|
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

‘March 1985 |
o Central Scientific
- Computing Complex

Document N - 3 8

—

https://core.ac.uk/display/42845685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 1176 01311 4799

NASA Technical Memorandum 86407

GUIDELINES FOR DEVELOPING
STRUCTURED FORTRAN PROARAMS

B. M. EARNEST

MARCH 1985

NASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton Virginia 23665

N %5 2408 H

Guidelines for Developing Structured
FORTRAN Programs

March 1985

Page

1. INTRODUCTION 1

2. SOFTWARE DEVELOPMENT PHILISOPHY 2

2.1 Need for Design 2

2.2 Development Procedure 2

2.3 Modularity 3

2.4 Control 3

2.5 Machine Independence 4

2.6 User Considerations 4

2.7 Configuration Management 5

3. DOCUMENTATION 6

3.1 Inline 6

3.2 Formal 6

4, GENERAL CODING CONVENTIONS 7

4.1 Program Layout 7

4.2 Readability 8

4.3 Linkage/Communication 11

5. SPECIFIC FORTRAN CODING CONVENTIONS AND CONSTRAINTS 12

5.1 Alphanumeric Data 12

5.2 Assignment Statements 12

5.3 Documentation 12

5.4 Do LOOQPS 12

5.5 Flow Control Statements 12

5.6 General Programming Suggestions 13

5.7 Input/Output 15

5.8 Linkage 15

5.9 Naming Conventions (COMMON Blocks) 15

5.10 Program Control Labels 15

5.11 Specifications and Data Statements 15

5.12 Subprograms 16
APPENDIXES

A. DOCMENT Explanation and Example 17

B. Prologue Description and Example 22

C. FORTRAN Module Example 25

D. Simulated FORTRAN Structured Concepts 27

E. Code Reading FORTRAN Programs 29

REFERENCES 32

1. INTRODUCTION

This document describes computer programming and coding standards which
represent guidelines for the uniform writing of FORTRAN 77 programs at NASA
Langley. Wherever possible, these guidelines should be adopted as the
required standards for program development. For example, these guidelines are
to be followed 1n the design of wind tunnel data reduction programs utilizing
the Langley Central Scientific Computing Center.

Not all of the capabilities and options of FORTRAN 77 are included herein; see
the 1ist of references for manuals describing other capabilities.

This document supports contemporary software engineering techniques; however,
it does so without defining them with academic precision. For example, the
term structured programming may mean to some readers that only the prime
constructs DO-WHILE, IF-THEN-ELSE, and SEQUENCE are used when writing a
program. To others it means the step-wise refinement process necessary to
decompose a specification into more manageable partitions prior to coding.
Both viewpoints are correct and thus the term used throughout this document
denotes a label for a collection of techniques that can be systematically
applied to produce programs.

Reference 2 was used extensively 1n the development of these guidelines.

March 1985

2. SOFTWARE DEVELOPMENT PHILOSOPHY

Before any programming begins there should be careful thought and planning.
The high cost of software and maintenance of software makes it imperative that
the program design and documentation be easily followed and understood. The
following ideas drawn from several sources will aid in program design.

2.1 Need for Design

A complete and accurate design is a critical requirement for a large
programming system. Given a complete system specification, in which all the
requirements of the system are defined, the responsibility for a well-designed
program lies with the programmer and the program manager. Documents described
in FIPS Publication 38 (reference 6) would provide a complete system

specification.

Programmers should use a top down design approach where all the requirements
of the system are completely specified and designed before actual coding
begins. Before designing or coding of a program ensure that the capability to
perform 1ts task does not already exist. This will eliminate duplication of

effort.

2.2 Development Procedure

For each functional area and the modules (individual umit or subroutine)
within, the following procedures should be used:

1. Programmer designs the module from requirements received.

2. Programmer writes the module, including the prologue, in English text
(structured design) for review.

3. Colleagues read the module for correctness, understanding, and
readability.

4, Iterate steps 1-3 unti1l satisfactory.

5. Colleagues attend a walk-thru of designs of an entire functional
area.

6. Iterate steps 1-5 until satisfactory.
7. Begin coding modules or functional areas.
8. Colleagues read code for correctness (see Appendix E).

9. Test each functional area beginning with the executive structure (use
stubs for code not yet completed).

10. Initial operational capability achieved.

2 March 1985

2.3 Modularity

Modularity is a concept that allows systematic development of programs as a
set of interrelated i1ndividual units (called modules) which can be tested
separately and later linked together to form a complete program.

With a modular approach, the program design stage becomes the most critical
function. A top-down examination of the overall system must be resolved
before coding begins.

The following attributes of modular programs should be maintained:

2.3.1 Functional Separation

Individual algorithms should be kept functionally separate for ease of
production and maintenance.

1. Each algorithm should be in a separate module.

2. Keep all 1input statements for a file 1n one module.

3. Keep all output statements for a file in one module.

4. A1l error handling should be in one module.

5. All general purpose code should be isolated in separate modules.
2.3.2 Top Entry/Bottom Exit

Each module shall have one entry point and one exit point and utilize
structured programming techniques.

2.3.3 Size Limitations

Each module should be kept as small as feasible. Modules, excluding prologue
and comments, should not exceed 100 lines of code.

2.3.4 Data Transfer

The preferable way to transfer data from routine to routine in order to
maintain autonomy 1s the use of argument 1ists (calling sequence). Where the
argument lists are long use FORTRAN labelled common storage.

2.3.5 Environment

A labeled common block can be used to contain the parameters which define the
environment required for a group of modules (e.g. working array sizes, error
tolerance).

2.4 Control

A person must be assigned responsibility for each program or set of programs

and someone must also be assigned responsibility for the overall system of
programs.

March 1985

Control over programs and associated files shall be implemented through use of
a general purpose symbolic file maintenance program such as Control Data
Corporation programs UPDATE or MODIFY.

Assignment of responsibilities for control of programs insures adherence to
the following concepts:

2.4.1 Program Integrity

The integrity of programs must be maintained through control. The person
responsible for each program, or set of programs, should document all
modifications. This information should be made available to people using the
program.

2.4.2 Version Capability

Even though having many versions of a program which do not differ much is not
justified, there are legitimate cases where more than one version of a program

1S necessary.

With a modular approach, a given configuration can be built from the basic
modules by compiling and loading only the modules required. By loading only
the modules required and eliminating multiple program paths the storage
necessary for the unneeded modules is saved.

When all versions of a module are required in memory simultaneously, multiple
program paths will be used as opposed to maintaining several separate versions
of the entire program.

2.5 Machine Independence

It 1s wmportant that computer programs be written so that with minimum effort
they may be transported to and executed on systems other than the one for
which they were written. Features of the compiler which do not conform to the
ANSI Standard should be avoided. For example, use of comment cards with a $
1n column one and seven character names should not be allowed. The use of
non-ANSI features 1s, however, preferable to the use of assembly language.

