
A//'#_ 7",¢X-W434 7

NASA-TM-86367 19850016410
NASA Technical Memorandum 86367

USERSGUIDE: THELaRCHUMAN-OPERATOR-

SIMULATOR-BASEDPILOTMODEL

Edward H. Bogart and Marvin C. Waller

',; i_ .. ,d!D5!.;!" _ c.i

_NGLEY RESEARCHCENTER
LIBRARY, NASA

HAMPTON, VIRGINIA
_p

[U/ A
National Aeronautics and
SpaceAdministration

Langley Research Center
Hampton,Virgir_ia23665

https://ntrs.nasa.gov/search.jsp?R=19850016410 2020-03-20T19:29:02+00:00Z

II

' 3 1176 01359 9718 i
SUMMARY :_

A Human Operator Simulator (HOS) based pilot model has been developed for use at

NASA LaRC for analysis of flight management problems. The model is currently

._ configured to simulate piloted flight of an advanced transport airplane. The generic

HOS operator and machine model was originally developed under U.S. Navy sponsorship
W

by Analytics, Inc. and through a contract with LaRC was configured to represent a

pilot flying a transport airplane.

A version of the HOS program runs in batch mode on LaRC's (60-bit-word) central

computer system. This document provides a guide for using the program and describes

in some detail the assortment of files used during its operation.

1.0 INTRODUCTION

The Human Operator Simulator (HOS) described in this document is a version of

the generic HOS operator and system model developed under U.S. Navy sponsorship by

Analytics, Inc. The LaRC version, developed under contract (NASA 15983, ref. I),

models piloted flight of the Transport Systems Research Vehicle (ref. 2) during

instrument approach to landing operations. HOS can be modified to Simulate different

flight scenarios, pilot characteristics, and piloting strategies. Characteristics of

the aerodynamics, controls system, and displays of the airplane are represented in

the model through the input data set. The LaRC version of HOS described in this

document retains its generic nature and, through changes to the input data set, an

operator of any system could be simulated. Two scenarios are currently programmed in

the Transport Systems Research Vehicle (TSRV) model simulation - an ILS straight-in

approach and a Microwave Landing System (MLS) curved approach. The stralght-in
=o

approach, presented as an example in this document, is described in appendix A.

. The purpose of this document is to describe the files used in execution of the

LaRC HOS simulation programs, the nature of the input data, and the types of output

records and analysis available from HOS as it currently exists. No attempt will be

--

made to provide a detailed explanation of how a simulation of a particular system can

be developed since such a description is given in reference i. It is assumed that

the user will have acquired a copy of the magnetic tape containing the referenced

files and wishes to initially operate the HOS TSRV simulation as formated on the
2_

tape. The user is also assumed to have a working knowledge of the CDC computer sys-

tem and the associated NOS operating system. Detailed documentation of the generic "

HOS programs can be obtained from Analytics, Inc., 2500 Maryland Road, Willow Grove,

PA 19090.

Throughout this document, file names will be printed using ANSI standard for

ASCII characters with the number _ and the letter O, with the exception of some

reproduced computer listings. Names of HOS created files referenced within the text

of this document will be printed with fixed characters in upper case and the variable

characters represented by a dollar sign ($) when the reference is made to the file

name in the unedited procedure file. An example selected for use throughout much of

this discussion will be referred to by the character string "EX". The dollar sign

($) in the various file names in the unedited procedure files will be replaced by the

string "EX" when the discussion is intended to specifically address the example.

Also, when listings of files are presented in figures, the variable character string

is represented by "$NAME$".

LIST OF ACRON_IS AND ABBREVIATIONS

ASCII American Standard Code for Information Interchange

CCL CYBER Control Language

CDC Control Data Corporation

CDF Crewstation Data File ""

CPFS Common Permanent File System

HAL HOPROC Assembler Loader

HODAC Human Operator Data Analyzer and Colator

HOS Human Operator Simulator

ILS Instrument Landing System

LaRC Langley Research Center

MLS Microwave Landing System

-_ NOS Network operating System

NPL New Program Library file

OPL Old Program Library file

TCV Terminal Configured Vehicle

TSRV Transport Systems Research Vehicle, alternate name for TCV

PROC Procedure file

LIST OF REFERENCED FILE NAMES

CI$ UPDATE directive file output from HAL

C25 UPDATE directive file output from HAL

CRUISE CREWSTATION data file for curved flight scenario

DATA30 Atmospheric data file for aircraft submodel

DIS Pseudo machine instruction file for HAL

D25 Pseudo machine instruction file from step HAL

EXEC File containing all the Procedures used in the execution of a simulation

GI$ Packed binary plot data file generated in step HOS, used in step HODAC

HAL Submit file for step HAL

HALHOD Submit file for step HALHOD

HALHOS Submit file for step HALHOS

"" HODAC Submit file for step HODAC

HOS Submit file for step HOS

HOSMOD Submit file for step HOSMOD

H7MOD UPDATE directive file for step HOSMOD

IFILE Default name of UPDATE directive input file

LAND CREWSTATION data file for straight flight scenario

LEODAC FORTRAN source code for HODAC program (in UPDATE format)

LHOS FORTRAN source code for HOS program (in UPDATE format)

MI$ Machine readable time history generated by step HOS, input to step HODAC

015 Binary load module executed in step HOS
j"

O25 Binary load module executed in step HODAC

PLOT Submit file for execution of HOS plot

PLOTLIB Runtime library for HOS plot execution

PLOTMOD UPDATE directive file for file PLOTSYS

PLOTSYS FORTR_N data conversion program used by PLOT

sIS UPDATE new program library file from step HALHOS

$25 UPDATE new program library file from step HOSMOD

T35 Binary plot data output from HOS; input to PLOT

TAPE45 Binary input data for aircraft submodel

TCVLIB Runtime library for aircraft submodel in }lOS execution

WGUSLIB Runtime library for atmosphere submodel in HOS execution

2.0 BATCH OPERATING PROCEDURES

The steps involved in execution of a flight simulation using HOS are summarized

in figure I. To complete a simulation of a system, three FORTRAN computer programs

are normally compiled and executed - HAL, HOS, and HODAC. (Program names may vary,

e.g., LHALO, LHOS, and LHODAC.) Other steps represented in figure I are related to

constructing the file environment necessary to operate these three programs.

In the first major step in developing a simulation, the hardware to be simulated ..

is analyzed and coded as mathematical and logical functions using a special superset

of FORTRAN called HOPROC. Similarly, the strategies and rules used by the pilot are

analyzed and coded using HOPROC. The resulting file is the input required for

execution of the first in the sequence of three programs listed above, HAL. HAL is

PROVIDE
INITIALIZATION

SPECIFICATIONSFOR:
EXECUTE | • HARDWARE

HOPROCASSEMBLER I • EXTERNALENVIRONMENT
LOADER(HAL) OPERATORCHARACTERISTICS

(CDF)

[EXEIUTE

, l HUMANOPERATOR
SIMULATOR(HOS)

EXECUTE I

HUMANOPERATORDATA
ANALYZERANDCOLLATOR

(HODAC)

, 1
EXECUTE !

TIMELINEANALYSES |
LINKANALYSES |

CHANNELLOADINGANALYSES |
DEVICEANALYSES |

PRO_

FigureI. - SimulatorSteps.

described as an assembly/loader and functions to format the description of the

specific system under study into an UPDATE MOD file used to edit the generic HOS

program. HAL also generates a numerically coded procedure file that is used as input

during the _OS step.

The second major step in simulating a system is to operate the HOS program. .

This step comprises the actual execution of the simulation. The Crew Data File (CDF)

provides input data to support the HOS step. It consists of descriptions of the

locations, initial values, and operational characteristics of the state variables,

display and control devices used during the simulation.

Operation of HODAC, the Ruman Operator Data Analyzer and Collator, is the third

major step in completing a simulation. This program uses files generated in the HOS

step to develop several analyses. These include a timeline analysis, a link

analysis, channel loading report, a device analysis, and a procedure analysis.

In practice, the operations necessary to complete a simulation and the

associated data reduction and analysis have been organized into the following eight

submit files:

I• CLEAR

2. HAL

3. HALHOS

4. HOSMOD

5. HOS

6. PLOT

7. HALHOD

8. HODAC

Operation of CLEAR, HAL, HALHOS, HOSMOD, and HOS is normally necessary to accomplish

the actual system simulation. Details of operation of these five submit files will

be discussed in sections 2.1, 2.2, 2.3, 2.4, and 2.5, respectively. PLOT generates

time history plots of selected variables associated with the flight simulation. Its

operation will be discussed in section 3.0. The submit files HODAC and the associ-

ated submit fIleHALBOD generate data reduction and analysis reports. Details of

their operation will be presented in section 4.0. Appendix B presents a llst of all

of the files used along with a brief verbal description of each.

2.1 CLEAR

The first step required to complete an HOS simulation is to operate the submit

file CLEAR. It initializes the files used by subsequent simulation steps.

Before CLEAR can be submitted, the string "??" in the sixth llne of the file

must be replaced by the characters that will become the variable part of the file

names. In all the examples in this document, the string "EX" (short for example)

will be used. After editing, CLEAR should appear as shown in Figure 2.

/JOB

CLEAR,TS_,CMI2_. DESTINATION INFORMATION

USER,#######.

CHARGE,#######,LRC.
ATTACH,XEDIT/UN=LIBRARY.

XEDIT,EXEC,P.;XC/$NAME$/EX/*;XEND.

RETURN,XEDIT.

BEGIN,ICLEAR,EXEC.
BEGIN,IEXIT,EXEC.

Figure 2.- Submit file for step CLEAR.

