA) .TAU. ONFRASTACHOETA).
168	SY (NCFTA) - SI UNDA (NDETA) - CI UNDA (NDETA) - WY (NDETA) - WY (NDETA) -
174	DEV(NOFTA-NOT) - DEV(NOFTA-NOT) - FOO(NOFTA-NOT) - VE - VEV(NOFTA) -
144	SYD (NOTA) - ANGI (NOTA) - DANGI (NOTA) - DEI Y/MOTA - NOT)
104	<pre>C. 3C1 V ANGTA. UNTA. EBBO/NDEVA. UNTA. VANNOKIAN (KNL)</pre>
344	
004	
414	
424	
434	DATA H+R+DTAU/400.+6356.785.85./
44*	DATA (DFI(K) +KE1+HDFI)/I8.+14.+24.+21.+22./
45*	DATA (DPBA(K)+K=1+NDPBA)/+5+1+1+5+2+2+3+3+3+5+4+4+5+5+/
46*	DATA {DTHETA{K}**#1+NDTHE}/20.5+21.5+22.5+23.5+24.5+43.+44.+
47*	845.,6.,47./
48*	DATA (DYA#(K]+K#1+NCOM)/0.+0.+0.+1.+=1.+0.+9.+0.+1.+=1.+0.+
494	88+99+1++-1-/
50.6	DATA (DPITCA(K)+KB1+NCDH)/0.+1.++1.+8.+0.+22.5+22.5+20.5+22.5+
518	822-5-45-45-45-45-45-
628	
514	
334	
344	
734	
304	8 1 4 7 G 4 1 4 7 C 4 3 4 7 4 7 7 4 7 4 7 4 7 4 7 4 7 4 7 4
574	DATA (BDH(I)+IWI+NBDH)/+01++02/
284	DATA TDH1+TDH2/+01+=,01/
24*	DATA (DFII(K)+K#1+NFI)+(DFI2(K)+K#3+NFI)/+01++02++03+++01+
60*	802
61*	DATA (DPSI1(K),K=1+NPSI)+(DPSI2(K)+K=1+NPSI)/+01++02++05+
+2+	801,02,05/
634	DATA {DTETA;{K}+K=1+NTETA}+{DTETA2{K}+K=1+ATETA}/.01+.02+
64*	8.05+01+02+05/
45+	CATA (XO(K) • KB1 • NLOMDA)/19*0./
464	DATA (XO(K)-KB1+NLOMCA)/1980-/
678	DATA (DT(K)-KHI+NDT)/1-4-1+-01/
48.	DATA (DETA(K) + KE1 + HOFTA) /0 + 20 + 40 + 40 + 50 - /
498	P1a1, 16159265
708	
7	
730	
167	
/3*	janda ta
744	[AFVA[]]#J[AFVA[]]*]]1000
754	TITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
76*	BDBIN(LANDA(I))=DBIN(LANDA(I)))]=DBIN(LANDA(I))
77+	PXY(R, I) = R*((1+(H+DH(R, 37R)3DUO8(LAH9A(3))=DEGRT(1=(1+(H+DH(R))))
78*	Z)]/H]#(]+(H+DH(K)]/K]+DZIN(LAHDA(])]+DZIN(LAHDA(]))}+DZIN
79+	\$(LAHDA(]))
80=	Dxv(K+])=Pxv(K+])=xv{]}
81*	IF(Dxy(K+I),EQ.Q.) GO TO 80
82+	PDxy(K+]3=DAB8(Dxy(K+]))#100./DAB8(Xy(I))
834	60 TC 40
11.	80 PDXY(K+1)#0.
454	90 CONTINUE
00- 44+	TAA AAAITUAF
0/*	
007	
077	
404	DO IOI JEINNAMDA

C

-

يد. الأراب

134

LAMDA(I)=DLAMDA(I)=PI/180. SXY(I)=R+((1+H/R)=DCOS(LAMDA(I))=DSURT(1=(1+H/R)=(1+H/R)= SDSIN(LAMDA(I))=DBIN(LAMDA(I)))=DSIN(LAMDA(I))= PSXY(I,J)=R+((1+(H+SOH(J))/R)=DCOS(LAMDA(I))=DBORT(1=(1+(H+SOH(J))))= PSXY(I,J)=R+((1+(H+SOH(J))/R)=DCOS(LAMDA(I))=DBORT(1=(1+(H+SOH(J))))= PSXY(I,J)=R+((1+(H+SOH(J))/R)=DCOS(LAMDA(I))=DBORT(1=(1+(H+SOH(J))))= PSXY(I,J)=R+((1+(H+SOH(J))/R)=DCOS(LAMDA(I))=DBORT(1=(1+(H+SOH(J))))= PSXY(I,J)=R+((1+(H+SOH(J))/R)=DCOS(LAMDA(I))=DBORT(1=(1+(H+SOH(J))))= PSXY(I,J)=R+((1+(H+SOH(J))/R)=DCOS(LAMDA(I))=DBORT(1=(1+(H+SOH(J))))= PSXY(I)=DLAMDA(I))=DSOS(LAMDA(I))=DSORT(1=(1+(H+SOH(J))))= PSXY(I)=DLAMDA(I))=DSOS(LAMDA(I))=DSORT(1=(1+(H+SOH(J))))= PSXY(I)=DLAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I)))= PSXY(I)=DLAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I)))= PSXY(I)=DLAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I)))= PSXY(I)=DLAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I)))= PSXY(I)=DLAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I))=DSOS(LAMDA(I)))= PSXY(I)=DLAMDA(I))=DSOS(91# 924 930 94+ 95+ \$/R)#(1+(H+SDH(J))/R)#D\$IN(LAMDA(1))#DSIN(LAMDA(1)))#DSIN(96. SLAMDA(I)) DSs((1.J)=PSXY(1.J)=SXY(1) 973 S(I+J)=D8XY(I+J)/SDH(J) 101 CONTINUE 988 991 102 CONTINUE 100* 101* 102+ DO 103 IE1+NLAMDA Lamda(I)=DLamda(I)=PI/180. 103+ 104. TXY1([]###((1+(H+TDH1)/R)#DCOS(LAHDA([))=DSQRT(1=(1+(H+TDH1)/R)# 105+ \$(1+(H+TDH1)/R)+DS1N(LAMDA(I))+DSIN(LAMDA(I)))+DSIN(LAMDA(I)) TXY2(I)=R+((1+(H+TDH2)/R)+DCD8(LAMDA(I))+DSGRT(1+(H+TDH2)/R)+ TXY2(I)=R+((1+(H+TDH2)/R)+DCD8(LAMDA(I))+DSGRT(1+(H+TDH2)/R)+ 106= 107* 108* \$(1+(H+TOH2)/R)*D\$IH(LAMD4(I))*D\$IN(LAMD4(I)))*D\$IN(LAMD4(I)) DTXY(])=TXY1(])=TXY2(]) 109# 110# T(1)=0TXY(1)/(TDH1=TDH2) 103 CONTINUE 111# 112= 113* DO 111 KEI+NDFI 114# FI(K)=DFI(K)+P1/180. 115* DO 110 JELINLOMDA 116# LOHDA(J)=DLOHDA(J)=PI/180. 117* Y(J)==R#((1+H/R)#0C08(L0HDA(J))=DS0RT(1=(1+H/R)#(1+H/R)# 118# \$D\$IN(LOHDA(J))#D\$IN(LOHDA(J)))#D\$IN(LOHDA(J)) PY(K+J)==R#((1+H/R)#DCOS(LOHDA(J)+F1(K))=D\$QRT(1=(1+H/R)#(1+H/R)# 119* 120+ 121+ SDSIN(LONDA(J)+FI(K))+DSIN(LOMDA(J)+FI(K))))+DSIN(LONDA(J)+FI(K)) 155+ $DY(K_{+}J)=PY(K_{+}J)=Y(J)$ F(Y(J).EQ.0.) GD TO 109 PDY(K,J)=DABS(DY(K,J))+100./DABS(Y(J)) 123+ 124* GO TO 110 104 PDY(K.J)=10.D100 125+ 126# 110 CONTINUE 127* 111 CONTINUE 128+ 129+ 130* DO 130 KEI+NFI 131* FI1(K)=0FI1(K)*PI/180. 132+ FI2(K)=0FI2(K)+PI/180. 133+ DO 120 JELINLONDA 134+ 135+ LOMDA(J)=DLOMDA(J)=P1/180. 8Y1(K,J)==R#((1+H/R)#OCOS(LOMDA(J)+F11(K))=D8QRT(1=(1+H/R)# 130# 137* \$(1+H/R)=D8IN(LOMDA(J)+F11(K))=D\$IN(LOMDA(J)+F11(K))))= 138+ SUSIN(LOHDA(J)+FI1(X)) 139+ BY2(K, J)==R+((1+H/R)+DCOS(LOMDA(J)+FI2(K))=DSQRT(1=(1+H/R)+ \$(10H/R)#DSIN(LOHDA(J)+FI2(K))#D8IN(LOHDA(J)+FI2(K)))# 1409 SDSIN(LOHDA(J)+FI2(K)) 141+ D8Y(K,J)=8Y1(K,J)=8Y2(K,J) 142* B(K+J)=DBY(K+J)/(DFI1(K)+DFI2(K)) 120 CONTINUE 130 CONTINUE 143* 144+ 145+ 146=

