@ https://ntrs.nasa.gov/search.jsp?R=19850016410 2020-03-20T19:29:02+00:00Z

/A7 77— b /s

) NASA-TM-86367 19850016410
NASA Technical Memorandum 86367

A

USERS GUIDE: THE LaRC HUMAN-OPERATOR-
SIMULATOR-BASED PILOT MODREL

Edward H. Bogart and Marvin C. Waller

APRIL 1985 | 1I8nARY £O8PY

AR 40 58D

LANGLEY RESEARCH CENTER
LISRARY, NASA
HANMPTON, VIRGINIA

Mational Aeronautics and

Space Administraticn

Langley Research Center
Hamr.pten, Virginia 23665

517

| 31176 01359 9718
SUMMARY | : |

A Human Operétor Simulator (HOS) based pilot model has been developed for use at
NASA LaRC for analysis of flight ﬁanagement problems. The model is currently
cqnfigured to simulate piloted flight of an advanced transport airplane. The generic
HOS operator and machine model was originally developed under U.S. Navy sponsorship
by Analytics, Inc. and through a contract with LaRC was configured to represent a
pilot flying a transport airplane.

A version of the HOS program runs in batch mode on LaRC's (60-bit-word) central

computer system. This document prdvides a guide for using the program and describes

" in some detail the assortment of files used during its operation.

1.0 INTRODUCTION

The Human Operator Simulator (HOS) described in this document is a versioﬁ of
the generic HOS operator and system model developed under U.S. Navy sponsorship by
Analytics, Inc. The LaRC version, developed under contract (NASA 15983, ref. 1),
models piloted flight of the Transport Systems Research Vehicle (ref. 2) during
instrument approach to landing operations. HOS can be modified to simulate different
flight scenarios, pilot characteristics, and piloting strategies. Characteristics of
the aerodynamics, controls system, and displays of the airplane are represented in
the model through the input data set. The LaRC version of HOS described in this
document retains its generic nature and, through changes to the input data set, an
operator of any system could be simulated. Two scenarios are currently programmed in
the Transport Systems Research Vehicle (TSRV) model simulation - an ILS straight-in
approach and a Microwave Landing System (MLS) curved approach. The straight-in
approach, presented as an example in this document, is described in appendix A.

The purpose of this document is to describe the files used in execution of the
LaRC HOS simulation programs, the nature of the input data, and the types of output

records and analysis available from HOS as it currently exists. No attempt will be

W=z y7.2/%

|

made to provide a detailed explanation of how a simulation of a particular system can
bg developed since such a description is given in reference l. It is assumed that
the user will have acquired a copy of the magnetic tape containing the referenced
files and wishes to initially operate the HOS TSRV simulation as formated on the
tape. The user is also assumed to have a working knowledge of the CDC computer sys-
tem and the associated NOS operatiﬁg systems. Detailed documentation of the generic
HOS programs can be obtained from Analytics, Inc., 2500 Maryland Road, Willow Grove,
PA 19090.

Throughout this document, file names will be printed using ANSI standard for
ASCII characters with the number @ and the letter O, with the exception of some
reproduced computer listings. Names of HOS created files referenced within the text
of this document will be printed with fixed characters in upper case and the variable
characters represented by a dollar sign ($) when the reference is made to the file
name in the unedited procedure file. An example selected for use throughout much of
this discussion will be referred to by the character string "EX". The dollar sign
($) in the various file names in the unedited procedure files will be replaced by the
string "EX" when the discussion is intended to specifically address the example.
Also, when listings of files are presented in figures, the variable character string

is represented by "$NAMES".

LIST OF ACRONYMS AND ABBREVIATIONS

ASCII American Standard Code for Information Interchange
CCL CYBER Control Language

CDC Control Data Corporation

CDF Crewstation Data File

CPFS Common Permanent File System

HAL HOPROC Assembler Loader

HODAC Human Operator Data Analyzer and Colator

HOS
ILS
LaRC
MLS
NOS
NPL
OPL
TCV
TSRV

PROC

c1$
c2%
CRUISE
DATA30
D1$
D23
EXEC
G1$
HAL
HALHOD
HALHOS
HODAG
HOS
HOSMOD
H7MOD

IFILE

Human Operator Simulator

Instrument Landing System

Langley Research Center

Microwave Landing System

Netwofk Opérating System

New Program Library file

01ld Program Library file

Terminal Configured Vehicle

Transport Systems Research Vehicle, alternate name for TCV

Procedure file

LIST OF REFERENCED FILE NAMES
UPDATE directive file output from HAL
UPDATE directive file output from HAL
CREWSTATION data file for curved flight scenario
Atmospheric data file for aircraft submodel
Pseudo machine instruction file for HAL
Pseudo machine instruction file from step HAL
File containing all the Procedures used in the execution of a simulation
Packed binary plot data file generated in step HOS, used in step HODAC
Submit file for step HAL
Submit file for step HALHOD
Submit file for step HALHOS
Submit file for step HODAC
Submit file for step HOS
Submit file for step HOSMOD
UPDATE directive file for step HOSMOD

Default name of UPDATE directive input file

LAND CREWSTATION data file for straight flight scenario

LHODAC FORTRAN source code for HODAC program (in UPDATE format)

LHOS FORTRAN source code for HOS program {(in UPDATE format)

M1$ Machine readable time history generated by sﬁep HOS, 1input to step HODAC
013 Binary load module executed in step HOS

028 Binary load module executed in step HODAC

PLOT Submit file for execution of HOS plot

PLOTLIB Runtime library for HOS plot execution
PLOTMOD UPDATE directive file for file PLOTSYS

PLOTSYS FORTRAN data conversion program used by PLOT

S1$ UPDATE new program library file from step HALHOS
82§ UPDATE new program library file from step HOSMOD
T3S Binary plot data output from HOS; input to PLOT

TAPE45 Binary input data for aircraft submodel
TCVLIB Runtime library for aircraft submodel in HOS execution

WGUSLIB Runtime library for atmosphere submodel in HOS execution

2.0 BATCH OPERATING PROCEDURES

The steps involved in execution of a flight simulation using HOS are summarized
in figure 1. To complete a simulation of a system, three FORTRAN computer programs
are normally compiled and executed - HAL, HOS, and HODAC. (Program names may vary,
e.g., LHALO, LHOS, and LHODAC.) Other steps represented in figure 1 are related to
constructing the file environment necessary to operate these three programs.

In the first major step in developing a simulation, the hardware to be simulated
is analyzed and coded as mathematical and logical functions using a special superset
of FORTRAN called HOPROC. Similarly, the strategies and rules used by the pilot are
analyzed and coded using HOPROC. The resulting file is the input required for

execution of the first in the sequence of three programs listed above, HAL. HAL is

INPUT
ANALYST'S HOPROC
LANGUAGE DESCRIPTIONS OF:
® DISPLAYS/CONTROLS

® HARDWARE PROCEDURES/

FUNCTIONS

® OPERATOR PROCEDURES/
FUNCTIONS

1

EXECUTE
HOPROC ASSEMBLER
LOADER (HAL)

GENERATE
DETAILED OPERATOR/

PROVIDE
INITIALIZATION
SPECIFICATIONS FOR:

® HARDWARE

® EXTERNAL ENVIRONMENT
OPERATOR CHARACTERISTICS
(COF)

EXECUTE

HARDWARE SPECIFICATIONS

> HUMAN OPERATOR

SIMULATOR (HOS)

}

EXECUTE
HUMAN OPERATOR DATA
ANALYZER AND COLLATOR
(HODAC)

{

EXECUTE
TIMELINE ANALYSES
LINK ANALYSES
CHANNEL LOADING ANALYSES
DEVICE ANALYSES
PROCEDURE ANALYSES

)

Figure 1. - Simulator Steps.

described as an assembly/loader and functions to format the description of the
specific system under study into an UPDATE MOD file used to edit the generic HOS
program. HAL also generates a numerically coded procedure file that is used as input
during the HOS step.

The second major step in simulating a system is to operate the HOS program.

This step comprises the actual execution of the simulation. The Crew Data File (CDF)
provides input data to support the HOS step. It counsists of descriptions of the
locations, initial values, and operational characteristics of the state variables,
display and control devices used during the simulation.

Operation of HODAC, the Human Oéetator Data Analyzer and Collator, is the third
major step in completing a simulation. This program uses files generated in the HOS
step to develop several analyses. These include a timeline analysis, a link
analysis, channel loading report, a device analysis, and a procedure analysis.

In practice, the operations necessary to complete a simulation and the
assoclated data reduction and analysis have been organized into the following eight

submit files:

1. CLEAR

2. HAL

3. HALHOS

4. HOSMOD

5. HOS

6. PLOT

7. HALHOD

8. HODAC -

Operation of CLEAR, HAL, HALHOS, HOSMOD, and HOS is normally necessary to accomplish
the actual system simulation. Details of operation of these five submit files will
be discussed in sections 2.1, 2.2, 2.3, 2.4, and 2.5, respectively. PLOT generates

time history plots of selected variables associated with the flight simulation.. Its

operation will be discussed in section 3.0. The submit files HODAC and the associ-
ated submit file HALHOD generate data reduction and analysis reports. Details of
their operation will be presented in section 4.0. Appendix B presents a list of all

of the files used along with a brief verbal description of each.

2.1 CLEAR

The first step required to complete an HOS simulation is to operate the submit
file CLEAR. It initializes the files used by subsequent simulation steps.

Before CLEAR can be submitted, the string "??" in the sixth line of the file
must be replaced by the characters that will become the variable part of the file
names. In all the examples in this document, the string "EX" (short for example)
will be used. After editing, CLEAR should appear as shown in Figure 2.