When CLEAR executes, it gets EXEC and, using XEDIT, replaces all occurrences of

$NAME$ with the string "EX". PROC ICLEAR, as shown in figure 3, purges all the

indirect access temporary files used by HOS and defines and saves one direct access

file, MIEX.

OP

7

.PROC,ICLEAR
PURGE,MI$NAME$/NA.

PURGE,$NAME$D/NA.

PURGE,$NAME$O/NA.

PURGE,CI$NAME$/NA.

PURGE,C2$NAME$/NA. :.
PURGE,DI$NAME$/NA.
PURGE,D2$NAME$/NA.
PURGE,GI$NAME$/NA.
PURGE,TI$NAME$/NA. _
PURGE,T2$NAME$/NA.

PURGE,S2$NAME$/NA.

PURGE,O2$NAME$/NA.

DEFINE,MISNAME S •
RETURN,MISNAMES.
REVERT.

EXIT.

REVERT.

--ERO--

Figure 3.- PROC for step CLEAR.

PROC IEXIT copies and saves the dayfile as EXD. A sample dayfile is shown in

figure 4.

Execution of step "CLEAR" does not produce output on file $O or OUTPUT. The

output returned to the user consists of the dayfile only.

II.31.17.CLEAR,TS_,CMI2_. DESTINATION INFORMATION
11.31.17. USERNAME.

II.31.17.USER,#####

II.31.17.CHARGE,####,LRC.
II.31.17.ATTACH,XEDIT/UN=LIBRARY.

.: II.31.18.XEDIT,EXEC.P.;XC/$NAME$/EX/*;XEND.

II.31.21.RETURN,XEDIT.

II.31.21.BEGIN,ICLEAR,EXEC.

II.31.22.PURGE,MIEX/NA.
11.31.23. MIEX NOT FOUND, AT 121.
II.31.23.PURGE EXD/NA.

II.31.26.PURGE EXO/NA.

II.31.27.PURGE CIEX/NA.
II.31.28.PURGE C2EX/NA.

II.31.28.PURGE DIEX/NA.

II.31.29.PURGE D2EX/NA.
I1.31.29.PURGE GIEX/NA.

II.31.30.PURGE TIEX/NA.

II.31.31.PURGE T2EX/NA.

II.31.31.PURGE S2EX/NA.
II.31.32.PURGE 02EX/NA.

II.31.32.DEFINE, MIEX
II.31.33.EXIT.
II.31.33.REVERT.

II.31.33.BEGIN,IEXIT,EXEC.
II.31.33.DAYFILE,EXD.

Figure 4.- Dayfile from step CLEAR.

2.2 Execution of Submit File HAL

Submit file HAL shown in figure 5 contains a series of CCL statements that

perform NOS system level operations. Prior to submitting, the sixth llne is edited

to replace the string "??" with a one to three character string, the string "EX" has

been inserted in this example. HAL gets a local copy of the PROC file EXEC and

replaces all occurrences of the string SNAME$ with the one to three character file

set name (e.g., EX) previously selected by the operator and used previously in step

CLEAR.

9

/JOB

HALEX,T5_,CM23_. DESTINATIONINFORMATION
USER,#######.
CHAKGE,######,LRC.
ATTACH,XEDIT/UN=LIBRAKY.
XEDIT,EXEC,P.;XC/$NAME$/EX/*;XEND.
RETURN,XEDIT.
BEGIN,IHAL,EXEC,INPUT.
BEGIN,IEXIT,EXEC.
/NOSEQ
/EOR
SYSTEM MASTER TCV

SETTING SECTION

ON OFF'

FO FI F5 FI5 F25 F3O F4_
RIGHT LEFT STRAIGHT

Figure 5.- Submit file for step HAL with appended HOPROC code.

The edited local copy of PROC IHAL (fig. 6) in file EXEC is executed by the

eighth llne of HAL, "BEGIN,IHAL,EXEC,INPUT.". This same llne passes the HOPROC data

file to PROC IHAL. The HOPROC file is normally appended to HAL after the /EOR

llne. It becomes the input file for the execution step IHAL.

.PROC,IHAL,HOPROC.

GET,LHALO.

FURGE,$NAME$D/NA.
PURGE,$NAME$O/NA.
MAP=OFF.

LDSET,PRESET=ZERO.

LHALO,HOPROC,$NAME$O,CI,C2,,DI,D2.

REPLACE,CI=CI$NAME$/NA.

REPLACE,C2=C2$NAME$/NA.
REPLACE,DI=DISNAME$/NA.

REPLACE,DI=D2$NAME$/NA.
REVERT.
EOR

Figure 6.- PROC for step HAL.

PROC IHAL gets file LHALO and purges the dayfile and output file (if they exist)

from a previous execution. References to HOPROC are replaced by INPUT. The load _

module LHALO executes reading data from INPUT. LHALO translates the instructions and

data in INPUT into forms that will be used by later execution steps and writes the

I0

files CISNAME$, C2$NAME$, DI$NAME$, and D2$NAME$. The output file $0 consists of a

listing of input file HOPROC and any diagnostic and execution information.

A" 2.2.1 File HOPROC

The file passed with name INPUT to PROC IHAL is the HOPROC file that contains

program code specific to the simulation being conducted. It is written in Human

Operator Procedures Language (HOPROC), a superset of CDC FORTRAN-IV Extended.

The HOPROC file consists of three major sections: a title declaration section,

a functions section, and a procedures section.

2.2.1.1 Title

The title section contains the names of all devices to be used in the simulation

and the names of the legal settings, scale factors, and symbols to be used. The

title section is processed by LHAL0 into the Data Dictionary and is the basis for the

entries in the crew station data file.

2.2.1.2 Functions

The function section contains both Operator Functions and Hardware Functions.

Operator Functions describe the mental calculations that the pilot is to make based

on the information available to him. Each of the Operator Functions consists of a

function name followed by HOPROC code that defines the mental operations performed to

accomplish the tasks named. Hardware Functions describe the manipulation of

information by the hardware in the simulation. They consist of a function name in

quotes followed by HOPROC code defining what takes place.

2.2.1.3 Procedures

.. The procedure section contains Operator Procedures and Hardware Procedures.

Operator Procedures embody the pilots knowledge of the steps required to perform a

task, their order of execution, and the criteria used to determine when to start a

task or when a task is completed. Hardware Functions describe the hardware

Ii

consequences of actions taken by the pilot as well as independent actions taken by

the systems being simulated.

The Analytics in-house Technical Report 14_.22E contains a complete description

of rules and syntax of HOPROC and describes how a HOPROC coded file is generated.

When execution of PROC IHAL is complete, control returns to submit file HAL and

the PROC IEXIT is executed by the line "BEGIN,IEXIT,EXEC.".

2.2.2. PROC IEXIT

PROC IEXIT copies the dayfile to $D, copies $D and $0 to OUTPUT and saves $D

and $O.

2.2.2.1 File $D

File $D contains the system execution history, dayfile, of the job. An example

is shown in figure 7. It will be identical with the dayfile printed at the end of

the printed program output but it is available via a terminal immediately after Job

completion.

12.S1.32.HAL,T5_,CM23_.
12.51.32.USERNAME.
12.51.32.USER,##_.
12.51.32.CHARGE,####,LRC.
12.51.33.ATTACH,XEDIT/UN=LIBRARY.

12.51.35.XEDIT,EXEC,P.;XC/$NAME$/EX/*;XEND.

12.52._6.RETURN,XEDIT.
12.52._6.BEGIN,IHAL,EXEC,INPUT.

12.52._7.GET,LHALO.

12.52.19.1FE,FILE(INPUT,ASA)=_,GLOM.
12.52.21.ENDIF,GLOM.

12.52.21.PURGE,EXD/NA.

12.52.29.PURGE,EXO/NA.
12.52.3_.PURGE,OIEX/NA.

12.52.3_. OIEX NOT FOUND, AT 121. ..
12.52.31.MAP=OFF.

12.52.31.LDSET,PRESET=ZERO.

12.52.31.LHALO,INPUT,EXO,CI,C2,,DI,D2.
12.56.46. STOP -_

12.56.46. 1411_ MAXIMUM EXECUTION FL.

12.56.46. 25._4_ CP SECONDS EXECUTION TIME.

12.56.46.REPLACE,CI=CIEX/NA.

Figure 7.- Sample dayfile from step HAL_

12

12.56.49.REPLACE,C2=C2EX/NA.

12.56.51,REPLACE,DI=DIEX/NA.
12.56.53.REPLACE,D2=D2EX/NA.
12.56.55.REVERT.

12.56.55.BEGIN,IEXIT,EXEC.

.: 12.56.56.REWIND,OUTPUT.
12.56.56.SKIPEI,EXO.

12.56.58.COPYEI,OUTPUT,EXO.
12.56.59. EOI ENCOUNTERED.

12.56.59.REWIND,EXD,EXO,OUTPUT.

12.56.59.COPYEI,EXO.
12.57._. EOI ENCOUNTERED.

12.57.¢_.REPLACE,EXO.

12.57._6.DAYFILE,EXD.

Figure 7. Concluded.

2.2.2.2 File $0

File $O contains the output of the execution of LHALO. It contains a listing of

the INPUT file, a dictionary of variable names, and set of HOS data input forms.

The listing of the input file could be slightly expanded and contains some

explanatory and diagnostic statements such as those shown in figure 8.

The dictionary portion of $0 contains a llst of all names of symbols, devices,

functions, and procedures that are to be used by HOS and the index number or ID that

LHALO has assigned to each.

The data entry forms in $0 llst the dictionary entry name and provides space to

fill in all the information about each name that is required to run the simulation.

These data entry forms are only used when a new simulation is being defined and a new

Crewstation Data File (CDF) required. See Appendix B of this document for a

discussion of the CDF.

