
:' NAS'A :Technical Memorandum 8E5407'
;

; NASA-TM-86407 19850016497

GUIDELINES
- For Developing

Structured FORTRAN

~
L ~ _~ ,-

Centrall Scientific
C()mputing Complex

D()cument N -3 8

, 1111111111111 1111 11111 ~1111111111111111111"1 ' •
• , NFOCl594

https://ntrs.nasa.gov/search.jsp?R=19850016497 2020-03-20T19:29:36+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42845685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 1176013114799

NASA Technical Memorandum 86407

GUIDELINES FOR DEVELOPING
STRUCTURED FORTRAN PROr,RAMS

B. M. EARNEST

MARCH 1985

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton Virginia 23665

GUldellnes for Developlng Structured
FORTRAN Programs

March 1985

1. INTRODUCTION

2. SOFTWARE DEVELOPMENT PHILISOPHY

2.1 Need for Deslgn
2.2 Development Procedure
2.3 Modularity
2.4 Control
2.5 Machlne Independence
2.6 User Conslderatlons
2.7 Configuration Management

3. DOCUMENTATION

3.1 Inline
3.2 Formal

4. GENERAL CODING CONVENTIONS

4.1 Program Layout
4.2 Readablllty
4.3 Linkage/Communlcatlon

5. SPECIFIC FORTRAN CODING CONVENTIONS AND CONSTRAINTS

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10
5.11
5.12

Alphanumerlc Data
Asslgnment Statements
Documentatlon
Do LOOPS
Flow Control Statements
General Programmlng Suggestlons
Input/Output
Llnkage
Namlng Conventlons (COMMON Blocks)
Program Control Labels
Speclflcatlons and Data Statements
Subprograms

APPENDIXES

A. DOCMENT Explanatlon and Example
B. Prologue Description and Example
C. FORTRAN Module Example
D. Slmulated FORTRAN Structured Concepts
E. Code Readlng FORTRAN Programs

REFERENCES

i

Page
1

2

2
2
3
3

,4
4
5

6

6
6

7

7
8

11

12

12
12
12
12
12
13
15
15
15
15
15
16

17
22
25
27
29

32

1. INTRODUCTION

Th1S document describes computer programming and cod1ng standards which
represent gU1del1nes for the uniform writ1ng of FORTRAN 77 programs at NASA
Langley. Wherever possible, these guidelines should be adopted as the
required standards for program development. For example, these guidelines are
to be followed 1n the design of wind tunnel data reduction programs utilizing
the Langley Central Scient1fic Comput1ng Center.

Not all of the capab1lities and opt10ns of FORTRAN 77 are included herein; see
the list of references for manuals describing other capabilities.

This document supports contemporary software engineering techniques; however,
it does so without defin1ng them w1th academic precision. For example, the
term structured programming may mean to some readers that only the prime
constructs DO-WHILE, IF-THEN-ELSE, and SEQUENCE are used when writing a
program. To others it means the step-wise ref1nement process necessary to
decompose a spec1f1cation into more manageable partitions pr10r to coding.
Both v1ewpoints are correct and thus the term used throughout this document
denotes a label for a collection of techniques that can be systematically
app11ed to produce programs.

Reference 2 was used extensively 1n the development of these guide11nes.

t~arch 1985 1

2. SOFTWARE DEVELOPMENT PHILOSOPHY

Before any programm1ng beg1ns there should be careful thought and planning.
The h1gh cost of software and ma1ntenance of software makes it imperative that
the program design and documentation be easily followed and understood. The
following ideas drawn from several sources will aid in program design.

2.1 Need for Design

A complete and accurate design is a cr1tical requirement for a large
programming system. G1ven a complete system specification, in which all the
requ1rements of the system are def1ned, the respons1bility for a well-designed
program lies w1th the programmer and the program manager. Documents described
1n FIPS Publ1cation 38 (reference 6) would provide a complete system
spec1fication.

Programmers should use a top down des1gn approach where all the requ1rements
of the system are completely spec1f1ed and des1gned before actual coding
beg1ns. Before des1gn1ng or coding of a program ensure that the capabil1ty to
perform 1tS task does not already eX1st. This w1ll elim1nate duplicat10n of
effort.

2.2 Development Procedure

For each funct10nal area and the modules (lndiv1dual un1t or subroutine)
w1th1n, the follow1ng procedures should be used:

1. Programmer des1gns the module from requirements rece1ved.

2. Programmer wr1tes the module, 1ncluding the prologue, in English text
(structured design) for review.

3. Colleagues read the module for correctness, understand1ng, and
readabil1ty.

4. Iterate steps 1-3 unt1l satisfactory.

5. Colleagues attend a walk-thru of designs of an ent1re functional
area.

6. Iterate steps 1-5 unt1l satisfactory.

7. Begin cod1ng modules or functional areas.

8. Colleagues read code for correctness (see Appendix E).

9. Test each funct10nal area beg1nning with the execut1ve structure (use
stubs for code not yet completed).

10. In1t1al operat1onal capability achieved.

2 March 1985

2.3 Modular1ty

Modular1ty is a concept that allows systematic development of programs as a
set of interrelated 1ndividual un1ts (called modules) which can be tested
separately and later linked together to form a complete program.

W1th a modular approach, the program design stage becomes the most critical
funct1on. A top-down examination of the overall system must be resolved
before cod1ng begins.

The following attributes of modular programs should be maintained:

2.3.1 Functional Separat10n

Individual algor1thms should be kept functionally separate for ease of
production and maintenance.

1. Each algor1thm should be in a separate module.

2. Keep all 1nput statements for a file 1n one module.

3. Keep all output statements for a f1le in one module.

4. All error handl1ng should be in one module.

5. All general purpose code should be isolated in separate modules.

2.3.2 Top Entry/Bottom Exit

Each module shall have one entry point and one exit point and utilize
structured programm1ng techniques.

2.3.3 Slze Limitat10ns

Each module should be kept as small as feasible. Modules, excluding prologue
and comments, should not exceed 100 lines of code.

2.3.4 Data Transfer

The preferable way to transfer data from routine to routine in order to
maintain autonomy 1S the use of argument lists (calling sequence). Where the
argument lists are long use FORTRAN labelled common storage.

2.3.5 Environment

A labeled common block can be used to contain the parameters which define the
environment required for a group of modules (e.g. working array sizes, error
tolerance).

2.4 Control

A person must be assigned responsibility for each program or set of programs
and someone must also be assigned responsibility for the overall system of
programs.

March 1985 3

Control over programs and associated f1les shall be 1mplemented through use of
a general purpose symbol1c f1le ma1ntenance program such as Control Data
Corporat1on programs UPDATE or MODIFY.

Ass1gnment of responsibil1ties for control of programs insures adherence to
the following concepts:

2.4.1 Program Integrity

The 1ntegr1ty of programs must be ma1ntained through control. The person
respons1ble for each program, or set of programs, should document all
mod1f1cat1ons. This informat1on should be made available to people using the
program.