/J0B

CLEAR,T50¢ ,CM12000d . DESTINATION INFORMATION
USER, ## .

CHARGE, ###iH# ,LRC.

ATTACH,XEDIT/UN=LIBRARY.
XEDIT,EXEC,P.;XC/$NAMES$/EX/*; XEND.

RETURN,XEDIT.

BEGIN,1CLEAR,EXEC.

BEGIN, 1EXIT,EXEC.

Figure 2.- Submit file for step CLEAR.

When CLEAR executes, it gets EXEC and, using XEDIT, replaces all occurrences of
$NAME$ with the string "EX". PROC 1CLEAR, as shown in figure 3, purges all the
indirect access temporary files used by HOS and defines and saves one direct access

file, MILEX.

.PROC,1CLEAR
PURGE ,M1$NAMES /NA.
PURGE, $NAMESD/NA.
PURGE, $NAME$O/NA.
PURGE,CL$NAMES /NA.
PURGE,C2$NAMES /NA .
PURGE,D1$NAMES /NA.
PURGE,D2$NAMES /NA.
PURGE,GL$NAMES /NA.
PURGE,T1$NAMES /NA.
PURGE,T2$NAMES$/NA.
PURGE, S2$NAMES /NA .
PURGE ,02$NAMES /NA .
DEFINE,M1$NAMES .
RETURN, M1 $NAMES .
REVERT.

EXIT.

REVERT.

~~ERO--

Figure 3.- PROC for step CLEAR.

PROC 1EXIT copies and saves the dayfile as EXD. A sample dayfile is shown in

figure 4.

Execution of step "CLEAR" does not produce output on file $0 or OUTPUT. The

output returned to the user consists of the dayfile only.

11.31.17.CLEAR,T5@,CM12000d . : DESTINATION INFORMATION
11.31.17. USERNAME.
11.31.17.USER, #####

11.31.17 .CHARGE, #### ,LRC.
11.31.17.ATTACH,XEDIT/UN=LIBRARY.
11.31.18.XEDIT,EXEC.P.;XC/$NAMES/EX/*; XEND .
11.31.21.RETURN,XEDIT.
11.31.21.BEGIN,1CLEAR,EXEC.
11.31.22.PURGE ,MLEX/NA.

11.31.23. MLEX NOT FOUND, AT 121.
11.31.23.PURGE,EXD/NA.

11.31.26 .PURGE,EX0/NA.
11.31.27.PURGE,CLEX/NA.
11.31.28.PURGE,C2EX/NA.
11.31.28.PURGE,DLEX/NA.

11.31.29 .PURGE,D2EX/NA.
11.31.29.PURGE,GLEX/NA.
11.31.30.PURGE,T1EX/NA.
11.31.31.PURGE,T2EX/NA.
11.31.31.PURGE,S2EX/NA.
11.31.32.PURGE,02EX/NA.
11.31.32.DEFINE, MLEX
11.31.33.EXIT.

11.31.33.REVERT.
11.31.33.BEGIN,1EXIT,EXEC.
11.31.33.DAYFILE,EXD.

Figure 4.~ Dayfile from step CLEAR.

2.2 Execution of Submit File HAL

Submit file HAL shown in figure 5 contains a series of CCL statements that
perform NOS system level operations. Prior to submitting, the sixth line is edited
to replace the string "??" with a one to three character string, the string "EX" has
been inserted in this example. HAL gets a local copy of the PROC file EXEC and
replaces all occurrences of the string $NAME$ with the one to three character file
set name (e.g., EX) previoﬁsly selected by the operator and used previously in step

CLEAR.

/JOB
HALEX,T5¢@ ,CM230000 . DESTINATION INFORMATION
USER, #i#t#iHE#E . .
CHARGE, #{##i#i# ,LRC.
ATTACH,XEDIT/UN=LIBRARY.
XEDIT,EXEC,P.;XC/$NAMES /EX/* ; XEND.
RETURN, XEDIT. ’
BEGIN, 1HAL,EXEC,INPUT.
BEGIN, lEXIT,EXEC.
/NOSEQ
/EOR
SYSTEM MASTER-~---TCV
SETTING SECTION

ON OFF'

FO F1 F5 F15 F25 F30 F40

RIGHT LEFT STRAIGHT

Figure 5.- Submit file for step HAL with appended HOPROC code.

The edited local copy of PROC 1HAL (fig. 6) in file EXEC is executed by the
eighth line of HAL, "BEGIN,lHAL,EXEC,INPUT.". This same line passes the HOPROC data
file to PROC 1HAL. The HOPROC file is normally appended to HAL after the /EOR

line. It becomes the input file for the execution step 1HAL.

.PROC, 1HAL ,HOPROC .
GET,LHALO.

PURGE , $NAME$D/NA .

PURGE, $NAMESO/NA.

MAP=QFF .

LDSET ,PRESET=ZERO.

LHALO ,HOPROC, $NAME$0,C1,C2, ,D1,D2.
REPLACE,Cl=CL$NAMES /NA.
REPLACE , C2=C2$NAMES /NA.

REPLACE ,D1=D1$NAMES$ /NA.
REPLACE,D1=D2$NAMES /NA.

REVERT.

EOR

Figure 6.- PROC for step HAL.

PROC 1HAL gets file LHALO and purges the dayfile and output file (if they exist)
from a previous execution. References to HOPROC are replaced by INPUT. The load
module LHALO executes reading data from INPUT. LHALO translates the instructions and

data in INPUT into forms that will be used by later execution steps and writes the

10

files Cl1$NAME$, C2$NAMES, DI1SNAMES, and D2$NAME$. The output file $0 consists of a

listing of input file HOPROC and any diagnostic and execution information.

2.2.1 File HOPROC

The file passed with name INPUT to PROC 1HAL is the HOPROC file that contains
program‘code specific to the simulation being conducted. It is written in Human
Operator Procedures Language (HOPROC), a superset of CDC FORTRAN-IV Extended.

The HOPROC file consists of three major sections: a title declaraﬁion section,

a functions section, and a procedures section.

2.2.1.1 Title

The title section contains the names of all devices to be used in the simulation
and the names of the legal settings, scale factors, and symbols to be used. The
title section is processed by LHALO into the Data Dictionary énd is the basis for the

entries in the crew station data file.

2.2.1.2 Functions

The function section contains both Operator Functions and Hardware Functioms.
Operator Functions &escribe the mental calculations that the pilot is to make based
on the information available to him. Each of the Operator Functions consists of a
function name followed by HOPROC code that defines the mental operations performed to
accomplish the tasks named. Hardware Functions describe the manipulation of
information by the hardware in the simulation. They consist of a function name in

quotes followed by HOPROC code defining what takes place.

2.2.1.3 Procedures

The procedure section contains Operator Procedures and Hardware Procedures.
Operator Procedures embody the pilots knowledge of the steps required to perform a
task, their order of execution, and the criteria used to determine when to start a

task or when a task is completed. Hardware Functions describe the hardware

11

consequences of actions taken by the pilot as well as independent actions taken by
the systems being simulated.
The Analytics in-house Technical Report 14@@.22E contains a complete description
of rules and syntax of HOPROC and describes how a HOPROC coded file is generated.
When execution of PROC 1HAL is complete, control returns to submit file HAL and

the PROC 1lEXIT is executed by the line "BEGIN,lEXIT,EXEC.".

2.2.2. PROC 1EXIT
PROC 1EXIT copies the dayfile to $D, copies $D and $0 to OUTPUT and saves $D

and $0.

2.2.2.1 File $D

File $D contains the system execution history, dayfile, of the job. An example
is shown in figure 7. It will be identical with the dayfile printed at the end of
the printed program output but it is available via a terminal immediately after job

completion.

12.51.32.HAL,T50@ ,CM230000 .

12.51.32 .USERNAME.

12.51.32.USER, #ii .
12.51.32.CHARGE, #### ,LRC.
12.51.33.ATTACH,XEDIT/UN=LIBRARY.
12.51.35.XEDIT,EXEC,P.;XC/$NAMES/EX/*; XEND .
12.52.9%6 .RETURN,XEDIT.

12.52.96 .BEGIN,1HAL,EXEC,INPUT.
12.52.¢7 .GET,LHALO.
12.52.19.1IFE,FILE(INPUT,ASA)=0 ,GLOM.
12.52.21.ENDIF,GLOM.
12.52.21.PURGE,EXD/NA.

12.52.29 .PURGE,EX0O/NA.
12.52.30 .PURGE ,0LEX/NA.

12.52.39. OlEX NOT FOUND, AT 121.
12.52.31.MAP=0FF.
12.52.31.LDSET,PRESET=ZERO.
12.52.31.LHALO,INPUT,EXO,CL,C2,,D1,D2.

12.56.46. STOP
12.56.46. 1411¢¢ MAXIMUM EXECUTION FL.
12.56.46. 25.049 CP SECONDS EXECUTION TIME.

12.56 .46 .REPLACE,C1=C1EX/NA.

Figure 7.~ Sample dayfile from step HAL.

12

12.56.49 .REPLACE ,C2=C2EX/NA.
12.56 .51 ,REPLACE ,D1=D1EX/NA.
12.56 .53.REPLACE ,D2=D2EX/NA.
12.56.55.REVERT.
12.56.55.BEGIN,1EXIT,EXEC. .
12.56 .56 .REWIND,OUTPUT.
12.56.56 .SKIPEI EX0.

12.56 .58.COPYEI ,OUTPUT,EX0 .
'12.56.59. EOI ENCOUNTERED.
12.56 .59 .REWIND,EXD,EX0,0UTPUT.
12.56.59 .COPYEI,EXO.
12.57.¢9. EOI ENCOUNTERED.
12.57 .¢% .REPLACE,EXO.