1

ł

2

î

1

135

-

147+

148+ DO 132 K#1+N0PSA DU 132 KEINNOPSA DALFA(K)=(160.-DPSA(K))/2. PSA(K)=DPSA(K)=PI/160. ALFA(K)=DALFA(K)=PI/160. DU 131 J=1;HLAMDA LAMDA(J)=DLAMDA(J)=PI/160. 149* 159* 151* 192+ 153+ $\begin{array}{c} RA(J) = R + (1 + H/R) + DCOS(LAHDA(J)) = CSGRT(1 + (1 + H/R) + (1 + H/R) \\ S + DSIN(LAHDA(J)) + DSIN(LAHDA(J))) + OSIN(LAHDA(J)) \\ \end{array}$ 154* 155+ DOLTA(K.J)=(RA(J)+DBIN(PBA(K)))/DBIN(ALFA(K)) 156# 157* 131 CONTINUE 132 CONTINUE 159+ 160* DO 136 K=1+NPSI DPSI(X)=DPSI1(X)=DPSI2(X) 101# 162* DBETA(K)=(180.=DPSI(K))/2. PSI(K)=DPSI(K)#PI/18e. 163* 164# BETA(K)=DBETA(K)+P1/180. 1654 DO 135 JELINLAMDA 166* LAHDA(J)=OLAHDA(J)+P1/180. 167* RA(J)=R*((1+H/R)*DCO8(LAHDA(J))=D8QRT(1=(1+H/R)*(1+H/R)* 168* SDSIN(LLHDA(J))+OSIN(LAHDA(J)))+OSIN(LAHDA(J)) 169= DELTA(K,J)=(RA(J)=D8IN(P8I(K)))/D8IN(BETA(K)) O(X+J)=DELTA(K+J)/DPSI(K) 171+ 172* 135 CONTINUE 136 CONTINUE 174= 175+ DO 206 KH1;HOTHE THETA(K)=DTHETA(K)=PI/180. 176* 177+ DO 205 JEL+NLOMDA 178+ LGHDA(J)=DLCHDA(J)=PI/180. YO(J)==R=({1+H/R}=DCOS(LOHDA(J))=D8QRT(1=(1+H/R)=(1+H/R)=D8{N 179+ 180* S(LOMDA(J))#OSIN(LOMDA(J)))#DSIN(LOMDA(J)) T1(K)=H#DTAN(THETA(K)) 181+ 182+ 183+ T2(K+J)==DABS(H/DCOS(THETA(K)))=DTAN&LOMDA(J)) DEL (4, J)=D3GRT(T1(K)=T1(K)+T2(K+J)+T2(K+J)) RHO("+J)=DATAN(DEL(K+J)/N) SQURT(K+J)=R+((1+H/R)+DCOS(RHO(K+J))=DSGRT(1=(1+H/R)+(1+H/R)+DSIN 184+ 165+ 186# S(RHO(K,J))+DSIN(RHO(K,J)))+DSIN(RHO(K,J)) XI(K,J)=(SOURT(K,J)+T1(K))/DEL(K,J) 187* 188+ YI(K+J)=(80URT(K+J)+T2(K+J))/DEL(K+J) 189# SHF(K+J)=05QRT(XI(K+J)+XI(K+J)+(YI(K+J)=YO(J))*(YI(K+J)=YO(J)) 190* 1910 205 CONTINUE 192+ 200 CONTINUE 193+ 1940 1950 DO 208 KELINTETA TETA1(K)=DTETA1(K)=P1/180. 196# TETA2(K)=DTETA2(K)=P1/180. 197* D0 207 J=1.NLOMDA LOMDA(J)=DLOMDA(J)=PI/180. TI1(K)=H=DTAN(TETA1(K)) 198* 199* 200. TI2(K)=H=DTAN(TETA2(K)) 201*

- - -·

· ·.

.

Warner and the

*

j

Ľ

î

• •

- 🕻

• 5.,

136

-

. .

TIII(K+J)=-DABS(H/DCOS(TETA1(K)))+DTAN(LOMDA(J))

TIIZ(K,J)=-DABS(H/DCOS(TETAZ(K)))+DTAN(LOMDA(J))

DEL1(K+J)=D8QRT(T11(K)=T11(K)+T111(K+J)=T111(K+J))

1202

203*

204+

Original page is DE POOR QUALITY Ľ

ret re

11

*

2458	DEL2(x+J)=03GRT(TI2(x)+TI2(x)+TI12(x+J)+TI12(x+J))
2848 -	2H01 (K + J)=DATAN (DEL) (K + J) (H)
2078	RHOZ(C.J)=DATAN(DELZ(K.J)/H)
2088	\$QUET([K.]]=8#{{1+H/P}=0C05(RH0)(K.]]=0\$QET(1+(1+H/R)#
2404	
2160	
2144	
2114	2(14)/14 /14 /14 /14 /14 /14 /14 /14 /14 /14
5154	X11(R+J)=(800K11(R+J)+111(R))/DEL1(R+J)
213*	Y11(K,J)=(SQURT1(K,J)+TI11(K,J))/DEL1(K,J)
5140	x22(K+J)=(SOURT2(K+J)+TI2(K))/DEL2(K+J)
215#	455(K+2)#(800x15(K+2)#115(K+2))/0EF5(K+2)
2144	\$HFT(K+J)=D\$QRT((X11(K+J)=X22(K+J))=(X11(X+J)=X22(K+J))+
217#	¥(A11(K+Y)=A55(K+Y))+(Ä11(K+Y)=A55(K+Y))
218#	SEN(K+J)=8HFT(K+J)/(DTETA1(K)=DTETA2(K))
219#	207 CONTINUS
220+	208 CONTINUE
221+	
222*	
223+	DO 211 K#1+NCOM
224#	YAH (K)=DYAH (K)=PI/180.
225+	ROLL(K)=0ROLL(K)=PI/180.
226*	PITCH(K)=DPITCH(K)=PI/180.
227+	DO 210 J=1+NLOMDA
228+	LOMDA(J)=DLOMDA(J)=P1/180.
229#	Y0(J)==R#((1+H/R)#CCOS(LOMDA(J))=DSGRT(1=(1+H/R)#(1+H/R)#
230+	SDSIN(LOHDA(J))+DSIN(LOHDA(J)))+DSIN(LOHDA(J))
231#	T11(K) BH+DTAH(FITCH(K))
232#	T33(K.J)##DABS(H/DCOS(PITCH(K)))#DTAN(LOMDA(J)#ROLL(K))
233#	DE1(K,J) = DEQRT(T11(K) + T11(K) + T33(K,J) = T33(K,J))
2348	RO1(K-J) BOATAN (DE1(K-J)/H)
2158	SQUT + (K+J) = R + ((1+H/R) + DCOS(RD1(K+J)) + DSORT(1=(1+H/R)+(1+H/R)
2348	\$5051N(901(K.J.))\$051N(801(K.J.))\$051N(801(K.J.))
217#	x2(K - 1)=(\$QUT1(K - J)=11(x))/DF1(K - 1)
218#	72(K.J)=(SQUT1(K.J)=T33(C.J)/OF1(K.J)
2344	x3(K, 1)=x2(K, 1)=0C03(YAW*K))=y2(K, 1)=08(W(YAW(K))
2408	Y3(K, 1)=Y2(K, J)=D3IN(YA_(K))=Y2(X, 1)=DC08(YA=(K))
2418	DIFF(x, 1) = DQPT(XX(x, 1) = YO(1)) = YX(X, 1) = Y(1) = Y(X, 1) = YO(1) = YO(1)
2428	8(73(4.1)-70(1)))
2418	
2448	
2454	EII CONTROL
7434	
3474	741007433407/180-
24/4	
2484	00 336 47 - V0544
2444	DU 220 RAINDEIM
2304	E ={n}=u=u=(n; ************************************
5214	
2324	
2234	
<2+4	VALNJEVLNJ * 36UNUALNJ
2554	V7(N)#V(N)*GLUMDA(N)
256*	
2570	DEX(K+J)#¥X(K)#UT(J)
258*	
5244	ENHIR 0JJDJGHT(DEX(K+J)=DEX(X+J)+DEY(K+J)=DEY(K+J]]
200=	215 CUNTINUE
2617	220 CONTINUE

137

. .

7

/

ه ر

262* 263# V3=2.+PI+R/5545.484 264* TAUNDTAUNPI/180. 265* OMEG1=2. +PI/86400. 2668 267+ DO 222 KEI+NDETA ETA(K)=DETA(K)=P1/180. 2088 269# V(K)BOMEGARADCOS(ETA(K)) 270* SLUMDACK)=OCOS(TAU)/DCOS(ETACK)) 271+ CLUMDA(K)=DSQRT(1=BLUMDA(K)=BLUMDA(K)) 272+ VX(K)=V(K)=SLU=DA(K) 273+ VY(K)#V(K)+CLUMDA(K) 274+ VPX(K)=VX(K)=V8 VP(K)=08GRT(VPX(K)=VPX(K)+VY(K)=VY(K)) 275+ ANGL(K)SDATAN(VPX(K)/VY(K)) 275* DANGL(K) #ANGL(K) #180./PI 277* CO 221 J#1+NDT 278+ 279= DELX(K+J)=VPX(X)+DT(J) *085 DELY(x+J)=VY(X)+DT(J) ERRO(x+J)=DSGRT(DELX(X+J)=DELX(X+J)+DELY(X+J)=DELY(X+J)) 281+ 282* 221 CONTINUE 263+ 222 CONTINUE 284# 265+ 286+ DO 237 471+NDH 287+ #RITE(++236) R+H+DH(K)+(DLAHDA(I)+ISI+NLAMDA)+(XY(I)+ISI+NLAMD \$A) + (PXY(K+1) + 1#1+NLA#DA) + (DXY(K+1) + 1#1+NLA#DA) + (PDXY(X+1) + 1#1+ 268+ 289+ SNLAHDA) 2968 241+ 292* 293* \$//////// VIEN1,5%, 'ANGLEI,/+! DLAMDA(DEGREES) !. \$///////. VIEN1,5%, 'ANGLEI,/+! DLAMDA(DEGREES) !. \$12%,F2.0,9(9%,F2.0).///:! NOMINAL LOCATION (KH):.10011.4. 2048 295+ \$///. \$HIFTED LOCATION (##) 1. 10011.4.///.Tx. "ERROR". 296# \$ 1 (KH) + + 10011 . 4 + / / / + 4x + 1 ABB(gRROR) | + 3x + 1 (X) + + 2x + F5.3. 297* 298+ \$8x,F5.3,8(6x,F5.3)) 237 CONTINUE 299= 300* 301+ H034+141 425 00 302+ #RITE(6+238) R+H+SDH(J)+(DLAMDA(1)+I=1+NLAMDA)+(8XY(1)+I= 303* \$1+NLAHDA) + (P8XY(1+J) + I=1+NLAMDA) + (D\$XY(1+J) + I=1+NLAHDA) + (S(1+J) 304= 305+ S.IEI.NLAMDA) 238 FORMAT(1H1, ISSARSSARSSARSSARSS GEOMETRIC ERROR SENSITIVITY! 306# 307* 304# 3098 \$+5x+1ANGLE1+/+1 DLAMDA(DEGREES)1+12X+F2.0+9(9X+F2.0)+///+ 310* S' NOMINAL LOCATION (KM)'.10011.4.//.. SHIFTED LOCATIGN (KM)'. \$10011.4.///.7X'EROR'.0X'(KM)'.10011.4.//.0X.IEROR'./. \$1 SENSITIVITY (KM/KM)'.10011.4) 311* 312* 313+ 239 CONTINUE 314+ 315+ 316* *RITE(0+240) R+H+TDH1+TDH2+(DLAHDA(I)+I=1+4LAHDA)+(TXY1(I)+I= 3170 \$1+NLAMDA) + (TXY2(I) + I#1+NLAMDA) + (DTXY(I) + I#1+NLAMDA) + (T(I) + I# 318*

n. 27.75

7.25 S 7.98

...