13

HAL -- THE HOPROCASSEMBLER/LOADER

MASTER......TCV 821_6/_4.

HARDWAREPROCEDURES

DEFINETHE PROCEDUREAC-UPDATE.

IF HOR-PATH-LIGHTIS ON THEN COMPUTEAUTO-BROLLY-ROLL. _

COMPUTENEW-SPEED,NEW-BANK,

NEW-GAMMA,NEW-LOCATION,PATH-ERRORS.

$$$
WARNING

HARDWAREPROCEDURESHAVE NOT BEEN DEFINEDFOR THE FOLLOWINGCONTROLS

AUTO SWITCH

HOR PATH SWITCH

VERT PATH SWITCH

SPEED BREAK LEVER

THROTTLELEVER

DH REF KNOB

THE FOLLOWINGDEFAULTHARDWAREPROCEDUREWILL BE ASSUMED--

END CHANGETHE ACTUALVALUE OF <CONTROL>TO THE DESIREDVALUE
OF <CONTROL>

Figure 8.- H0S diagnosticsfrom outputfile $0.

2.3 Executionof SubmitFile HALHOS

Submitfile HALHOS,as shown in figure9, gets a localcopy of file EXEC and

changesall occurrencesof the string"$NAME$"to the file name previouslyselected .-

(the characterstring "EX" in this example).

14

/JOB

HALHOS,TS_,CM33_. DESTINATION INFORMATION
USER,#######.

CH!tRGE,######,_._R.C.
ATTACH,XEDIT/UN:LIBRARY.

.: XEDIT,XEC,P.;XC/$NAME$/EX/*;XEND.

RETURN,XEDIT.

BEGIN,IHALHOS,EXEC,AI234,EX7MOD.
BEGIN,IEXIT,EXEC.4
END OF FILE

Figure 9.- Submit file for step HALHOS.

The statement "BEGIN,IHALHOSjEXEC,AI234,EXMOD." begins the PROC IHALHOS, shown in

figure I_, from the edited copy of EXEC, passes the UPDATE llst parameters (A1234)

and passes the name of the UPDATE directive file (EXMOD) to be used.

.PROC,IHALHOS,LIST,IFILE.
GET,SI:LHOS.

GET,CI:CI$NAME$.

GET,PI:B737PLA.

IFE,FILE(IFILE,AS)=_,GETIT.
GET_B73MOD.

GET,IFILE.

ENDIFjGETIT.

UPDATEDO=_,C=_,P:PI,N:P2,F_S,I=_.

UPDATE,O:_,C=_,P:SI,F,N:NI,L:LIST,I=IFILE.

UPDATEjO:_,C=_,P:NI,F,N=N2,L:LIST,I=CI.
UPDATE,O:/_,C=COMPILE,F,P:N2,N=NEW,L=LIST,I=B73MOD.

RETURN,SI,CI,NI.

FTN, I:COMP ILE,L=_,A,OPT:G, R:3.

REPLACE,NEW=SI$NAME$.

REPLACE,COMPILE:$NAME$CI.
REPLACE,LGO=OISNAME$.
REVERT.

Figure I@.- PROC for step HALHOS.

PROC IHALHOS loads files LHOS, CI$, B737PLA, B73MOD, and $MOD. File LHOS is a

•" permanent library file of HOS source code in UPDATE format. File CI$ is the UPDATE

directive file generated by step HAL. B73MOD and SMOD are user generated UPDATE

directive files containing changes to be made to LHOS.

File LHOS is loaded as SI and is modified with directive file $MOD in the second

UPDATE step to produce the UPDATE New Program Library (NPL) file NI. Directives in

15

file CI$ add COMMON's and the subroutines HFUNC and MFUNC to NI producing an NPL file

N2 in the third update step.

Pile B737PLA is loaded as file PI. The first UPDATE step:

UPDATE,O=@,P=PI,N=P2,F,S,I=_.

creates New Program Library file P2. The fourth UPDATE step:

UPDATE,O=_,C=COMPILE,F,P=N2,N=NEW,L=#,I=B73MOD.

modifies P2 and adds it as a group of subroutines onto the end of N2, creating the

NPL file NEW and the compiler source file COMPILE.

File NEW is saved as file SIS and can be used as the input file in the optional

step HOSMOD.

The NPL file COMPILE is compiled and the resulting LGO file is saved as file 015

which is used in steps HOSMOD and HOS. The compiler source file COMPILE is saved as

$ci.

At the end of the execution of PROC IHALHOS, control returns to submit file

HALHOS. The next line:

BEGIN,IEXIT,EXEC.

begins execution of PROC IEXIT. Files $O, SD, and OUTPUT are rewound and copied onto

OUTPUT for printing. Files $O and $D are saved as indirect access files. Figure II

shows the dayfile, file $D, for a typical HALHOS execution.

If HALHOS executes with no UPDATE or FTN errors, no output is produced, other

than the usual job header and dayfile. If output is desired from any of the UPDATE

steps, the output option O=# can be changed to O=OUTPUT or 0=$0. A printed listing 7"

of the entire FORTRAN source file at compile time can be obtained by modifying L=@ to

L=OUTPUT in the FTN step.

16

14.39.4_.KALHOS,T5_,CM33_#. RM2138
14.39.4#.#######.
14.39.4_.USER.#######.
14.39.4¢.CHAEGE,######,LRC.
14.39.41.ATTACH,XEDIT/UNfLIBRARY.

.: 14.4_.II.XEDIT,EXEC,P.;XC/$NAME$/EX/*;XEND.
14.4_.I4.RETURN,XEDIT.
14.4#.I5.BEGIN,IHALHOS,EXEC,AI234,EXMOD.

-; 14.4_.I5.GET,SI=LHOS.
14.4_.I8.GET,ClffiCIEX.
14.4#.Ig.GET,PI=B73?PLA.
14.4#.21.IFE,FILE(EXMOD,AS)=O,GETIT.
14•4#.21•GET,B73MOD•
14.4#.22•GET•EXMOD•
14•4#•23•ENDIF,GETIT•
14.4_.4_.UPDATE,Of_,Cffi_,PffiPI,N=P2,F,S,I=#.
14.4_.5#.UPDATECOMPLETE.
14.4_.5#.UPDATE,O=#,C=#,P=SI,F,N=NI,L=AI234,I=EXMOD.
14.41.1_.DECKSTRUCTURECHANGED
14.41.17.UPDATE COMPLETE.
14.41.17.UPDATE,O=#,C=#,P=NI,F,N=N2,L=AI234,IffiCl.
14.41.32.UPDATE COMPLETE.
14.41.33.UPDATE,O=#,C=COMPILE,F,P=N2,N=NEW,L=AI234,I=B73MOD.
14.42.#5.UPDATECOMPLETE.
14.42.#5.RETURN,SI,CI,NI.
14.42._5.FTN,I=COMPILE,Lffi#,A,OPTffi#,R=3.
14.45.36. 147.055CP SECONDSCOMPILATIONTIME
14.45.37•REPLACE,NEW=SIEX.
14.45.53.REPLACE,COMPILE=EXCl.
14•46•31.REPLACE,LGO=OIEX•
14.46.41.REVEKT.
14.46.41.BEGIN,IEXIT,EXEC.
14.46.42.REWIND,OUTPUT.
14.46.42.SKIPEI,EXO.
14.46.42.COPYEI,OUTPUT,EXO.
14.46.42.EOI ENCOUNTERED.
14.46.42.REWIND,EXD,EXO.OUTPUT.
14.46.42.COPYEI,EXO.
14.46.43.EOI ENCOUNTERED.
14.46.43.REPLACE,EXO.
14.47.11.DAYFILE,EXD.

FigureIi.- Sampledayfilefrom step HALHOS.

"" 2.4 Executionof SubmitFileHOSMOD

HOSMOD is the only optionalstep in the sequencefrom CLEAR to HOS. It is a
._

relativelyinexpensiveand quick methodof making changesin the executableHOS

file 015. It uses UPDATE and LIBEDITto make changesin sourcefile sIS but only

17

those subroutines in which changes are made are recompiled thus reducing the field

length and CPU time required.

In general, HOSMOD is used as a troubleshooting and coding aid. Changes can be

made and tested without the cost of rerunning RALHOS. After a change has been tested

and verified using HOSMOD, the UPDATE directive can be included in SMOD or B737MOD

and HALHOS can be rerun.

The user is cautioned against the pitfall of making a large number of changes in

the model using HOSMOD only to find that later the changes must be reprogrammed for

inclusion in the HAL step.

Submit file HOSMOD (fig. 12) gets and edits a local copy of EXEC, changing all

occurrences of the string "$NAME$" to the selected file name (the string "EX" in this

example). HOSMOD executes PROC IHOSMOD from the edited copy of EXEC. The line

BEGIN,IHOSMOD,EXEC,H7MOD.

begins the PROC and passes the UPDATEdirectivefile name HTMOD. PROC IHOSMOD

(fig.13) purgesthe old output file$0 and the old dayfile$D if they exist. The

UPDATE Old ProgramLibrary (OPL)file SI$ is loadedas local file SI (File sIS is the

completeFORTRANsourcefor HOS in UPDATE formatthat was createdin step KALHOS).

The loadmodule O15 (the compiledversionof Sl) is loadedas local file NEW.

/JOB

HOSMOD,TS@@,CM33@_. DESTINATION INFORMATION
USER,#######.

CHARGE,######,LRC.

ATTACH,XEDIT/UN=LIBRARY.
XEDIT,EXEC,P.;XC/$NAME$/EX/*XEND.

RETURN,XEDIT.

BEGIN,IHOSMOD,EXEC,AI234,H7MOD. ..
BEGIN,IEXIT,EXEC.

Figure 12.- Submitfile for stepHOSMOD.