12.57 .6 .DAYFILE ,EXD.

Figure 7. Concluded.

2.2.2.2 File $0

File $0 contains the output of the execution of LHALO. It contains a listing of
the INPUT file, a dictionary of variable names, and set of HOS data input forms.

The listing of the input file could be slightly expanded and contains some
explanatory and diagnostic statements such as those shown in figure 8.

The dictionary portion of $0 contains a list of all names of symbols, devices,
functions, and procedures that are to be used by HOS and the index number or ID that
LHALO has assigned to each.

The data entry forms in $0 list the dictionary entry name and provides space to
fi11 in all the information about each name that is required to run the simulation.
These data entry forms are only used when a new simulation is being defined and a new
Crewstation Data File (CDF) required. See Appendix B of this document for a

discussion of the CDF.

13

HAL -- THE HOPROC ASSEMBLER/LOADER
MASTER-—~——-- TCV 82/¢6/94.

HARDWARE PROCEDURES

Rodedoddodededododedo ok dodededodedodekok e ek ke ek ke sk dodk dodk dodedodod dodedodododedode o dodok o dedede oo e de ke ek de e de de ke K ke
DEFINE THE PROCEDURE AC-UPDATE.

IF HOR-PATH-LIGHT IS ON THEN COMPUTE AUTO-BROLLY-ROLL.

COMPUTE NEW-SPEED, NEW-BANK,

NEW-GAMMA, NEW-LOCATION, PATH-ERRORS.

$IIII99999999999959995359595988888888888s8588
WARNING
HARDWARE PROCEDURES HAVE NOT BEEN DEFINED FOR THE FOLLOWING CONTROLS
AUTO SWITCH
HOR PATH SWITCH
VERT PATH SWITCH
SPEED BREAK LEVER
THROTTLE LEVER
DH REF KNOB
THE FOLLOWING DEFAULT HARDWARE PROCEDURE WILL BE ASSUMED —-

END CHANGE THE ACTUAL VALUE OF <CONTROL> TO THE DESIRED VALUE
OF <{CONTROL>

Figure 8.~ HOS diagnostics from output file $0.

2.3 Execution of Submit File HALHOS

Submit file HALHOS, as shown in figure 9, gets a local copy of file EXEC and
changes all occurrences of the string "$NAMES" to the file name previously selected .-

(the character string "EX" in this example).

14

/JOB , .

HALHOS ,T50¢ ,CM3300¢3 . DESTINATION INFORMATION
USER, H####E.

CHARGE, ###i#i##, 1RC.

ATTACH,XEDIT/UN=LIBRARY .

XEDIT,XEC,P.;XC/$NAMES$ /EX/*; XEND.

RETURN,XEDIT.

BEGIN,1HALHOS,EXEC,A1234,EX7MOD.

BEGIN,1EXIT,EXEC.

END OF FILE

Figure 9.- Submit file for step HALHOS.

The statement "BEGIN,lHALHOS,EXEC,A1234,EXMOD."” begins the PROC 1HALHOS, shown in

figure 19, from the edited copy of EXEC, passes the UPDATE list parameters (A1234)

and passes the name of the UPDATE directive file (EXMOD) to be used.

.PROC,1HALHOS,LIST,IFILE.

GET,S1=LHOS.

GET,Cl=CL$NAMES .

GET,P1=B737PLA.
IFE,FILE(IFILE,AS)=0,GETIT.

GET,B73MOD.

GET,IFILE.

ENDIF,GETIT.
UPDATE,0=@,C=@,P=P1,N=P2,F,S,1=0.
UPDATE,0=@,C=@ ,P=S1,F,N=N1,L=LIST,I=IFILE.
UPDATE,0=0,C=@,P=N1,F,N=N2,L=L1IST,I=Cl.
UPDATE,0=/¢,C=COMPILE,F,P=N2,N=NEW,L=LIST,I=B73MOD.
RETURN,S1,CL,N1.
FIN,I=COMPILE,L=0,A,0PT=@,R=3.

REPLACE ,NEW=S1$NAMES .
REPLACE,COMPILE=$NAMES$CL.
REPLACE,LGO=01$NAMES .

REVERT.

Figure 1@.- PROC for step HALHOS.

PROC 1HALHOS loads files LHOS, Cl1$, B737PLA, B73MOD, and $MOD. File LHOS is a
permanent library file of HOS source code in UPDATE format. File Cl$ is the UPDATE

directive file generated by step HAL. B73MOD and $MOD are user generated UPDATE

directive files containing changes to be made to LHOS.

File LHOS is loaded as Sl and is modified with directive file $MOD in the second

UPDATE step to produce the UPDATE New Program Library (NPL) file Nl. Directives in

15

file Cl$ add COMMON's and the subroutines HFUNC and MFUNC to Nl producing an NPL file
N2 in the third update step.

File B737PLA 1is loaded as file 21. The first UPDATE step:
UPDATE,0=@ ,P=P1,N=P2,F,S,I=0.
creates New Program Library file P2. The fourth UPDATE step:
UPDATE,0=@ ,C=COMPILE,F,P=N2,N=NEW,L=0,1=B73MOD.

| modifies P2 and adds it as a group of subroutines onto the end of N2, creating the
NPL file NEW and the compiler source file COMPILE.

File NEW is saved as file S1$ and can be used as .the input file in the optional
step HOSMOD.

The NPL file COMPILE is compiled and the resulting LGO file is saved as file 01$
which is used in steps HOSMOD and HOS. The compiler source file COMPILE is saved as
$Cl.

| At the end of the execution of PROC 1HALHOS, control returns to submit file

HALHOS. The next line:
BEGIN,1EXIT,EXEC.

begins execution of PROC 1lEXIT. Files $0, $D, and OUTPUT are rewound and copied onto
OQUTPUT for printing. Files $0 and $D are saved as indirect access files. Figure 11
shows the dayfile, file $D, for a typical HALHOS execution.

If HALHOS executes with no UPDATE or FIN errors, no output is produced, other
than the usual job header and dayfile. If output is desired from any of the UPDATE
steps, the output option 0= can be changed to 0=OUTPUT or 0=$0. A printed listing
of the entire FORTRAN source file at compile time can be obtained by modifying L=p to

L=0OUTPUT in the FIN step.

16

14.39.40 .HALHOS, T58¢ ,CM3390dd. RM 2138
14.39.40 . 1S

14.39. .40 .USER.###{HEE.

14 .39 .40 .CHARGE, ##i### ,LRC.
14.39.41.ATTACH,XEDIT/UN=LIBRARY.

14.40 .11 .XEDIT,EXEC,P.;XC/$NAMES/EX/*; XEND.
14.40.14 .RETURN,XEDIT.
14.40.15.BEGIN,1HALHOS,EXEC,A1234 ,EXMOD .
14.49.15.GET,S1=LHOS.

14.49.18.GET,Cl=C1EX.

14.49.19.GET,P1=B737PLA.

14 .40 .21 .1FE,FILE(EXMOD,AS)=0,GETIT.
14.40.21.GET,B73MOD.

14.49.22 .GET .EXMOD.

14.49.23.ENDIF,GETIT.

14.40.40 .UPDATE,O=0,C=0,P=P1,N=P2,F,S,I=0.

14 .40 .5@. UPDATE COMPLETE.

14.40 .50 .UPDATE,0=0,C=@,P=S1,F ,N=N1,L=A1234,I=EXMOD.
14.41.1¢.DECK STRUCTURE CHANGED

14.41.17. UPDATE COMPLETE.

14.41.17 .UPDATE,0=§,C=0,P=N1,F,N=N2,L=A1234,I=Cl.
14.41.32. UPDATE COMPLETE.
14.41.33.UPDATE,0=0,C=COMPILE,F,P=N2 ,N=NEW,L=A1234,I=B73MOD.
14 .42 .85. UPDATE COMPLETE.

14.42.95 .RETURN,S1,C1,N1.

14 .42 .85.FTN,I=COMPILE,L=0,A,O0PT=@,R=3.
14.45.36. 147.055 CP SECONDS COMPILATION TIME
14.45.37 .REPLACE ,NEW=S1EX.

14.45.53 .REPLACE,COMPILE=EXCl.

14 .46 .31 .REPLACE,LGO=01EX.

14.46 .41 .REVERT.

14,46 .41 .BEGIN,1EXIT,EXEC.

14.46 .42 .REWIND,OUTPUT.

14.46 .42 .SKIPEI,EXO.
14.46.42.COPYEI,OUTPUT,EXO.

14.46.42. EOI ENCOUNTERED.

14.46 .42 .REWIND,EXD,EX0.OUTPUT.

14.46 .42 .COPYEL,EXO.

14.46.43. EOI ENCOUNTERED.

14 .46 .43 .REPLACE,EXO.

14.47.11.DAYFILE,EXD.

Figure 1l.- Sample dayfile from step HALHOS.

2.4 Execution of Submit File HOSMOD

HOSMOD is the only optional step in the sequence from CLEAR to HOS. It is a
relatively inexpensive and quick method of making changes in the executable HOS

file 01§. It uses UPDATE and LIBEDIT to make changes in source file S1$ but only

17

those subroutines in which changes are made are recompiled thus reducing the field
length and CPU time required.

In general, HOSMOD is used as a troubleshooting and coding aid. Changes can be
made and tested without the cost of rerunning HALHOS. After a change has been tested
and verified using HOSMOD, the UPDATE directive can be included in $MOD or B737MOD
and HALHOS can be rerun.

The user 1is cautioned against the pitfall of making a large number of changes in
the model using HOSMOD only to find that later the changes must be reprogrammed for
inclusion in the HAL step.