2.4.2 Version Capab1lity

Even though hav1ng many verS10ns of a program WhlCh do not d1ffer much is not
Just1f1ed, there are legitimate cases where more than one version of a program
is necessary.

W1th a modular approach, a given conf1gurat1on can be built
modules by comp1ling and loading only the modules requ1red.
the modules required and el1minatlng multlple program paths
necessary for the unneeded modules is saved.

from the baslc
By loadlng only

the storage

When all verS10ns of a module are requ1red 1n memory slmultaneously, multlple
program paths will be used as opposed to mainta1ning several separate verS10ns
of the entlre program.

2.5 Mach1ne Independence

It 1S lmportant that computer programs be written so that with minimum effort
they may be transported to and executed on systems other than the one for
which they were wr1tten. Features of the compiler which do not conform to the
ANSI Standard should be avolded. For example, use of comment cards with a $
1n column one and seven character names should not be allowed. The use of
non-ANSI features 1S, however, preferable to the use of assembly language.

The use of any features Wh1Ch do not conform to the ANSI Standard must be
approved by the person responsible for the system of programs. When these
features are requ1red and approved, they should be documented as non-ANSI
features 1n the program document and lnternally in the code via comments.

2.6 User Considerat1ons

In order for a program to have value 1t must be useful, therefore, it must be
written w1th the user in m1nd. Complex input and output make it extremely
d1ff1cult for the user to run the program.

Input should be well-def1ned, slmple, and allow the user as much freedom as
poss1ble. Default cond1t1ons should be used so that min1mum user input is

4 March 1985

required and data which is frequently used should be stored on a file
accessible to the user rather than requiring that it be supplied by the user
every time.

Output should be clearly labeled and readable and be structured so that the
user may suppress output that is not needed.

2.7 Configuration Management

For a large programming system it 1S important that complete control of the
configuration and changes to the configuration be maintained and recorded.
The abil1ty to recreate previous versions of the system must be available.

Software configuration management of large systems requires a symbolic file
ma1~tenance program. With such a program, changes to and control of the
system are achievable. '

Control Data Corporation (CDC) supplies two symbolic file maintenance programs
(UPDATE and MODIFY). These programs have all the facilities necessary for
conf1guration control on programs installed on CYBER 170 Series computer
systems.

For a more specific set of standards for conf1guration management see
references 9 and 13.

March 1985 5

3. DOCUMENTATION

Two problems usually exist regard1ng computer program documentation: (1) it
doesn't exist, or (2) it exists but is out-of-date. Documentat1on must be
written concurrently with program development in order for it to be accurate
and available when checkout is complete.

Two types of documentation are required: Comments in the source code (in­
line) and reports (formal) which provide user guidance as well as program
maintenance information.

3.1 Inline

This documentation 1S embedded within the source language of the program.
Although this is neglected many times because of consuming too much time, it
is a valuable aid to those who need to understand a program without studying
the program itself. It is of greatest benefit if done concurrently with
program development. The overall review process, from preliminary prologue
review during the design phase through final code reading, is important in
insuring that the documentation is current, understandable, and correct.

The two types of inline documentation are prologue and interspersed comments.

3.1.1 Prologue

This comment code appears at the beginning of every module or routine. See
Chapter 4 and appendices Band C for explanation and examples.

3.1.2 Interspersed

This comment code defines executable code itself. For readability of these
comment lines, it is suggested that a "C" or "*" be placed in column one and
the comment be indented as appropriate with the code. See Appendix A for a
description and example of inline documentation using the DOCMENT program
developed by Control Data Corporation. Other examples are shown in Appendix C.

Comments should be written with a sense of style and with a feeling for what
1S going to help the reader understand the program. The goal is to anticipate
the questions that a reader will have and answer them in advance.

3.2 Formal

Th1S documentation includes all reports necessary to adequately def1ne a
system. Federal Information Processing Standards Publication 38 (reference 6)
gives the guidel1nes for formal documentation of computer programs and
automated data systems. It also gives gU1delines to determine the level of
documentat1on required for a particular program or system. As a minimum,
formal documentation should include a program design document, a users manual,
and a program maintenance manual. A call structure map is a useful item to
include 1n the program maintenance manual of complex programs.

6 March 1985

4. GENERAL CODING CONVENTIONS

Every program has to be tested to see if it performs as expected and also wlll
need to be maintalned and revised. The following general coding recommenda­
tions and constra1nts wlll aid 1n testing and maintenance of a program or
subrout1ne.

4.1 Program Layout

Each subroutine or module 1n a program shall be compr1sed of a subrout1ne
statement. a prologue. speclflcation and data statements. code. and format
statements. A brief discussion of each is given below.

4.1.1 Subroutine statement

The subroutlne statement may be cont1nued over several lines so that input
parameters. output parameters and parameters used as both input and output
appear on separate lines of the llsting.

Example:
SUBROUTINE ABC

I (INl ,IN2 , •••
B BOTHl.BOTH2 ••••
o OUTI .OUT2 , •••)

4.1.2 Prologue

The prologue is used to glve vltal lnforrnat1on about the module. This
lnformatlon should include the purpose of the module, the programmer, program
language. and any other lnformation WhlCh wlll ald in the use of the module.
The mlnimum lnformation in the prologue would be Title, Name, Source Language,
Purpose. Author, and Date. A more detailed explanation of the items to be
included 1n the prologue and an example are given in appendices Band C.

CCC
C T1tle: C
C ~~: C
C Source Language: C
C Purpose: C
C Author: C
C Date: C
CCC

4.1.3 Spec1f1cat10ns and DATA Statements

1. PARAMETER
The PARAMETER statement gives a name to a constant. The name may then
appear anywhere a constant is permitted or required.

2. DIMENSION
The DIMENSION statement deflnes symbolic names as array names and
spec1fies the bounds of each array.

March 1985 7

3. COMMON Data
COMMON blocks and var1ables with1n them should be alphabet1zed.
Labeled COMMON can be defined in a BLOCKDATA subroutine.

4. TYPE statements
Th1S is a way to explicitly specify the type of variable names (e.g.,
REAL, DOUBLE PRECISION). This can be used in place of a DIMENSION
statement.

5. DATA statements
The DATA statement is used for local variables only.

6. Statement Funct10n definitions
A statement function is a user-defined procedure. It is a nonexecut­
able, single-statement computation that applies only to the program
unit contain1ng the def1nition.

4.1.4 Code

The philosophy of structured programming should be used in designing and
coding the modules. The use of sequence, IF-THEN-ELSE, DO-UNTIL, CASE, DO­
WHILE constructs shall form the basis for all programs. To maintain the idea
of modularity, rout1nes should not exceed 100 FORTRAN statements (excluding
Prologue and Comments).

4.1.5 FORMAT statements

These statements should normally be at the end of a module. If the FORMAT 1S

only used 1n one place in the module, it could be listed next to the I/O
statement that uses it.

4.2 Readab1lity

An 1mportant aspect of the verlflcation of a deslgn or program lies in the
code reVlew. Without readable programs this exercise is futile.