18

.PROC,IHOSMOD,IFILE.
GET,SI=SI$NAME$.
GET,OLD=OI$NAME$.
IFE,FILE(EDIT,AS)=_,GETITI.
GET,EDIT.

.: ENDIF,GETITI.
IFE,FILE(EDIT,AS)=_,GETIT2.
GET,EDIT.

= ENDIF,GETIT2.
UPDATE,O=_,P=SI,N=NI,L=LIST,I=IFILE.
FTN,I=COMPILE,L=_.
LIBEDIT,LO=$NAME$L,I=EDIT.
REPLACE,NI=SI$NAME$.
REPLACE,NEW=OI$NAHE$.
REVERT.
EXIT.
REVERT.

Figure13.- PKOC for stepHOSMOD.

The UPDATE step in IHOSMOD,

UPDATE,O=@,P=SI,N=NI,L=_,I=IFILE.

modifiesfile SI using the directivesin $MOD. Since the UPDATE parameterF is not

specified,only thosesubroutinesthathave been changedare includedin the UPDATE

NPL File NI.

The FTN step recompilesthe subroutinesthat have been UPDATE'dand LIBEDIT

replacesthose sectionsof local fileNEW thathave been changed.

The new sourcefile N1 is saved as S25 and the load file NEW is saved as 015.

Controlreturnsto submitfile HOSMOD.

HOSMOD executesthe PROC IEXITwhich rewindsfiles $0, SD, and OUTPUT and copies

them to OUTPUT to be printed. Files $O and SD are savedas indirectaccess files.

"" The argumentA1234 is passedas the UPDATEparametersL=LIST. This will cause

error messagesand diagnosticsto be printedif any errorsoccur. In a normal

executionof IHOSMOD,no output is produced. If a completeUPDATEhistoryis

desired,the 0 optionmay be changedto O=OUTPUT.

19

Setting the FTN parameter L to L=OUTPUT produces a complete source listing of

those subroutines that have been modified and recompiled. Changing the parameter to

L=_ will suppress the listing. (It is usually desirable to leave L=OUTPUT.)

THE LIBEDIT parameter L=OUTPUT produces a record of which the subroutines and

procedures in 015 have been replaced. This output can be suppressed by changing to _

L=O.

2.5 Execution of Submit File HOS

Submit file HOS, shown in Figure 14, controls the actual execution of the

simulation using the files that have been created and modified by steps CLEAR, HAL,

PLALHOS, and HOSMOD. Submit file HOS gets a local copy of PROC file EXEC and replaces

all occurrences of the string "$NAME$" with file name character string previously

selected (the character string "EX°'in this example). The llne:

BEGIN,IHOS,EXECjLAND.

executes the PROC IHOS, shown in figure 15, from the edited copy of the file EXEC.

PROC IHOS gets the FORTRAN binary load file 015, the LGO file created by step

HALHOS. It gets DIS, one of the pseudo machine code instruction files created by

step HAL, and the Crew Data file (LAND in this example). PROC IHOS attaches the

direct access FORTRAN run time math library FTNMLIB, and gets the subroutine library

files TCVLIB and WGUSLIB, and the input data files T30 and T45. The four LIB files

are combined by the first LDSET into the run time LIB for the execution of O15.

File 015 is executed producing output in file $0 and the previously defined

direct access files MI$, TI$, T35 and GI$. The direct access files are returned and _-

control is passed back to submit file HOS.

File HOS executes PROC IEXIT which rewinds files $0 and $D and copies them to

OUTPUT to be printed.

20

/JOB

HOS,T5_,CM33_ DESTINATION INFORMATION

USER,#######.

CKARGE,######,LRC.

ATTACH,XEDIT/UN=LIBRARY.

.; XEDIT,EXEC,P.;XC/$NAME$/EX/*;XEND.
RETURN,XEDIT.

BEGIN,IHOS,EXEC,LAND.

BEGIN,IEXIT,EXEC.

Figure14.- Submitfile for stepHOS.

.PROC,IHOS_CREW.
GET,OI=OI$NAME$.

GET,DI=DI$NAME$.

GET,T30=DATA30,TCVLIB/UN=II953@C.

GET,WGUSLIB,T45=TAPE45/UN=34925_C.
IFE,FILE(TAPE7,AS)=@,GOTITI.

GET,TAPE7/NA.

ENDIF_GOTITI.

IFE,FILE(TAPE8,AS)=@,GOTIT2.
GET,TAPES/NA.

ENDIF,GOTIT2.

IFE,FILE(CREW,AS)=_,GOTIT3.

GET_CREW/NA.

ENDIF,GOTIT3.

PURGE,MI$NAME$/NA,ST=LPF.
DEFINE,MI=MI$NAME$/M=W.

PURGE,TI$NAME$/NA,ST=LPF.

DEFINE,TI=TI$NAME$/M=W.

PURGE,T3$NAME$/NA,ST=LPF.

DEFINE,T3=T3$NAME$/M=W.

PURGE,GI$NAME$/NA,ST=LPF.
DEFINE,GI=GISNAME$/M=W.

ATTACH,FTNMLIB/UN=LIBRARY.

LDSET,LIB=FTNMLIB/TCVLIB/WGUSLIB.
LDSET(MAP=SBEX).

LDSET_PRESET=ZERO.

01,1NPUT,$NAME$O,TAPE7,TAPES,T2,DI,MI,GI,CREW,TI,T3,T3@,T4@,T45.
DISPLAY_EFG.

RETURN,MI,GI,T3,TI.
REVERT.

ENDIF,STILLOK.
_ EXIT.

RETURN,MI.

RETURN,GI.
-_ REVERT.

--EOR--

Figure 15.- PROC for step HOS.

21

Normal execution of step HOS produces six files as output. They are the Plot

Data file T35, the HODAC Data files MI$, GI$, TI$ and T25, and the printer output

file $0. Two direct access scratch files, TAPE7 and TAPE8, are defined and used by

HOS but are not saved. Figure 16 shows a sample dayflle from a typical HOS

execution.

Files TI$, T25, T35, MI$ and GI$ are direct access files that are created and

saved by step HOS. See Appendix B of this document for a discussion of the contents

of each of these files.

Output file $0 and dayfile $D become the printed simulation history. The output

file $0 consists of three things: a listing of instruction array (input file DI), a

listing of the Crew Data File (input file CREW), and the step-by-step simulation

history produced by the execution of the simulation. A section of a typical HOS

output, a discrete simulation history, is shown in figure 17. The simulation history

is a complex file containing, among other things, a time history of every step of the

simulation, an aircraft status update record printed every I0 seconds and printouts

of the HOS Dictionary arrays (the complete set of simulation variables) at user

specified points and at the end of the simulation.

22

i3.54.17.HOS,T5_,CM3@_.
13.54.17.ED BOGART
13.54.18.USEK.
13.54.18.¢ ARGE•
13.54.19.ATTACH,XEDIT/UN=LIBRARY.

; 13.54.21.XEDIT,EXEC,P•;XC/$NAME$/EX/*;XEND•
13.54.35.RETURN,XEDIT.
13.54.35.BEGIN,1HOS,EXEC,LAND.
13.54.37.GET01=OIEX.
13.54.48.GETDI=DIEX.
13.54.49.GETT30=DATA30,TCVLIB.
13.54.54.GETWGUSLIB,T45=TAPE45.
13.55._3.1FEFILE(LAND,AS)=¢,GOTIT3.
13.55._3.GETLAND/NA.
13.55._5.ENDIF,GOTIT3.
13.55._5.DEFINE,MI=MIEX/M=W.
13.55._5.DEFINE,TI=TIEX/M=W.
13.55._6.DEFINE,T3=T3EX/M=W.
13.55._6.T3EX NOT FOUND,AT 000121.
13.55._6.DEFINE,T3=T3EX/M=W.
13.55.¢6.DEFINE,GI=GIEX/M=W.
13.55._6.ATTACH,FTNMLIB/UN=LIBRARY.
13.55._9.LDSET,LIB=FTNMLIB/TL'VLIB/WGUSLIB.
13.55._9.LDSET(MAP=SBEX).
13.55._9.LDSET,PRESET=ZERO•
13.55._9._I,INPUT,EXO,TAPE7,TAPE8,T2,DI,MI,GI,LAND,TI,T3,T3_,T4_,T45.
14.39.11 2274_ MAXIMUMEXECUTIONFL.
14.39.11 5.649 C£ SECONDSEXECUTIONTIME.
14.39.11.EXIT.
14.39.12.RETURN,M1.
14.39.12.RETURN,GI•
14.39.12.REVERT.
14.39.12.BEGIN,IEXIT,EXEC.
14.39.13.REWIND,OUTPUT.
14.39.13.SKIPEI,EXO.
14.39.13.COPYEI,OUTPUT,EXO.
14.39.14.EOI ENCOUNTERED.
14.39.14.REWIND,EXD,EXOjOUTPUT.
14.39.15.COPYEI,EXO.
14.39.16.EOI ENCOUNTERED.
14.39.16.REPLACE,EXO.
14.39.35.DAYFILE,EXD.

Figure16.- Dayfilefrom stepHOS.