Submit file HOSMOD (fig. 12) gets and edits a local copy of EXEC, changing all
occurrences of the string "$NAME$" to the selected file name (the string "EX" in this

example) . HOSMOD executes PROC 1HOSMOD from the edited copy of EXEC. The line
BEGIN,1HOSMOD,EXEC,H7MOD.

begins the PROC and passes the UPDATE directive file name H7MOD. PROC 1HOSMOD

(fig. 13) purges the old output file $0 and the old dayfile $D if they exist. The
UPDATE 01d Program Library (OPL) file S1$ is loaded as local file S1 (File S1$ is the
complete FORTRAN source for HOS in UPDATE format that was created in step HALHOS).
The load module O0l$ (the compiled version of Sl) is loaded as local file NEW.

/JOB

HOSMOD, T50¢ ,CM330¢0d . ‘ DESTINATION INFORMATION
USER, #HHHHHE

CHARGE, ###i### ,LRC.

ATTACH,XEDIT/UN=LIBRARY.

XEDIT,EXEC,P.;XC/$NAMES /EX/*XEND.

RETURN,XEDIT.

BEGIN,1HOSMOD,EXEC,A1234,H7MOD.

BEGIN,1EXIT,EXEC.

Figure 12.- Submit file for step HOSMOD.

18

.PROC,1HOSMOD, IFILE.
GET,S1=S1$NAMES .

GET ,0LD=01$NAMES .
IFE,FILE(EDIT,AS)=@ ,GETITL.
GET,EDIT.

ENDIF,GETITL. :
IFE,FILE(EDIT,AS)=@,GETIT2.
GET,EDIT.

ENDIF,GETIT2.
UPDATE,0=@,P=S1,N=N1,L=LIST,I=IFILE.
FIN,I=COMPILE,L=0.
LIBEDIT,LO=$NAMESL, I=EDIT.
REPLACE ,N1=S1$NAMES .
REPLACE ,NEW=014$NAMES .
REVERT.

EXIT.

REVERT.

Figure 13.- PROC for step HOSMOD.
The UPDATE step in 1HOSMOD,
UPDATE,0=@,P=S1,N=N1,L=@,I=IFILE.

modifies file Sl using the directives in $MOD. Since the UPDATE parameter F is not
specified, only those subroutines that have been changed are included in the UPDATE
NPL File Nl.
| The FIN step recomplles the subroutines that have been UPDATE'd and LIBEDIT
replaces those sections of local file NEW that have been changed.

The new source file N1l is saved as S2$ and the load file NEW is saved as Ol§$.
Control returns to submit file HOSMOD.

HOSMOD executes the PROC 1EXIT which rewinds files $0, $D, and OUTPUT and copies
them to OUTPUT to be printed. Files $0 and $D are saved as indirect access files.

The argument A1234 is passed és the UPDATE parameters L=LIST. This will cause
error messages and dlagnostics to be printed if any errors occur. In a normal
execution of 1HOSMOD, no output is produced. If a complete UPDATE history is

desired, the O option may be changed to 0=QUTPUT.

19

Setting the FIN parameter L to L=OUTPUT produces a complete source listing of
those subroutines that have been modified and recompiled. Changing the parameter to
L=@ will suppress the listing. (It is usually desirable to leave L=OUTPUT.)

THE LIBEDIT parameter L=OUTPUT produces a record of which the subroutines and

procedures in Ol$ have been replaced. This output can be suppressed by changing to

L=O .

2.5 Execution of Submit File HOS

Submit file HOS, shown in Figure 14, controls the actual execution of the
simulation using the files that have been created and modified by steps CLEAR, HAL,
HALHOS, and HOSMOD. Submit file HOS gets a local copy of PROC file EXEC and replaces
all occurrences of the string "$NAMES" with file name character string previously

selected (the character string "EX" in this example). The line:

BEGIN,1HOS,EXEC,LAND.

executes the PROC 1HOS, shown in figure 15, from the edited copy of the file EXEC.

PROC 1HOS gets the FORTRAN binary load file 013, the LGO file created by step
HALHOS. It gets D1§, one of the pseudo machine code instruction files created by
step HAL, and the Crew Data file (LAND in this example). PROC 1HOS attaches the
direct access FORTRAN run time math library FINMLIB, and gets the subroutine library
files TCVLIB and WGUSLIB, and the input data files T30 and T45. The four LIB files
are combined by the first LDSET into the run time LIB for the execution of 01§.

File Ol$ is executed producing output in file $0 and the previously defined
direct access files M1$, Tl$, T3$ and Gl$. The direct access flles are returned and
control is passed back to submit file HOS.

File HOS executes PROC 1lEXIT which rewinds files $0 and $D and copies them to

OUTPUT to be printed.

20

/JOB '

HOS,T50¢ ,CM33000¢ ... DESTINATION INFORMATION
USER, it . :
CHARGE, ##i#i### ,LRC.

ATTACH,XEDIT/UN=LIBRARY.

XEDIT,EXEC,P.;XC/SNAMES /EX/*; XEND.

RETURN,XEDIT.

BEGIN,1HOS,EXEC,LAND.

BEGIN, 1EXIT,EXEC.

Figure 14.- Submit file for step HOS.

.PROC, 1HOS , CREW.

GET,01=01$NAMES .

GET,D1=D1$NAMES.
GET,T30=DATA30,TCVLIB/UN=11953¢C.
GET,WGUSLIB,T45=TAPE4S5/UN=34925¢C.
IFE,FILE(TAPE7 ,AS)=@,GOTITL.
GET,TAPE7/NA.

ENDIF,GOTITL.

IFE,FILE(TAPES ,AS)=@,GOTIT2.
GET,TAPES/NA.

ENDIF,GOTIT2.
IFE,FILE(CREW,AS)=#,GOTIT3.
GET,CREW/NA.

ENDIF,GOTIT3.

PURGE ,ML$NAMES /NA, ST=LPF.
DEFINE,ML=M1$NAMES /M=W.

PURGE, T1$NAMES /NA, ST=LPF.

DEFINE, T1=T1$NAMES /M=W.

PURGE , T3$NAMES /NA, ST=LPF .
DEFINE,T3=T3$NAMES /M=W.

PURGE ,G1$NAME$ /NA, ST=LPF.
DEFINE,Gl=G1$NAMES /M=W.

ATTACH, FTNMLIB/UN=LIBRARY.
LDSET,LIB=FTNMLIB/TCVLIB/WGUSLIB.
LDSET(MAP=SBEX) .
LDSET,PRESET=ZERO.

01, INPUT,$NAMESO,TAPE7 ,TAPES ,T2,D1,M1,G1,CREW,T1, T3, T30, T4@,T45.
DISPLAY,EFG.

RETURN,ML,G1,T3,T1.

REVERT.

ENDIF,STILLOK.

EXIT.

RETURN, M1 .

RETURN,GL.

REVERT.

--EOR--

Figure 15.- PROC for step HOS.

21

Normal execution of step HOS produces six files as output. They are the Plot
Data file T3$, the HODAC Data files ML$, G1$, T1$ and'T2$, and the printer output
file $0. Two direct access scratch files, TAPE7 and TAPE8, are defined and used by
nbs but are not saved. Figure 16 shows a sample dayfile from a typical HOS
execution.

Files T1$, T2$, T3$, ML$ and Gl$ are direct access files that are created and
saved by step HOS. See Appendix B of this document for a discussion of the contents
of each of these files.

Output file $0 and dayfile $D become the printed simulation history. The output
file $0 consists of three things: a listing of instruction array (input file Dl), a
listing of the Crew Data File (input file CREW), and the step-by-step simulation
history produced by the execution of the simulation. A section of a typical HOS
output, a discrete simulation history, is shown in figure 17. The simulation history
is a complex file containing, among other things, a time history of every step of the
simulation, an aircraft status update record printed every 10 seconds and printouts
of the HOS Dictionary arrays (the complete set of simulation variables) at user

specified points and at the end of the simulation.

13.54.17 .H0S,T500,CM300¢00 .

13.54.17. ED BOGART

13.54.18.USER.

13.54.18.CHARGE.
13.54.19.ATTACH,XEDIT/UN=LIBRARY.
13.54.21.XEDLT,EXEC,P.;XC/$NAMES$ /EX/* ; XEND .
13.54.35.RETURN,XEDIT.
13.54.35.BEGIN,1HOS,EXEC,LAND.
13.54.37.GET,01=01EX.

13.54 .48 .GET,D1=D1EX.
13.54.49.GET,T30=DATA30,TCVLIB.

13.54 .54 .GET,WGUSLIB,T45=TAPE45.
13.55.¢3.1FE,FILE(LAND,AS)=@,GOTIT3.
13.55.83.GET,LAND/NA.
13.55.¢5.ENDIF,GOTIT3.
13.55.85.DEFINE,ML=M1EX/M=W.

13.55.85 .DEFINE,T1=T1EX/M=W.

13.55.06 .DEFINE,T3=T3EX/M=W.

13.55.06. T3EX NOT FOUND, AT 000121.
13.55.06 .DEFINE, T3=T3EX/M=W.

13.55.06 .DEFINE,G1=G1EX/M=W.

13.55.86 .ATTACH, FTNMLIB/UN=LIBRARY.
13.55.09 .LDSET,LIB=FTNMLIB/TCVLIB/WGUSLIB.
13.55.09 .LDSET(MAP=SBEX) .
13.55.09 .LDSET ,PRESET=ZERO.

13.55.09 .01, INPUT,EXO,TAPE7 ,TAPES, T2,D1,M1,G1,LAND,T1,T3, T30, T4P, T45.
14.39.11 2274@9 MAXIMUM EXECUTION FL.
14.39.11 5.649 CP SECONDS EXECUTION TIME.
14.39.11.EXIT.