A programmer must put forth some effort to create and maintain readability
w1th1n the framework of FORTRAN. The difficulties can be blamed on
lnconsistent subroutlne layouts, names that fail to accurately reflect the1r
semantic roles, lack of structure illumination (vla alignment and
indentatlon), random assignment of statement numbers, and so forth.

An excellent article by D. D. McCracken and G. M. Welnburg on writ1ng readable
FORTRAN programs is found in the October 1972 issue of Datamation (reference
8). For other information on programming style see reference 7. The
followlng suggestlons will aid 1n writing readable programs.

4.2.1 Naming Convent10ns

Names of varlables and modules should serve the purpose of helping to identify
speclfic entities. The names should convey the meaning of the variable.

Almost without exception, confusion arises when abbreviations are chosen that
result in an acronym or a word that makes the reader think of a different,

8 March 1985

unrelated ent1ty. Avoid acronyms which may be confused with common words.
Also avoid using zero (0) as a character in a name.

In add1t1on to the use of mean1ngful names, purely mathematical functions
should be defined by using familiar notations to lend understanding. Thus,
Z = F(X,Y) is much more suggestive than Y = X(Z,F).

The follow1ng table illustrates the concept of maintaining psychological
d1stance between entity names. That 1S, names that look, sound, or are
spelled alike, or have sim1lar meaning are not distant psychologically.

Name for Name for Psychological
One Ent 1ty Another D1stance

BKRPNT BRKPNT Invis1ble (keypunch error)
MOVLT MOVLF Almost none
CODE KODE Small
OMEGA DELTA Large
ROOT DISCRM Large and 1nformative

4.2.2 Format1ng to Generate Readable Listings

The term "pretty pr1nt1ng" is used to express the idea of 1ndenting and
spac1ng source code so that the llsting displays the logical structure of the
code and aligns the var1ables appearing in the declarative and common lists.

Example 1:
The follow1ng FORTRAN COMMON does not generate much eye-appeal and 1S also
prone to error when changes are made:

COMMONjNAMESjCP,CL,CD,
IMACH,TEMP,AOA,
2VEL,ACCEL

By selecting the nominal width that will accommodate the largest name and
choos1ng a vert1cal alignment of both commas and names, the result is much
better.

COMMON jNAMESj CP
1 MACH
2 VEL

Example 2:

, CL
, TEMP
, ACCEL

, CD
, AOA

To show the 10glcal structure of code requ1res the alignment of state~ents
that are logically grouped and the 1ndentation of statement groups that are a
part of larger 10glcal units. Vertical spac1ng of the 10glcal un1ts
themselves can be accompl1shed w1th blank comment statements or blank llnes.

March 1985 9

The following structured FORTHAN example 111ustrates these concepts:

NPTSM1 = NPTS-1

C ••• PERFORM BUBBLE SORT ON TABLE
DO 1550 1= 1,NPTSM1

IPLUS1 = 1+1

C ••• PERFORM SWAP IF NECESSARY
DO 1500 J= IPLUS1,NTPS

IF(TABLE(I) .GT. TABLE(J)) THEN
TEMP = TABLE(I)
TABLE(I)= TABLE(J)
TABLE(J)= TEMP

ENDIF
1500 CONTI NUE
1550 CONTINUE

A highly modular structure 1S a requirement in software development. The
lndivldual rout1nes must be small (both logically and physically), well­
des1gned code blocks dedicated to one spec1fic task or funct1on.

4.2.3 Statement Label Usage

Semant1cally, most programmers envislon labels as prov1ding a unique
1dent1f1er to d1fferent versions of a spec1fic construct (e.g., FORMAT
statements) or the capability to spec1fy alternate paths within a routine.

An overabundance of labels 1n the latter category usually 1mplies a poorly
des1gned routine. More than likely, the routine is not a reflection of a
speclfic task or function: It represents a collection of tasks. This, 1n
turn, usually lmplles that the reader's eye w1ll behave llke a pogo stick when
attempt1ng to follow the code. On the other hand, a relatively label-free
rout1ne 1mpl1es, at first glance, that one may read from top-to-bottom.

Labels can also play an addit10nal role. The1r appearance can serve to
clar1fy program purpose and structure. Although the numbers used to represent
FORTRAN labels do not convey 1nformation, categories of related entities
(e.g., input formats, output formats) can be isolated by ded1cating a range of
numbers with a constant increment to represent a particular category. FORTRAN
statement numbers should always be ass1gned and appear in ascending order
within a module.

No matter how well designed a program may be, changes are inevitable. Changes
1nvolvlng the insertion of additlonal labeled statements should not upset the
ascendlng order rule. It does mean that the programmer define the magnitude
of the 1nit1al 1ncrement between statement numbers large enough (e.g., 50) to
accommodate the insert10n of new labeled statements at a reduced increment
(e.g., 20). The value of the orig1nal (and reduced) increments should always
be a mult1ple of the same number (e.g., 10).

10 f4arch 1985

By def1n1t1on, the terms modular1ty and structured programm1ng imply that
programmers are develop1ng and maintaining small, relatively label-free
routines. Thus, any fear of runn1ng out of label numbers during the llfe of
the rout1ne 1S unJust1f1ed.

4.3 LinkagejCommunlcation

Overall software development should be approached as a tool-building process.
Where possible, indiv1dual modules should be written as 1f they are to be
placed on a computer system support library for a project.

Modules that do too much or rely on COMMON instead of parameter lists for
communlcation have little or no value as reusable packages.

4.3.1 Subrout1ne versus Funct10ns

A function should be used only for 1tS returned value. It should behave the
same as 1n a purely mathmatical environment. Many programmers misuse functions
by fa1l1ng to cons1der the 1mpact on the program envlronment. Thus, if F(X) +
F(X) does not always equal 2*F(X) because X 1S altered, then an unwanted,
d1fflcult to detect slde effect has been 1ntroduced.

Subrout1nes d1ffer from funct10ns in that they can alter formal parameters or
global variables. Subrout1nes are not 1mmune to slde effects 1f heavy
reliance is made on h1dden globals, as opposed to the more visible parameter
11StS, for data commun1cat1on. For example, a rout1ne that redefines a global
may produce unexpected results.

4.3.2 Parameter Lists

Where possible, total commun1cat1on w1th a routine should be conf1ned to the
call1ng sequence. Th1S is 1n keeping with the tool building concept of
program development. A rout1ne becomes much more attract1ve to another user
1f he can pass h1S own environment entirely through a calling sequence.

Except10ns w1ll ar1se, especlally 1n the highest level routines where large
numbers of var1ables must be made available to lower level routines.
Carefully chosen COMMON blocks should then be used. If a routine needs so
much 1nformat1on as to make parameter pass1ng impractical or impossible, then
it could be that the rout1ne lS doing too much. A routine could be so highly
spec1alized that 1tS use as a general tool is very remote. A mix of named
COMMON and formal parameters should be used.

4.3.3 COMMON Var1ables

Variables 1n labeled COMMON blocks will be used to isolate truly global
variables, i.e., those var1ables needed by more than one routlne. Such blocks
should be formed by grouplng related variables.