@ 15.5

: Y

*

ORIGINAL PAGE 13 OF FOOR QUALITY

;

1104	STAN ANTAT
1144	JITTETUTI JA FORMITINI, LAARAARRAARAARAARAA ARANGA ARANGATIR COAMA AK
3604	See ANNUAL TATA AN
7514	ST BATH RESPECT TO ALTITUDE ENROR SECONDERESS
3224	S////////// EARTH RADIUS R BI,F9.4, KHI,///, NCHINALI
353*	\$* ALTITUDE H =*+F4+0+"XH*+///+ ALTITUDE ERROR 1 TDH1 =!+
324#	SF4.2+(KM'+///+ ALTITUDE ERROR 2 TDH2 =++F5.2+(KM++
325#	\$//////+ VIEN'+SX++ANGLE'+/+ DLAMDA(DEGREES)++12x+
3268	SF2.0.8(9X.F2.0).///.1 SHIFTED LUCATIONI./.1 CUE TO FRORT
1278	ST 1 (KH) 11001 AAZZAL SATETED 100ATTON14ZEL OUE TOI
1388	
120-	TAGES A. //
2644	SIGNIE ##/// BTA. EWANA. 1/4. SEUSTITAILA (WUNWE) #10
330*	SUI1.43
331+	
332*	•
333*	DO 546 KEIINDEI
334*	wRITE(6,245) R+H+OFI(X)+(OLOHDA(J)+J=1+10)+(Y(J)+J=1+10)+
335#	\$(PY(K,J)+J=1+10)+(OY(X+J)+J=1+10)+(PDY(X+J)+J=1+10)+(DLOHDA(J)+
3364	\$J=11.NLOMDA) + (Y(J) + J=1+NLOMDA) + (PY(K+J) + J=11+NLOHDA) + (DY(K+J) +
1178	SJE11+NLGHDA)+(PDY(K+J)+JE11+NLGHDA)
118.	245 FUDMATTINI. ISBESSESSESSESSESSESSESSESSESSESSESSESSES
1104	
3377	et store Datue D el. 20 de trate (////) Mantal Al Traute d et.
3444	3. Exclusion of the second state of the second state of the second state second states and the second states a
341*	SPECOTATION ALL CREW DEL STOPA, OF UNCERED OF THE
342*	\$' 41EH'+3X+'ANGLE'+7++' DLDHDA(DEGREEB)'+12X+P3+0+4(AX+P3+0);
343+	\$///+! NOMINAL LUCATION (KM)!+10D11.4+///+! SMIFTED!+
344*	\$' LOCATION (KM)'+10011.4+///+7x+'ERROM'+6x+'(KM)'+10011.4+
345+	\$///+ax+'A8\${ERRCR}'+5X+'(X)!+F10.4+8F11.4+3X+F5.2+
3467	\$/////.1 VIE#',5X,'ANGLE',/.' DLOMDA(DEGREES)',13X,F2.0.
3478	SE(9X+F2-0)+///+1 NOHTNAL LOCATION (KH)+9011-4+///+1 SHIFTFO
3488	\$1 LOCATION (KH) 1-9011-#-///-7X+1FR0081-6X+1(KH)1-9011-#-
1408	\$///*#V*/ABB(FPROP) * \$X*1(X) * \$10.4*#\$11.43
1844	
3304	Edd Couldte
3214	
3724	
3234	UV 300 KEIINPI
3744	
722+	\$+J;+J#[+!U]+(5+2(K+J)+J=1+10)+(DB+(N+J)+, 1+10)+(B(K+J)+J=
350*	\$1+10)+(DLUMDA(J)+J=11+NLOMDA)+(BY1(K+J)+J=11+NLOMDA)+(BY2
357+	\$(K+J)+J=11+HLOMDA}+(DBY(K+J)+J=11+HLOMDA}+(B(K+J)+J=11+HLOM
358#	SDA)
359*	250 FORMAT(1H1++++++++++++++++++++++++ GEOMETRIC ERROR SENSITIVI+
360#	\$1TY WITH RESPECT TO RGLL ERROR ##" 3#################################
361*	SOT EARTH RADIUS R #1.F9.4.1KM10///.1 NOMINAL ALTITUDE H #1.
3624	\$F4_0++KM++///++ ROLL ERROR 1 DF11 #++F5_2+>DEGREE++///+
3438	\$1 BOLL FRRDE 2 DF12 #1+F5.2.1DEGREF1+/////+1 VIF#1+5%.
1448	\$ ANGLE \$ -/-1 DLONDA (DEGREES) - 12X-F3-0-9(8X-F3-0)-//-
1.64	
303 4	- ALL CALLATION ATT DUE TO EARDA I CALLATINA
200+	Syle Sale of Cocation sys out to the sale of the second
3674	11011.40///// UIPERENCE [KM]7470011.44//4884
3094	5'ERHOR' + / + ' SENSITIVITY (KM/DEG) + 10011 + 4 + //// +
394*	\$! YIEW ! +5X + * ANGLE ! + / + ! DLCHDA(DEGREE8) ! + 12X +F3 + 0 + 8(8X +
370+	\$F3.0)+//+' SHIFTED LOCATION++/+' DUE TO ERROR 1 (KM)++
371*	\$9D11.4.//+ SHIFTED LOCATION +/+ CUE TO ERROR 2 (KM)++
372*	\$9D11_4+///+1 DIFFERENCE (KH)++9011_4+//++x+
373+	S'ERROR 1,/, 1 SENSITIVITY (XH/DEG31.9011.4)
3744	300 CONTINUE
1758	
313-	

139

-

. . •

•

4220 423+ 424+ 425+

426* 427+ 428+ 429* 430+ 431+

4329

451 CONTINUE

DO 500 KEL+NTETA

S(SEN(X+J)+JU11+NLOMDA)

٠

E

. **-**

,

-2 ÷.

1.1.

ہتر

~

.

.

3/84	OR THE MELANDREA
3//*	
178-	
3/94	124 FOUNATING LEESSEREESSEREESSERE CROUPPERS SUBCE THE STRI
3044	I AV VIN COAD Receive Concerts C Encerts Concerts
3014	SI DI YAN EXKUR COMPANYANA AN TANAN AN TANAN AN
3954	Signalian a states we share a state a state of
3034	STATUS TAN SARAK UPSA STATS. STUEGREE (///////)
30.04	3, ATEM. (374, MARE, 434, ARADA (DERKSER), (1514, 503, (41, 56, 0))
3824	3+////+71+ "ERHUR "+6K# "(<=] +1001].4}
300*	321 CONTINUE
387*	
398*	
3699	DO 560 KEIINPEI
340*	#RITE(6+350) R+M+DPSIL(K)+CPFIZ(K)+(DLAMDA(I)+I=I+NLAMDA)+
391*	S(DELTA(K+J)+J#1+HLAHDA)+(D(K+J)+J#1+HLAHDA)
392*	350 FORMAT(1H1, ISSESSESSESSESSESSESSESSESSESSESSESSESSE
393#	\$1 %ITH RESPECT TO YAW ERROR \$**********************************
394=	SI EARTH RADIUS R =1+F9+4++KH1+///++ NOMINAL ALTIRUDE H =1+
395=	SF4.0+1KH1+///+1 YAN ERRON 1 DP811 #1+F5.2++DEGREE1+///+
396#	ST YAW ERROR 2 OPSI2 #1+F5.2+TDEGREET+//////+T VIEHT+SX+
3978	\$ 'ANGLE './, ' DLAMDA (DEGREES) '. 12X.F2.0.0 (9X.F2.0).///.
398+	5' TOTAL SHIFT (KH) +10011.4+///+4X+'ERROR'+/+
399#	\$' \$ENSITIVITY(KH/DEG) + 10011.4)
400.	400 CONTINUE
4010	
4028	
4038	DO 451 KaleNDTHE
4640	HRITE (A.450) Roll BATASTASTASTASTASTASTASTASTASTASTASTASTAS
4058	\$ (VI (1) - 101 - 103 - (X 7 (K - 13 - 101 - 103 - (VI (K - 13 - 101 - 103 - (SNF (K - 13 - 101 - 103
4444	
4078	
4454	
4004	ARE FORMATING INCRESSION AND AND AND AND AND AND AND AND AND AN
4944	AL ATAM INDUCTO ATAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA
4104	
9114	21 LOUGE VALUE AFTER TELECOLOUS A RIGHT ALLEN TO CAT
41.44	ST ERRUH DINEIR HISTSLITTUEREETA////ST TERISIETANGET//
4134	3. PCGMDA(DEGMEE3).112x0F3.044(8X0F3.04)4///4. HOMINAL X COOMD.
4144	8', (RH)',71,72,604(41,72,6),777,1 NORINAL Y COURD, (RH)',
4150	SIGDIL.4.///. BHIFTED X COORD. (KH)'.IDDIL.4.///. SHIFTED!
416#	3' Y COURD. (KH)'+10011.4+///+7%+'ERROW'+4%+'(KH)'+10011.4+
417*	5////+! VIEN ++5X+ *ANGLE ++/+ + DLUHDA(CEEWEES) ++12X+F3+0+
4184	\$8(8X+F3.0)+///+* NOMINAL X COORD. (KM)*+7X+F2.0.8(9X+F2.0)+
4199	S///11 NOMINAL Y COURD. (KH)1+9D11+6:///++ SHIFTED X COORD+1
420+	51 (KM)1+9011.4.///+1 SMIFTED Y COORD. (KM)1+9011.4.///.71.
421+	\$'EFROR', 6X, '(KM)', 4011.4)
4228	AST CONTINUT

- - - -

D0 500 KE1+NTETA WRITE(6+480) R+H+DTETA1(K)+DTETA2(K)+(DLOMDA(J)+J=1+10)+ \$(X11(K+J)+J=1+10)+(Y11(K+J)+J=1+10)+(X22(K+J)+J=1+10)+ \$(X12(K+J)+J=1+10)+(SHFT(K+J)+J=1+10)+(X22(K+J)+J=1+10)+ \$(DLOMDA(J)+J=1+HLOMDA)+(X11(K+J)+J=1+HLOMDA)+ \$(Y11(K+J)+J=1+HLOMDA)+(X22(K+J)+J=1+HLOMDA)+ \$(Y22(K+J)+J=1+HLOMDA)+(X22(K+J)+J=1+HLOMDA)+ \$(Y22(K+J)+J=1+HLOMDA)+(SHFT(K+J)+J=1+HLOMDA)+ \$(Y22(K+J)+J=1+HLOMDA)+(SHFT(K+J)+J=1+HLOMDA)+ \$(Y22(K+J)+J=1+HLOMDA)+(SHFT(K+J)+J=1+HLOMDA)+ \$(Y11(K+J)+J=1+HLOMDA)+(SHFT(K+J)+J=1+HLOMDA)+ \$(Y22(K+J)+J=1+HLOMDA)+(SHFT(K+J)+J=1+HLOMDA)+ SHFT(K+J)+J=1+HLOMDA)+ \$(Y22(K+J)+J=1+HLOMDA)+(Y2(K+J)+J=1+HLOMDA)

.