23

31Z31P3 "_l_J[141 VCVS eOCE NO TUP_ e31o3124.
RODY

qPERAT_Q RH LH RF tF E H_RDWARE

AC UPDATE
2_._ A_Opa ontt T_[CAT_

aC UPDATE
72,_0 ;ntL TNOICITOP • 2._ 2,5
2Z,Pl STeP FNP
Z2,Wl _LTE9 _0_

22,e! JLTFP 807
22,_1 ILTEP _0o
22,A1 rNO POLL Ot'T
22.f!l _$TRITnHT VFCTOP
_2,_1 ST_P STOP
22,_! ILTEn 8_Z
72._I l_ Pq_
22,_5 A_OPR LOCALIZE€ X

kC UPDATE

23,0g LPCALI7EP • -,2 -*Z
23.10 _COP"JND r1,,4
23,13 jucOpa CPMPA_D FA.Pi

&C UPDATE
3,2 COPu_N_ GAPPA • .1 el
23,_4 _PSOP_ GluPl UF_G¢_

AC UPOATE
23,33 _a_ _E_GES • ._ .1

_" _C UPDATE

Z3._e _TfP C_TT
23._R JLTE_]_
73,5_ CO_TF :LY 10 CFIT
2),_5 Ae_O_F A_PCPArT POSITION Y

aC UPDATE
2_*Pg _I_CgAFT PO_IT_ • (-5_eOP._, -171.2) (-56?05.0_ -168.71

aC UPDATE

Z_,C3 ARSOP_ _YP_IHT 1 P_$ITION
a¢ UPDATE

2&,_7 _lyP_lhT I _SIT_ON • 1-§_0_30_ O,O| |-55064e_ OeO)
26.2P FLY TO CgIT • 2,0
26,28 IF 16e
Z4028 €O_PUT_ DIST T_ _AYPO[NT

AC UPDATE
Z6,61 ABSORB AInCRAFT POSITION I

" Z_,_5 aIRCP&FT POSITION • (-_65_Z.e, -163.e) 1-56_3_,5, -163._1
AC UPDATE

_4,Q1 DTST TO UAYPO_NT • _3oP
24._1 COPP_TE V#YPOI_T CLPSF

aC UPDATE

2_,01 U_YPOT_T CLO_E • ZO00.C
25,0Z JLTEP 1TZ
?_.O2 IF 176
2_,_q _FSDPA _AYP_IHT I NA_E

AC UPDATE

25,2_ _avPOlNT I NAVY • OUk_Y QUARY

Figure 17.- Typical output page from step IIOS.

3.0 DATA PLOTTING

PLOT is a complex file that contains a submit file (NEWPLOT) with two PROCs (C

and SIM), a MODIFY input file (.DATA,SlM) and a plot directive file (.DATA,DATAPLT).

When PLOT is submitted, it gets, modifies and executes PLOTSYS and PLOTLIB.

3.1 Execution of PLOT

Prior to submitting PLOT, DATAPLT should be edited to select the desired data

channels, data scaling, and other plot parameters. A careful examination of the

sample plot (fig. 18), the data reduction file SIM, and the plot directives contained

in DATAPLT will facilitate this. Figure 19 presents a sample dayfile from an

execution of PLOT. The plot data file name T35 in the llne:

ATTACH,TAPEI_=T3$/M=W.

must be edited to agree with the name of the plot data file created by HOS (T3EX in

the sample dayfile, fig. 19).

Figure 18 is a portion of a plot output generated by PLOT. The variable names

and scales are printed on the Y axis and simulation time is printed on the X axis.

Normally, two plot files are maintained to plot HOS output: PTLROLL to plot

lateral axis data and PLTPIT to plot longitudinal axis data. The two files are the

same except for their names and the data contained in DATAPLT. Each program plots

those flight data channels appropriate for that axis.

25

".

J

'h--n,...,.,...,.-nn-'i·rl;.i..,...,r-r-,...,.-nn=i..t=I;.i...i...'r'.....-\~'.".,',-.=i~t=IO~..,.........-,....;:!.,..~I',.i..,...,.....~~fr~,.i..,....''''..rl°;.i.,...,.....,...,...,..,-i,c.,rt;.'.,...,......,-,-..,...,..;=.

- ..s

-20

IN ""~"C"-NO INaT •
...,au
...... 1
.....01

.. 10

..... T'J"""""OIl:V.,.....,...
1r.... I .
• CLo..eT

...00_....cas..........

Ill......'·"•• -I'"~C • __MM" • WC_Z
.......C .""... •a_z..~e .""" • __M"''' ~cam••

....O ... I%C...
.... c ...

Jcaa- L.,JII:
veo"'"

............ ...com••
"r~c""

__""T'S'P,""OIl:
••0 0 ..

..... c: o~_L. J CIIIE' _L.a-_
L.Oc:..'-'Z

"Or-'"CUT-O.. _c ..
...._01".•

....... 0
aC_ 1I:

aWN .. ,'- 11:
err....... T ••~ .. IC

"'\-L. VCCTO".

..GOal<-0 lR.&

~ a ------------------------===---
S -l20&

-.115.0

~ :~I~-lO :--------------======----
-se

al~L

~O ----------------_=====-:=========
~-l

-Q

..a0g
~e70E-

~ L:~t-----------------------------
lIScO

laso

~
lOOO

~
7S0

l:r! 600

"0
I II ! f I

"0
I! I "" I

.. 0
,1,1

"

aso

0=- ------------------------------
1" I I ""'!' I II "" I,! I I!!! I! I, I """ t I, I '" II!! I! II ,

Figure 18.- Typical plot of HOS data.

26

II.38.53.PLOTROL,T2_ ,CMI#_. DELIVERYINFORMATION
11.38.53.ED BOGART
ii.38.53.USER,XXXXXXX.
Ii.38.53,CHARGE,_#####,LRC.
ii.38.54.BEGIN,C,PLOTEOL,MDS=SIM.

_! I1•38.57•GET,PLOTMOD•
ii.38.59.MODIFY,F,I=SIM,P--PLOTMOD.
iI.39._I.MODIFICATIONCOMPLETE.
ii.39._i•FTN,I,A,R--3,L=_•
11.39.22. 9.@5@ CP SECONDSCOMPILATIONTIME
11•39•22•REVERT•
I1•39•22•BEGIN,SIM,PLOTROL•
11•39•24•ATTACH,TAPEI_=T3EX/M=W.
ii•39•24•REWIND,TAPEI_•
ii•39•24•COPYEI,TAPEI@,TAPE8•
11.39.28.EOI ENCOUNTERED.
ii.39.29.RETURN,TAPE1€•
ii.39.29•REWIND,TAPE8•
ii.39.29•BEGIN,X,PLTROLL.
I1•39•31•ATTACH,FTNMLIB/UN=LIBRARY•
11•39.31•ATTACH,LRCGOSF/UN=LIBRARY•
Ii.39.31.GET,PLOTMOD•
1i.39.33.GET,PLOTSYS.
11•39•36•LDSET,LIB=PLOTLIB/PLOTSYS/LRCGOSF/FTNMLIB,PRESETA=NGINF•
ii•39•36.LGO,INPCRDS•
iI.41._9. _634_ MAXIMUMEXECUTIONFL.
ii.41._9. 49.18_ CP SECONDSEXECUTIONTIME.
ii•41•_9.RETURN,TAPE8.
11.41._9.PLOT.VARIAN(XM=I._@,i'M=.45,YO=7._)
11.41.14.v¢¢2
11.41.48. 2 FRAMES/ .89 METERS GENERATED.
II.41.48.PICTURE IMAGE FILE WILL BE SAVED ON DISK
11.41.51. ***** PLOT OUTPUT COMPLETED *****

ii .41.52 .REVERT.
Ii .41.52 .REVERT.

Ii.41,53. DAYFILE, PROLD.

Figure 19.- Dayfile from step PLOT.

4.0 HODAC REPORT GENERATION

The Human Operator Data Analysls/Collector (HODAC) is a FORTRAN program that

.A

converts data from a HOS simulation into graphs and/or reports suitable for use by a

human factorsanalyst. The user can selectfrom ten reportformats. AnalyticsHODAC

User's Guide contains descriptions of the report types available and describes the

input directives required for each.

27

4.1 HALHOD Execution

Two steps are required to produce any HODAC report or graph. The first step,

HALHOD (see fig. 20), executes PROC IHALHOD from file EXEC. PROC IHALHOD shown in

figure 21 gets library file LHODAC as local file P2 and gets the UPDATE directive

file C25 as local file C2. The UPDATE step modifies LHODAC, incorporating the

changes contained in C2. The COMPILE file is compiled in the FTN step producing the

load file LGO. The new program file N2 is saved as $25 and LGO is saved as 025.

/JOB

HALHOD,T3_@,CMIS_. DELIVERY INFORMATION

USER,#######.

CHARGE,######,LRC.
ATTACH,XEDIT/UN=LIBRARY.

XEDIT,EXEC,P.;XC/$NAME$/EX/*;XEND.

RETURN,XEDIT.

BEGIN,IHALHOD,EXEC,AI234.

BEGIN,IEXIT,EXEC.

Figure 20.- Submit file for step HALHOD.

.PROC,IHALHOD,LIST.

GET,C2=C2$NAME$.

GET,P2=LHODAC.

UPDATE,O=@,P=P2,1=C2,F,N=N2,L=LIST.
FTNjI=COMPILE,L=_,OPT=_,R-3,A.
REPLACE,N2=S2$NAME$.

REPLACE,LGO=O2$NAME$.
REVERT.

Figure 21.- PROC for step HALHOD.

Control returns to submit file HALHOD (fig. 20) which begins PROC IEXIT saving

5D and $0. If no UPDATE or FTN errors occur during execution of IHALHOD no output is

written into $0 and the printed listing for the job will contain only the JOB header "-

and dayfile. Figure 22 is the dayfile from a typical execution of HALHOD.

28

09.35.15.HALHOD,T3_,CMI5_0_0• DELIVERYINFORMATION
09.35•15.USER,#####.
09.35.15.CHARGE,#####,LRC.
09•35•15•ATTACH,XEDIT/UNffiLIBRARY.
09.35•16.XEDIT,EXEC,P.;XC/$NAMES/EX/*;XEND.