March 1985
t
I

11

5. SPECIFIC FORTRAN CODING CONVENTIONS AND CONSTRAINTS

The cod1ng convent1ons and constra1nts glven below shall be used for well­
structured FORTRAN rout1nes. The most important 1S adherence to the simulated
structured FORTRAN standards illustrated 1n Appendlx B and the CDC FORTRAN
Version 5 Reference Manual (Reference 4).

Arbitrary non-ANSI programm1ng practices should not be used unless that
practlce can be shown to be requlred to accompl1sh a glven task. If a task
cannot be done 1n ANSI FORTRAN, extensions of the comp1ler (shown ln Reference
4) are preferable to assembly language programm1ng. Non-ANSI practices that
are approved must be documented 1n the prologue and 1nterspersed comments.

5.1 Alphanumer1c Data

Use type CHARACTER as descr1bed in Reference ~.

5.2 Ass1gnment Statements

Do not use mult1ple ass1gnment statements (e.g., x=y=z=O).

5.3 Documentat1on

Every module shall have a prologue of the form 11lustrated in Append1x A and
descrlbed in the general programm1ng conventions (Chapter 4).

Interspersed comments shall def1ne every branch point and block of code and
appear before the code they define. Comments shall be inserted w1th the
or1g1nal code. These comments should be al1gned with the code and not begin
with any of the keywords of structured programm1ng (e.g., IF).

5.4 DO Loops

1. Do not use DO loops wlth an 1terat1on count of less than 3 unless the
upper l1mit 1S var1able or a dupl1cat10n of a large block (30-50
lines) of code would result.

2. End all DO loops w1th the CONTINUE statement.

3. Do not end nested DO loops on the same label.

4. Do not calculate constants or varlables which do not change withln the
range of the DO.

5.5 Flow Control Statements

1. Do not use ass1gned GO TO statements.

2. Do not use a GO TO to any statement precedlng the GO TO statement
(l.e., branch1ng up 1n the rout1ne). Except10ns are the simulated
structured FORTRAN convent1ons of Appendix B.

3. Use only slmple 1ntegers as the index of a computed GO TO. CDC
FORTRAN 5 does not glve a message 1f the 1ndex is beyond the range so

12 March 1985

a check for a valld lndex should be made or there should be an error
handllng statement after each computed GO TO.

4. Use the more structured IF-THEN-ELSE rather than the arithmetic IF.

5.6 General Programming Suggestions

1. Continuation characters shall be the integers from one to nine (1-9),
and then the letters A-J for a maximum of 19 continuation statements.

2. Use only simple lntegers as indices or subscrlpts.

3. Do not use machine dependent techniques (e.g., bit manipulation,
masking, shlftlng, etc.) unless there is no other way to do the
job. When required, these technlques shall be clearly identified in
the program via comments and approved by the program manager.

4. Calculations of constants should be performed only once at the
beglnnlng of the program outside any loops.

5. If a constant is a multiple of la, wrlte it in scientific notatlon as
1.E6, never as 10**6.

6. InitlallZe every varlable before use.

7. Values of local variables computed in a subroutlne are lost upon
exit.

8. Avoi d temporary or shared storage.

9. AVOld STOP statements within subroutines unless there are appropriate
error messages.

10. Do not use mixed mode arlthmetic except explicitly (FLOAT,INT). Do
not retype variables through asslgnment.

11. Do not assume that comparison of two or more variables will be
identically zero. Do not make equal (.EQ.) tests on floating point
data. Use a tolerance test.

12. For loops which iterate to a convergence criterion use a maximum
overall counter to avold getting into a closed loop if the
convergence falls.

13. Do not pass constants (llterals) as parameters.

14. Use the PARAMETER statement to define literal constants used in a
program. One of the most error-prone programming practices is
locking llteral constants into the code. Keep executable code
independent of speclflcation statements. For example, a change to
the size of an array should affect only the specification part of the
program:

March 1985 13

Example:
PARAMETEH (NROWS=9,NCOLS=9)
DIMENSION MARRAY(NROWS,NCOLS)

CALL MATRIX(NROWS,NCOLS,MARRAY, •••••••)
and not
DIMENSION MARRAY(9,9)

CALL MATRIX(9,9,MARRAY, •••••••)

15. AVOld uSlng llterals for I/O unlts or llmlts on DO loops. Use the
PARAMETER statement.

For example, use:

PARAMETER (MXMSLS=24, MSLUNT=5)
DIMENSION LEVARM(MXMSLS)

.
READ(MSLUNT) list

DO 4000 N= I,MXMSLS

Do not use:

DIMENSION LEVARM(24)

.
READ(5) list

.
DO 4000 N= 1,24

4000 CONTINUE 4000 CONTINUE

16. Wrlte only straightforward readable code. Use the construct that is ~
the most appllcable to the process/algorithm.

17. Indent code to show the structure, making the indentation increment
large enough to allow for later lnsertlons.

18. Parentheslze and space to enhance readability and to avold ambiguity.

19. Use blanks and grouping to make code more readable. For instance, no
blanks between factors, one blank between terms. For example, use
A = B*C + D/E lnstead of A = B*C+D/E

5.7 Input/Output

1. ANSI 'Flle,Format ' reads and wrltes shall be used. For example, use
REAO(IFILE,FMT) A,B lnstead of READ FMT, A,B
or
WRITE(IFILE,FMT) A,B lnstead of PRINT FMT, A,B

2. All unit speclfiers shall be data-defined, parameter defined, or
lnput, and not llterals.

3. Unlt numbers 5, 6, and 7 shall be reserved for lnput, output, and
punch, respectively.

14 March 1985

5.8 L1nkage

1. Pass data 1n parameter lists to keep routines modular, passing input
arguments first, both (input and output) arguments second and output
arguments last.

2. There will be only one entry and one exit point:

3. If an array is passed from one subroutine to another, use the asterisk
(*) form of adJustable dimension 1n each of the intermediate
rout1nes. When using variable dimensions, the name and dimensions
must be passed 1n the call1ng sequence.

4. Do not use the same variable name more than once in a calling
sequence, since this, in effect, equivalences those loc~tions 1n the
called routine. Insure arrays are initialized or reset with arrays
and slmple variables with simple variables.

5.9 Naming Conventions (COMMON Blocks)

A def1n1tive naming convent10n for COMMON blocks should be selected so that
d1fferent types of data are grouped together. This nam1ng convention should
be consistent across the entire program. For example, the convention could be
based on program structure (input commons, output commons, real commons,
integer commons, etc.) or based on program logic.

5.10 Program Control Labels

1. Begin with 10, 100, or 1000 and then increment by an even increment
such that there 1S room for insertion of additional labels.

2. Keep labels in ascend1ng order.

3. Right Just1fy labels 1n column 5.

4. Use labels only when needed.

5.11 Speclfications and DATA Statements

1. Labeled COMMON Blocks
A labeled COMMON block shall be the same in every routine in which 1t
appears. (l.e., exactly the same length and variable names).
Do not mix control variables w1th data storage in the same common
block.
In1t1al1ze COMMON data via BLOCK DATA.
Dimens10n arrays within the COMMON statement and not with a DIMENSION
or declarat1ve statement. However, var1ably dimensioned arrays must
be dimensioned in a DIMENSION statement.