~~ ----

ORICHAL FATT

٦

433*	480 FORMAT(1H1+***********************************
434+	SITY WITH RESPECT TO PITCH ERROR #################################
435*	ST EARTH RADIUS & STOP-4-TENTY//T NOMINAL ALTITUDE H STO
436*	SF4.0.1KH1.//. PITCH ERROR 1 DTETA1 =1.F5.2. DEGREE1.//.
437+	ST PITCH ERROR 2 DTETA2 #1+F5.2+ DEGREET+////+T VIENT+5X+
438+	\$'ANGLE'./. DLOMDA(DEGREES)', 12x.F3.0.9(8x.F3.0),//.
4394	\$1 SHIFTED X COORD. 1+/+1 DUE TO ERROR 1 (KM) 1+10D11.4+//+
440*	S' SHIFTED Y COORD '+/+! DUE TO ERROR 1 (KH) +10011-4+//+
441*	5' SHIFTED X COORD . + / + / DUE TO ERROR 2 (KH) + 10011.4.4//+
442+	5' SHIFTED Y COORD. './. DUE TO EPROR 2 (KH) '. 10011.4.///.
403#	5' DIFFERENCE (KM) + 10011 . 4+//+6x+ + ERROR + /+ + SENSI
4-148	\$111VITY(KH/DEG) + 10011-4+////+ VIFH + 5X+ +ANGLE++/+
4158	\$1 DLOMDA(DEGPEES)1+12X+F3-0-8(8X+F3-0)+//-
4468	ST SHIFTED & COORD-1-/-I GUE TO FRACE 1 (KH)1-4011-4-//-
4478	SI SHIFTED Y COORD-1-/-I DUE TO EPROR 1 (XM31-0011-8-//-
0.0 8.0	SI SWIFTED Y COORD-1-// DUE TO EPOD 3 //W11-0011 8-//-
440¢	
450.	
4504 4518	
4314	
4767	300 CONTINE
4337	
4344	
4554	
4307	
43/4	
4304	
4344	<pre>4 * Distant 1 * * *******************************</pre>
4844	STIDIFT(RIJ)JJEIIIALUADAJ
4614	BU FURNAILINISTEETEETEETEETEETEETEETEETEETEETEETEETEE
4024	ST TAR FILL AND RULL ERRIRS THE STATE AND ALL STORE AND AL
4034	ST EARTH RAVIUS R STRAGT DAAM CALER ASTRAE ALLIUDE H ST
4647	SPA, USIKH: S///SI TAN EKKUR UYAN HISPASISIUESKEE'S///S
403*	S' PITCH ERNOR OFICH S'F44 14 OFEREE' '''''''' RULL ERROR
400*	S' DNOLL STOPA JO DEGREE 1//// VIEW STOTANGLETO/OF DLDMDAT
4077	5'(DEGREE3)'12X1F3-0-9(0X1F3-0)////' NOMINAL X COORD. (RM)'
4057	\$17X172.099(9X172.0)17771 NOMINAL 9 COUND. (NM)1110011.40
4694	S// SHIFTED X COUND. (XH) STIDDIS. 46///ST SHIFTED Y COUND.
470#	\$' (KN)'+10011.4+///+7X+'ERNOH'+6X+'(EN)'+10011.4+///+
4710	\$' VIEN', 5X, 'ANGLE', /, ' OLONDA (DEGREEB)', 12X, P3, 09, 8(8X, P3, 0),
4724	3/// NOMINAL X COUND. (KM) 10/X 0F2.008(4X 0F2.0) 0///0
4734	S' NUMINAL Y COUND. (RM) '4011.4//// SMIPTED X COUND. (RM)
474*	\$44011,447/741 SHIPIED * COORD. (KH)144011,447/747141ERROW1.
475#	\$6X+7(KM)7+9D11-4)
476+	601 CUNTINUE
4773	
478*	
479*	DO 7C5 KEI+NDETA
4804	WRITE(6,700) R+DTAU+DETA(K)+V(K)+(DT(J)+J#1+NDT)+(DEX(K+J)+
481*	5J#1+NDT) + (DEY (K+J) + J#1+NDT) + (ERR (K+J) + J#1+NDT)
482#	700 FORMAT(1H1: ***********************************
4834	\$! EARTH ROTATION ************************************
484*	S! RADIUS =!+F9+4+!KM!+////+! ORBIT INCLINATION =!+F4+C+
485#	SIDEGREEI+////+I LATITUDE =++F4+0++DEGREEI+///////
4869	ST GROUND POINT SHIFT VELOCITY DUE TO EARTH ROTATION #19
4874	\$D10.4, 'KH/8EC', ////,
466*	\$' TIME INTERVAL (SEC)'+3F15.2+///+' SHIFT IN'+/+
489*	\$! X DIRECTION (KM)!+3X+3D15+4+///+! \$HIFT IN++/+

141

L

<u>æ</u>.

-

.

~

· · ·

4946	
4010	el concertos (s. s. s
4414	3 (KU) * 3X * 3V 5 * 1
4454	705 CUNIINUE
4738	
494*	
495#	DO TOT KEI+NDETA
496*	=RITE(0+70+) R+DTAU+DETA(K)+V(K)+VS+VP(K)+DANGL(K)+(DT(J)+
4978	\$J#1+NDT) + (DELX(K+J)+J#1+NDT) + (DELY(K+J)+J#1+NDT) + (FBBC(K+J)+
4981	SJELONDT3
4998	TON FORMATINE LARGERSEREEREEREERE CONTINE BOTHE BUTHE THRUPPE
500#	SI AV AWITTI F MOTION AND FARTH ROTATION SECONDERT
SALE	
5434	
	3. INCLINATION - FRANK, CORECTI//// LATINDE STOP
203-	STUEGREE TO THE GROUND POINT SHIFT VELOCITY DUE TO EARTHI
304*	ST RUTATION BIOID. ANTRA SECTATION SHUTTLE GROUND SPEED ST.
505#	SDIQ.4, KM/SECI,////, GROUND POINT SHIFT VELOCITY RELATIVE!
506#	S' TO NADIR POINT ='+D10,2+
507+	\$1KM/\$2C1+////+! ANGLE OF VELOCITY VECTOR WITH Y-AXIE 31.
5084	\$010.40 DEGREE 10///01 TIME INTERVAL (SEC) 103815.20///0
509+	AT SHIFT INTO AT X DIRECTION (KH) 1-3X-3015-4-4/4
5104	S' SHIFT INIALAL Y DIRECTION (KH)1.37-3015-44///-
5118	SI TOTAL SHIFT (XM) - 3X-3D15-03
5128	
Eile	tal sautsust
3137	
3144	A748
2124	
5148	END

مر:

• .*

41 CTP1.134 SUP8110.749

,

.

• • •

3,

+A 8HUTEX#.IMAGE/A88 263-JB 04/27/83 10131121

2 SUPS.736 CPU8.000 10=.302 CC-ERs.433

142

143

Э

.

÷ -

DLANDA (DEGREES) ۰. 1. 2. ٩. 5. 7. ۰. 4. . ۰. SHIFTED LOCATION DUE TO ERNOR 1 (KH) .0000 .041260, 500+6502, 500+0100, 500+0026, 500+0026, 500+0702, 500+07021, 109+5000, SHIFTED LOCATION DUL TO ERFOR 2 (KH) .8008 .0482+881 .1347+882 .204++462 .2747+622 .350++62 .420++62 .5045+642 .5025+742 .548+64 DIFFERENCE (KH) .0000 .3491-603. 508-8285. 508-8295. 500-1751. 508-8971. 508-4981. 508-4801. 8. LHOR SENSITIVITY (4H/KH) .0006 .1740-001 .3492-001 .5247-001 .a495-001 .8753-001 .1052-000 .1229-000 .1407-000 .1580-00

ANGLE

VIEn

NOMINAL ALTITUDE H SAGG.KM

EARTH RADIUS & 00350.7850KM

ILN ANGLE XANDA (DEGREES) ٩. 4. 5. 7. ۹. 1. 2. ٠. . ۰. 20002001 .1397+02 .2004002 .2740-002 .3500+002 .4710+002 .5025+002 .63040402 WONINAL LOCATION (NN) SHIFTED LOCATION (KH) .4000 .179-481 .3492-881 .5247-881 .4945-891 .4793-881 .19520888 .12294888 .14874888 .15884888 LEROS (x#3256 .254 ,250 (8)250 .250 .254 -250 .258 .254

LTITUDE EREOR DH = 1.KM

CRICHAL FIGE 19 OF POOR QUALITY

ORIGINAL PAGE :S OF POOR QUALITY

1

. 12 1

•5. -7-..... -1. -8-... -2-.... 1#17TED LOCATION (#M) -5025002 .4914002 .4246082 -35444402 -27444002 -28944002 -13474002 -0442401 -1940 ----Eston 12-0071 33.37=4 (2) 11.2005 54.4107 104.4840 00000 ASS(ERROR) vIE. ANGLE 5. DLONDA CHEGREESS 1. 2. 8. . . 7. . ۰. \$#1\$7ED LUCATION (4#) -.1347.002 -.2940.002 -.2740.002 -.3500.002 -.4200.002 -.4410.002 -.5625.002 -.0340.002 -.7600.002 ERNOA ABS(ERPOR) (2) 100.0007 50.0035 33.0373 25.1255 20.1475 10.8305 14.0764 12.7153 11.3440

-..

3.

Encon SENGITIVITV(xx/DEG) -.7173-001 -.7133-001 -.7007-001 -.7000-001 -.7000-001 -.7000-001 -.0002-001 -.0001-001 -.00001-001 -.00001-001

.

SMIFTED LOCATION DUE TO ERAUM 1 - (MM) -.70520001 -.14040002 -.21130002 -.20040002 -.15070002 -.47210002 -.50320002 -.63460000 SwiftED LOCATION DUE TJ ER4GR 2 - (Km) -,0912+001 -,1348+002 -,2684+802 -,2794+002 -,3493+002 -,4194+602 -,4947+602 -,5518+902 -,5333+002 DIFFEHENCE {##} -.1397+888 -.1398+848 -.1400+848 -.1484+888 -.1488+888 -.1413+888 -.1414+888 -.1427+848 -.1455+444

144

•5.

-

٩.

•1.

.

⊷2.

7.

...

.

٥.

۰.

IGNINAL ALTITUDE H BABB.KH

ARTH RADIUS & BO350.785888

+7.

2.

-8.

1.

.....

.

EANTH RADIUS & PA356.7850** NOMINAL ALTITUDE & SADDARM HULL LANDA OFT NI.DECREE

TOLL EMRON I OFIL IOLL ERHON & DFIZ = -....

VIEN ANGLE DLOMDA(OLURGES)

/IE+ ANGLE)LOHOA(UEGREEB)

145

Stragar .