-; 09•35.23.RETURN,XEDIT.
09.35.23.BEGIN,IKALHOD,EXEC,A1234.
09.35.24.GET,C2ffiC2EX.

. _9•35•45•GET,P2=LHODAC•
09.35•57.UPDATE,0=_,P=P2,I=C2,F,N=N2,L=A1234•
09.36.09.UPDATECOMPLETE.
09.36.09.FTN,I=COMPILE,L=_,OPT=_,R=3,A.
09.37.08. 45.295CP SECONDSCOMPILATIONTIME
09.37.08.REPLACE,N2=S23X.
09.37•17.REPLACE,LGO=O2EX.
09.37.25.REVERT.
09•37•25.BEGIN,IEXIT,EXEC•
9.37.26.REWIND,OUTPUT.
09.37.26•SPIPEI_EXO•
09•37•26•COPYEI,OUTPUT,EXO.
09.37.26.EOI ENCOUNTERED.
09•37.26•REWIND,EXD,EXO,OUTPUT.
09.37.26•COPYEI,EXO.
09.37.26.EOI ENCOUNTERED.
9•37•26•REPLACE,EXO.
09.37.26•REPLACE,EXO.
09•37•29•DAYFILE,EXD.

Figure 22. Dayfile from step HALHOD

5.2 HODAC Execution

The second step required to generate a HODAC report is the execution of submit

file HODAC (shown in fig. 23). When HODAC is submitted, it gets and edits a local

copy of file EXEC, replacing all occurrences of the string $NAME$ with the desired

file name (the string "EX" in this example). The next command llne in HODAC:

BEGIN,IHODAC,EXEC,INPUT.

begins PROC IHODAC from the edited copy of EXEC.

4j

29

/JOB

RODAC,T3_,CMI5_. DELIVERY INFORMATION
USER,#######.

CHARGE ,######,LRC.
ATTACH, XEDIT/UN=LIBRARY.

XEDIT ,EXEC ,P.;XC/$NAME$/EX/*; XEND.
RETURN, XEDIT.

BEGIN, iHODAC, EXE C,INPUT.
BEGIN, IEXIT, EXEC.

/NOSEQ
/EOR

DEVICES BY PARTS TIMELINE EVERY 5 SECOND:

FROM _._@ SECONDS TO 3_ SECONDS.
LABELS 6%lANNEL-LOAD EVERY 5 SECOND:

FROM _._@ SECONDS TO 3_@ SECONDS.

LINKS SYSTEM CENTER-PANEL = CAS-ENG-DISPLAY THRU TKA-SEL-LIGHT;
SYSTEM EADI = EADI THRU TRACK-POINTER_

AIRCRAFT-SYMBOL THRU WAYPOINT-5-POSITION;

SYSTEM EHSI = ENHSI THRU WIND-VELOCITY;

SYSTEM PILOTS-PANEL = BARO-ALTIMETER-THOU THRU MIDDLE-BEACON-LIGHT;

SYSTEM CENTER-CONTROLS = VEL-CWS-SWITCH THRU VERT-PATH-SWITCH_

WPT-ALT THRU TRACK-UP-SWITCH,
SPEED-BRAKE-LEVER THRU AUTO-MANUAL-SWITCH;

SYSTEM PILOTS-CONTROLS = BROLLY-PITCH THRU START-SIMULATION:

FROM @._@ SECONDS TO 3_ SECONDS.
/EOF

Figure 23.- Submit file for step HODAC with appended HODAC directions.

PROC IHODAC (shown in fig. 24) gets the execution load module 025, created by

step HALHOD, as local file 02. It gets the pseudo-machlne-lnstructlon file D25,

created by HAL, as local file D2. The HODAC directives are passed as file INPUT.

.PROC,IHODAC_IFILE.

GET,D2=D2$NAME$.

GET,O2=O2$NAME$.
iFE,FILE(IFILE,AS)=_,SKIPI.

GET,IFILE.

ENDIF,SKIPI.
ATTACH,MI=MI$NAME$.

ATTACH,GI=GI$NAME$
LDSET,PRESET=EERO. --

02,D2,GI,MI;IFILE,$NAME$O.

RETURN,MI.
RETURN,GI.
REVERT. :_

EXIT.
REVERT.

--EOR--

Figure 24.- PROC for step HODAC.

30

Two direct access data files, MI$ and GI$, both created during execution of the

HOS step, are attached by IHODAC. File MI$ is a binary version of the simulation

output listing but without any headings, error messages, or pagination. MI$ is read

as input data during execution of 02. File GI$ is a binary file that contains plot

data. It is read as input by 02 if a Time Graph is being produced.

When execution of 02 is complete, direct access files M1 and GI are returned and

control returns to submit file HODAC. HODAC begins IEXIT which copies the dayfile to

$D, copies $O and the dayfile to OUTPUT, and saves $0 and SD.

Figure 25 shows a typical page of HODAC output. It is the first page of the

Device-by-Parts-Timeline report created by the first command line in the HODAC

Command File

DEVICES BY PARTS TIMELINE EVERY 5 SECONDS

shown in figure 23.

REFERENCES

I. Glenn, F. A., III, Doane, S. M.: A Human Operator Simulator Model of the NASA

Terminal Configured Vehicle (TCV). NASA-CR 15983, May 1981.

2. Anon: Terminal Configured Vehicle Program Test Facilities Guide.

NASA-SP 435, 1980.

31

B31031C4. Z1_31_3 FZ_HIL |Z) VCVS q9_ PAGE 1

qOniC qQ_Y DIRT T[qELZNE AqALYSZS (5•Q SECOqO SNAPSHOTS)

TIqE E_£CUTI_ £YES JPE mZG_T q_O _S LEFT HiND IS gVGHT FO_T ZS LiFT FO_T IS

0•0 PLY Tq VAYo_INT iPSPOR[_ F|qq q&HTPULAT|NG NAqlOULATZqG
_iP _CILES C_ ENG ghOq START $I_ULATIOq

• £)_VIEV ,_NITOR_)i_Dq|)'G FqO_ e_LAVIq_
iYP(_T _ PQS[TT_k

lU.O £STql(_qT VECT_P AP¶OPm(N_ FB_q • • • , • , • , • • MAN_PULATZN_
k(RCF=rT *ITCH MIOLLY eOLL

l_._ • , • • • . . • • , ABSOPAIK_ F_qN • • • • • • , • • •
TP_C_ _OX

_IYePX_T _ P3SXTIO _ BROLLY RqLL

Z_,3 FrY TO VkYD_I_T A_SCPPZHG F:Oq q4NIPULAT]N_
kXYPO(NT Z SPEE_ CAS £HG KNO_

30.0 E_SPLEO CHECv iRS_eP!Nfi F_ EEL_XiNG
V5!

3_,D ESTPAIFHT V_CTCF APSq_R_G €_0_ • • , • • • • • • •
AIRCRAFT _OSITIO_

40.0 • , • . . , , , • . ABSQE_ZNG F|Qq , . • • , • • • , •
iZRC_FT P(TC_

4E.O FLY TQ WAY_O[_T ABSQgBIIIG FR_q • • • • , • • • • •
GROU_O S_EEO

_g*O * * , , * * • • • * IPSOP_ING F_Oq' _OVI_G TO
UAY°C_qT 3 SPE_D _JS ENG KNOR

5S._ E_IoSPEE_ C"ECv inSOgBZ_ FE0_ MANIOlIL&T_NG
AIRCRAFT _(TCH CAS ENG _NO_

6U.O |STRAIGHT VECTOe ae_nePl_G FP_ _ELAXIqG qJNIPULATJN_
_AYPQZ_T 3 P_SETInN 8ROLLY _OLL

_•0 • • • * • * • • • • ARSO_q_N_ _Oq •
T_AC_ BOX

70•0 £_ZRSP[ED CHEC_ APSnePXNG FRfl_ . , • , • • , , . ,
btNO VELOC(T¥

7§.0 _LY TO VAYPO[_T AA¶_FR[NG fR_q • • • , • , , • , •
AtoC_A_T PgSITIO_

0000 £STPAI_HT V_CT_ iRS_RB_kG FRqq • * • . . . e • . • q&_IwULATING
_lvP_lNT 3 POSZT/Q.'_ BROLLY R_LL

Figure 25.- Typical output page from HODAC timeline a.alysis report.

APPENDIX A

STRAIGHT-IN APPROACH SCENARIO

: The stralght-ln approach scenario (fig. 26) presents the nominal flight path for

a stralght-ln Instrumentation Landing System (ILS) approach with the locations of the

q

waypolnts marked and with altitude and airspeed schedules shown.

The following description of the tasks was taken from NASA CR 3421 since it

provided an appropriate description of the sequence of activities being simulated. -

Flight From Waypolnt MERCI to Waypolnt QUARY:

The aircraft begins the simulation at an altitude of 151# feet, an airspeed of

21_ knots, with flaps set at I°, and holding a flight path angle of _._o.

Immediately after passing waypolnt MERCI, the pilot calls for a flap setting of 5°

(nominally implemented by the co-pilot, however, implement in this simulation by

software since the co-pilot is not actually modeled), and selects an airspeed of

185 knots.

The pilot will monitor the gamma wedges, the track angle pointer, and the

locallzer deviation indicator. As each waypolnt is approached, the pilot monitors

the EHSI, airspeed indicator, and the altimeter.

Flight From Waypolnt QUARY to Waypoint RAPID:

QUARY is approached at an airspeed of 185 knots and an altitude of 151@ feet is

maintained. Immediately after passing QUARY, the pilot calls for a flap setting of

15° and selects an airspeed of 16@ knots. He maintains these conditions in straight

and level flight through RAPID.