The use of any features which do not conform to the ANSI Standard must be
approved by the person responsible for the system of programs. When these
features are required and approved, they should be documented as non-ANSI
features 1n the program document and i1nternally in the code via comments.

2.6 User Considerations

In order for a program to have value 1t must be useful, therefore, it must be
written with the user in mind. Complex input and output make it extremely
difficult for the user to run the program.

Input should be well-defined, simple, and allow the user as much freedom as
possible. Default conditions should be used so that minimum user input is

4 March 1985

required and data which is frequently used should be stored on a file
accessible to the user rather than requiring that it be supplied by the user
every time.

Output should be clearly labeled and readable and be structured so that the
user may suppress output that is not needed.

2.7 Configuration Management

For a large programming system it 1s important that complete control of the
configuration and changes to the configuration be maintained and recorded.
The ability to recreate previous versions of the system must be available.

Software configuration management of large systems requires a symbolic file
maintenance program. With such a program, changes to and control of the
system are achievable. '

Control Data Corporation (CDC) supplies two symbolic file maintenance programs
(UPDATE and MODIFY). These programs have all the facilities necessary for

configuration control on programs installed on CYBER 170 Series computer
systems.

For a more specific set of standards for configuration management see
references 9 and 13.

March 1985

3. DOCUMENTATION

Two problems usually exist regarding computer program documentation: (1) it
doesn't exist, or (2) it exists but is out-of-date. Documentation must be
written concurrently with program development in order for it to be accurate
and available when checkout is complete.

Two types of documentation are required: Comments in the source code (in-
line) and reports (formal) which provide user guidance as well as program
maintenance information.

3.1 Inline

This documentation 1s embedded within the source language of the program.
Although this is neglected many times because of consuming too much time, it
is a valuable aid to those who need to understand a program without studying
the program itself. It is of greatest benefit if done concurrently with
program development. The overall review process, from preliminary prologue
review during the design phase through final code reading, is important in
insuring that the documentation is current, understandable, and correct.

The two types of inline documentation are prologue and interspersed comments.

3.1.1 Prologue

This comment code appears at the beginning of every module or routine. See
Chapter 4 and appendices B and C for explanation and examples.

3.1.2 Interspersed

This comment code defines executable code itself. For readability of these
comment lines, it is suggested that a "C" or "*" be placed in column one and
the comment be indented as appropriate with the code. See Appendix A for a
description and example of inline documentation using the DOCMENT program
developed by Control Data Corporation. Other examples are shown in Appendix C.

Comments should be written with a sense of style and with a feeling for what
1s going to help the reader understand the program. The goal is to anticipate
the questions that a reader will have and answer them in advance.

3.2 Formal

This documentation includes all reports necessary to adequately define a
system. Federal Information Processing Standards Publication 38 (reference 6)
gives the guidelines for formal documentation of computer programs and
automated data systems. It also gives guidelines to determine the level of
documentation required for a particular program or system. As a minimum,
formal documentation should include a program design document, a users manual,
and a program maintenance manual. A call structure map is a useful item to
include 1n the program maintenance manual of complex programs.

6 March 1985

4, GENERAL CODING CONVENTIONS

Every program has to be tested to see if it performs as expected and also will
need to be maintained and revised. The following general coding recommenda-
tions and constraints will aid 1n testing and maintenance of a program or
subroutine.

4.1 Program Layout

Each subroutine or module 1n a program shall be comprised of a subroutine
statement, a prologue, specification and data statements, code, and format
statements. A brief discussion of each is given below.

4.1.1 Subroutine statement

The subroutine statement may be continued over several lines so that input
parameters, output parameters and parameters used as both input and output
appear on separate lines of the listing.

Example:
SUBROUTINE ABC
[(INL ,IN2 ,...
B BOTH1,BOTHZ,...
0 OuT1 ,0UT2 ,...)

4.1.2 Prologue

The prologue is used to give vital information about the module. This
information should include the purpose of the module, the programmer, program
language, and any other 1nformation which w11l aid in the use of the module.
The minimum 1nformation in the prologue would be Title, Name, Source Language,
Purpose, Author, and Date. A more detailed explanation of the items to be
included 1n the prologue and an example are given in appendices B and C.

Ccccceececcecceccecceccecceccecceccceccceccceccceccceccccccecccccccccccccccccccec
Title:

Name :

Source lLanguage:

Purpose:

Author:

Date:
Cccceeceecceeccececceecceeccecceccecceeccccceccecccceccccccecceccccccccccccccccce

COOOO0
OO

4.1.3 Specifications and DATA Statements

1. PARAMETER

The PARAMETER statement gives a name to a constant. The name may then
appear anywhere a constant is permitted or required.

2. DIMENSION
The DIMENSION statement defines symbolic names as array names and
specifies the bounds of each array.

March 1985

3. COMMON Data
COMMON blocks and variables within them should be alphabetized.
Labeled COMMON can be defined in a BLOCKDATA subroutine.

4. TYPE statements
This is a way to explicitly specify the type of variable names (e.g.,
REAL, DOUBLE PRECISION). This can be used in place of a DIMENSION
statement.

5. DATA statements
The DATA statement is used for local variables only.

6. Statement Function definitions
A statement function is a user-defined procedure. It is a nonexecut-
able, single-statement computation that applies only to the program
unit containing the definition.

4.1.4 Code

The philosophy of structured programming should be used in designing and
coding the modules. The use of sequence, IF-THEN-ELSE, DO-UNTIL, CASE, DO-
WHILE constructs shall form the basis for all programs. To maintain the idea
of modularity, routines should not exceed 100 FORTRAN statements (excluding
Prologue and Comments).

4.1.5 FORMAT statements

These statements should normally be at the end of a module. If the FORMAT 1s
only used 1n one place in the module, it could be Tisted next to the I/0
statement that uses it.

4.2 Readability

An mportant aspect of the verification of a design or program lies in the
code review. MWithout readable programs this exercise is futile.

A programmer must put forth some effort to create and maintain readability
within the framework of FORTRAN. The difficulties can be blamed on
1nconsistent subroutine layouts, names that fail to accurately reflect their
semantic roles, lack of structure illumination (via alignment and
indentation), random assignment of statement numbers, and so forth.

An excellent article by D. D. McCracken and G. M. Weinburg on writing readable
FORTRAN programs is found in the October 1972 issue of Datamation (reference
8). For other information on programming style see reference 7. The
following suggestions will aid 1n writing readable programs.

4.2.1 Naming Conventions

Names of variables and modules should serve the purpose of helping to identify
specific entities. The names should convey the meaning of the variable.