2. Blank Common
Do not use wlthout the approval of the program manager.

March 1985 15

3. DATA Statements
Align names or data to improve readabillty. Define all constants to
the maximum precision of the machine on which the program will be
executed.

4. DIMENSION Statements
Use only for local data and variably dlmensioned arrays.

5. EQUIVALENCE Statements
Do not use the EQUIVALENCE statement without the approval of the
Program Manager.

6. FORMAT Statements
For labels use numbers much larger than other statement labels.
Increment by 10 and have FORMAT statements at the end of the program.
Use the H-format or apostrophe(') delimiter to define text.

5.12 Subprograms

16

1. Use a function only for lts returned value. Do not modify global data
or arguments within a function.

2. Do not interchange functlons with subroutines.

3. Do not exceed 100 lines of code (not lncluding prologue and comments)
for a given routine without approval.

4. Every routine should have only one entry and one exit.

5. When available, compile each module with the option to identify non­
ANSI code so it can be removed.

March 1985

Append1x A

DOCMENT Explanat10n and Example

DOCMENT 1S a Control Data Corporat10n NOS documentat10n processing program.
It was designed to extract documentation embedded in the program source
language as comments uS1ng the asterisk or C in columns 1 to 5. These special
comments define two types of documentation:

1. External documentat10n which 1S produced for the general user to
show how the program functions and how the program is used.

2. Internal documentat10n which descr1bes the internal characteristics
of the program so that a programmer can see how the program works
in order to mod1fy the program as required.

DOCMENT comment statements contain only asterisks and blanks in columns 1-5
and text 1n columns 6-71. The follow1ng rules apply to the format of comment
statements for documentation.

1. Comment statements w1th an asterisk (or C) only 1n column 1
1ndicate that th1S statement 1S a continuation of internal or
external documentat10n, or it is a comment statement not included
in the formal documentat10n (i.e., 1t is not processed by DOCMENT).

2. Comment statments with aster1sks 1n columns 1 and 2 ind1cate
1nternal documentat10n.

3. Comment statements with asterisks in columns 1, 2, and 3 indicate
that this statement and all following statements are internal and
external documentat10n. Documentat10n ends when another comment
statement containing 3 asterisks in encountered.

4. A statement with four asterisks beg1nning in column 1 indicates
that all fo110w1ng statements are 1nternal documentat10n (whether
they are comment statements or not). Documentation ends when
another comment statement containing four asterisks is encountered.

5. A statement w1th asterisks in columns 1 through 5 1ndicates that
this and the fo1low1ng comment statements are internal and external
documentat10n and prov1de program overview.

6. A statement w1th an asterisk in column 1 and blanks in columns 2
through 71 is a blank comment statement and is used as a separator
to improve readabi11ty of documentat1on.

The DOCMENT control statement explanation 1S given in the Central Scientific
Comput1ng Complex Document N-2a (Volume 1, NOS Vers10n 1 Reference Manual, CDC
publ1cat1on number 60435400N).

A more complete explanation of the documentation standards and procedures is
presented in Append1x I of the Central Scient1fic Computing Complex Document
N-6 (Volume 2, NOS VerS10n 1 Reference Manual, CDC publ1cation Number
60445300N).

The fo110w1ng example developed by S. W. P1110w of SOC shows the use of the
above documentation procedure and the external and internal documentation
extracted by program DOCMENT.

March 1985 17

PROGRAM ADD(INPUT,OUTPUT,TAPE5=INPUT,TAPE6c OUTPUT)

* ADD - INTERACTIVE ADDER PROGRAM
* THIS PROGRAM ADDS TWO POSITIVE INTEGERS AND WRITES THE
* SUM TO THE OUTPUT FILE
* * S.W. PILLOW SYSTEM DEVELOPMENT CORP. 5/5/83 PHONE: 865-1111
*
*
*** ADD IS A FORTRAN 5 PROGRAM WHICH ADDS TWO USER SUPPLIED POSITIVE
* INTEGERS AND RETURNS THE SUM WHILE EXECUTING IN AN INTERACTIVE
* ENVIRONMENT. INTEGER PAIRS CAN CONTINUE TO BE ENTERED AND SUMMED
* AS LONG AS THE USER DESIRES.
*
*
* INPUT
* * INTEGER VALUES ARE TYPED IN BY THE USER ON THE CRT (FILE "INPUT"
* IS ACTUALLY READ)
* FORMAT - UNFORMATTED (NO COLUMN RESTRAINTS)
* HESTRICTION - VALUES SHOULD NOT EXCEED 9999999999
* DEFAULT - NO DEFAULT VALUE FOR EITHER INTEGER
*
*
* OUTPUT
*
*
*
*
*
*
*

ALL MESSAGES AND PROMPTS ARE WRITTEN TO THE CRT SCREEN (FILE
"OUTPUT" IS ACTUALLY WRITTEN)

ERROR MESSAGES

* IF EITHER INTEGER IS NEGATIVE: IINEGATIVE VALUE READ II •
* INPUT WILL BE REQUESTED AGAIN
*
* * TEHMINATION
* * A CARRIAGE RETURN IN RESPONSE TO THE INPUT PROMPT WILL END
* PROGRAM EXECUTION. IIEOF FOUND ON INPUT - PROGRAM ENDII WILL
* BE WRITTEN TO THE SCREEN.
*
*

** PROGRAM FLOW
*
*
*
*
*
*
*
*
**

18

PROMPTED INPUT OF THE INTEGEH VALUES IS FOLLOWED BY A
CHECK FOR NEGATIVE VALUES. IF BOTH INTEGERS ARE POS­
ITIVE THEY ARE SUMMED AND THE RESULT WRITTEN OUT. IF
A NEGATIVE VALUE IS FOUND, NO SUM IS CALCULATED OR
WRITTEN FOR THAT INTEGER PAIR, AN ERROR MESSAGE IS
WRITTEN, AND NEW INPUT IS REQUESTED. WHEN EOF IS FOUND
ON INPUT (A (CR) FROM THE CRT) THE PROGRAM STOPS.