-_ Flight From Waypolnt RAPID to Waypolnt NORMA:

The pilot selects an airspeed of 14@ knots, calls for the flaps to be set at

25°, and the landing gear lowered. After passing RAPID he begins monitoring for the

outer marker which is indicated by the flashing of the outer beacon indicator light

33

Y (FT,)

- 10,000

-70,000 -60,000 -50,000 -40,000 -30,000 -20,000 -10,000 10,000

-i0,000

(._
4_

I_) - WAYPOINTONSTRAIGHT-INAPPROACH

FigureAt. - Waypo|ntlocationsalong the Stralght-lnApproach Path.

(the audio-signal is not currently simulated in the model). Upon reaching the outer

marker, hebegins monitoring the glideslope indicator, when the glldeslope indicator

is approximately centered, he changes the flight path angle to -3° with a column

input.

During this phase of the flight, the pilot arms the speed brakes and calls for

"landing checklist to flaps." Continued attention is given to the localizer

deviation indicator, glideslope deviation indicator, airspeed indicator, EHSI, and

IVSI.

Flight From Waypoint NORMA to Waypolnt DUBIL:

Flying at 14_ knots, the aircraft passes waypoint NORMA. The pilot calls for a

flap setting of 3_° and selects an airspeed of 13_ knots. The same instruments are

monitored as between RAPID and NORMA, with a target altitude of 384 feet at waypoint

DUBIL.

Flying at 13_ knots, descent is continued while the pilot visually monitors for

the middle marker signal which should occur at 188 feet altitude. Maintaining an

airspeed of 13_ knots, the pilot calls for completion of the landing checklist and a

flap setting of 4_ °.

35

APPENDIX B

FILE DESCRIPTIONS

All files required to execute a TSRV flight simulation are maintained in their

current form on a master magnetic tape and also in the LaRC permanent file system.

In the following discussion, the names of files and the names of CDC utility programs

are printed in upper case characters for clarity. The names of files created and

used during the simulation process are made up of a variable part consisting of one

to four _aracters, used to identify the particular simulation run conditions, and a

prefix or suffix of one to three characters identifying the function of the file in

the execution of the simulation. As in the main text, the names of files used during

the simulation will be referenced with the fixed characters in upper case and the

variable characters represented by a dollar sign ($).

Several types of files are used during the simulation. These include a

procedure file (EXEC), several submit files that execute sequences of procedures from

EXEC, three large FORTRAN programs in UPDATE format (UPDATE is a NOS utility used to

modify and maintain files), several supporting UPDATE input files and input data

files. This appendix presents a verbal description of each of these files.

EXEC is the procedure file comprised of all of the PROC's used in the normal

execution of a HOS simulation. Each PROC combines a number of Cyber Control Language

(CCL) statements that can be executed by a single command in a submit file. In this

document, the PROC for each step is referenced by separate submit files. In normal

operation of a complete simulation, several or all of the necessary PROC's could be

inltlatd by a sequence of commands in a single submit file. EXEC consists of the ""

following procedures:

36

ICLEAR

IHAL

IHAL OS
IHOSMOD

IHOS

, IHALHOD
IHODAC

IEXIT.

The action of a PROC is transparent to the user during normal use of the HOS

simulation program. Only when changes to HOS execution are desired is it necessary

to modify an individual PROC. For example, a listing of the FORTRAN program LHOS can

be obtained by changing the compile step in PROC IHALHOS. The compile or FTN step

which now specifies no listing, (L=_)can be changed to L=OUTPUT.

File CLEAR is a submit file containing NOS commands required to execute step

CLEAR which purges all old output files remaining from a previous simulation that

used the same file name variable part. It gets and edits a local copy of the PROC

file EXEC and begins PROC ICLEAR and PROC IEXIT.

File HAL is a submit file containing NOS commands required to execute step HAL

and an input data file in HOPROC code. The file gets and edits a local copy of the

PROC file EXEC, begins PROC IHAL passing the HOPROC input file as file INPUT, and

begins PROC IEXIT.

File HALHOS is a submit file containing NOS commands required to complete step

HALHOS. It gets and edits a local copy of PROC file EXEC and begins PROC IHALHOS and

PROC IEXIT.

File HOSMOD is a submit file containing NOS commands required to complete step

HOSMOD. It gets and edits a local copy of PROC file EXEC and begins PROC IHOSMOD and

j_

PROC IEXIT.

File HOS is a submit file containing NOS commands required to complete step
QJ

HOS. It gets and edits a local copy of PROC file EXEC and begins PROC IHOS and PROC

IEXIT.

37

File HALHOD is a submit file containing NOS commands required to complete step

HALHOD. It gets and edits a local copy of PROC file EXEC and begins PROC IHALHOD and

PROC IEXIT.

File HODAC is a submit file containing NOS commands required to complete step

HODAC and a file of HODAC report directives. It gets and edits a local copy of EXEC,

begins PROC IHODAC with the name INPUT passed as the directive file name and it

begins PROC IEXIT.

File PLOT contains the submit file that executes a plot of HOS output data,

three PROC's (PROC's C, SIM, and X) that carry out various steps in the plot

execution, an UPDATE directive file (DATA SIM) and a plot specification data file

(DATA INPCRDS). PLOT produces output on a VARIAN plotter using files PLOTSYS,

PLOTMOD, and PLOTLIB.

File PLOTSYS contains the executable load module of the plot program.

File PLOTMOD is a FORTRAN source program in UPDATE format. After an UPDATE and

compile, PLOTMOD processes the plot data file from HOS into a form compatible with

the plot program PLOTSYS.

File PLOTLIB contains the runtime library used in the execution of the plot

program PLOTSYS.

File LHALO is the binary load module for the HOS program named HAL. In normal

operation, LHALO is never modified by the user.

LHALO translates statements written in the Human Operator Procedures (HOPROC)

language into CDC FORTRAN IV extended statements. Array sizes, variable labels and

titles, and function entry points are calculated and used to generate the variable

COMMON blocks and EQUIVALENCE's for program HOS. LHALO saves these in the form of

UPDATE directive files CI$ and C25. The procedures are translated into pseudo- _-

machine code binary form and are saved as filed DIS and D25.

(See Analytics T.R. 14@_.22 for a detailed description of the structure and

operation of LHALO.)

38

File LHOS is a large FORTRAN IV Extended source program in UPDATE format. It

contains the generic portion of the Human Operator Simulator (HOS) program, and all

the subroutines and functions necessary for simulation. LHOS is loaded as a local

file SI by PROC IHALHOS. The UPDATE steps in PROC IHALHOS add variable COMMONS to

the subroutines, add subroutines HFUNC and MFUNC and add the aircraft modeling sub-

routines from B737PLA. Optional UPDATE steps in PROC IHOSMOD make more operational

changes. The result of these steps, file COMPILE, is compiled into 015, the HOS

execution load module.

(See Analytlcs T.R. 14_.22 for a detailed description of the subroutines and

variables in LHOS.)

File B737PLA is a FORTRAN program in UPDATE format. It models the flight

dynamics of the Boeing 737 aircraft as configured for the NASA/LaRC T.C.V. It is

loaded as file PLA by PROC IHALHOS, UPDATE'd and added into HOS source file.

(Execution of B737PLA requires the presence of three other files; the library

files TCVLIB and WGUSLIB and the data file TAPE45.)

File WGUSLIB is part of the B737-I_ simulator file library. It contains a

number of functions used by B737PLA in the computations concerned with the atmosphere

and winds. PROC IHOS gets WGUSLIB and the first LDSET line:

LDSET,LIB=FTNMLIB/TCVLIB/WGUSLIB.

makes it part of the runtlme library for the execution of load module 015.

File TAPE45 is part of the B737-I_ simulator file library. It contains

. atmosphere and wind data used as input data for wind and atmospheric calculations.

File TCVLIB is a library file that contains run time subroutines and functions

'[called by B737 subroutines. The first LDSET llne in PROC IHOS:

LDSET,LIB=FTNMLIB/TCVLIB/WGUSLIB.

makes TCVLIB part of the runtime° library for the execution of load module O15.

39

File DATA30 containsaircraftdata which is used as input for the B737-I@_

subroutines.

The files B737PLA,WGUSLIB,TAPE45,and TCVLIB are maintainedin the LaRC

centralcomputercomplexand local copiescan be obtainedby executingthe following

GET commandsinteractlvelyor from BATCH. :

GET,B737PLA,WGUSLIB,TALE45/UN=24925@C.

GET,TAPE3_=DATA3_,TCVLIB/UN=II953#C.

(See Sperry Systems Management Report No. SP71@-@21, dated March 1981, for a detailed

description of the structures and functions of these files.)

CREWSTATION Data File is an input data file for the execution of HOS. It

contains all the variable parameter data that are used to define the pilot, the

aircraft and its characterlstlcs_ and scenario to be followed during the flight

simulation. The file is divided into sections corresponding to the sections of the

dictionary listing and data entry forms generated by step HAL. The divisions are:

DISPLAY SECTION

CONTROL SECTION •

SYMBOL SECTION

OPERATOR FUNCTIONS

MODE SPECIFICATIONS

HUMAN OPERATOR SPEX

Each of these sections consists of dictionary names followed by lists of

variable parameters that define the location, type, initial values, and other

characteristics of the variables.

Two crew files are standardwith the TCV versionof HOS: LAND and CRUISE. .-

File LAND, used in all the examplesin this document,definesa simulationof a

stralght-ln approach and landing starting about 65 thousand feet from the runway

threshold.

40

#

File CRUISE defines a simulation scenario for a curved, descending approach and

landing starting from south of the runway threshold.

jh

The following files contain data that are specific to a particular simulation

scenario or condition. They, therefore, may change with each execution of a simula-

tion. Some are created and/or modified by the operator prior to execution and

contain variable data for the simulation. Others are output files that are recreated

with each run and reflect changes in input data.