Almost without exception, confusion arises when abbreviations are chosen that
result in an acronym or a word that makes the reader think of a different,

8 March 1985

unrelated entity. Avoid acronyms which may be confused with common words.
Also avoid using zero (0) as a character in a name.

In addition to the use of meaningful names, purely mathematical functions
should be defined by using familiar notations to lend understanding. Thus,
Z = F(X,Y) is much more suggestive than Y = X(Z,F).

The following table illustrates the concept of maintaining psychological
distance between entity names. That 1s, names that look, sound, or are
spelled alike, or have similar meaning are not distant psychologically.

Name for Name for Psychological
One Entity Another Distance
BKRPNT BRKPNT InvisibTe (keypunch error)
MOVLT MOVLF Almost none
CODE KODE Small
OMEGA DELTA Large
ROOT DISCRM Large and informative

4,2.2 Formating to Generate Readable Listings

The term "pretty printing" is used to express the idea of indenting and
spacing source code so that the 1isting displays the logical structure of the
code and aligns the variables appearing in the declarative and common lists.

Example 1:
The following FORTRAN COMMON does not generate much eye-appeal and 1s also
prone to error when changes are made:

COMMON/NAMES/CP,CL,CD,
1MACH, TEMP,AQA,
2VEL,ACCEL

By selecting the nominal width that will accommodate the largest name and
choosing a vertical alignment of both commas and names, the result is much
better.

COMMON /NAMES/ CP » CL » CD s
1 MACH , TEMP , AOA ,
2 VEL , ACCEL

Example 2:

To show the logical structure of code requires the alignment of statements
that are logically grouped and the i1ndentation of statement groups that are a
part of larger logical units. Vertical spacing of the logical units
themselves can be accomplished with blank comment statements or blank lines.

March 1985

The following structured FORTRAN example 11lustrates these concepts:

NPTSM1 = NPTS-1

c ...PERFORM BUBBLE SORT ON TABLE
DO 1550 I= 1,NPTSM1
IPLUSY = I+1

c ...PERFORM SWAP IF NECESSARY
DO 1500 J= IPLUS1,NTPS
IF(TABLE(I) .GT. TABLE(J)) THEN
TEMP = TABLE(I)
TABLE(1)= TABLE(J)
TABLE(J)= TEMP
ENDIF
1500 CONTINUE
1550 CONTINUE

A highly modular structure 1s a requirement in software development. The
1ndividual routines must be small (both logically and physically), well-
designed code blocks dedicated to one specific task or function.

4,2.3 Statement Label Usage

Semantically, most programmers enviston labels as providing a unique
1identifier to different versions of a specific construct (e.g., FORMAT
statements) or the capability to specify alternate paths within a routine.

An overabundance of labels in the latter category usually implies a poorly
designed routine. More than likely, the routine is not a reflection of a
specific task or function: It represents a collection of tasks. This, i1n
turn, usually wmplies that the reader's eye will behave like a pogo stick when
attempting to follow the code. On the other hand, a relatively label-free
routine wmplies, at first glance, that one may read from top-to-bottom.

Labels can also play an additional role. Their appearance can serve to
clarify program purpose and structure. Although the numbers used to represent
FORTRAN labels do not convey information, categories of related entities
(e.g., input formats, output formats) can be isolated by dedicating a range of
numbers with a constant increment to represent a particular category. FORTRAN
statement numbers should always be assigned and appear in ascending order
within a module.

No matter how well designed a program may be, changes are inevitable. Changes
1nvolving the insertion of additional labeled statements should not upset the
ascending order rule. It does mean that the programmer define the magnitude
of the 1nitial increment between statement numbers large enough (e.g., 50) to
accommodate the insertion of new labeled statements at a reduced increment
(e.g., 20). The value of the original (and reduced) increments should always
be a multiple of the same number (e.g., 10).

10 March 1985

By definition, the terms modularity and structured programming imply that
programmers are developing and maintaining small, relatively label-free
routines. Thus, any fear of running out of label numbers during the 11fe of
the routine 1s unjustified.

4.3 Linkage/Communication

Overall software development should be approached as a tool-building process.
Where possible, individual modules should be written as 1f they are to be
placed on a computer system support library for a project.

Modules that do too much or rely on COMMON instead of parameter lists for
communication have little or no value as reusable packages.

4.3.1 Subroutine versus Functions

A function should be used only for 1ts returned value. It should behave the
same as 1n a purely mathmatical environment. Many programmers misuse functions
by failing to consider the impact on the program environment. Thus, if F(X) +
F(X) does not always equal 2*F(X) because X 1s altered, then an unwanted,
difficult to detect side effect has been introduced.

Subroutines differ from functions in that they can alter formal parameters or
global variables. Subroutines are not immmune to side effects 1f heavy
reliance is made on hidden globals, as opposed to the more visible parameter
l11sts, for data communication. For example, a routine that redefines a global
may produce unexpected results.

4.3.2 Parameter Lists

Where possible, total communication with a routine should be confined to the
calliing sequence. This is 1n keeping with the tool building concept of
program development. A routine becomes much more attractive to another user
1f he can pass his own environment entirely through a calling sequence.

Exceptions wi1ll arise, especially 1n the highest level routines where large
numbers of variables must be made available to lower level routines.
Carefully chosen COMMON blocks should then be used. If a routine needs so
much 1nformation as to make parameter passing impractical or impossible, then
it could be that the routine 1s doing too much. A routine could be so highly
specialized that 1ts use as a general tool is very remote. A mix of named
COMMON and formal parameters should be used.

4,3.3 COMMON Variables
Variables 1in labeled COMMON blocks will be used to isolate truly global

variables, i.e., those variables needed by more than one routine. Such blocks
should be formed by grouping related variables.

March 1985

- ity

11

5. SPECIFIC FORTRAN CODING CONVENTIONS AND CONSTRAINTS

The coding conventions and constraints given below shall be used for well-
structured FORTRAN routines. The most important 1s adherence to the simulated
structured FORTRAN standards illustrated 1n Appendix B and the CDC FORTRAN
Version 5 Reference Manual (Reference 4).

Arbitrary non-ANSI programming practices should not be used unless that
practice can be shown to be required to accomplish a given task. If a task
cannot be done 1n ANSI FORTRAN, extensions of the compiler (shown 1n Reference
4) are preferable to assembly language programming. Non-ANSI practices that
are approved must be documented i1n the prologue and 1nterspersed comments.

5.1 Alphanumeric Data

Use type CHARACTER as described in Reference 4.

5.2 Assignment Statements

Do not use multiple assignment statements (e.g., X=Y=72=0).

5.3 Documentation

Every module shall have a prologue of the form 11lustrated in Appendix A and
described in the general programming conventions (Chapter 4).

Interspersed comments shall define every branch point and block of code and
appear before the code they define. Comments shall be inserted with the
original code. These comments should be aligned with the code and not begin
with any of the keywords of structured programming (e.g., IF).