VILO ANGLE DLONDA (DEGREEB) 3. 5. ۰. 7. ۹. 1. 2. ۰. Sm18718 x (0040. DVE TƏ 1880A L. (XXX) ,0481.0001 ,04820881 ,04820881 ,04820881 ,04830681 ,04880081 ,04850081 04600441 ,04870081 3#17769 v (2000). Duế 10 (2000) (24) +,6482+661 +,1347+662 +,244+662 +,3744+662 +,3548+662 +,458+662 +,441++++2 +,5825+642 +,4 SHIFTED & COORD. Dug TJ ERROR 2 (12) -_0981-081 -_0982-801 -_0982-801 -_0982-801 -_0983-801 -_0988-901 -_0985-801 -_0986-961 -_0987-9. 9187676°CE (UM) -13900°CE -13700°CE -13700°CE -13700°CE -1307°CE -1397°CE -1397°CE -1397°CE -1397°CE 10:01 10:01,000, 10:02,00, 1 to 2000, 10:00,000, 10:00,000, 10:00,000, 10:00,000, 10:00,000, 10:00,000, 10:00,000,000

VIE- A-GLE DLO-04(DEGPEES) 199-1876, 199-1976, 198-5876, 198-5876, 198-5876, 198-6876, 198-5876, 198-5876, 198-5876, 198-5876, 198-5876, 2 199-1876, 199-5876, 198-5876, 198-5876, 198-5876, 198-6876, 198-5876, 198-5876, 198-5876, 198-5876, 198-5876, 1 3#18718 7 (2000). DwG 13 [km] , 6344+662 ,5025+662 ,471++662 ,420+042 ,5564+662 ,2094+0+2 ,1397+668 ,+494+051 ,6668 \$-15710 z [0080. Gut 19 Emmu 2 - (1=} -,6467-661 -,6466-661 -,6465-661 -,6465-661 -,6465-661 -,6465-661 -,6465-661 -,6461-661 -,64 -,6461-661 -,6461-661 -,6461-661 -,6461-661 -,6461-661 -,6465-661 -,6465-661 -,6465-661 -,6465-661 -,6461-661 3#15710 V COCAD. DwE 19 EARCH 2 (XM) .6344.662. .5625.682 .4914.662 .4284.682 .3566.682 .2894.682 .13974682 .6948-.61 0[FFERENCE {##} .1347+066 .1347+666 .1347+666 .1347+666 .1347+666 .134+666 .134+646 .134+646 .134+646 .134+646

-5.

....

EARTH RADIUS # 90350.78504* HOMESAL ALTITUDE & REGALTS PITCH CHROP 1 DIETAS # PITCH LONGE 2 DIETA2 # -.......

•7.

....

-9.

*IE= ====EE# 2. ۱. 5. 3. ۰. ۰. 7. •-۰. . 4. 5418417 [2007] (24) -0485-061 -0485-061 -0485-061 -0486-061 -0486-061 -0485-061 -0485-061 -0485-061 \$#1\$768 7 (8848. (##} -.0943.dt/ -.13470884 -.69470884 -.27440484 -.55610884 -.42404884 ..4415.442 -.5666084 -.6581084 1000000, 1000000, 100000, 100000, 1000000, 1000000, 1000000, 10005000, 10005000, 100

. . . ۰. 10000, 10000, 50000, 500000, 500000, 500000, 5000000, 5000000, 5000000, 5000000, 500000, 500000, 500000, 500000 ERPOR]#8+16#6. [8+15#66. [88*5#66. [88*666. [8**66*6. [8**28*6.]8**28*6.]8**28*6. [8**3

-4,

•3.

...

-d.

-1.

۹.

HOMINAL ALTITUDE N BARB.ER PITCH CANON BINETA ST.DEGACE

ORIGINAL FAGE (S. OF POOR OUALITY

۰.

í بر م

.

;

;

--

•7.

BREARBREARBREARB CEUPETRIC ENKUR INDUCED BY JAW CALCE DEBECREARBREARBREAR

EARTH RADIUS # 06350,78508#

NONINAL ALTITUDE N SABE IN

ERROR

TAN ERROR DPSA +1.DEGREE

(KH) .0000

VIEN ANGLE DLANDA(DEG [#] EE8)	•.	1.	2.	3.	A.	5.	••	7.	۰.

1214+088 .2436+088 .3458+088 .4465+088 .4184+088 .7344+848 .8574+848 .9814+008 .114/+881

HONINAL ALTINUDE H HARS.KH

YAN ERROR 1 DPSIL

VAN ERROR 2 DPSI2 - -----

VIÊN ANGLE DLAMDA(DEGREES)	•.	1.	2.	3.	۰.	5.	٠.	7.	•.
-------------------------------	----	----	----	----	----	----	----	----	----

88_6152+ 100#010 100#010+ 100#001+ 100#001+ 100#001+ 1715- 500#040++ 500_076+55-TOTAL SHIFT (KH) ERECE SENSITIVITY(NH/DEG) .0000 .1219+868 .2434+898 .3654+688 .4883+888 .4184+888 .7348+888 .8574+888 .8518+884 .119/+88

146

100

ORIGINAL PAGE IS OF POOR GUALITY

- -

- - -

-31

\$ З

÷

apropressessesses of any suff form inducto at vest the "aut tenges eresteressesses

PITCH LUNGA OPITCH 41-DESPEL

POLL EMON DADLE AL. DESPEC

....

-6-

+364 ANGLE DL0-04(DEGREES)

.7. -.. -1. -ð, •1. HU-144L I COORD. (KH) 4. ٤. ۰. .. ۰. ۰. ٠. 8. 1989428000 88804810 18842810 588442810 588448150 58848155. 588441560 589441500 58644540 5886457482 68000 7 93731#2 Ceno#

•5•

...

أمرعه

VIE.	ر عدد			1.	2.	3.	•.	5.	•.	7.	•.	•.
							-	-	•	•	•	
uffu I re	1	C00+0.	(##)	4+	••	••		••	۰.	••	*.	••
after Lang	L 7	C0089.	(27)		134707	500+(**5+0	********	3500+002	********			+344++13
8#197E	9 1	C	(44)	.7225.001	.7347.801	.7=70+001	. 7591.041	.7717.001	.7841+841	.7966+011	-8442+841	.#214+#1
Sals76	3 7	C0040+	[an]	••1345•++2	********	27#5.0#2	3+6#++#2	193+++	*********	••5 •13• ••d		!===+=+
	E 944	, A	(==)			. 1 . 1	.10/6+***	.1057+***		.lugu+u-d	.1472****	

ORBIT INCLINATION . AS.DECALE

.01	.10	1-44	(\$463	TIME INTERVAL
+,71+2+4+1	-,7102+688	-,71020041	(==)	SPIFT IN N DIRECTION
, ***5-**2			(#=)	SHIFT IN T DIRECTION
.7177 - *61	.7177.400	.7177+#01	(x=)	TOTAL BAIFT
147				

.

د

TIME INTERVAL	(386)	1.00	.10	.01
SHIFT I' X UIRECTION	(R#)	7142+091	71024908	-,7102-081
SHIFT IN Y DIRECTION	(K=)	.3514+090	.3514-001	,3518-082
TUTAL SHIFT	(x#)	.7171+#01	.7171+808	.7171-001
			148	6

ANGLE OF VELOCITY VECTOR WITH Y-AXIS 8-.8719+002DEGREE

GROUND POINT SHIFT VELOCITY RELATIVE TO NADIR POINT # .7171+001HM/SEC

SHUTTLE GROUND SPEED = .7202+801KH/SEC

GROUND POINT SHIFT VELOCITY DUE TO EARTH POTATION # .3541+884K#/SEC

LATITUDE . 40.DEGREE

· IENNY

DRUIT INCLINATION & AS.DEGREE

EARTH RADIUS 46356.7850H#

CORRECTION AND FOINT SHIFT INDICED BY SHUTTLE HATION AND EARTH BOTATION ACCORDENCESCORDENCESCO

TIME INTERVAL	(SEC)	1.88	.10	•=1	
SMIFT IN A DIRECTION	(##)	-,71+2+001	-,7162+888	+,7102-001	
SHIFT IN Y DIRECTION	(K#)	.=325+888	.4325-001	,4525=002	
TOTAL SHIFT	(x#)	.7175+001	.7175+88#	.7175-001	

ANGLE OF VELOCITY VECTOR WITH Y-AXIS --. 4054+0020EGREE

GROUND POINT SHIFT VELOCITY RELATIVE TO NADIH POINT # .7175+ABIRH/SEC

SHUTTLE GROUND SPEED . . 7292+861KH/SEC

GROUND POINT SHIFT VELOCITY DUE TO EARTH ROTATION . .4344+8844#/SEC

3

_--- _

LATITUDE . 20.DEGREE

ORWIT INCLINATION . SSADEGREE

EARTH RADIUS 06356.7850KH

M. S. S. S. M. S. M. S. S. S. S.

- -

• =

.

.

TIME INTERVAL	(\$862)	1.00	.10	.*1
SMIFT IN I DIRECTION	(u=}	-,7102+001	+, ⁷ 1+2+49#	-,71020401
SHIFT IN Y DIRECTION	{KM}			. 8443-103
TOTAL SHEFT	{k#}	· .7102+001	.71 s2+868	,7162-001
			149	

GROUND POINT SHIFT VELOCITY RELATIVE TO HADIR POINT # .7102+00:44/36C

SHUTTLE GROUND SPEED . .7202+001KH/SEC

CHOUND POINT SHIFT VELOCITY OUE TO EARTH ROTATION . . \$427-441K#/SEC

LATITUDE # 80.DEGREE

GREAT INCLINATION

EARTH RADIUS 00350.7450HH

SECONDECESSON CROWN PUINT SHIFT INDUCED BY SMUTTLE MATION AND EANTH ROTATION POSSESSONSE

SHIFT IN Y DIRECTION (NP) .2270+068 .2270-001 .279-982 TOTAL SHIFT (KH) .7100-001 .7100+001 .7100+000

TIME INTERVAL (SEC) 1-10 .10 .01 5#1FT IN X DIRECTION (NH) -.7162+001 -,7162-881 -.71.2.804

GROUND POINT SHIFT VELOCITY RELATIVE TO HADIP POINT & .TISSOBIAH/SEC

SHUTTLE GROUND SPEED = .7242+441MM/SEC

OF POOR QUALITY LATITUDE = se.DEGREE

GHOUND POINT SHIFT VELOCITY DUE TO EARTH ROTATION . . 2311++00000/SEC

UNDERSTONDERSTOR SACTOR CALLS TIMAKED AT SMUTTLE MATION AND EARTH ROTATION SECONDERSTORDERS

...

ORIGINAL PAGE

. 1

1-1 (61) 100

13

The serve server - North State -

EARTH RADIUS ------

MAIT INCLISATION & ST.DEGREE

7. Y.Y.N

5

LITEL YEAR SIN MILLER

.