14.39.12.RETURN,ML.

14.39.12.RETURN,G1.

14.39.12.REVERT.

14.39.12.BEGIN, 1EXIT,EXEC.
14.39.13.REWIND,OUTPUT.
14,39.13.SKIPEI,EXO.
14.39.13.COPYEI,OUTPUT,EXO.

14.39.14. EOI ENCOUNTERED.

14.39.14 .REWIND,EXD,EX0,0UTPUT.
14.39.15.COPYEI,EXO.

14.39.16. EOI ENCOUNTERED.

14.39.16 .REPLACE,EXO.
14,39.35.DAYFILE ,EXD.

Figure 16.- Dayfile from step HOS.

23

¥

i~

NPERATOR

22,84

22.R0
22.P1
22.P1
22.01
22.,°1
22.”)
22,81
22.01
22.71
22.R}
22.75

23,09
23.10
23.13

23,22
23,24

23,33
23,23

23.%8
23,58
23.%R
23.58
23.¢5

23.89
24.03

24,27
24,2°P
?"28
24,20

24,41
264,43

24,01
24,91

2%,01
2%5.02
25.02
25.09

25.29

3723783

ARSORA oNLL INCICATOR

FOLL INDICATYOR

STEP FNp

ALTER 805

ALTFP 807

ALTEP ACo
END POLL OUT
ESTRATIGKT VECTOR

STee sTOP

ALTER 892

IF P9¢

ARSORA LOCALTZEP

LOCALITEP

FCOMMAND FAMMa
ARCSQOPR COMMAND GAMMS
COPMAND GAMMA
ARSOPR GAMMPA VEDCES
CAMM4 WERGES
If 71
FLY TD WAYPOPINT
STEP CPIT
ALTEP 1¢56

NE1HAL
L 2.%
. Y4
- o1
L4 ot

s {~54R0R, R

» {(~5%0R3.3,
hd 240

COMOUTF ELY TO CFIY

ARSORPR AIPCPAFY POSITION
AIPCRAFT POSITICN

ARSORE WAYPDINT 1 PCSITION
BAYPPINT 1 POSITION
FLY YO ceIT

IF 16e

COMPUTE DIST TC WAYPOINT

ABSOPB AIRCRAFT POSITION
AIRCRAFT POSITION

DIST TO VAYPOINY
COMPUTE WAYPOINT CLOSF

WAYPOINT CLOSE

ALTEP 172
IF 174

ARSOPR WAYPOJNT 1 NaVE

VAYPOINT 1 NAME

e {-34542,8,

- 53,8
- 2000.C
® QuUaRY

(&) VCwWS MORE

«171.2)

0.0)

~163,8)

ND TURR

RODY
RH LH BF F

3

23703724,

HARDWARE

AC UPDATE

AC UPDATE
2.5

AC UPDATE
-2

AC UPDATE
el

AC UPDATE
'1

AC UPDATE

AC UPDATE
(~54705,0,
AC UPDATE

~168,7)

AC UPDATE
(=55084,3, 0.0)

AC UPDATE

(~54539.5, <163.9)

AC UPDATE

AC UPDATE

AC UPDATE
QUARY

Figure 17.- Typical output page from step HOS.

3.0 DATA PLOTTING
" PLOT is a complex file that contains a submit file (NEWPLOT) with two PROCs (C
and SIM), a MODIFY input file (.DATA,SIM) and a plot directive file (.DATA,DATAPLT).

When PLOT is submitted, it gets, modifies and executes PLOTSYS and PLOTLIB.

3.1 Execution of PLOT

Prior to submitting PLOT, DATAPLT should be edited to select the desired data
channels, data scaling, and other plot parameters. A careful examination of the
sample plot (fig. 18), the data reduction file SIM, and the plot directives contained
in DATAPLT will facilitate this. Figure 19 presents a sample dayfile from an

execution of PLOT. The plot data file name T3$ in the line:
ATTACH, TAPE1@#=T3$/M=W.

must be edited Eo agree with the name of the plot data file created by HOS (T3EX in
the sample dayfile, fig. 19).
Figure 18 is a portion of a plot output generated by PLOT. The variable names
and scales are printed on the Y axis and simulation time is printed on the X axis.
Normally, two ploﬁ files are maintaiﬁed to plot HOS output: PTLROLL to plot
lateral axis data and PLTPIT to plot longitudinal axis data. The two files are the
same except for their names and the data contained in DATAPLT. Each program plots

those flight data channels appropriate for that axis.

25

o

o
T

wra

=

L= Lo 201
ﬁﬁ*ww —r T T T
| S ¥ [i T

LODHPOINT
T

Reeram

A LT mEpw
M 4 Eaamm @ ORr G

o ————-

mAE EYH B MOMT

M EYm B ERPmE GLEOEEE

T RO

B

L
LY -1-1- LR LT 10
i

AR GEoD

aw G wb 00 OCOD &~

oe
i@

mrree

o

[¥]

=]
TIME BEC?

=)

MMWWMUMWJ L
] i-T=1 E)

=]

Figure 13.- Typical plot of HOS data.

11.38.53.PLOTROL,T20¢@ , CML330Gq . DELIVERY INFORMATION
11.38.53. ED BOGART

11.38.53.USER,XXXXXXX.

11.38.53,CHARGE, ##i###,LRC.
11.38.54.BEGIN,C,PLOTROL ,MDS=SIM.

11.38.57 .GET,PLOTMOD. -
11.38.59.MODIFY,F,I=SIM,P=PLOTMOD.

11.39.41. MODIFICATION COMPLETE.
11.39.¢1.FTN,1,A,R=3,L=0. :

11.39.22. 9.05¢ CP SECONDS COMPILATION TIME
11.39.22.REVERT.

11.39.22.BEGIN,SIM,PLOTROL.

11.39.24 .ATTACH,TAPE1@=T3EX/M=W.
11.39.24.REWIND,TAPEL(.
11.39.24.COPYEL,TAPE1@,TAPES.

11.39.28. EOI ENCOUNTERED.
11.39.29.RETURN,TAPEL{.

11.39.29.REWIND,TAPES.
11.39.29.BEGIN,X,PLTROLL.

11.39.31.ATTACH, FTNMLIB/UN=LIBRARY.
11.39.31.ATTACH,LRCGOSF/UN=LIBRARY.
11.39.31.GET,PLOTMOD.

11.39.33.GET,PLOTSYS.
11.39.36.LDSET,LIB=PLOTLIB/PLOTSYS/LRCGOSF/FINMLIB,PRESETA=NGINF.
11.39.36.LGO,INPCRDS.

11.41.09. 963400 MAXIMUM EXECUTION FL.
11.41.99. 49.180 CP SECONDS EXECUTION TIME.

11.41.09 .RETURN, TAPES.

11.41.09 .PLOT .VARIAN(XM=1.0¢ ,YM=.45,Y0=7.8)
11.41.14.V9@2

11.41.48. 2 FRAMES/ .89 METERS GENERATED.

11.41.48.PICTURE IMAGE FILE WILL BE SAVED ON DISK
11.41.51. #**%%* PLOT OUTPUT COMPLETED *%*%% .
11.41.52.REVERT.

11.41.52.REVERT.

11.41.53.DAYFILE,PROLD.

Figure 19.- Dayfile from step PLOT.

4.0 HODAC REPORT GENERATION
The Human Operator Data Analysis/Collector (HODAC) is a FORTRAN program that
converts data from a HOS simulation into graphs and/or reports suitable for use by a
human factors analyst. The user can select from ten report formats. Analytics HODAC
User's Guide contains descriptions of the report types available and describes the

input directives required for each.

27

4.1 HALHOD Execution

Two steps are required to produce any HODAC report or graph. The first step,
HALHOD (see fig. 20), executes PROC 1HALHOD from file EXEC. PROC 1HALHOD shown in
figure 21 gets library file LHODAC as local file P2 and gets the UPDATE directive
file C2§ as local file C2. The UPDATE step modifies LHODAC, incorporating the
changes contained in C2. The COMPILE file is compiled in the FIN step producing the

load file LGO. The new program file N2 is saved as S2$ and LGO is saved as 02§.

/JOB

HALHOD, T3¢¢ ,CM15000@ . DELIVERY INFORMATION
USER, #it#H#### .

CHARGE, ##i#ii## ,LRC.

ATTACH,XEDIT/UN=LIBRARY.

XEDIT,EXEC,P.;XC/$NAMES /EX/*; XEND.

RETURN,XEDIT.

BEGIN,1HALHOD,EXEC,Al1234.

BEGIN,lEXIT,EXEC.

Figure 20.- Submit file for step HALHOD.

.PROC, 1HALHOD,LIST.
GET,C2=C2$NAMES .

GET,P2=LHODAC.

UPDATE,0=@ ,P=P2,I=C2 ,F,N=N2 ,L=LIST.
FTN, I=COMPILE,L=@,0PT=@,R-3,A.
REPLACE ,N2=S2$NAMES .

REPLACE ,LGO=02$NAMES .

REVERT.

Figure 21.- PROC for step HALHOD.

Control returns to submit file HALHOD (fig. 20) which begins PROC LEXIT saving
$D and $0. If no UPDATE or FIN errors occur during execution of 1HALHOD no output is
written into $0 and the printed listing for the job will contain only the JOB header

and dayfile. Figure 22 is the dayfile from a typical execution of HALHOD.

28

»)

¢9.35.15.HALHOD, T39@,CML5400@3 . DELIVERY INFORMATION
#9.35.15.USER, #####.
#9.35.15.CHARGE, ###{# ,LRC.
$9.35.15.ATTACH,XEDIT/UN=LIBRARY.