5.4 DO Loops
1. Do not use DO loops with an 1teration count of less than 3 unless the
upper 1imit 1s variable or a duplication of a large block (30-50
lines) of code would result.
2. End all DO loops with the CONTINUE statement.

3. Do not end nested DO loops on the same label.

4. Do not calculate constants or variables which do not change within the
range of the DO.

5.5 Flow Control Statements

1. Do not use assigned GO TO statements.

2. Do not use a GO TO to any statement preceding the GO TO statement
(1.e., branching up 1n the routine). Exceptions are the simulated
Structured FORTRAN conventions of Appendix B.

3. Use only simple 1integers as the index of a computed GO TO. CDC
FORTRAN 5 does not give a message 1f the 1ndex is beyond the range so

12 March 1985

a check for a valid i1ndex should be made or there should be an error
handling statement after each computed GO TO.

a2 4, VUse the more structured IF-THEN-ELSE rather than the arithmetic IF.

5.6 General Programming Suggestions

1. Continuation characters shall be the integers from one to nine (1-9),
and then the letters A-J for a maximum of 19 continuation statements.

2. Use only simple 1ntegers as indices or subscripts.

3. Do not use machine dependent techniques (e.g., bit manipulation,
masking, shifting, etc.) unless there is no other way to do the
job. When required, these techniques shall be clearly identified in
the program via comments and approved by the program manager.

4, Calculations of constants should be performed only once at the
beginning of the program outside any loops.

5. If a constant is a multiple of 10, write it in scientific notation as
1.E6, never as 10**g,

6. Initialize every variable before use.

7. Values of local variables computed in a subroutine are lost upon
exit.

Yo 8. Avoid temporary or shared storage.

9. Avoid STOP statements within subroutines unless there are appropriate
error messages.

10. Do not use mixed mode arithmetic except explicitly (FLOAT,INT). Do
not retype variables through assignment.

11. Do not assume that comparison of two or more variables will be
identically zero. Do not make equal (.EQ.) tests on floating point
data. Use a tolerance test.

12. For loops which iterate to a convergence criterion use a maximum
overall counter to avoid getting into a closed loop if the
convergence fails.

13. Do not pass constants (li1terals) as parameters.

14. Use the PARAMETER statement to define literal constants used in a
program. One of the most error-prone programming practices is
locking literal constants into the code. Keep executable code
independent of specification statements. For example, a change to
the size of an array should affect only the specification part of the
program:

March 1985

5.7

14

Example:

PARAMETER (NROWS=9,NCOLS=9)
DIMENSION MARRAY(NROWS,NCOLS)

CALL MATRIX(NROWS,NCOLS,MARRAY,.......)
and not
DIMENSION MARRAY(9,9)

CALL MATRIX(9,9,MARRAY,.......)

15. Avoid using literals for I/0 units or 1imits on DO loops. Use the
PARAMETER statement.
For example, use: Do not use:
PARAMETER (MXMSLS=24, MSLUNT=5) DIMENSION LEVARM(24)
DIMENSION LEVARM(MXMSLS) .
: READ(5) 1list
READ(MSLUNT) Tist .
DO 4000 N- 1,MXMSLS DO 4000 N= 1,24
4000 CONTINUE 4000 CONTINUE
16. Write only straightforward readable code. Use the construct that is
the most applicable to the process/algorithm.
17. Indent code to show the structure, making the indentation increment
large enough to allow for later 1insertions.
18. Parenthesize and space to enhance readability and to avoid ambiguity.
19. Use blanks and grouping to make code more readable. For instance, no
blanks between factors, one blank between terms. For example, use
A = B*C + D/E 1nstead of A = B*C+D/E
Input /Output
1. ANSI 'File,Format' reads and writes shall be used. For example, use
READ(IFILE,FMT) A,B instead of READ FMT, A,B
or
WRITE(IFILE,FMT) A,B 1nstead of PRINT FMT, A,B
2. A1l unit specifiers shall be data-defined, parameter defined, or
1nput, and not literals.
3. Unit numbers 5, 6, and 7 shall be reserved for 1nput, output, and

punch, respectively.

March 1985

5.8 Linkage

1.

Pass data 1n parameter lists to keep routines modular, passing input
arguments first, both (input and output) arguments second and output

arguments last.
There will be only one entry and one exit point.

If an array is passed from one subroutine to another, use the asterisk
(*) form of adjustable dimension 1n each of the intermediate

routines. When using variable dimensions, the name and dimensions
must be passed i1n the calling sequence.

Do not use the same variable name more than once in a calling
sequence, since this, in effect, equivalences those locations in the
called routine. Insure arrays are initialized or reset with arrays
and smmple variables with simple variables.

5.9 Naming Conventions (COMMON Blocks)

A definitive naming convention for COMMON blocks should be selected so that
different types of data are grouped together. This naming convention should
be consistent across the entire program. For example, the convention could be
based on program structure (input commons, output commons, real commons,
integer commons, etc.) or based on program logic.

5.10 Program Control Labels

Begin with 10, 100, or 1000 and then increment by an even increment
such that there 1s room for insertion of additional labels.

Keep labels in ascending order.
Right justify labels i1n column 5.

Use labels only when needed.

5.11 Specifications and DATA Statements

1.

Labeled COMMON Blocks

A labeled COMMON block shall be the same in every routine in which 1t
appears. (1.e., exactly the same length and variable names).

Do not mix control variables with data storage in the same common
block.

Initi1alize COMMON data via BLOCK DATA.

Dimension arrays within the COMMON statement and not with a DIMENSION
or declarative statement. However, variably dimensioned arrays must
be dimensioned in a DIMENSION statement.

Blank Common
Do not use without the approval of the program manager.

March 1985

15

3.

6.

DATA Statements

Align names or data to improve readability. Define all constants to
the maximum precision of the machine on which the program will be

executed.

DIMENSION Statements
Use only for local data and variably dimensioned arrays.

EQUIVALENCE Statements

Do not use the EQUIVALENCE statement without the approval of the

Program Manager,

FORMAT Statements

For labels use numbers much larger than other statement labels.
Increment by 10 and have FORMAT statements at the end of the program.

Use the H-format or apostrophe(') delimiter to define text.

5.12 Subprograms

16

1.

2.
3.

4.
5.

Use a function only for 1ts returned value. Do not modify global data

or arguments within a function.

Do not interchange functions with subroutines.

Do not exceed 100 lines of code (not i1ncluding prologue and comments)

for a given routine without approval.

Every routine should have only one entry and one exit.

When available, compile each module with the option to identify non-

ANSI code so it can be removed.

March 1985

N

af

Appendix A

DOCMENT Explanation and Example

DOCMENT 1s a Control Data Corporation NOS documentation processing program.

