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The tight correlation between color and luminosity during the cyclical

variation of a Cepheid is calibrated and shown to be a direct means by which

most of the phase-dependent temperature-induced amplitude of the variable

can be transformed away. The resulting-Feinheit function, F = Y- a(B-9 gives

rise to a random-phase period- luminosity relation with an m s scatter of less

than 0.20 mag. A comparison shows that the blue Feinheit method for distance

determinations method from single-phase observations is as accurate as near-

infrared photometry but has the added advantage of being able to use

panoramic detectors for the data acquisition. The Feinheit function is identified

as the surface area variation of the Cepheid during its cycle.

Subject Headings:stars: Cepheids - stars: pulsation
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L Introduction

The observed correlation between the luminosity and period for Cepheids

has been used for decades as a tool for probing the extragalactic distance scale.

Some of the reasons for this, and the progress to date, are reviewed elsewhere
T

(Madore 1985). However, it should be independently emphasized that unlike the

majority of alternative extragalactic distance indicators, there exists a strong

theoretical understanding of Cepheids, and so it seems likely, that without a

major competitor on hand, Cepheids will continue to be used extensively to

determine the distances to many more nearby galaxies. Accordingly, we should

ask whether we are now using the Cepheids to best advantage. Given what we

already know about the properties of Cepheids, can we plan our future

observations more efficiently?

In what follows we take a new look at the documented properties of

Cepheids. This particular reappraisal is motivated by the different perspective

on the problem of the calibration of the cepheid period-luminosity relation

provided by recent developments in the near-infrared photometry of Cepheids

(McGonegal of al. 1982, 1983; McAlary et al. 1983; McAlary, and Madore 1984;

McAlary, Madore, and Davis 1984; Madore et al. 1985; Visvanathan 1985; Welch et

al. 1984). Set in the context of a wealth of existing photographic and

photoelectric data from optical surveys of galactic and extragalactic Cepheids

alike it can now be demonstrated that the advantages inherent in the infrared

calibration of the cepheid period-luminosity relation were also already

contained in the appropriate combination of optical observations.

Two physically distinct variations in surface properties lead to the

luminosity and color changes observed in a single Cepheids during its cycle. (1)

The star expands and contracts, and therefore the area of the star changes

periodically. These radius-induced variations are geometric in naUue, and so

.J



-4-

(except for small optical-depth effects) their contribution to the total light

variation is essentially wavelength independent. (2) The surface temperature

also varies. In this case the monochromatic surface brightness changes

sensitively with temperature, and in turn is quite dependent on wavelength. For

a given Cepheid, the temperature-induced surface brightness variations

dominate the visual luminosity variations seen during a cycle; at longer

wavelengths the radius variations dominate.

When considering variations of properties from Cepheid to Cepheid, as

opposed to variations in one Cepheid through its cycle, the roles of temperature

and radius are largely reversed. Although the visual luminosity variations

through the cycle of one Cepheid are due primarily to temperature, the maiu

driving force behind the luminosity differences between various Cepheids is the

rapid increase of mean radius with increasing period. Accordingly, the statistical

coupling of the period and the radius (by the- constraints of the instability strip)

is the physically dominant term contributing to the origin of the slope of the

period-luminosity relation at almost all wavelengths. In the visual, temperature

differences from Cepheid to Cepheid actually work against this luminosity

projection of the period-radius relation, broadening it and flattening it, due to

the statistical decrease in mean surface brightness (temperature) with period.

With knowledge of the above trends, one could then have predicted that in

going from the optical to the near infrared, the observed period-luminosity

relation should undergo two systematic changes. First, the observed width

measured at fixed period should decrease with increased observing wavelength.