$9.35.16 .XEDIT,EXEC,P.; XC/$NAMES /EX/*; XEND.
#9.35.23.RETURN,XEDIT.

$9.35.23.BEGIN, LHALHOD,EXEC,A1234.
$9.35.24 .GET, C2=C2EX.

#9.35.45.GET,P2=LHODAC.

#9.35.57 .UPDATE,0=0,P=P2,I=C2,F,N=N2,L=A1234.
$9.36.09. UPDATE COMPLETE.
$9.36.09.FTN,I=COMPILE,L=0,0PT=0,R=3,A.
$9.37.08. 45.295 CP SECONDS COMPILATION TIME
¢9.37 .08 .REPLACE,N2=523X.

$9.37 .17 .REPLACE,LGO=02EX.

$9.37.25.REVERT.

#9.37.25.BEGIN,1EXIT,EXEC.

#9.37.26 .REWIND,OUTPUT.

%9 .37.26.SPIPEI,EX0.
$9.37.26 .COPYEIL ,0UTPUT,EXO.

#9.37.26. EOI ENCOUNTERED.

#9.37.26 .REWIND,EXD,EX0,O0UTPUT.

¢9.37 .26 .COPYEI,EXO.

$9.37.26. EOL ENCOUNTERED.

#9.37 .26 .REPLACE ,EX0.

$9.37.26 .REPLACE,EX0.

$9.37 .29 .DAYFILE,EXD.

Figure 22. Dayfile from step HALHOD

5.2 HODAC Execution

The second step required to generate a HODAC report is the execution of submit
file HODAC (shown in fig. 23). When HODAC is submitted, it gets and edits a local
copy of file EXEC, replacing all occurrences of the string $NAMES with the desired

file name (the string "EX" in this example). The next command line in HODAC:
BEGIN, 1HODAC,EXEC,INPUT.

begins PROC 1HODAC from the edited copy of EXEC.

29

/JOB
HODAC,T30¢,CML5000@ . DELIVERY INFORMATION
USER, ##HHHE .
CHARGE, ######,LRC.
ATTACH,XEDIT/UN=LIBRARY.
XEDIT,EXEC,P.; XC/$NAMES /EX/*; XEND.
RETURN,XEDIT.
BEGIN,1HODAC,EXEC,INPUT.
BEGIN,lEXIT,EXEC.
/NOSEQ
/EOR
DEVICES BY PARTS TIMELINE EVERY 5 SECOND:
FROM @.09 SECONDS TO 3¢9 SECONDS.
LABELS CHANNEL-LOAD EVERY 5 SECOND:
FROM @.09 SECONDS TO 3¢ SECONDS.
LINKS SYSTEM CENTER-PANEL = CAS-ENG-DISPLAY THRU TKA-SEL-LIGHT;
SYSTEM EADI = EADI THRU TRACK-POINTER,
ATRCRAFT-SYMBOL THRU WAYPOINT-5-POSITION;
SYSTEM EHSI = ENHSI THRU WIND-VELOCITY;
SYSTEM PILOTS-PANEL = BARO-ALTIMETER-THOU THRU MIDDLE-BEACON-LIGHT;
SYSTEM CENTER-CONTROLS = VEL-CWS-SWITCH THRU VERT-PATH-SWITCH,
WPT-ALT THRU TRACK-UP-SWITCH,
SPEED-BRAKE-LEVER THRU AUTO-MANUAL-SWITCH;
SYSTEM PILOTS-CONTROLS = BROLLY-PITCH THRU START-SIMULATION:
FROM @.@9 SECONDS TO 3¢9 SECONDS.
/EOF

Figure 23.~ Submit file for step HODAC with appended HODAC directions.

PROC 1HODAC (shown in fig. 24) gets the execution load module 02$, created by
step HALHOD, as local file 02. It gets the pseudo-machine-instruction file D2§,

created by HAL, as local file D2. The HODAC directives are passed as file INPUT.

.PROC,1HODAC,IFILE.
GET,D2=D2$NAMES .

GET,02=02$NAMES .

IFE,FILE(IFILE,AS)=@,SKIPl.

GET,IFILE.

ENDIF,SKIP1.

ATTACH , M1 =M1 $NAMES .

ATTACH,G1l=G1$NAMES . -
LDSET ,PRESET=ZERO.

02,D2,G1,M1; IFILE,$NAMESO.

RETURN, ML .

RETURN,GL .

REVERT.

EXIT.

REVERT.

--EOR--

Figure 24.- PROC for step HODAC.

30

1

Two direct access data files, M1$ and Gl$, both created during execution of the
HOS step, are attached by 1HODAC. File MI$ is a binary version of the simulation
output listing but without any headings, error messages, or pagination. ‘M1$‘is read
as input data during exécutibn of 02. File Gl$ is a binary filé that contains plot
data. It is read as input by 02 if a Time Graph is being prodﬁced.

When execution of 02 is complete, direct access files Ml and Gl are returned and
control returns to submit file HODAC. HODAC begins 1EXIT which copies the dayfile to
$D, copies $0 and the dayfile to OUTPUT, and saves $0 and $D.

Figure 25 shows a typical page of HODAC output. It is the first page of the
Device-by~-Parts-Timeline report creaéed by the first command line in the HODAC

Command File
DEVICES BY PARTS TIMELINE EVERY 5 SECONDS

shown in figure 23.

REFERENCES

1. Glenn, F. A., III, Doane, S. M.: A Human Operator Simulator Model of the NASA
Terminal Configured Vehicle (TCV). NASA-CR 15983, May 1981.

2. Anon: Terminal Configured Vehicle Program Test Facilities Guide.
NASA-SP 435, 1980.

31

[49

83/C3/Cé. 2722433 FLEHAL (2)
HONAC AgpY
TIne EYECUTING EYES APE
0e0 FLY TN wAYOQINT APSPRRING FRAM
YAP SCALES
5e0 EPEVIEW PONITORS ARIPPAING FRON
VAYONINT 4§ PISITIAM
lue0 ESTRAIGHT VECTOR ARSOROINE FoNN
AIRCRAFT OITCH
1540 o ¢ o o o o o o o o« ABSCRRING FDAM
TPACK apX
2¢.0 ROLL CuT ARSNPRING FRON
NAYPLINT 1 POSITIO™
25.3 FLY T0 vAYOQINT ARSCPPING FRNN
WAYPOINT 2 SPEzh
30.0 EAIPSPLED CHECK ARSCRRING FQOW
vs!
35,0 ESTPAICHT VECTCP ARSORAING ERON
AIRCRAFT 20SITION
%040 ¢ o ¢ o o o & » o o ABSORAING fOnM
AIRCRAFT PITCH
45,0 FLY T3 WAYPOINT ABSORBING FROM
GROUND SPEED
9940 ¢ 4 o o s s 0 o o « ARSOPRING FOOW
WAYSCINT 3 SPESD
5349 EALOSPEED CHECK ARSORBING FRO®
AIRCOPAFT PITCH
60.0 ESTOAIGHT VECTO® ARSNPRING FR04
WAYPOINT 3 B9SITINN
52¢0 ¢ o o ¢ o ¢ s o ¢« o« ARSOPRING EROY
TPACK BOX
T0.0 EAIRSPEED CMECK APSNORING FRnNW
WIND VELOCITY
75.0 FLY TO VAYPOINT ARSPPRING FRI%
ATOCPAFT POSITION
80,0 ESTRAIGHT VECTN® ARSPRBING FRANW

VAYPOINT 3 POSITION

Figure 25.- Typical output page

vCvs wnne

PAGE 1

PART TI“ELINE ANALYSIS { 5,0 SECOND SNAPSHOTS)

RIGHT HAND IS

CANTPULATING
CAS ENG KNQOA

RELAVING
L I Y
® o 0 0 0 0 »

MANTPULATING
CAS ENG KNQA

RELAXING
LI IR S N N
D A
o 000 00
MOVING TD

C8S ENG KNOR

MANIPULATING
CAS ENG XNOA

RELAXING

from HODAC

LEFT HaND IS RTGHT FO3T 1S

MANTOULATING
START SINULATION

o o o MANIPULATING

ROOLLY PALL

e o o MANIPULATING

BROLLY ROLL

MANTPULATING
8RILLY ROLL

» o o NANIPULATING

BROLLY RILL

timeline analysis report.

LEFT FOOT IS

)

APPENDIX A

STRAIGHT-IN APPROACH SCENARIO
The straight-in approach scenario (fig. 26) presents the nominal flight path for
a straight-in Instrumentation Landing System (ILS) approach with the locations of thé
waypoints marked and with altitude and airspeed schedules shown.
The following description of the tasks was taken from NASA CR 3421 since it

provided an appropriate description of the sequence of activities being simulated. =

Flight From Waypoint MERCI to Waypoint QUARY:

The aircraft begins the simulation at an altitude of 1510 feet, an airspeed of
219 knots, with flaps set at 1°, and holding a flight path angle of #.8°.
Immediately after passing waypoint MERCI, the pilot calls for a flap setting of 5°
(nominally implemented by the co-pilot, however, implement in this simulation by
software since the co—-pilot is not actually modeled), and selects an airspeed of
185 knots.

The pilot will monitor the gamma wedges, the track angle pointer, and the
localizer deviation indicator. As each waypoint is.approached, the pilot monitors

the EHSI, airspeed indicator, and the altimeter.

Flight From Waypoint QUARY to Waypoint RAPID:

QUARY is approached at an airspeed of 185 knots and an altitude of 151@ feet is
maintained. Immediately after passing QUARY, the pilot calls for a flap setting of
15° and selects an airspeed of 160 knots. He maintains these conditions in straight

and level flight through RAPID.