It was designed to extract documentation embedded in the program source
language as comments using the asterisk or C in columns 1 to 5. These special
comments define two types of documentation:

1. External documentation which 1s produced for the general user to
show how the program functions and how the program is used.

2. Internal documentation which describes the internal characteristics
of the program so that a programmer can see how the program works
in order to modify the program as required.

DOCMENT comment statements contain only asterisks and blanks in columns 1-5
and text 1n columns 6-71. The following rules apply to the format of comment
statements for documentation.

1. Comment statements with an asterisk (or C) only i1n column 1
indicate that this statement 1s a continuation of internal or
external documentation, or it is a comment statement not included
in the formal documentation (i.e., 1t is not processed by DOCMENT).

2. Comment statments with asterisks 1n columns 1 and 2 indicate
internal documentation.

3. Comment statements with asterisks in columns 1, 2, and 3 indicate
that this statement and all following statements are internal and
external documentation. Documentation ends when another comment
statement containing 3 asterisks in encountered.

4, A statement with four asterisks beginning in column 1 indicates
that all following statements are i1nternal documentation (whether
they are comment statements or not). Documentation ends when
another comment statement containing four asterisks is encountered.

5. A statement with asterisks in columns 1 through 5 indicates that
this and the following comment statements are internal and external
documentation and provide program overview.

6. A statement with an asterisk in column 1 and blanks in columns 2
through 71 is a blank comment statement and is used as a separator
to improve readability of documentation.

The DOCMENT control statement explanation 1s given in the Central Scientific
Computing Complex Document N-2a (Volume 1, NOS Version 1 Reference Manual, CDC
publication number 60435400N).

A more complete explanation of the documentation standards and procedures is
presented in Appendix I of the Central Scientific Computing Complex Document
N-6 (Volume 2, NOS Version 1 Reference Manual, CDC publication Number
60445300N).

The following example developed by S. W. Pillow of SDC shows the use of the

above documentation procedure and the external and internal documentation
extracted by program DOCMENT.

March 1985

*******:
*
*
*

%*

*k

F ook ok % ok ok ok o % ok ok A %k % %k K % ok % % R ok o F % % % % ok o % % *

* %k

*k

* % ok % % X X %

*
*

18

PROGRAM ADD(INPUT,QUTPUT,TAPES=INPUT,TAPE6=0UTPUT)

ADD - INTERACTIVE ADDER PROGRAM
THIS PROGRAM ADDS TWO POSITIVE INTEGERS AND WRITES THE
SUM TO THE OUTPUT FILE

S.W. PILLOW SYSTEM DEVELOPMENT CORP. 5/5/83 PHONE: 865-1111

ADD IS A FORTRAN 5 PROGRAM WHICH ADDS TWO USER SUPPLIED POSITIVE
INTEGERS AND RETURNS THE SUM WHILE EXECUTING IN AN INTERACTIVE
ENVIRONMENT. INTEGER PAIRS CAN CONTINUE TO BE ENTERED AND SUMMED
AS LONG AS THE USER DESIRES.

INPUT

INTEGER VALUES ARE TYPED IN BY THE USER ON THE CRT (FILE "“INPUT"
IS ACTUALLY READ)

FORMAT - UNFORMATTED (NO COLUMN RESTRAINTS)
RESTRICTION - VALUES SHOULD NOT EXCEED 9999999999

DEFAULT - NO DEFAULT VALUE FOR EITHER INTEGER

QUTPUT

ALL MESSAGES AND PROMPTS ARE WRITTEN TO THE CRT SCREEN (FILE
"OUTPUT" IS ACTUALLY WRITTEN)

ERROR MESSAGES

IF EITHER INTEGER IS NEGATIVE: "NEGATIVE VALUE READ".
INPUT WILL BE REQUESTED AGAIN

TERMINATION

A CARRIAGE RETURN IN RESPONSE TO THE INPUT PROMPT WILL END
PROGRAM EXECUTION. "“EOF FOUND ON INPUT - PROGRAM END" WILL
BE WRITTEN TO THE SCREEN.

PROGRAM FLOW

PROMPTED INPUT OF THE INTEGER VALUES IS FOLLOWED BY A
CHECK FOR NEGATIVE VALUES. IF BOTH INTEGERS ARE PQS-
ITIVE THEY ARE SUMMED AND THE RESULT WRITTEN OUT. IF

A NEGATIVE VALUE IS FOUND, NO SUM IS CALCULATED OR
WRITTEN FOR THAT INTEGER PAIR, AN ERROR MESSAGE IS
WRITTEN, AND NEW INPUT IS REQUESTED. WHEN EOF IS FOUND
ON INPUT (A (CR) FROM THE CRT) THE PROGRAM STOPS.

FIGURE Al. SOURCE CODE FOR DOCMENT

March 1985

* ««. PROMPTED INPUT

10 WRITE(6,'("ENTER FIRST INTEGER")')
READ(5,*,END=20) J1
WRITE(6,* ("ENTER SECOND INTEGER")')
READ(5,*,END=20) J2

* ,..IF NO NEGATIVE VALUES SUM INTEGERS AND WRITE RESULT
IF(J1.LT.0.0R.J2.LT.0) THEN
WRITE(6, ' ("NEGATIVE VALUE READ")')
ELSE
xxx%x __ EQUATION USED TO CALCULATE SUM OF INTEGERS J1 AND J2

ISUM = J1 + J2
*kkk
WRITE(6,' (" SUM = ",'I11')*) ISUM
ENDIF
* ... GO BACK AND GET NEW INPUT

GO T0 10
20 CONTINUE

* ««. WRITE TERMINATION MESSAGE AND STOP
WRITE(6,'(" EOF FOUND ON INPUT - PROGRAM END")‘')

STOP
END

FIGURE Al CON'T. SOURCE CODE FOR DOCMENT

March 1985

19

PROGRAM ADD(INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPU 83/05/06. EXTERNAL*

ADD - INTERACTIVE ADDER PROGRAM M
THIS PROGRAM ADDS TWO POSITIVE INTEGERS AND WRITES THE
SUM TO THE OUTPUT FILE

S.W. PILLOW SYSTEM DEVELOPMENT CORP. 5/5/83 PHONE: 865-1111
ADD IS A FORTRAN 5 PROGRAM WHICH ADDS TWO USER SUPPLIED POSITIVE
INTEGERS AND RETURNS THE SUM WHILE EXECUTING IN AN INTERACTIVE

ENVIRONMENT. INTEGER PAIRS CAN CONTINUE TO BE ENTERED AND SUMMED
AS LONG AS THE USER DESIRES.