FIGURE AI. SOURCE CODE FOR DOCMENT

March 1985

*
* ••• PROMPTED INPUT
*

*

10 WRITE(6,'("ENTER FIRST INTEGER")')
READ(5,*,END=20} J1
WRITE(6,'("ENTER SECOND INTEGER")')
READ(5,*,END=20) J2

* ••• IF NO NEGATIVE VALUES SUM INTEGERS AND WRITE RESULT
*

IF(J1.LT.0.OR.J2.LT.O) THEN
WRITE(6, I ("NEGATIVE VALUE READ") I}

ELSE
**** ••• EQUATION USED TO CALCULATE SUM OF INTEGERS J1 AND J2
*

ISUM = J1 + J2

*

WRITE(6, I (" SUM = II, 11111) I) ISUM
ENDIF

* ••• GO BACK AND GET NEW INPUT
*

*

GO TO 10
20 CONTINUE

* ••• WRITE TERMINATION MESSAGE AND STOP
*

WRITE(6, I (" EOF FOUND ON INPUT - PROGRAM ENDII) I)
STOP
END

FIGURE Al CON'T. SOURCE CODE FOR DOCMENT

March 1985 19

PROGRAM ADD(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPU 83/05/06. EXTERNAL*

ADD - INTERACTIVE ADDER PROGRAM
THIS PROGRAM ADDS TWO POSITIVE INTEGERS AND WRITES THE
SUM TO THE OUTPUT FILE

S.W. PILLOW SYSTEM DEVELOPMENT CORP. 5/5/83 PHONE: 865-1111

ADD IS A FORTRAN 5 PROGRAM WHICH ADDS TWO USER SUPPLIED POSITIVE
INTEGERS AND RETURNS THE SUM WHILE EXECUTING IN AN INTERACTIVE
ENVIRONMENT. INTEGER PAIRS CAN CONTINUE TO BE ENTERED AND SUMMED
AS LONG AS THE USER DESIRES.

INPUT

INTEGER VALUES ARE TYPED IN BY THE USER ON THE CRT (FILE "INPUT"
IS ACTUALLY READ)

FORMAT - UNFORMATTED (NO COLUMN RESTRAINTS)
RESTRICTION - VALUES SHOULD NOT EXCEED 9999999999

DEFAULT - NO DEFAULT VALUE FOR EITHER INTEGER

OUTPUT

ALL MESSAGES AND PROMPTS ARE WRITTEN TO THE CRT SCREEN (FILE
"OUTPUT" IS ACTUALLY WRITTEN)

ERROR MESSAGES

IF EITHER INTEGER IS NEGATIVE: "NEGATIVE VALUE READ".
INPUT WILL BE REQUESTED AGAIN

TERMINATION

A CARRIAGE RETURN IN RESPONSE TO THE INPUT PROMPT WILL END
PROGRAM EXECUTION. "EOF FOUND ON INPUT - PROGRAM END" WILL
BE WRITTEN TO THE SCREEN.

* Program DOCMENT cuts off the program llne and lnserts date and the word
external or internal in the heading.

FIGURE A2. EXTERNAL DOCUMENTATION OF PROGRAM

20 March 1985

PROGRAM ADD(INPUT,OUTPUT,TAPE5=INPUT,TAPE6,OUTPU 83/05/06. INTERNAL*

ADD - INTERACTIVE ADDER PROGRAM
THIS PROGRAM ADDS TWO POSITIVE INTEGERS AND WRITES THE
SUM TO THE OUTPUT FILE

S.W. PILLOW SYSTEM DEVELOPMENT COPR. 5/5/83 PHONE: 865-1111

ADD IS A FORTRAN 5 PROGRAM WHICH ADDS TWO USER SUPPLIED POSITIVE
INTEGERS AND RETURNS THE SUM WHILE EXECUTING IN AN INTERACTIVE
ENVIRONr~ENT. INTEGER PAIRS CAN CONTINUE TO BE ENTERED AND SUMMED
AS LONG AS THE USER DESIRES.

INPUT

INTEGER VALUES ARE TYPED IN BY THE USER ON THE CRT (FILE "INPUT"
IS ACTUALLY READ)

FORMAT - UNFORMATTED (NO COLUMN RESTRAINTS)
RESTRICTION - VALUES SHOULD NOT EXCEED 9999999999

DEFAULT - NO DEFAULT VALUE FOR EITHER INTEGER

OUTPUT

ALL MESSAGES AND PROMPTS ARE WRITTEN TO THE CRT SCREEN (FILE
"OUTPUT" IS ACTUALLY WRITTEN)

ERROR MESSAGES

IF EITHER INTEGER IS NEGATIVE: IINEGATIVE VALUE READ".
INPUT WILL BE REQUESTED AGAIN

TERMINATION

A CARRIAGE RETURN IN RESPONSE TO THE INPUT PROMPT WILL END
PROGRAM EXECUTION. IIEOF FOUND ON INPUT - PROGRAM ENDII WILL
BE WRITTEN TO THE SCREEN.

PROGRAM FLOW

PROMPTED INPUT OF THE INTEGER VALUES IS FOLLOWED BY A
CHECK FOR NEGATIVE VALUES. IF BOTH INTEGERS ARE POS­
ITIVE THEY ARE SUMMED AND THE RESULT WRITTEN OUT. IF
A NEGATIVE VALUE IS FOUND, NO SUM IS CALCULATED OR
WRITTEN FOR THAT INTEGER PAIR, AN ERROR MESSAGE IS
WRITTEN, AND NEW INPUT IS REQUESTED. WHEN EOF IS FOUND
ON INPUT (A (CR) FROM THE CRT) THE PROGRAM STOPS •

••• EQUATION USED TO CALCULATE SUM OF INTEGERS Jl AND J2
ISUM = J1 + J2

* Program DOCMENT cuts off the program llne and lnserts date and the word
external or internal in the heading.

FIGURE A3. INTERNAL DOCUMENATION OF PROGRAM

March 1985 21

AppendlX B

Prologue Descrlption and Example

The following description defines the content and format for suggested
prologues:

CCC
C C
C TITLE: C
C NAME: C
C SOURCE LANGUAGE: C
C C
C PURPOSE: C
C C
C PARAMETERS: C
C INPUT: C
C BOTH INPUT/OUTPUT: C
C OUTPUT: C
C KEY LOCAL VARIABLES: C
C COMMON VARIABLES REFERENCED: C
C COMMON VARIABLES DEFINED: C
C FILES: C
C SUBROUTINES CALLED: C
C ROUTINE CALLED BY: C
C DEPENDENCIES AND RESTRICTIONS: C
C C
C COMMENTS: C
C C
C AUTHOR: C
C DATE: C
C CHANGES: C
CCC

The flrst and last lines of the prologue wlll contain a C or an asterisk in
columns 1 to 72. All others wlll have a C or an asterisk in columns 1 and 72.

The prologue will contain at least the following information:

1. Tltle

2. Name

3. Source Language

4. Purpose

5. Author

22

- a short title which gives subject of the module.

- a 1-6 character name WhlCh identifles the
module. NAME appears in the subroutine
statement.

the language in which the module is written (for
example, FORTRAN 5, COMPASS).

- a brief descriptlon of the purpose of the module
and a llst of its major components.

- the programmer who wrote the module.

March 1985

6. I)ate - the date on which the module was implemented.

The following ltems may be lncluded ln the prologue if applicable:

1. Parameters - include input variables, output variables, variables that
are both input and output, key local variables and variables in COMMON
blocks. For all parameters include the following as applicable:

a. List the name, unlts of measure (where applicable) and a
functional descrlption of each parameter.

b. If the pa rameter is a name constant, 1 i st its va 1 ue.
c. If the parameter is a status flag or indicator, list the values

the parameter can assume and a description of the state or
condltlon associated wlth each.

d. If the parameter is an multi-dimensional array, state what each
dimension represents. (For example, row =, column =).

e. For parameters in COMMON blocks list only the names used in the
module. Fully document all common block parameters in the
executive or in a block data routine.