Flight From Waypoint RAPID to Waypoint NORMA:

The pilot selects an airspeed of 14f knots, calls for the flaps to be set at
25°, and the landing gear lowered. After passing RAPID he begins monitoring for the

outer marker which is indicated by the flashing of the outer beacon indicator light

33

ve

Y (FT.)

— 10,000
D A\ S \y "4 v
O o S N ~ S
a3 Q L Y -
& & & $ $ N
T 1/.} T \f'\ﬁ T \r.} T . | l& I‘@*‘@_—I» X (FT.)
-70,000 -60,000 -50,000 -40,000 -30,000 —20;000 -10,000 10,000
- -10,000

(® - WAYPOINT ON STRAIGHT-IN APPROACH

Figure Al, - Waypoint locations along the Straight-in Approach Path.

(the audio-signal is not currently simulated in the model). Upon reaching the outer
marker, he begins monitoring the glideslope indicator, when the glideslope indicator
is approximately centered, he changes the flight path angle to -3° with a column
input. |

During this phase of the flight, the pilot arms the speed brakes and calls for
"landing checklist to flaps."” Continued attention 1s given to the localizer
deviation indicator, glideslope deviation indicator, airspeed indicator, EHSI, and

IVSI.

Flight From Waypoint NORMA to Waypoint DUBIL:

Flying at 14p knots, the aircraft passes waypoint NORMA. The pilot calls for a
flap setting of 3@° and selects an airspeed of 13§ knots. The same instruments are
monitored as between RAPID and NORMA, with a target altitude of 384 feet at waypoint
DUBIL.

Flying at 130 knots, descent is continued while the pilot visually monitors for
the middle marker signal which should occur at 188 feet altitude. Maintaining an
airspeed of 139 knots, the pilot calls for completion of the landing checklist and a

flap setting of 4@°.

35

APPENDIX B

FILE DESCRIPTIONS

All files required to execute a TSRV flight simulation are maintained in their
current form on a master magnetic tape and also in the LaRC permanent file system.
In_the following discussion, the names of files and the names of CDC utility programs
are printed in upper case characters for clarity. The names of files created and
used during the simulation process are made up of a variable part consisting of one
to four characters, used to identify the particular simulation run conditions, and a
prefix or suffix of one to three characters identifying the function of the file in
the execution of the simulation. As in the main text, th; names of files used during
the simulation will be referenced with the fixed characters in upper case and the
variable characters represented by a dollar sign ($).

Several types of files are used during the simulation. These include a
procedure file (EXEC), several submit files that execute sequences of procedures from
EXEC, three large FORTRAN programs in UPDATE format‘(UPDATE is a NOS utility used to
modify and maintain files), several supporting UPDATE input files and input data
files. This appendix presents a verbal description of each of these files.

EXEC is the procedure file comprised of all of the PROC's used in the normal
execution of a HOS simulation. Each PROC combines a number of Cyber Control Language
(CCL) statements that can be executed by a single command in a submit file. In this
document, the PROC for each step is referenced by separate submit files. In normal
operation of a complete simulation, several or all of the necessary PROC's could be
initiatd by a sequence of commands in a single submit file. EXEC consists of the

following procedures:

36

1CLEAR
1HAL
1HALHOS
1HOSMOD
1HOS
1HALHOD
1HODAC
1EXIT.

The action of a PROC is transparent to the user during normal use of the HOS
simulation program. Only when changes to HOS execution are desired is it necessary
to modify an individual PROC. For example, a listing of the FORTRAN program LHOS can
be obtained by changing the compile step in PROC lHALHOS. The compile or FIN step
which now specifies no listing, (L=@) can be changed to L=OUTPUT.

File CLEAR 1is a submit file containing NOS commands required to execute step
CLEAR which purges all old output files remaining from a previous simulation that
used the same file name variable part. It gets and edits a local copy of the PROC
file EXEC and begins PROC 1CLEAR and PROC 1EXIT.

File HAL is a submit file containing NOS commands required to execute step HAL
and an input data file in HOPROC code. The file gets and edits a local copy of the
PROC file EXEC, begins PROC 1HAL passing the HOPROC input file as file INPUT, and
begins PROC 1EXIT.

File HALHOS is a submit file containing NOS commands required to complete step
HALHOS. It gets and edits a local copy of PROC file EXEC and begins PROC 1HALHOS and
PROC 1EXIT.

File HOSMOD is a submit file containing NOS commands required to complete step
HOSMOD. It gets and edits a local copy of PROC file EXEC and begins PROC 1HOSMOD and
PROC 1EXIT.

File HOS is a submit file containing NOS commands required to complete step

HOS. It gets and edits a local copy of PROC file EXEC and begins PROC 1HOS and PROC

1EXIT.

37

File HALHOD is a submit file containing NOS commands required to complete step
HALHOD. It gets and edits a local copy of PROC file EXEC and begins PROC 1HALHOD and
PROC 1EXIT.

File HODAC is a submit file containing NOS commands required to complete step
HODACland a file of.HODAC report directives. It gets and edits a local copy of EXEC,
- begins PROC 1HODAC with the name INPUT passed as the directive file name and it
begins PROC 1EXIT.

File PLOT contains the submit file that executes a plot of HOS output data,
three PROC's (PROC's C, SIM, and X) that carry out various steps in the plot
execution, an UPDATE directive file (DATA SIM) and a plot specification data file
(DATA INPCRDS). PLOT produces output on a VARIAN plotter using files PLOTSYS,
PLOTMOD, and PLOTLIB.

File PLOTSYS contains the executable load module of the plot program.

File PLOTMOD is a FORTRAN source program in UPDATE format. After an UPDATE and

compile, PLOTMOD processes the plot data file from HOS into a form compatible with
the plot program PLOTSYS.

File PLOTLIB contains the runtime library used in the execution of the plot

program PLOTSYS.
File LHALO is the binary load module for the HOS program named HAL. In normal
operation, LHALO is never modified by the user.
LHALO translates statements written in the Human Operator Procedures (HOPROC)
language into CDC FORTRAN IV extended statements. Array sizes, variable labels and
titles, and function entry points are calculated and used to generate the variable
COMMON blocks and EQUIVALENCE's for program HOS. LHALO saves these in the form of -
UPDATE directive files Cl$ and C2$. The procedures are translated into pseudo- --
machine code binary form and are saved as filed D1$ and D2§.
(See Analytics T.R. 1400.22 for a detailed description of the structure and

operation of LHALO.)

38

File LHOS is a large FORTRAN IV Extended source program in UPDATE format. It
contains the generic portion of the Human Operator Simulator (HOS) program, and all
the subroutines and functions necessary for simulation. LHOS is loaded as a local
file S1 by PROC 1HALHOS. The UPDATE steps in PROC LlHALHOS add variable COMMONS to
the subroutines, add subroutines HFUNC and MFUNC and add the aircraft modeling sub-
routines from B737PLA. Optional UPDATE steps in PROC 1HOSMOD make more operational
changes. The result of these steps, file COMPILE, is compiled into 01§, the HOS
execution load module.

(See Analytics T.R. 14@¢.22 for a detailed description of the subroutines and
variables in LHOS.) |

File B737PLA is a FORTRAN program in UPDATE format. It models the flight

dynamics of the Boeing 737 aircraft as configured for the NASA/LaRC T.C.V. It is
loaded as file PLA by PROC 1HALHOS, UPDATE'd and added into HOS source file.

(Execution of B737PLA requires the presence of three other files; the library
files TCVLIB and WGUSLIB and the data file TAPE45.)

File WGUSLIB is part of the B737-1¢9 simulator file library. It countains a

number of functions used by B737PLA in the computations concerned with the atmosphere

and winds. PROC 1HOS gets WGUSLIB and the first LDSET line:
LDSET,LIB=FTNMLIB/TCVLIB/WGUSLIB.

makes 1t part of the runtime library for the execution of load module O1§.
File TAPE45 is part of the B737-1¢¢ simulator file library. It contains
atmosphere and wind data used as input data for wind and atmospheric calculations.
File TCVLIB is a library file that contains run time subroutines and functions

called by B737 subroutines. The first LDSET line in PROC 1HOS:
LDSET,LIB=FTNMLIB/TCVLIB/WGUSLIB.
makes TCVLIB part of the runtime. library for the execution of load module Ol$. .

39

File DATA30 contains aircraft data which is used as input for the B737-1¢¢
subroutines.

The files B737PLA, WGUSLIB, TAPE45, and TCVLIB are maintained in the LaRC
~ central computer complex and iocal coples can be obtained by executing the following

GET commands interaétively or from BATCH.

GET,B737PLA,WGUSLIB,TALE45/UN=24925¢C.

GET,TAPE3(@=DATA3@,TCVLIB/UN=11953¢C.

(See Sperry Systems Management Report No. SP713-(021, dated March 1981, for a detailed
description of the structures and functions of these files.)

CREWSTATION Data File is an input data file for the execution of HOS. It

contains all the variable parameter data that are used to define the pilot, the
aircraft and its characteristics, and scenario to be followed during the flight
simulation. The file is divided into sections corresponding to the sections of the
dictionary listing and data entry forms generated by step HAL. The divisions are:
DISPLAY SECTION
CONTROL SECTION
SYMBOL SECTION
OPERATOR FUNCTIONS
MODE SPECIFICATIONS
HUMAN OPERATOR SPEX
Each of these sections consists of dictionary names followed by lists of
variable parameters that define the location, type, initial values, and other
characteristics of the variables.
Two crew files are standard with the TCV version of HOS: LAND and CRUISE. .-
File LAND, used in all the examples in this document, defines a simulation of a
straight-in approach and landing starting about 65 thousand feet from the runway

threshold.