INPUT
INTEGER VALUES ARE TYPED IN BY THE USER ON THE CRT (FILE "INPUT"
IS ACTUALLY READ)

FORMAT - UNFORMATTED (NO COLUMN RESTRAINTS)

RESTRICTION - VALUES SHOULD NOT EXCEED 9999999999
DEFAULT - NO DEFAULT VALUE FOR EITHER INTEGER

OuTPUT

ALL MESSAGES AND PROMPTS ARE WRITTEN TO THE CRT SCREEN (FILE
"OUTPUT" IS ACTUALLY WRITTEN)

ERROR MESSAGES

IF EITHER INTEGER IS NEGATIVE: “NEGATIVE VALUE READ".
INPUT WILL BE REQUESTED AGAIN

TERMINATION

A CARRIAGE RETURN IN RESPONSE TO THE INPUT PROMPT WILL END

PROGRAM EXECUTION. "EOF FOUND ON INPUT - PROGRAM END" WILL
BE WRITTEN TO THE SCREEN.

* Program DOCMENT cuts off the program line and inserts date and the word
external or internal in the heading.

FIGURE A2. EXTERNAL DOCUMENTATION OF PROGRAM

/"\\

20 March 1985

PROGRAM ADD(INPUT,OUTPUT,TAPES=INPUT,TAPE6,0UTPU 83/05/06. INTERNAL*

ADD - INTERACTIVE ADDER PROGRAM
2 THIS PROGRAM ADDS TWO POSITIVE INTEGERS AND WRITES THE
SUM TO THE OUTPUT FILE

S.W. PILLOW SYSTEM DEVELOPMENT COPR. 5/5/83 PHONE: 865-1111

ADD IS A FORTRAN 5 PROGRAM WHICH ADDS TWO USER SUPPLIED POSITIVE
INTEGERS AND RETURNS THE SUM WHILE EXECUTING IN AN INTERACTIVE
ENVIRONMENT. INTEGER PAIRS CAN CONTINUE TO BE ENTERED AND SUMMED
AS LONG AS THE USER DESIRES.

INPUT

INTEGER VALUES ARE TYPED IN BY THE USER ON THE CRT (FILE “INPUT"
IS ACTUALLY READ)
FORMAT - UNFORMATTED (NO COLUMN RESTRAINTS)
RESTRICTION - VALUES SHOULD NOT EXCEED 9999999999
DEFAULT - NO DEFAULT VALUE FOR EITHER INTEGER

OUTPUT

ALL MESSAGES AND PROMPTS ARE WRITTEN TO THE CRT SCREEN (FILE
“OUTPUT" IS ACTUALLY WRITTEN)

ERROR MESSAGES

S IF EITHER INTEGER IS NEGATIVE: "NEGATIVE VALUE READ".
INPUT WILL BE REQUESTED AGAIN

TERMINATION

A CARRIAGE RETURN IN RESPONSE TO THE INPUT PROMPT WILL END
PROGRAM EXECUTION. "EOF FOUND ON INPUT - PROGRAM END" WILL
BE WRITTEN TO THE SCREEN.

PROGRAM FLOW

PROMPTED INPUT OF THE INTEGER VALUES IS FOLLOWED BY A
CHECK FOR NEGATIVE VALUES. IF BOTH INTEGERS ARE POS-
ITIVE THEY ARE SUMMED AND THE RESULT WRITTEN OUT. IF

A NEGATIVE VALUE IS FOUND, NO SUM IS CALCULATED OR
WRITTEN FOR THAT INTEGER PAIR, AN ERROR MESSAGE IS
WRITTEN, AND NEW INPUT IS REQUESTED. WHEN EOF IS FOUND
ON INPUT (A (CR) FROM THE CRT) THE PROGRAM STOPS.

.+.EQUATION USED TO CALCULATE SUM OF INTEGERS J1 AND J2
ISUM = J1 + J2

* Program DOCMENT cuts off the program line and 1nserts date and the word
external or internal in the heading.

Y FIGURE A3. INTERNAL DOCUMENATION OF PROGRAM

March 1985

Appendix B

Prologue Description and Example

The following description defines the content and format for suggested

prologues:

cccccececececcccecececcceccecccccceccecccccccccecccccccccccceccecccccceccccceccce

(@}

C TITLE:
C NAME:
C SOURCE LANGUAGE:

PURPOSE :

PARAMETERS:
INPUT:
BOTH INPUT/OUTPUT:
OQUTPUT:
KEY LOCAL VARIABLES:

COMMON VARIABLES DEFINED:

SUBROUTINES CALLED:
ROUTINE CALLED BY:

DEPENDENCIES AND RESTRICTIONS:

COMMENTS:

AUTHOR:
DATE:

C

¢

¢

C

c

C

C

C

¢

c

C FILES:
C

c

C

C

C

c

C

C

C CHANGES:
C

C
¢
c
¢
C
¢
C
C
c
C
¢
c
COMMON VARIABLES REFERENCED: C
c
c
c
c
¢
¢
c
C
¢
¢
C
¢

cccceeececccecccceccecceccecececcccccecccccececccecccccccccccccccceccccccccc

The first and last lines of the prologue will contain a C or an asterisk in

columns 1 to 72. All others
The prologue will contain at

1. Title

2. Name -

3. Source Language

4, Purpose -

5. Author -

22

w1ll have a C or an asterisk in columns 1 and 72.
least the following information:

a short title which gives subject of the module.
a 1-6 character name which identifies the
module. NAME appears in the subroutine

statement.

the Tanguage in which the module is written (for
example, FORTRAN 5, COMPASS).

a brief description of the purpose of the module
and a list of its major components.

the programmer who wrote the module.

March 1985

Date - the date on which the module was implemented.

following 1tems may be i1ncluded 1n the prologue if applicable:

Parameters - include input variables, output variables, variables that
are both input and output, key local variables and variables in COMMON
blocks. For all parameters include the following as applicable:

a. List the name, units of measure (where applicable) and a
functional description of each parameter.

b. If the parameter is a name constant, list its value.

c. If the parameter is a status flag or indicator, list the values
the parameter can assume and a description of the state or
condition associated with each.

d. If the parameter is an multi-dimensional array, state what each
dimension represents. (For example, row =, column =),

e. For parameters in COMMON blocks list only the names used in the
module. Fully document all common block parameters in the
executive or in a block data routine.

Files - List the format, source, use (input or output), unit
identi1fication, and functional description of each file.

Subroutines called - list of subroutines which this routine uses.
Routine called by - Tist of routines which use this subroutine.
Dependencies and Restrictions - list special or unusual features
which restrict or Timit the performance of the module, special or
unusual features which are not ANSI Standard, and identify all non-
ANSI and CDC unique statements, functions, routines, or operations
used in a module. Identify the code with inline comments.

COMMENTS -~ any additional information to clarify the module.

Changes - list of changes made to the module. Include date and
programmer who made the changes.