• -

GROUND PATTERN AND IMAGING

DISTORTIONS GENERATION PROGRAM LISTINGS

•	~~		1.		 	C 11		F									
	0000	R	005731	TIOP	0008	×	005/13	Ŧ₩	0	000	ĸ	000200	17	Q	000	×.	Q
	0000	R	003644	TSTAP	3000	ĸ	005092	191 AP1	0		ĸ	000000	TOTAK	0	000	ĸ	Q
	0000	R	603247	123	U G D Q	×	003203	175	0		ĸ	002012	177	0	000	R.	0
	0000	R.	000215	17	3 3 3 0 0	×	002153	171	0	000	ĸ	002201	12	0	000	×	۵
	0000	*	035670	TLEN	0000	ĸ	000020	111	0	000	R.	001363	18	0	000	K.	0
	0000	4	005753	TII 	0000	×	0000//1	7.J W1.4	0		ĸ	000002	15. Mar	0	000		0
	0000	R	003453	Y F	0020	R	001003	т ъ	0	000	ĸ	005001	161	0	000	R .	0
	0000	ĸ	005760	761	0000	N N	003764	19	0	000	K	003411	TOP	0	000		0
	0000	R	005700	1001	0000		003733	101	0	000	×	005703	TL	0	000		۵
	0000	R	Ū05651	YAVD	0000	R	003632	TAW5	a	000	R	005745	TAL	0	000	E	0
	3000	Ř	205720	42	0000	N N	050421	T	0	000	K	003/23	TA	0			0
	3 3 9 0	ĸ	05661	*51A	0000		000001	X3 I A0	0	630	ĸ	005774	XI	0	000	K.	D
	0000	R	003221	XP4	0000	R	003015	785 28710	0	000	R	005172	XP6	0	000		0
	0000	R	002707	XNCH	0000	N N	000202	17	0		-	002140	AF1	0		R.	0
	0000	R	0036/3	ALEPT	00050	K	VU3667	LLEN Vo	0			006017		0	000		8
	0000	2	005754	XII	0000	E E	005770	XJ	Ō	000	K	006005	XK.	0	000		Ö
	0000	R	003262	XP	0000	ĸ	000612	X b	0	000	×	UU4610	761	0	000	ĸ	0
	0 0 0 0	H.	005654	XLENT	0000	K	1012/2/	XCI	0	000	ĸ	005220	XUØ	U	000	R.	3
	0 0 0 0	R	005740	19	0000	×	U06040	x08	Q	000	K	003/36	XU 1	0	000	R.	0
	0000	R	006034	VIT	0000	R A	006031	**	0	000	R	006032	VY VDA	Q	000	R	0
	0000	ñ	005747	121	3000		006026	*	0	000	×	003636	42	0	000	R	0
	0000	R	006560	1166	0000	R	026074	1167	0	030	R	005730	11	G	000	R	0
	0000	R	006652	1101	0000	R	006055	1102	0	000	R.	006063	1163	0	000		0
	0000	R	005752	SCURT	5 0 0 0 	, K	000023	TAU	0		ĸ	005/43	IENTA	0	000		0
	0000	R	005751	RHOI	0000	R	006000	KULL	0	000	ĸ	003636	K2	0	000	R	Ø
	0000	R	002630	R	0000	N A	005/67	**	0	000	R	006037	KAA	0	000		0
	0000	R	006024	PEGA	0000	ĸ	003676	F9	0	000	K	002631	ri 	0	000		0
	0000	I	006072	ATICS	0000	1	006061	NI16	0	000	1	006075	NTIC7	0	000	Ĩ	0
	0090	I	006047	MIIC	0000		0000033	NT100	0	000		006036	MTICZ	0	000	Ï.	0
	0000	1	000003	NT 103			006010	NT1/4	U O		-	006013	WL 183	0	000	÷.	
	0000	1	003673	NG 7	0000		0076/9	1107 MI 164	0		+	006030		0	0000	I.	Q.
	0000	R	000003	LKHVA	0000		305474	LINVA Nev	0		-	001/47	RTLAG	0	000	1	0
	0003	I	003/14	L	0000	А	000000	LANDA	0		+	003030					Ū
	0000	I	006011	38	0000	1	006022	341	0	000	-	005723	JE	0		Ì.	0
•	0 0 0 0	I	005712	1	0000	1	006045		0 0	000	I	003742	16	0	000	I	0
_	0000	1	006610	14	0000	1	006021	141	0	000	1	003706	151	0	000	I.	đ
		-						1						_			

TUU	1.4		VEGENTE FFNNTEIEND
101	2-		PAKA4ETEK \LINES=11\DT=400\LAMDA=460\LPMDA=310
101	3+		\$NLY7D A=450. NLKMD A=480
103	4 =		
103	5+		REAL LAPDA.LFFDA.LYMDA.LRMDA
104	6.		INTFSER FLAGOAFLAS
135	7+		
195	<u>e</u> •	C	DIMENSION OF VARIABLES
135	3+		DIMENSION XX(2), YY(2), XP(ALINES), YP(ALINES), X(ALINES, ALINES)
165	10.		Soy CALINES ONLINES JOKG CHLINES OVLINES JOYG (ALINES ONLINES)
155	11+		SAMENLINESONLINES) . THENLINES . NLINES) . NFLAGENLINES . NLINES .
105	12+		SMFLAG (NLINES.NLINES), XP1 (NLINES), YP1 (NLINES)
105	13+		S. (P2(NLINES) .YP2(NLINES) .YH(YLINES. YLINES) .YH(YLINES, MLINES)
105	14+		\$KFLAG(NLINES.NLINES), 7P3()LINES), YP3(NLINES), XP5(NLINES),
105	15+		SLFLAG (NL1%ES, LINES), YP4 (LLIHES), YP4 (NLINES), YP5 (NLINES),
135	16+		s(F(NLINES,NLINES),YF(NLINES,NLINES),LFL,GI(NLINES,NLINES),
105	17-		\$ (M1 (N L INESONLIHES) . Y 1 (VL INES , NLIVES) . NFLAG1 (NLIVES . NLINES) .

150

• - --

1

....

ĩ

,

*

ORIGHNAL PAGE (S DE POOR QUALITY

*

-

- --

C010	15 18+		\$ <61 {N L IN E S+N L IN E S}, YG1 {N L IN E S+N L IN E S}, XP6 (MLINES),
0010	5 19+		SYPG (NLINES) • XOD (NLINES • YLINES) • YDD (YLINES • NLINES) •
0010	5 20+		SAFLAG (NLINES, NLINES), XP7 (NLINES), YP7 (KLINES)
. 0610	6 21+		
010	6 22+		DATA R.PI.F.D.TSTAR.DT.VS.H.DD.DS/6356.785.3.141592654.
0010	6 23+		\$100000 Re. +400 co-5-5-5-0 C4+7-1 359-440-co-00393/
0012	1 24+		DATA EPSI - DETAYSTAP + YSTAP 1 - PD - PS - FI AG / - 0 - 1
0012	1 25.		\$=5==4.3470.055652/
0011	1 964		
0013	E 27-		
0014			
0019	2 20*		DWIN DINDEDEINENJINEIJINEIJE DJEEUEEUEE JEE 162027
6613	0 27*	•	TNITTALITE THE BLATTER
0013			ANALAPLAZE INE VENIER PALL BONDIT
0013			
0013	32*	•	FENTER BLAT
013		•	LERIER FLU
0013	1 344		
6012	2 33-		YLENI=100
6012	3 36*		CALF ORTHING (CHINGE CHINE)
0015	4 374	•	
C015	4 38+	¢	DEFINE THE FORM OF THE PLOT
6015	4 39+		PTTPE="LINLIN"
0015	5 40+		XLENS P.O
C015	6 41+		YLEH= P.O
0015	7 42+		CALL PLFCEMEPTYPE, XLE NgYLEN)
0016	0 43+		
0016	8 44+	C	SCALE THE PLOT
0016	C 45+		xx11)=-E
6016	1 46+		x x { 23 = B
0016	2 47+		YY(1)=-3
0016	3 48+		YYL2) = 0
C016	ia 49+		NXX=2
0016	5 50+		NYY=2
0016	6 51+		NG <=- 1
0016	7 52+		N673-1
C017	10 53+		CALL PLSCAL(XX+HXX+NGX+Y+NY+NGY)
0017	1 54+		
0017	1 55+	c	TO START PLOTTING
0017	1 56+	-	CALL PLGRAF
117	57.		
0017	2 58+	C	DEFINE GRID LIMITS
C017	2 58-	•	XLEFT ==5
1017	- 61+		XR1641=5
0017	A 61+		«DEL= (XRIGHT-XLEFT)/(NLINES-1)
0017	6 67-		YHOTs =5
0017	6 61-		YTOPE 5
8017			VDE1 = 1 / TOP-VRATI / INF THES-1)
0021			
6690		r	CONSTRUCT BATA
0020		·	
0020			AA 15.8 1860-1.81 1860
0020			46-47 2 24 RA 99A 94449944429469
0023	N D7*		46446577 AA 1AA 10541.WIINES
0020	5 70*		
SOZ1		•	しかいか ホース ふべし トレイ アナ・ション ション・ション
0021		2	∧ ≠ − τ η ₩ 0 Π 3 8 ≠ F J NARe V f_ τ η
0021	U 734	L	4 m v m m m m m m m m m m m m m m m m m
9021			

151

د

-

-

,

	0212	75+	X (IHOR . IPT) = XLON
	0213	76+	Y (IHO R, JPT)=YNON
	0214	77+	XC=XC+YDEL
	-0215	78+	100 CONTINUE
	0217	79+	YC=YC-YDEL
	0220	80+	150 CONTINUE
	0222	51+	IF(FLAG.E9.1) 63 TO 200
	0224	82+	IF(FLAG.FG.2) 50 10 208
	0226	83+	IFCFLAG.E4.37 60 TO 231
)-	0230	84+	IF(FLAG.FR.4) 60 TO 251
	0232	55+	60 13 261
	0233	56+	
	0233	8/*	
	0234	82.	DC 202 1=10NCINC3
	0237	374	MET VC (1 - 19-0 DC (1 - 19-0
	0242	734	981 FAUTILIL
	0243	71*	263 60411406 263 60411406
	0243	724	
	0247	73-	80 904 (=1, WBT
	0230	85.	
	0255	96.	DO 205 K=1-KLANDA
	0257	37.	LARDASDLANDA+PI/140.
	0260	91	
	0260	99.	SSIN(LARDA)+SIN(LANDA) 13+SIN(LANDA)
	0261	100+	00 50 1=1.NLINES
	0264	101+	DO 70 J=1+NL1NES
	0267	102+	{Z=XH-X([+])
	0270	103+	YZ=Yd-Y(],J)
	0271	104+	1R=1
	0272	205+	JR=J
	0273	106+	IFCABS(YZ).LE.EPSI.AND.ABS(YZ).LE.EPSI) GO TO 204
	0275	107*	70 CONTINUE
	0277	103+	80 CONTINUE
	0301	107+	GO TO 99
	0302	110+	204 MFLAG(IR+JR)=1
	0303	111+	XFCIR+JH)=D+(-TAN(LAMDA))
	0304	112+	YF(]R+JF)=YSTAR+(L+1)++0288
	0305	113+	WRITE (6,95) Lboyd, IR, JR, DLAPDA, XFEIR, JR) + YFEIR, JR)
	6319	114.	95 FORMATC/42710+3621443710+33
	0217	11:+	77 DLATDATDLANDATBP
	0320	116*	203 CUNTINUE
	0322	11/*	18-13 AK+L+D +13
	0323	116*	
	0323	11-4	60 TU 277
	3336	131-	288 EALTIFUE
	3328	1 2 2 4	200 CONTINUE NA 9 1-1-1 HI INEE
	6332	123+	DO 1 JE1-NEINES
	1335	124+	NFLAG (1.J)=0
	0336	125.	1 CONTINUE
	0146	126.	2 CONTINUE
	0342	127+	DTHET A=C .
	03+3	12++	YAIYSTAP
	0344	12**	D0 217 L=1.47
	0347	130+	THETA=DIHETA=PI/100.
	0350	131+	DLPMD A=PS