2. Flles - List the format, source, use (lnput or output), unit
identlflcatlon, and functlonal description of each file.

3. Subroutlnes called - llSt of subroutlnes which this routine uses.

4. Routlne called by - llSt of routlnes which use this subroutine.

5. Dependencles and Restrlctions - llSt special or unusual features
which restrict or llmit the performance of the module, special or
unusual features WhlCh are not ANSI Standard, and identify all non­
ANSI and CDC unique statements, functions, routines, or operations
used in a module. Identify the code with inline comments.

6. COMMENTS - any addltional information to clarify the module.

7. Changes - llSt of changes made to the module. Include date and
programmer who made the changes.

March 1985 23

Example: Prologue with Subroutlne Statement.

SUBROUTINE PRTERR
I (ITYCD ,ICOL ,MCHK, ISEQ ,ISEQ1)

CCC
C C
C TITLE: Prlnt Input Error Messages. C
C C
C NAME: PRTERR C
C C
C SOURCE LANGUAGE: FORTRAN 5 C
C C
C PURPOSE: TO PRINT ERROR MESSAGES ACCORDING TO INPUT TYPE. C
C C
C PARAMETERS: C
C INPUT: C
C ITYCD - I NPUT TYPE (1, 2, OR 3). C
C ICOL - INPUT DATA AS 80 CHARACTER STRING BEFORE CALL TO C
C FRFLD SUBROUTINE. C
C MCHK - SWITCH USED TO PRINT MESSAGE IF THE DATA IS OUT OF C
C ORDER. = 0 IF ALL DATA IS IN ORDER BY SEQUENCE NO. C
C = 1 IF THE DATA IS OUT OF ORDER. C
C ISEQ - SEQUENCE NUMBER FOR STORING INPUT DATA (TYPE 3). C
C ISEQI - SEQUENCE NUMBER OF INPUT DATA. C
C C
C COMMON VARIABLES REFERENCED: C
C JOBID - IDENTIFICATION NUMBER FOR THIS SET OF DATA. C
C TODAY - DATE FROM COMPUTER. C
C C
C SUBROUTINE CALLED BY: C
C STORCI - SUBROUTINE TO STORE DATA TYPE 1. C
C STORC2 - SUBROUTINE TO STORE DATA TYPE 2. C
C STORC3 - SUBROUTINE TO STORE DATA TYPE 3. C
C C
C AUTHOR: B. M. EARNEST C
C C
C DATE: 11-10-84 C
C C
CCC

24 March 1985

Appendix C

FORTRAN MODULE EXAMPLE

Subroutlne SCAN
I (RDATA ,
B NO , XDVAL , XDVAL2, XDMIN, XDMAX)

CCC
C C
C Title: Accumulate Scanner Data for Dally Statistics Calculations C
C C
C Name: SCAN C
C C
C Source Language: FORTRAN 5 C
C C
C Functlon or Purpose: To accumulate scanner data for the daily C
C statistics calculations C
C C
C Parameters: C
C Input: RDATA - An array which contains one complete C
C record of data C
C C
C Output: Flve arrays where the flrst three elements of each C
C array contaln the accumulated scanner data for each C
C type of measurement made. C
C C
C NO - Array containlng the total number of measure- C
C ments made per day. C
C XDVAL - Array containing the sum of the values C
C accumul ated for the day. C
C XDVAL2 - Array containing the sum of the squared C
C va 1 ues for the day. C
C XDMAX - The maXlmum value for the day. C
C XDMIN - The minimum value for the day C
C C
C LOCAL C
C DMIN - Temporary minimum value. C
C DMAX - Temporary maximum value. C
C K - POl nter to data in the input array. C
C C
C Subroutines called: C
C IFIX - a FORTRAN intrlnsic functlon. C
C C
C Restrictions: Deslgned for ERBE data Release 1, Module 6.1.4 C
C C
C AUTHOR: J. SATRAN C
C C
COATE: 2-20-84 C
CCC
C
C *INPUT DATA ARRAY
C

March 1985 25

DIMENSION RDATA(*)
C
C *OUTPUT DATA ARRAYS
C

C
C

C

DIMENSION ND(*)
1 XDMAX(*)

ILP=3

, XDVAL(*)
, XDMIN(*)

C *ACCUMULATE DAILY STATISTICS
C
C ••• Set initial data locatlon

K=7

C

C
C
C

C

C

C

26

DO 20 I = 1,ILP

N = IFIX(RDATA(K))
IF(N.NLO) then

ND(I) = ND(I) + 1
XDVAL(I) = XDVAL(I) + RDATA(K+1)
XDVAL2(1) = XDVAL2(1) + (RDATA(K+1)**2)

••• Flnd minimum and maximum values.
DMIN = RDATA(K+3)
DMAX = RDATA(K+4)
IF(DMIN.LT.XDMIN(I)) XDMIN(I) = DMIN
IF(DMAX.GT.XDMAX(I)) XDMAX(I) = DMAX

ENDIF
K = K+5

20 CONTINUE

RETURN
END

XDVAL2(*)

March 1985

Appendix 0

Simulated FORTRAN Structured Concepts

The follow1ng simulated structured programming concepts should be used when
wrlting FORTRAN code. The use of these conventions help to make a readable,
structured set of FORTRAN code. For IF, ELSE, ELSE IF, ENDIF, and CASE
structure use BLOCKIF statements of CDC FORTRAN 5 reference manual (Reference
4). For DO, DO while, DO until, CASE and BEGIN use the following:

NOTE: Sl = Statement label or FORTRAN numbered label
p = logical condition

1. FORTRAN DO - use DO statement as described in CDC FORTRAN 5 reference
manual (Reference 4).

2. DO WHILE
C
C *Example of DOWHILE{P)
C

C

GO TO S2
SI (code)

.
S2 IF(P) GO TO SI

3. DO UNTIL
C
C *Example of DO UNTIL(P)
C

SI (code)

.
IF(.NOT.(P)) GO TO SI

March 1985 27

4. DO WHILE - DO
C
C *Example of DO WHILE - DO
C

C

S1 CONTINUE
(CODE)

C ***WHILE
IF(.NOT.(P)) GO TO S2

(CODE)

.
GO TO S1

S2 CONTINUE

5. CASE - use BLOCK IF structure with ELSE IF.

6. BEGIN/END Sequence
C

28

C Begin

C
C

.
(Sequence of Code)

End of sequence

March 1985

Appendix E

Code Reading FORTRAN Programs

One way to assure that a FORTRAN program meets the established requirements
is to have someone other than the author read the code. The following
d1Scussion defines one way to read through a FORTRAN program to check the
code. This will be helpful in training personnel to code read programs and
also def1ne the min1mum check1ng which can be expected by the author who has
developed a program.

The assumpt10n is made that the program was developed according to the
gU1del1nes 1n this document. This means that a program design document should
exist and that the programmer used a structured approach for the program. The
reader should have the FORTRAN compilation of the program and the program
documentation and have access to the program specifications and file
def1nitions 1f applicable.