March 1985

23

Example: Prologue with Subroutine Statement.
SUBROUTINE PRTERR
I (ITYCD , ICOL , MCHK , ISEQ , ISEQl)
ccceeecceccceececccceccccccceccccccccececccceccccecccceccccccccccecccceccecccccecccec
TITLE: Print Input Error Messages.
NAME: PRTERR
SOURCE LANGUAGE: FORTRAN 5
PURPOSE: TO PRINT ERROR MESSAGES ACCORDING TO INPUT TYPE.
INPUT:

ITYCD
IcoL

¢

C

C

C

¢

c

¢

¢

C

c

¢
INPUT TYPE (1, 2, OR 3). c
INPUT DATA AS 80 CHARACTER STRING BEFORE CALL TO ¢
FRFLD SUBROUTINE. c
SWITCH USED TO PRINT MESSAGE IF THE DATA IS OUT OF c
ORDER. = 0 IF ALL DATA IS IN ORDER BY SEQUENCE NO. c
= 1 IF THE DATA IS OUT OF ORDER. ¢
¢

c

C

c

c

c

c

c

c

c

C

¢

C

c

¢

C

C

MCHK

ISEQ
ISEQL

SEQUENCE NUMBER FOR STORING INPUT DATA (TYPE 3).
SEQUENCE NUMBER OF INPUT DATA.

C
C
C
C
c
C
c
C
C
C PARAMETERS:
C
C
c
c
C
C
C
c
C

C

C COMMON VARIABLES REFERENCED:

C JOBID - IDENTIFICATION NUMBER FOR THIS SET OF DATA.
C TODAY - DATE FROM COMPUTER.

c

C SUBROUTINE CALLED BY:
C STORC1 - SUBROUTINE TO STORE DATA TYPE 1.
C STORC2 - SUBROUTINE TO STORE DATA TYPE 2.
C STORC3 - SUBROUTINE TO STORE DATA TYPE 3.
C

C AUTHOR: B. M. EARNEST
C

C DATE: 11-10-84
C
C

ccccceececceeceececccecccccccecccccccceccceccccccecccccccccccccccccccccccc

24 March 1985

Subroutine SCAN

Appendix C
FORTRAN MODULE EXAMPLE

I (RDATA ,

B

ND » XDVAL , XDVAL2, XDMIN, XDMAX)

cceeeececcccecccecceecceecceccccccccecccecceccecceccecccccccccccccccccccce

Name: SCAN

Function or Purpose:

Parameters:
Input: RDATA

ND -
XDVAL -
XDVAL2

XDMAX
XDMIN

LOCAL
DMIN
DMAX
K -

Subroutines called:
IFIX

AUTHOR: J. SATRAN

OO0 OOOOOOOOOOOOOOOOOO0O0 00

C DATE: 2-20-84

ccceececcecceccceecccceccccecccecceccccecccecececccecccccccccccecccccecccccccecc

C
C *INPUT DATA ARRAY
C

March 1985

Title: Accumulate Scanner Data for Daily Statistics Calculations

Source Language: FORTRAN 5

To accumulate scanner data for the daily
statistics calculations

- An array which contains one complete

record of data

Output: Five arrays where the first three elements of each
array contain the accumulated scanner data for each
type of measurement made.

Array containing the total number of measure-
ments made per day.

Array containing the sum of the values
accumulated for the day.

Array containing the sum of the squared
values for the day.

The maximum value for the day.

The minimum value for the day

Temporary minimum value.
Temporary maximum value.
Pointer to data in the input array.

a FORTRAN intrinsic function.

Restrictions: Designed for ERBE data Release 1, Module 6.1.4

c
C
c
¢
c
c
¢
c
c
c
c
c
c
C
c
c
C
¢
¢
c
C
¢
c
C
C
C

c
C
c
C
c
c
¢
¢
¢
C
¢
c
c
C
c

25

o

OO0 (e Nl

OO0

26

DIMENSION RDATA(*)

_*OUTPUT DATA ARRAYS

DIMENSION ND(*) » XDVAL(*) R XDVAL2(*)
1 XDMAX(*) » XDMIN(*)
ILP=3
*ACCUMULATE DAILY STATISTICS
...5et initial data location
53720 I =1,ILP

N = IFIX(RDATA(K))
IF(N.NE.O) then

ND(I) = ND(I) + 1
XDVAL(I) = XDVAL(I) + RDATA(K+1)
XDVAL2(1) = XDVAL2(I) + (RDATA(K+1)**2)

...F1ind minimum and maximum values.

DMIN = RDATA(K+3)
DMAX = RDATA(K+4)
IF(DMIN.LT.XDMIN(I)) XDMIN(I) = DMIN
IF(DMAX.GT.XDMAX(I)) XDMAX(I) = DMAX
ENDIF
K = K5
20 CONTINUE
RETURN
END

March 1985

Appendix D
Simulated FORTRAN Structured Concepts

The following simulated structured programming concepts should be used when
writing FORTRAN code. The use of these conventions help to make a readable,
structured set of FORTRAN code. For IF, ELSE, ELSE IF, ENDIF, and CASE
structure use BLOCKIF statements of CDC FORTRAN 5 reference manual (Reference
4). For DO, DO while, DO until, CASE and BEGIN use the following:

NOTE: S Statement label or FORTRAN numbered label
logical condition

1
P

1. FORTRAN DO - use DO statement as described in CDC FORTRAN 5 reference
manual (Reference 4).

2. DO WHILE
C
C *Example of DOWHILE(P)
C
GO TO S2
S1 (code)

s2 IF(P) 60 TO S1

3. DO UNTIL
C
C *Example of DO UNTIL(P)
C
S1 (code)

IF(.NOT.(P)) GO TO S1

March 1985

27

5.

28

DO WHILE - DO

C
C *Example of DO WHILE - DO
C
S1 CONTINUE
(CODE)
C
C ***WHILE
IF(.NOT.(P)) GO TO S2
(CODE)
G0 TO S1

S2 CONTINUE

CASE - use BLOCK IF structure with ELSE IF.

BEGIN/END Sequence

C
C Begin
(Sequence of Code)
c
C End of sequence

March 1985

Appendix E
Code Reading FORTRAN Programs

One way to assure that a FORTRAN program meets the established requirements
js to have someone other than the author read the code. The following
discussion defines one way to read through a FORTRAN program to check the
code. This will be helpful in training personnel to code read programs and
also define the minimum checking which can be expected by the author who has
developed a program.

The assumption is made that the program was developed according to the
guidelines 1n this document. This means that a program design document should
exist and that the programmer used a structured approach for the program. The
reader should have the FORTRAN compilation of the program and the program
documentation and have access to the program specifications and file
definitions 1f applicable.