ORIGINAL PAGE 13 OF POOR QUALITY

0351	132+	00 216 K=1.NLPMDA
10354	133+	LPMDA=DLP#DA+P1/1°0.
10355	134+	T1=D+TAN (THETA)
0356	135+	T2=-A6S(G/COS(THETA))+T4N(LP4DA)
0357	136•	DEL=SQRT(T1+T1+T2+T2)
10363	137+	RHO=A TAN (DEL/D)
0361	13°+	SQURT = R = { { 1 + D/R } = COS { RHO } - SQRT{ 1 - { 1 + D/R } + { 1 + D/R } + SIN
0361	137+	\$(RHO) + 51h (RHO))) + 51N (RHO)
0362	140+	YI=(SOURT+T1)/DEL
0763	141*	XI=(SQURT+T2)/DEL
10364	** 142*	XB=XI +XV
0365	143+	X6=4I
0366	144+	DO 22 I=1+NLINES
10371	145+	DO 11 J=1.NLINES
10374	146+	xC=xB-x(1,J)
0375	147+	YC=YB-Y(1+J)
0376	148+	Ieal
10377	149#	J6=J
10400	150+	IFCABS(CC)+LE+EPSI+AND+ABS(VC)+LE+EPSI) 60 TO 210
0402	151+	11 CONTINUE
0404	152+	22 CONTINUE
10406	153+	GO TO 215
10407	154+	210 NFLAG(16,J6)=1
.0410	155*	KG(IG+J6)=D+(-TAN(LP=DA))
.0411	156+	YG(16,J6)=YBUT+(L-1)+,U288
1041Z	157*	dRIIE(60212) XB0YD0161360DLPWDA0X6(I60J6)0Y6(I60J6)
0423	158*	212 FORMAT(/+2F10-3+214+3F10+5)
0424	15**	215 DLPHDA=DLPHDA-PD
10425	160*	216 CONTINUE
10427	161+	TA=TS IAP+L+.0228
0430	162*	
0431	163*	217 CONTINUE
.0433	164*	60 10 299
	1650	
0434	1664	00 220 T-1-NI THES
10437	147+	
10447	168.	
5445	1434	719 CONTINUE
0445	178+	227 CONTINUE 228 CONTINUE
10447	171.	TENTA=UTNETA+PI/160.
10450	172.	FT=DFT+P1/180.
0451	173.	YA1=YSTAP1
0452	174.	DG 227 L=1-NDT
3455	175+	DLPRDA=PS
10456	176+	DO 226 K=1-NLPNDA
C 461	177+	LPNDA = DLPNDA + PI/160.
6462	175+	T11=D+TAN(THETÅ+ET)
0463	179+	T21=-ABS(D/COS(THETA+ET))+TAN(LPMDA)
0464	180+	DEL1=5QRT(T11+T11+T21+T21)
0465	131+	RHO 1= ATAN (DEL1/D)
2466	182+	SQJRT1=R+({1+D/R}+COS(RH01)-SQRT(1-(1+B/R)+(1+D/R)+
C466	193+	\$51M(RH01)+51N(RH01)})+51N(RH01)
0467	164+	¥11=(SCURT1+T11)/DEL1
3479	195+	X11=(SGURT)+T21)/GEL1
C471	186+	YB1=Y I1+ YA1
6472	187+	xB1=t 11

.

~

153

. .

1

}

s 4

0473	153+	DO 222 I=I.NLINES
0476	189+	DO 221 J=1.NLINES
0501	190=	xC1=xB1-y(1.J)
0502	191=	YC1=YB1-Y(1+J)
0503	192.	IG1=1
0504	193+	J61=J
0205	194+	IF(ABS(*C1).LE.EPSI.AND.ABS(*C1).LE.EPSI) 60 TO 223
0507	195+	221 CONTINUE
0511	196+	222 CONTINUE
0513	197+	60 TO 225
0514	198.	223 481 461 (161-161)=1
0317	s- 109a	+ C1 / I C 1 ~ I C1 3 = D + C - TAN (] OKBA3 3
0315	200.	VG1 (1 G1 - JG1)=YSTAP14(1 - 1)+ 02884V11
0517	201.	JPITE (6.224) YR1 - VR1 - J61 - J61 - DI PUDA - Y61 (161 - 161 -
0517	2020	
9610	202-	
7230	2030	222 - 1000 - 21 00 2 - 20
1231	2044	
0532	203*	
3534	206*	₩ 1= ₩ 5
1232	297*	227 CONTINUE
2537	205+	GO TO 605
3540	209+	
3248	210+	231 CONTINUE
3541	211+	DO 4 I=1+NLINES
3544	212+	DO 3 J=1+NLINES
3547	213+	KFLAG(IoJ)=0
3550	214+	3 CONTINUE
1552	215+	4 CONTINUE
1554	216+	
1555	217+	Y D=YS T AY
2556	215+	DO 240 L=1+NDT
1561	217+	YAJ=D YA6 + PI/180.
1562	220+	DLYND A=YAUS
1563	221+	DO 23A K#1.NLYNDA
1566	222+	LYMDA=DLYPDA+PI/160.
567	223+	RAI-R+((1+0/R)+COS(LY"DA)-SORT(1+(1+0/R)+(1+0/R)+ST N(LYMDA)
567	224+	S+SINELYRDAJJJ+SINELYRDAJ
570	225+	XJIRA+CG3 (YAM)
571	2264	
872	227+	
573	2234	
574	228+	DO AA TEL-NI INES
877	227*	
600	230-	
2002	2314	
603	232*	1 / 2 · E · I · E · I · E · I · E · I · E · I · E · E
	233*	
603	2344	JA-J ////////////////////////////////////
606	235*	17(AD3('))+CC+CF3(AAD+AD3(T))+CC+CF3() WU (U 233
010	2364	JJ LUNIANUE
61Z	237.	77 LURIINUE
614	235*	
615	23-+	233 RFLAGEINGJHJEI
615	243*	ζης IN + JN 7 20+ (+ I AN (LΥΠΦΑΥ)
617	241+	ÅHÅIN° 1HJ7ÅUO1+(F-1)+°0558
620	242+	TE IGO 234 TE O YE O HO NU OL YU A VH CINO A HI 1100 HI
631	243+	234 FURRA I (/ 2F10-3,2I4,3F10-5)
£32	244+	235 DLYADAZDLYADA-YAWD

Ŷ

j

154

F

V

ORIGHNAL PAGE IS OF POOR QUALITY

0633	245+	238 CONTINUE
0635	246*	
0636	247+	DIAN=221W((C+P1)/2/4.)
0637	245*	
8641	247*	60 10 279
	26.0 +	
0872	250-	241 CONTINUS
0072	231-	
0646	232". 9814	
0464	233-	
0671	2344	
DE DZ	200-	
9634 8454	230-	
0020	2314	
0457	2534	
2440	260+	YKZYSTAG
1461	2614	
866A	262*	
1665	263.	DO 245 KEI-NIENDA
1470	2644	
1671	2654	DIS = P + ((1 + D/R) + COS(LENDA+COLL) - SORT(1 - (1 + D/R) + (1 + D/R) + SIM
1671	266.	\$ (L BHD A + BOLL) + SIM (L BHD A + BOLL)) + SIM (L BHDA + BOLL)
1672	267.	
1673	268#	DO 66 ITI-NLIMES
3676	269+	DO 55 JEI-NLIKES
1701	270+	
1702	2714	
1703	272*	In=I
1704	273.	
1705	274.	IF (ABS (XL) = LE = EP SI = A YD = A BS (YL) = LE = EPSI) 60 TO 242
3707	275+	55 CONTINUE
1711	276+	66 CONTINUE
3713	277+	60 70 244
1714	275+	242 LFLAS(I4+JK)=1
:715	273+	XAGIA, JH)=D+(-TAN(LRMDA))
1716	280+	YM(IM, JH)=YSTA0+(L-1)=.0288
1717	261•	WRITE(60243) <koykoimojmodlrmdaoxmcihojmjoymcimojmj< td=""></koykoimojmodlrmdaoxmcihojmjoymcimojmj<>
730	292+	243 FORMAT (/+2F10+5+2I4+3F10+5)
.731	283=	244 DLRYD AIDLRMDA-RD
•732	284+	245 CONTINUE
734	295+	¥K= YS T A0+L++0283
735	296+	250 CONTINUE
737	287+	
737	296+	251 CONTINUE
740	297+	DO 5 I=1+HLINES
743	290+	DO 7 J=1.HLIHES
746	291+	LFLAG1(I+J)=0
747	292+	7 CONTINUE
751	293+	B CONTINUE
753	294+	ROLL=DROLL+PI/180.
754	295+	DER=0.
755	295+	X5TA0 = R+ ((1+D/R) + CDS (ROLL) = SGRT (1-(1+B/R)+(1+D/R)+SIM (ROLL)
755	297+	3+51N(ROLL)))+514(kOLL)
756	29=+	
757	277*	DU ZBO LEIGNDI
762	360+	£#=D£ 4 47 1 /130 +

.

---------**`**. -----. . 2-

IJ

if i

ł

ŀ

=

2 .

.

155

0763	301+	DLRMD A=RS
0764	302+	DO 255 K=1•NLAMDA
0767	303+	LRMDA=DLRFDA+PI/1E0+
0773	304+	D151 = -R + ((1 + D/R) + COS(LR + DA + ROLL + ER) - SQRT(1 - (1 + D/R) + (1 + D/R)
0770	535+	\$+SIN(LRPDA+ROLL+ER)+SIN(LRMDA+ROLL+ER)))+SIN(LRMDA+ROLL+ER)
0771	306+	<pre>XK1=D151+XSTAQ</pre>
0772	307+	80 99 1=1.WLINES
0775	309+	DO 77 J=1+NLINES
1000	309.	£L1=XK1-Y61.J)
1001	310.	YL1=YK1=Y(1.J)
1002	311+	
1002	3124.	
1003	3134	
1444	114-	77 CONTLUIS
1000	316-	
1012	3134	
1012-	317-	
T013	31/*	
1014	218*	<pre>(n1 * 1 * 1 * 1 * 2 * 2 * 1 * 2 * 2 * 2 *</pre>
1012	317*	17111149711717071715-1000 1711114971171071716-101-101000
1016	320*	4K716 (D0 5 22) - (VI 0 AVI 0 1UI 0 2UI 0 AVIV (1UI 0 2UI) 0
1016	321*	977171719717 977 - 778477 - 7719 - 7719 - 7719 - 71
1027	322+	233 FORFATC/62/10-30/21463/10-3/
1030	323.	
1031	324+	255 CONTINUE
1033	325+	YK1=Y 5 TAC +L + 6238
1034	326+	DER=0.2*51W((L*F1)/1/4.)
1035	327+	26D CONTINUE
1037	328+	60 TO 259
1040	329+	
1040	330+	261 CONTINUE
1041	331+	DO 263 J=1.NLINES
1044	332+	DO 262 J=1.NLINES
1047	333*	AFLAG(I+J)=0
1050	334+	262 CONTINUE
1052	335+	263 CONTINUE
1054	336+	TAJ=DTAU•FI/1ED•
1055	337+	OMEGA = 2 • • F I / 869 0 0 •
1056	335+	ETA=DETA+PI/150.
1057	339+	V=OMEGA+R+COS(ETA)
1060	346+	SLUMD A=C7S(TAU)/CGS(ETA)
1061	341+	CLUMD A=SGRT(1-SLUMDA+SLUMDA)
1062	342+	AX=A+CFA+QY
1063	343+	VY=V+ SLUNDA
1064	344+	V1x=- vx
1065	345+	VTY=VS4-VY
1866	346+	YAAZY STA
1067	3474	VAAEVSTA
1070	3454	
1073	348-	
1074	150+	
1077	361-	
1100	3524	LINDA - VETINA / 12 JOU 484-2 VETINA / 12 JOU / 10 KI VERKIS (2007/1-/1-2)/030///2006/10
1100	3367	411 ARV 7 JOC 1P(1 ARV77 JOC 1P %1 ARV77 MUND- ULA 17 ALV12 PAGAT ULAULAGRE 177_17AN42 %2 AN42 %2 998
1101	333V 1844	40144 A & A & A & A & A & A & A & A & A & A
1100	J344 182-	
1102	3334	100-177 No 92 K T-1,61 THES
1102	3387	₩₩ 200 8419763863 80 928 (+1-6)763863
4106	2214	RA 784 92710F1853

,

١

--

;;

| .