40

File CRUISE defines a simulation scenario for a curved, descending approach and

landing starting from south of the runway threshold.

The following files contaln data that are specific to a particular simulation
scenario or condition. They, therefore, may change with each execution of a simula-—
tion. Some are created and/or modified by the operator prior to execution and
contain variable data for the simulation. Others are output files that are recreated
with each run and reflect changes in input data.

UPDATE Directive File $MOD contains modifications to be made in the FORTRAN

program LHOS. These are user generated changes to the operation of HOS. This
includes setting the number of lines per page of printed output and setting the
ainimum time increment for simulation update. The name of $MOD is passed from submit
file HALHOS to PROC 1HALHOS and replaces the name IFILE.

UPDATE Directive File H7MOD used in step HOSMOD contains the modifications to be

made in the FORTRAN source file S1$. The complete name of H7MOD is passed by submit
file HOSMOD to PROC 1HOSMOD and replaces the dummy variable name IFILE.

File Cl§ is an UPDATE directive file generated by the execution of LHALO in PROC
1HAL. It countains the HOPROC statements after conversion into CDC FORTRAN IV source
statements. File Cl$ is used as the directive file in the third UPDATE step of PROC
1HALHOS. The code in Cl$§ is inserted into the source code of file LHOS and becones
the subroutines HFUNC and MFUNC.

File C23 is an update directive file generated in the execution of LHALO by PROC
1HAL. It contains the functions from file HOPROC after conversion by LHALO into
FORTRAN.

The UPDATE step in PROC 1HALHOD uses C2$ as its directive file and inserts these
source statements into file LHODAC, creating the UPDATE New Program Library file N2

and the compiler source file COMPILE. These files are part of the group of files

41

necegsary for the production of the HODAC reports discussed in section 5.0 of this
document.

File Ol§ is the binary load module that 1is executed in step HOS. It is the
compiled version of the FORTRAN source progrém file $Cl. It is created by step
HALHOS where COMPILE, generated bylthe last updaﬁe step, 1s compiled and LGO 1is saved
as 01$. If optional step HOSMOD is executed, all subroutines that are changed in
COMPILE are recompiled. The new LGO code is used to replace the corresponding
subroutines code in Ol using LIBEDIT. The new version of Ol is saved as 0l1$.

File 02$ is a binary load module that is executed in step HODAC. It is the
compiled LGO file generated by the FTN line of step HALHOD. It is comprised of the
FORTRAN source program LHODAC modified by the UPDATE directives in file C2$. File
02% 1s a compiled version of N2§.

File N2$ is an UPDATE New Program Library file made up of the permanent file
LHODAC and the modifications from the directive file C2$. It is the FORTRAN source
file (in UPDATE format) for load file 02$. N2$ is saved at the completion of step
HALHOD.

File S1$ is an UPDATE New Program Library (NPL) file created by the last UPDATE
step in PROC,lHALHOS. It contains (in UPDATE format) the complete source code for
the execution of HOS. This is comprised of the permanent file LHOS plus the compiled
code from file HOPROC plus the aircraft simulation program B737PLA and the modifica-
tions in the directive files $MOD and B737MOD.

File S2§ is an UPDATE New Program Library file created by the optional step
HOSMOD. It is the file S1$ edited according to the directives in the directive file
SHTM.

File D1§ contains Hardware Procedure and Operator Procedure code from HOPROC
that has been converted by HAL into pseudo-machine instructions. It is stored in
octal format. File D1$ is read by HOS and becomes the instruction arrays HINSHW and

HINSOP. (See Analytics T.R. 14¢@.22B for more information.)

42

Nee

s

File D2§ is a data file generated by the execution of LHALO in step HAL. It is
read as input data in step HODAC. D2$ contains information on dictionmary titles and
thelr associated data arrays. The information is stored in a packed binary format.
(See Analytics T.R. 140¢.22D, pp. 1-3 for more information on the data and the
storage format.)

File Gl§ contains packed binary plotting data for the Time Graph option of
HODAC. It is generated by the execution of 0l$ in step HOS and contains a time
history of the simulation, consisting of simulation times, activity and device
identification codes and information on actual values, estimated values, desired
values, and limits for specified HOS variables. (See Analytics T.R. 140@.22D for
more details of the record format.)

File Ml$ is a data file generated in step HOS during the execution of 0l$. It
contains a record of all the actions that have occurred during the execution of the
simulation. This is the same information that is output by HOS as file $0 but is
stored in packed, 6 bit, binary words. Each word contains the record of one action
and consists of simulation time, an action identification code, and a dictionary
reference number. (See Analytics.T.R. 1400.22D, pp. 1-5 for more information.) MI1$
is read as input during the execﬁtion of the report generation step HODAC.

File T3$ 1is a direct-access plot data file created during the execution of Ol$
by PROC,1HOS. At each step in a simulation, the current values of simulation
variables are loaded into array VSTATE in subroutine HFUNC and written to ghe plot
data file T3$ by subroutine LPTAPE. File T3$ may be as much as 25 thousand records
long, depending on the length of the simulation.

File T3$ consists of one header record followed by a number of data records.
The storage protocol is:

One header record with the following information:

l. 1Identification number for this run (integer)

2. Number of data channels (integer)
3. Names of each data channel (holerith)

43

4, Units for each data channel (holerith)
5. Run title (eight holerith words)

A number of data records of the following form:

1. Time (seconds)

2. X lookpoint coordinate (inches)
3. Y lookpoint coordinate (inches)
4, Stick trim (blank or not used)

5. Stick displacement (inches)

6. Wheel displacement (degrees)

7. Throttle lever position (degrees)
8. Rudder pedal (degrees)

9. Altitude (feet)

10. Glideslope deviation (dots)
11. Localizer deviation (dots)

12. Airspeed (knots)

13. Altitude rate (feet per second)
14. X position of aircraft with reference to runway (feet)
15. Y position of aircraft with reference to runway (feet)
16. Pitch attitude (degrees)
17. Roll attitude (degrees)

18. Yaw attitude (degrees)

19. Pitch rate (degress per second)
20. Roll rate (degrees per second)
21l. Yaw rate (degrees per second)
22. Instrument lookpoint where:

1 = other instruments
2 = EHSI
3 = EADI

23. An integer designation for each point within the EHSI, the EADI, or
other instruments using the following codes:

1. TFor "other instruments” (the preceding word, #22, has

value 1).
1. NCDU
2. EHSI
3. EADI
4. Airspeed
5. Altitude
6. VSI

7. Outer beacon
8. Middle beacon

9. Engine
10. Select
11. AGCS mode
12. Flap

2. For EHSI (word #22 has value 2)

1. Heading
2. Speed

44

3. Scale

4. Own airplane
5. Other traffic
6. All vectors

3. For EADI (word #22 has value 3)

1. Roll

2. Localizer

3. Glide slope

4, Alrcraft symbol

5. Speed error

6. Altitude

7. Pitch reference

8. Gamma wedges

9. VDOT

10. Runway 1,000 ft. line
11. Runway centerline

12. Horizon

13. Alrcraft + gamma

14. Airecraft + horizon

15. Adircraft + gamma + horizon
16. Gamma + pitch reference
17. Gamma + runway eand

18. Gamma + runway 1,0¢¢ ft. line
19. Runway end

20. Gamma + horizon
21l. Track symbol

22. Pitch scale

Data channels can be removed from or added to T3$ as required. A careful exami-
nation of HOS subroutines HFUNC and LPTAPE and the corresponding data input and data
manipulation portions of file PLOT should enable the change.

File $0 1s a saved copy of the printed OUTPUT file. It is available for
examination from the terminal as soon as job execution is completed. In some cases,
file 0% may exceed the maximum length for files that can be saved by the system.

This will not adversely affect the printing of the output or the execution of the
balance of the steps.

File $D contains a saved copy of the job execution DAYFILE. It is available for

examination from a terminal immediately after execution is completed.

45

. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA TM-86367

4. Title and Subtitle 5. Report Date
Users Guide: The LaRC Human-Operator-Simulator- April 1985
Based Pilot Model 6. Performing Organization Code
505-35-33-01
7. Author(s) 8. Performing Organization Report No.

Edward H. Bogart and Marvin C. Waller

10. Work Unit No.

. Performing Organization Name and Address

NASA Langley Research Center 11, Contract or Grant No.
Hampton, VA 23665

13. Type of Report and Period Covered

. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20546

15.

Supplementary Notes
Edward H. Bogart: Kentron International, Inc., Hampton, Virginia.
Marvin C. Waller: ©NASA Langley. Research Center, Hampton, Virginia.

16.

Abstract

A Human Operator Simulator (HOS) based pilot model has been developed
for use at NASA LaRC for analysis of flight management problems. The model
is currently configured to simulate piloted flight of an advanced transport
airplane. The generic HOS operator and machine model was originally developed
under U.S. Navy sponsorship by Analytics, Inc. and through a contract with
LaRC was configured to represent a pilot flying a transport airplane.

A version of the HOS program runs in batch mode on LaRC's (60-bit-word)
central computer system. This document provides a guide for using the
program and describes in some detail the assortment of files used during
its operation.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Pilot model Unclassified - Unlimited

Operator model
HOS
Subject Category 53

19. Security Classif. (of this report} 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 46 A03

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161

DO NOT REMOVE SLIP FROM MATERIAL

Delete your name from this slip when returning material
to the library.

NAME DATE MS

[N Y\ e) St
= DUl N \Camt" ’\d‘”"-l'}-' \5(0
—kfsﬁ::‘:g.z)g

AL HE

NASA Langley (Rev. Dec. 1991) RIAD N-75