Generally, the code-reader should look for function (is it expressed in plain
language?), form (lS the style clean, meaningful comments included,
in1t1alizat10n and closeout proper?), and economy (lS storage consistent, are
there redundant operations, is it slmple, and will it be easy to modify?).

A checkl1st is 1ncluded to prov1de a ready reference for actual code-reading
ass1gnments.

March 1985 29

FORTRAN Code Reading

Using the FORTRAN compilation with reference map:

1. Check the symbolic reference map for the one-to-one correspondence
between labels and references (exceptions are formats). Check the labels
for ascending order.

2. Check the map to determine if there are undefined variables or non­
dimensioned arrays appearing as externals. The externals from the
FORTRAN map can also be compared to those listed in the prologue.

3. Check the variables in the map to assure that parameters defined as
arrays in the prologue are listed as arrays.

4. Read the prologue for understanding. Make sure that its content is
consistent with the FORTRAN code implemented. Try to review it from the
standpoint of a potential user. Check for enough information in the
prologue to make the routine usable. Point out anything that is lacking
in the prologue.

5. Step through the code comparing it to the design ensuring that the code
reflects what the design indicates. Note any discrepancies.

6. Be sure that each branch does reference the correct label.

7. Mentally execute the code with extreme or unusual values to verify that
the code is correct. Avoid the pitfall of relying on the inline comments
to convey what the code is doing instead of actually reading the code.

8. Ensure that executable statements have not been accidentally commented
out.

9. Note any comments which cannot be clearly understood or computations
which do not clearly convey their functions.

10. Make certain that any machine dependent code or non-ANSI FORTRAN has been
flagged as such by the programmer as well as by the compiler.

11. Ensure that the variables used in the code are the FORTRAN equivalents of
those referenced in the design. Check the types of variables for
consistency. For example, is a variable described as an integer actually
read as an integer if formats are involved?

12. Ensure that formats and I/O lists are consistent with file definitions.
The types of I/O variables should agree with the types of data on files,
and the types specified in a format must agree with the file
definition. For example, 1S integer data actually read as an integer?
Also, is a binary file being input using a formatted read?

13. Check subroutlne linkages. Make certain that the number of arguments is
consistent. Check the types of the arguments and whether arguments

30 March 1985

should be arrays. Where poss1ble, check whether a COMMON variable passed
as an argument 1S being modified (as a COMMON var1able) 1n the receiving
routine.

14. Refer to the des1gn specif1catlons to actually check equations and
logic. Use file definitions to check format statements.

15. Check the implementation of structured program constructs.

16. Even If the program follows the deslgn, the reader can still question the
program logic. For lnstance, a test may indicate 'less than ' and be in
agreement wlth the design, but lf 'l ess than or equal tol makes more
sense to the reader, it should be questioned.

17. Sign or initial the code read so the programmer can ask for clarification
of your notations.

18. As a follow-up activity, check with the programmer who has executed the
code which you read to see lf you missed anything. This will improve
your ability as a code-reader.

FORTRAN Code-Reading Checklist

1. Symbolic Reference Map
a. One-to-one correspondence between references and labels.
b. Ascending order rule for statement labels
c. Externals.
d. Variables.

2. Prologue

3. Design versus code review

4. Comments

5. Machine dependent or Non-ANSI code

6. Type conslstency

7. Formats and lists versus f1le deflnltlon

8. Subroutine llnkage

9. Equations and logic versus design specification

10. Adherence to cod1ng standards

11. Slgn-off when code reading is completed

March 1985 31

REFERENCES

(1) Anon.: American National Standards Institute, FORTRAN X3.9 1978.

(2) Bevan, R. T. and Reynolds, J._H.: Computer Programming and Coding
Standards for the FORTRAN and SIMSCRIPT 11.5 Programming Languages.
NSWC/DL Technical Note 3878, Naval Surface Weapons Center, Dahlgren
Laboratory, Dahlgren, Virginia May 1979.

(3) Fagan, M. E.: Inspectlng Software Design and Code. Datamation, October
1977, pp. 133-144.

(4) FORTRAN Version 5 Reference Manual - CDC Operating Systems: NOS 1,
NOS/BEl, SCOPE 2. Publ. No. 60481300G, Control Data Corporation,
C.1983. (Document N-4)*

(5) Freedman, D. P. and Weinberg, G. M.: Ethno Technical Review Handbook.
Ethnotech, Inc., 1977.

(6) Anon.: Guidelines for Documentation of Computer Programs and Automated
Data Systems. U.S. Department of Commerce, NBS, FIPS Publ. 38 1976.

(7) Kernighan, B. W. and Planger, D. J.: The Elements of Programming
Style. Second ed., McGraw-Hill Book Co., Inc., 1978.

(8) McCracken, D. D. and Weinberg, G. M.: How to Write a Readable FORTRAN
Program. Datamation, October 1972, pp. 73-77.

(9) MODIFY Reference Manual - CDC Operating System: NOS 1. Publ. No.
60450100F, Control Data Corporation, C.1980. (Document N-15)*

(10) Anon.: NASA Langley Research Center, Earth Radiation Budget Experiment,
Software Development Standards. ERBE 2-4-2-0-83-6-2, 1983.

(II) NOS Version 1 Reference Manual, Volume 1. Publ. No. 60435400N, Control
Data Corporation, C.1981. (Document N-2a)*

(12) NOS Version 1 Reference Manual, Volume 2. Publ. No. 60445300N, Control
Data Corporatlon, C.1981. (Document N-6)*

(13) UPDATE Version 1 Reference Manual - CDC Operating Systems: NOS 1,
NOS/BEl, SCOPE 2. Publ. No. 604499000, Control Data Corporation,
C.1981. (Document N-14)*

* Documents in the Langley Central SClentific Computing Complex Documentation
Series.

32 March 1985

1 Report No 3 Recipient's Catalog No

NASA TM- 86407
I 2 Government Accession No

~ ________________________ J-________________________ -+ ______________________ ~~
4 Title and Subtitle 5 Report Date

March 1985
Guidelines for Developing Structured FORTRAN Programs 6 Performing Organization Code

7 Author(s)

B. M. Earnest

9 Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

15 Supplementary Notes

16 Abstract

992-16-05-03
8 Performing Organization Report No

N-38
10 Work Unit No

11 Contract or Grant No

13 Type of Report and Penod Covered

Technical Memorandum
14 Sponsoring Agency Code

This document is a compilation of computer programing and coding standards which
serve as guidelines for the uniform writing of FORTRAN 77 programs at NASA Langley.
Not all of the capabilities and options of FORTRAN 77 are included.

17 Key Words (Suggested by Author(s))

Programing GU1delines,FORTRAN
18 Distribution Statement

Unclassified-Unlimited

Subject Category 61

19 Security Oasslf (of thiS report) 20 Security Classlf (of thiS page) 21 No of Pages 22 Price"

Unclassified Unclassifed 34 A03

• For sale by the National Technical Information SerVice, Springfield, Virginia 22161

End of Document