UPDATE Directive File SMOD contains modifications to be made in the FORTRAN

program LHOS. These are user generated changes to the operation of HOS. This

includes setting the number of lines per page of printed output and setting the

minimum time increment for simulation update. The name of SMOD is passed from submit

file KALHOS to PROC IHALHOS and replaces the name IFILE.

UPDATE Directive File HTMOD used in step HOSMOD contains the modifications to be

made in the FORTRAN source file SIS. The complete name of H7MOD is passed by submit

file HOSMOD to PROC IHOSMOD and replaces the dummy variable name IFILE.

File CI$ is an UPDATE directive file generated by the execution of LHALO in PROC

IHAL. It contains the HOPROC statements after conversion into CDC FORTRAN IV source

statements. File CI$ is used as the directive file in the third UPDATE step of PROC

IHALHOS. The code in CI$ is inserted into the source code of file LHOS and becomes

the subroutines HFUNC and MFUNC.

File C25 is an update directive file generated in the execution of LHALO by PROC

" IHAL. It contains the functions from file HOPROC after conversion by LFIALO into

': FORTRAN.

The UPDATE step in PROC IHALHOD uses C25 as its directive file and inserts these

source statements into file LHODAC, creating the UPDATE New Program Library file N2

and the compiler source file COMPILE. These files are part of the group of files

41

necessary for the production of the HODAC reports discussed in section 5.0 of this

document.

File 015 is the binary load module that is executed in step HOS. It is the

compiled version of the FORTRAN source program file $Ci. It is created by step

HALHOS where COMPILE, generated by the last update step, is compiled and LGO is saved -

as 015. If optional step HOSMOD is executed, all subroutines that are changed in

COMPILE are recompiled. The new LGO code is used to replace the corresponding

subroutines code in Ol using LIBEDIT. The new version of Ol is saved as 015.

File 025 is a binary load module that is executed in step HODAC. It is the

compiled LGO file generated by the FTN llne of step HALHOD. It is comprised of the

FORTRAN source program LHODAC modified by the UPDATE directives in file C25. File

025 is a compiled version of N25.

File N25 is an UPDATE New Program Library file made up of the permanent file

LHODAC and the modifications from the directive file C25. It is the FORTRAN source

file (in UPDATE format) for load file 025. N25 is saved at the completion of step

HALHOD.

File SIS is an UPDATE New Program Library (NPL) file created by the last UPDATE

step in PROC,IHALHOS. It contains (in UPDATE format) the complete source code for

the execution of HOS. This is comprised of the permanent file LHOS plus the compiled

code from file HOPROC plus the aircraft simulation program B737PLA and the modifica-

tions in the directive files $MOD and B737MOD.

File S25 is an UPDATE New Program Library file created by the optional step

HOSMOD. It is the file SIS edited according to the directives in the directive file

$HTM.

File DIS contains Hardware Procedure and Operator Procedure code from HOPROC --

that has been converted by HAL into pseudo-machlne instructions. It is stored in

octal format. File DIS is read by HOS and becomes the instruction arrays HINSHW and

HINSOP. (See Analytlcs T.R. 14_.22B for more information.)

42

File D25 is a data file generated by the execution of LHALO in step HAL. It is

read as input data in step HODAC. D25 contains informatlon on dictionary titles and

their associated data arrays. The information is stored in a packed binary format.

(See Analytlcs T.R. 14_.22D, pp. 1-3 for more information on the data and the

storage format.)

File GI$ contains packed binary plotting data for the Time Graph option of

HODAC. It is generated by the execution of 015 in step HOS and contains a time

history of the simulation, consisting of simulation times, activity and device

identification codes and information on actual values, estimated values, desired

values, and limits for specified HOS variables. (See Analytlcs T.R. 14_.22D for

more details of the record format.)

File MI$ is a data file generated in step HOS during the execution of 015. It

contains a record of all the actions that have occurred during the execution of the

simulation. This is the same information that is output by HOS as file $O but is

stored in packed, 6_ bit, binary words. Each word contains the record of one action

and consists of simulation time, an action identification code, and a dictionary

reference number. (See Analytlcs_T.R. 14_.22D, pp. 1-5 for more information.) MI$

is read as input during the execution of the report generation step HODAC.

File T35 is a dlrect-access plot data file created during the execution of O15

by PROC,IHOS. At each step in a simulation, the current values of simulation

variables are loaded into array VSTATE in subroutine HFUNC and written to the plot

data file T35 by subroutine LPTAPE. File T35 may be as much as 25 thousand records

long, depending on the length of the simulation.

File T35 consistsof one headerrecordfollowedby a numberof data records.

•_ The storage protocol is:

One header record with the following information:

i. Identification number for this run (integer)
2. Number of data channels (integer)

3. Names of each data channel (holerlth)

43

4. Units for each data channel (holerith)

5. Run title (eight holerlth words)

A number of data records of the following form:

I. Time (seconds)
2. X lookpolntcoordinate(inches)
3. Y lookpolntcoordinate(inches)
4. Stick trim (blankor not used)
5. Stickdisplacement(inches)
6. Wheel displacement(degrees)
7. Throttlelever position(degrees)
8. Rudder pedal (degrees)
9. Altitude(feet)

I0. Glideslope deviation (dots)
Ii. Locallzer deviation (dots)

12. Airspeed (knots)

13. Altitude rate (feet per second)

14. X position of aircraft with reference to runway (feet)

15. Y position of aircraft with reference to runway (feet)
16. Pitch attitude (degrees)

17. Roll attitude (degrees)

18. Yaw attitude (degrees)

19. Pitch rate (degress per second)

20. Roll rate (degrees per second)
21. Yaw rate (degrees per second)

22. Instrument lookpolnt where:

i = other instruments
2 = EHSI

3=EADI

23. An integer designation for each point within the EHSI, the EADI, or
other instruments using the following codes:

I. For "other instruments" (the preceding word, #22, has
value I).

I. NCDU

2. EHSI
3. EADI

4. Airspeed
5. Altitude
6. VSI

7. Outer beacon

8. Middle beacon ""

9. Engine
i0. Select
ii. AGCS mode .-

12. Flap

2. For EHSI (word #22 has vaiue 2)

i. Heading

2. Speed

44

3. Scale
4. Own airplane
5. Other traffic
6. All vectors

_ 3. For EADI (word #22 has value 3)

i. Roll
2. Locallzer
3. Glldeslope
4. Aircraftsymbol
5. Speed error
6. Altitude
7. Pitch reference
8. Gamma wedges
9. VDOT
i0. Runway i,_ ft. line

II. Runway centerline
12. Horizon

13. Aircraft + gamma
14. Aircraft + horizon

15. Aircraft + gamma + horizon
16. Gamma + pitch reference

17. Gamma+ runway end

18. Gamma + runway i,_@ ft. line
19. Runway end
20. Gamma+ horizon

21. Track symbol
22. Pitch scale

Data channels can be removed from or added to T35 as required. A careful exami-

nation of HOS subroutines HFUNC and LPTAPE and the corresponding data input and data

manipulation portions of file PLOT should enable the change.

File $0 is a saved copy of the printed OUTPUT file. It is available for

examination from the terminal as soon as job execution is completed. In some cases,

file 05 may exceed the maximum length for files that can be saved by the system.

This will not adversely affect the printing of the output or the execution of the

balance of the steps.

File SD contains a saved copy of the job execution DAYFILE. It is available for

'" examination from a terminal immediately after execution is completed.

45

1. Report No. I 2. Government AccessionNo. 3. Recipient's Catalog No.
NASA TM-86367 I

"4. Title and Subtitle 5. Report Date

Users Guide: The LaRC Human-Operator-Simulator- April 1985
Based Pilot Model s.PerformingOrganizationCode

505-35-33-01
7. Author(s) 8. PerformingOrgan;zation Report No.

Edward H. Bogart and Marvin C. Waller
10. Work Unit No.

9. PerformingOrganization Nameand Address

NASA LangleyResearchCenter 'tl. Contractor Grant No.

Hampton,VA 23665

13. Type of Report and Period Covered

12. SponsoringAgency Name and Address Technical Memorandum

NationalAeronauticsand Space Administration 14.SponsoringAgencyCode
Washington,DC 20546

15. SupplementaryNotes

Edward H. Bogart: Kentron International, Inc., Hampton, Virginia.
Marvin C. Waller." NASA Langley Research Center, Hampton, Virginia.

16. Abstract

A Human OperatorSimulator(HOS)based pilot model has been developed
for use at NASA LaRC for analysisof flightmanagementproblems. The model
is currentlyconfiguredto simulatepilotedflightof an advancedtransport
airplane. The genericHOS operatorand machinemodel was originallydeveloped
under U.S. Navy sponsorshipby Analytics,Inc. and througha contractwith
LaRC was configuredto representa pilot flying a transportairplane.

A versionof the HOS programruns in batch mode on LaRC's (60-bit-word)
centralcomputersystem. This documentprovidesa guide for using the
programand describesin some detailthe assortmentof files used during
its operation.

17. Key Words (Suggest_ by Author(s)) 18. Distribution Statement

Pilotmodel Unclassified- Unlimited
Operatormodel
HOS

SubjectCategory53

19. Security _a_if. (of this report] 20. Security Cla_if. (of this _ge) 21. No. of Pages 22. Dice

Unclassified Unclassified 46 A03

.-3os ForsalebytheNationalTechnicalInformationService,Springfield.Virginia22161

".!

° _

i

i

DO NOT REMOVE SLIP FROM MATERIAL

Deleteyourname fromthisslipwhen returningmaterial
to the library.

NAME DATE MS

NASA Langley (Rev. Dec. 1991) RIAD N-75