The second

 ∇

۱ ;

156

٥,

÷.,

-

-

-

URIGINAL PAGE IS OF POOR QUALITY

٩,

3

2

1

<u>...</u>

.

4

1111	353+	XCC=+88+*(1+3)
1112	359+	A C C = A R B~ A (I * 7)
:1113	360+	100=1
1114	361+	LEODEJ
1115	362.	IF(ABS(YCC)+LE+EPSI+AND+ABS(YCC)+LE+EPSI) 60 TO 266
1117	3610	764 CONTINUE
.1171	363-	
1171	3450	
1123	3634	
1124	300-	200 AFLAUII4/-1 (Nation 100)000-1-740/1980415
1125	367-	
1126	368*	100(100+JCJ=+51A+4L-1J++0288
1127	367+	ARITE (6.267) XBB, T8B, 103, JDD, DL 40A, XBD(100, JDD),
1127	373+	SYDD(IDD-JDD)
1140	371-	267 FJRMAT(/+2F10+5+2I4+3F10+5}
1141	372+	268 DLY4DA=DLYHDA+DD
1142	373+	269 CONTI-UE
1144	374+	∠AA=X STA+L+DT+¥Τ ¥
1145	375+	YAA=Y 5 TA+L+D T+V T Y
1146	376+	270 CONTINUE
1150	377+	
1150	378+	E PLOT HORIZONTAL LINES
1150	176.	
1150	7304	293 FONTINIF
	3910	11
1121	3514	
1134	3024	71886078 Liture 1188
1123	203-	46145463463 46145463
1154	3544	DO 400 INUK=144FIME2
1157	3624	
1165	276*	xP{ IP I J= X (IN ON & IP I J
1163	357+	Ab(Ibl)=A(IHOP*Ibl)
1164	353*	SCO CONTINUE
1166	389+	CALL PLOURVEXP, YP+NLIN, NTIC+TIC)
1167	390+	459 CONTINUE
1171	391-	
1171	372+	C PLOT VERTICAL LINES
1171	393.	DO 500 IV[kT=1.NLINES
1174	394+	CALL PLCURV(V41.VERT),V(1.IVERT),NLIN,NTIC,TIC)
1175	395+	5CD CONTINUE
1177	3962	IF(FLAG.EG.1) 60 TO 655
1201	397+	1F(FLAG.EG.2) GO TO 805
1203	1984	IF(FLAG. [4.3) 60 TO 501
1205	399.	1646LAG. 66.41 60 10 409
1207	A 0.0 e	b) 13 921
1210	401-	
1210	4010	
1210	4024	
1510	4034	
1210		EDD FORITURE
1211	405*	11115 (NTTC) - A
1212	406*	
1213	407+	NLINI = NLINES
1214	405+	DO 750 IHOR=1.NLINES
1217	430+	DJ 700 IPT=1.NLINES
1272	410+	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
1223	411+	YP1(IPT)=YF(IHOR+IPT)
1224	+12+	7GD CONTINUE
1226	413+	CALL PLCUKVEYPIOYPIONLINIONTICIOTICID
1227	414+	758 CONTINUE

157

э,

-

-

হা

1 2

the states of

~~

-

. .

- --

1231	415+		
1231	416+	C	PLOT VERTICAL LINES
1231	417=		DO 80C IVERT=1.NLINES
1234	418+		CALL PLCURV(AF(1.IVERT).VF(1.IVERT).NLINI.NTIC1.TIC1)
1235	419+	800	CONTINUE
1237	420+		GO TO 9999
1240	421+		
1240	422+ -	· C	PLOT HORIZONTAL LINES
1240	423+	ŧ05	CONTINUE
1241	424+		11C2=0
1242	425+		NT1C2=0
1243	426+		NLINZ=NLINES
1244	427+		DO 550 IMOR=1.NLINES
1247	25 .		DO 320 IPT=1.NLINES
1252	429+		xP2(IPT)=x6(IHOR.IPT)
1253	430+		YP2(IFT)=YG(IHOR.IPT)
1254	431+	820	CONTINUE
1256	432+		CALL PLCURV(YP2.YF2.NLIN2.NTIC2.TIC2)
1257	433+	850	CONTINUE
1261	434=		
1261	435+	с	PLOT VERTICAL LINES
1261	436+		DO 951 IVERT=1.NLINES
1264	437+		CALL PLCURV(VG41+IVERT)+VG41+IVERT)+NLIN2+NTIC2+TIC2)
1265	438+	651	CONTINUE
1267	437+		60 TO 9999
1270	445+		
1270	441=	с -	PLOT HORIZONTAL LINES
1270	442+		116=0
1271	443+		NT1C5=0
1272	444+		NLING=NLINES
1273	445+		DO 354 INCREINNLINES
1276	446+		DO 853 IPT=1+NLINES
1301	447+		(P6(1PT)=YG1(IHOR.IPT)
1302	447+		YP6(IPT)=YG1(INOR+IPT)
1303	449+	853	CONTINUE
1325	+50+	•	CALL PLCURV(XP6.YP6.NLIV6.NTIC6.TIC6)
1306	451+	554	CONTINUE
1310	452+		
1310	453+	C	PLOT VERTICAL LIGES
1310	454+	•	DO \$55 IVERT=1.NLINES
1313	455+		CALL PLCURV(VG1(1+IVEPT)+VG1(1+IVERT)+NLING+NTICG+TTCG)
1314	456+	655	CONTIAUÉ
1316	457+		10 TO 0905
1317	454+		
1317	45=+	C	PLOT HERIZONTAL LIVES
1317	460+	901	CONTINUE
11 320	461+		1163=0
1321	462+		NTIC3=0
1322	463+		ULIN3=NLINES
1323	464+		DO 905 IHCR=1+NLIGES
1326	465+		DO 903 IFT=1.NLINES
1331	466+		(P3(1PT)=VH(1HOR.IPT)
1332	467+		YP3(IPT)=YH(IHOR•IPT)
1331	468+	100	CONTINUE
1335	469+		CALL FLCURVCVP3.VP3.ALIN3.ATIC3.TIC3)
1336	470-	965	CONTINUE

• >

158

-..

~ ~

~ 1 7

...

CRICAVAL PAGE TO OF POOR QUALITY

21340	471+	•	
01340	472+	C	PLOT VERTICAL LINES
31340	473+	• •	DO 907 IVERT=1eNLINES
31343	474+		CALL PLOUNTCANCIOIVENIJOYNCIOIVENIJONLITJONTICJOTICJ
7134	475*	907	
21346	476+		50 TO 9459
21347	477+	-	
51347	478+	C	PLOT HORIZONTAL LINES
1347	479#	911	CONTINCE
		••	716A- 8A8
11350	4502		
1321	4014		#11643-1 N9 1997-1
1222	4724		
1303	4034		DV 713 JPVR-J9RLJAC3
1336	4844		UV 713 IFI-14ML1463 /04/1071-24ML1463
1301	4534		\r\\r\\r\\r\\r\\r\\r\\r\\r\\r\\r\\r\\r\
1302	4074		17461712-179309844713 288716112
1303	4074	713	CUTIINUE CALL DICUBUZUBA. VOA. VIIVA. VTICA. TICAN
1364	4774	015	CALL FLUXTEATTSIFTSALLITSATILTS
1366	7877	713	CONTINUE
1370	4904		DEAT WERTTERE ITEE
1370	471-		
1375	4724		
13/3	4734	617	CVP2 LPPAKATATATATATATATATATATATATATATATATATAT
1376	4740	211	CONTINUE
1310	473*		
1176	4707		CANTINIE
1370	477-	-07	
1211	4724		
1400	477*		NITN5-WITNSC
1405	500-		AC 810 16A8-1.81 1684
1402	2014		NA 616 101-14461463
1410	502-		VG 710 111-14421463
1410	503-		VDS(1101)-VM1/1N39.101)
1412	5054	919	CONTINUE
1414	505-	- 1 3	CALL DI CHEVEYPS, YPS, &I INS, MTTCS, TICS)
1415	5074	019	
1417	508-		CON11:02
1417	509-	e	PLAT VERTICAL LINES
1417	510+	•	DO 92 F TVFRT=1_NLINFS
1422	5114		CALL CLICKCOMICS. THEETS AND CLICKERTS MI INSANTICS. TICS
423	512+	920	CONTINUE
.425	513+		60 TO 9993
1476	514+		
1476	515+	c	PLOT HORIZONTAL LINES
. 425	516+	921	CONTINUE
427	517.		T1C7=0
430	516+		NT1C7=0
:431	519+		NLIN7=NLIMES
432	520+		DO 923 IHOR=1.NLIVES
.435	521-		DO 922 IPT=1.NLINES
.440	522=		(P7(IPT)=VDD(IHOK, IPT)
441	523+		YP7(1PT)=YDD(1HOR.1PT)
442	524+	922	CONTINUE
444	525+		CALL PLCURV()P7. YP7. NLIN7.NTIC7.TIC7)
445	526+	923	CONTINUE

4

.

•

1447 527+ PLOT VERTICAL LIKES DO 924 IVERT=1.NLINES CALL PLCUAV(<DD(1.IVERT).VDD(1.IVERT).MLIN7.NTIC7.TIC7) 924 CONTINUE 1447 1447 1452 1453 52#+ 529+ 530+ C 531+ 1455 1455 532+ TO FINISH PLOTTING 9999 CALL ENDPLT 533+ C 535+ 535+ 536+ 537+ 1455 1455 1456 1456 1457 • • STOP END

•- ,

. . .

į

- 1

•

NAT ALL R

H H

1.

H, LA, CHE

.

٦

· · · · · ·

ND FLR: Pu:1.399 CTP:.115 SUPS:9.131

. •

~ •

1

DELETE+A SHUTEYP.IMAGE-1/ABS URPUR 2#3-JB 05/19/63 11:56:41

TP=.333 SUP=.737 CPU=.000 10=.302 CC-ER=.433

-

.

End of Document

٠

.

.

.

^

ŗ,