Generally, the code-reader should look for function (is it expressed in plain
language?), form (1s the style clean, meaningful comments included,
initialization and closeout proper?), and economy (1s storage consistent, are
there redundant operations, is it simple, and will it be easy to modify?).

A checklist is 1ncluded to provide a ready reference for actual code-reading
assignments.

March 1985

29

FORTRAN Code Reading

Using the FORTRAN compilation with reference map:

1.

10.

11.

12.

13.

30

Check the symbolic reference map for the one-to-one correspondence
between labels and references (exceptions are formats). Check the labels
for ascending order.

Check the map to determine if there are undefined variables or non-
dimensioned arrays appearing as externals. The externals from the
FORTRAN map can also be compared to those listed in the prologue.

Check the variables in the map to assure that parameters defined as
arrays in the prologue are listed as arrays.

Read the prologue for understanding. Make sure that its content is
consistent with the FORTRAN code implemented. Try to review it from the
standpoint of a potential user. Check for enough information in the
prologue to make the routine usable. Point out anything that is lacking
in the prologue.

Step through the code comparing it to the design ensuring that the code
reflects what the design indicates. Note any discrepancies.

Be sure that each branch does reference the correct label.

Mentally execute the code with extreme or unusual values to verify that
the code is correct. Avoid the pitfall of relying on the inline comments
to convey what the code is doing instead of actually reading the code.

Ensure that executable statements have not been accidentally commented
out,

Note any comments which cannot be clearly understood or computations
which do not clearly convey their functions.

Make certain that any machine dependent code or non-ANSI FORTRAN has been
flagged as such by the programmer as well as by the compiler.

Ensure that the variables used in the code are the FORTRAN equivalents of
those referenced in the design. Check the types of variables for
consistency. For example, is a variable described as an integer actually
read as an integer if formats are involved?

Ensure that formats and I/0 lists are consistent with file definitions.
The types of I/0 variables should agree with the types of data on files,
and the types specified in a format must agree with the file

definition. For example, 1s integer data actually read as an integer?
Also, is a binary file being input using a formatted read?

Check subroutine linkages. Make certain that the number of arguments is
consistent. Check the types of the arguments and whether arguments

March 1985

should be arrays. Where possible, check whether a COMMON variable passed
as an argument 1s being modified (as a COMMON variable) in the receiving
routine.

14. Refer to the design specifications to actually check equations and
logic. Use file definitions to check format statements.

15. Check the implementation of structured program constructs.

16. Even 1f the program follows the design, the reader can still question the
program logic. For 1nstance, a test may indicate ‘less than' and be in
agreement with the design, but 1f 'less than or equal to' makes more
sense to the reader, it should be questioned.

17. Sign or initial the code read so the programmer can ask for clarification
of your notations.

18. As a follow-up activity, check with the programmer who has executed the
code which you read to see 1f you missed anything. This will improve
your ability as a code-reader.

FORTRAN Code-Reading Checklist
1. Symbolic Reference Map
a. One-to-one correspondence between references and labels.
b. Ascending order rule for statement labels
c. Externals.
d. Variables.
2. Prologue
3. Design versus code review
4. Comments
5. Machine dependent or Non-ANSI code
6. Type consistency
7. Formats and lists versus file definition
8. Subroutine linkage
9. Equations and logic versus design specification

10. Adherence to coding standards

11. Sign-off when code reading is completed

March 1985

31

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

REFERENCES

Anon.: American National Standards Institute, FORTRAN X3.9 1978.

Bevan, R. T. and Reynolds, J. H.: Computer Programming and Coding
Standards for the FORTRAN and SIMSCRIPT II.5 Programming Languages.
NSWC/DL Technical Note 3878, Naval Surface Weapons Center, Dahlgren
Laboratory, Dahlgren, Virginia May 1979.

Fagan, M. E.: Inspecting Software Design and Code. Datamation, October
1977, pp. 133-144,

FORTRAN Version 5 Reference Manual - CDC Operating Systems: NOS 1,
NOS/BE1, SCOPE 2. Publ. No. 60481300G, Control Data Corporation,
C.1983. (Document N-4)*

Freedman, D. P. and Weinberg, G. M.: Ethno Technical Review Handbook.
Ethnotech, Inc., 1977.

Anon.: Guidelines for Documentation of Computer Programs and Automated
Data Systems. U.S. Department of Commerce, NBS, FIPS Publ. 38 1976.

Kernighan, B. W. and Planger, D. J.: The Elements of Programming
Style. Second ed., McGraw-Hill Book Co., Inc., 1978.

McCracken, D. D. and Weinberg, G. M.: How to Write a Readable FORTRAN
Program. Datamation, October 1972, pp. 73-77.

MODIFY Reference Manual - CDC Operating System: NOS 1. Pubi. No.
60450100F, Control Data Corporation, C.1980. (Document N-15)*

Anon.: NASA Langley Research Center, Earth Radiation Budget Experiment,
Software Development Standards. ERBE 2-4-2-0-83-6-2, 1983.

NOS Version 1 Reference Manual, Volume 1. Publ. No. 60435400N, Control
Data Corporation, C.1981. (Document N-2a)*

NOS Version 1 Reference Manual, Volume 2. Publ. No. 60445300N, Control
Data Corporation, C.1981. (Document N-6)*

UPDATE Version 1 Reference Manual - CDC Operating Systems: NOS 1,
NOS/BE1, SCOPE 2. Publ. No. 60449900D, Control Data Corporation,
C.1981. (Document N-14)*

* Documents in the Langley Central Scientific Computing Complex Documentation
Series.

32

March 1985

1 Report No
NASA TM- 86407

2 Government Accession No 3 Recipient’s Catalog No

4 Title and Subtitle 5 Report Date
March 1985
Guidelines for Developing Structured FORTRAN Programs & Performing Orgamzation Code
992-16-05-03
7 Author(s) 8 Performing Organization Report No
B. M. Earnest N-38

10 Work Unit No

9 Performing Organization Name and Address

NASA Langley Research Center 11 Contract or Grant No

Hampton, VA 23665

13 Type of Report and Period Covered

12 Sponsoring Agency Name and Address
National Aeronautics and Space Administration

Washington, DC 20546

Technical Memorandum

14 Sponsoring Agency Code

15 Supplementary Notes

16 Abstract

This document is a compilation of computer programing and coding standards which
serve as guidelines for the uniform writing of FORTRAN 77 programs at NASA Langley.
Not all of the capabilities and options of FORTRAN 77 are included.

17 Key Words (Suggested by Author(s))

18 Distribution Statement

Programing Guidelines, FORTRAN Unclassified-Unlimited

Subject Category 61

19 Securnity Classif (of this report)

Unclassified

20 Secunity Classif (of this page) 21 No of Pages 22 Price
Unclassifed 34 A03

* For sale by the National Technical Information Service, Springhield, Virgima 22161

End of Document