And second, the slope of the period-luminosity relation should steepen,

approaching the luminosity equivalent of the period-radius relation U long

wavelengths. By eliminating a Cepheid's surface-brightness variation, many

practical advantages perlLaining to the distance scale can be realized. By
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decreasing the dispersion in the period-luminosity relation while simultaneously

increasing the luminosity dependence on period one obtains a much more

accurate distance indicator. w-

Moving to the infrared (McGonegal, et al. 1982) is one direct means of

obtaining a low sensitivity to surface brightness, resulting in a direct luminosity

measure of the star's surface area. Now we show how these very same

advantages are inherent in conventional data and can be readily derived from

photometry obtained in the blue/visual portion of the spectrum.
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U. The Colorriiagnitude Diagram

The periodic trajectory of a Cepheid in the (AB-il color-magnitude diagram

is illustrated in Figure 1. The data for the example star, X Gam, are taken from

Moffett and Barnes (1984). The Cepheid executes a loop in a clockwise direction,

reaching maximum luminoslty approximately at its bluest color and passing

through minimum light, when it is reddest. While the temperature variation in

this specific case results in a color amplitude of 0.65 mag in (B-P) and a

luminosity amplitude of 1.60 mag in B, the radius variation is intrinsically quite

small. Moreover, the radius variation is out of phase by about 90 degrees with

respect to the surface brightness variations, causing an opening of the loop in

Figure 1, but not significantly affecting the luminosity or color amplitude.

To first order then, the visual light variation is strongly coupled to the color

variation such that at any phase the instantaneous magntude V. can be

considered to be a linear function of the instantaneous color (B-V),,, such that V,,

= a (B-V)O, + y. To this we can add a residual term R. which accounts for the

small radius variations occurring out of phase with the color.

The above relation can be rewritten in a more suggestive and useful form,

F-- VO - a (B- V)1, = y,

where F, the Feinhei± function, is independent of the phase of observation

(ignoring for the moment the small radius variation R.). Graphically, Figure 1

Illustrates the origin and magnitude of the small amplitude AF. This residual

variation is the minimized projection of the loop seen along its major axis.

Another representation of similar data further illustrating the nature of the

Feinheit function is shown in Figure 2. The upper curve shows the V luminosity

variation as a function of phase; the middle curve shows the (B-V) color variatioi1

as a function of phase. Note the similarity of the two curves, again emphasizing

how strongly coupled the visual luminosity is to the temperature. The lower

M
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panel shows the residual variations in F as a function of phase. The opening of

the loop found in Figure i is now se s as a periodic cycioidal variation shifted by

about 90 degrees with respect to the color curve. In this projection. F bears all

of the characteristics typical of the radius variation. independently known to be

of this ft m from radial velocity curve studies.

In decoupling the radius -induced luminosity from the temperature-induced

luminosity variations we have, using visual data, now matched the advantages

Inherent in the infrared. The instantaneous values of Fare never more than a

few tenths of a magnitude away from the mean, and as such provide a fast,

economical and accurate means of measuring the luminosities of Cepheids.
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T'. Period Dependence of the Imp

In empirically evaluating the coefficient a in F = YO - a (B-19v, the

tabulation of Schaltenbrand and Tammann (1971) was used. Rather than

replotting the original data as in Figure 1, a good estimate of a can be had from
3

AVJD (B-V} which conveniently, are individuaLy tabulated by those authors.

Since there is no a priari, reason to expect that a will be the same for all

Cepheids, the individual slopes were plotted as a function of log P. Only the

brightest stars (with V< 10.0 mag) with well determined amplitudes were

considered; and stars known to be bit.aries were omitted. The resulting relation

is shown in Figure 3, where a clear trend with period is evident. The data are

adequately flt by a = -0.3 log P+ 2.1. For the majority of Cepheids then, a falls

in the range 1.5 to 2.0. No residual trend with amplitude was found for the

scatter in Figure 3.

The change in a as a function of period emphasizes that there is a differing

sensitivity of the visual surface brightness to the observed color, either as a

function of the mean surface gravity or more likely as a function of mean

surface temperature, both of which are statistically coupled to ty.Le period. The

same effect is probably manifesting itself in the period dependence of the

"constant" zero point cf the period- luminosity-color relation presented by

Coulson, Caldwell and Gieren (1985). Furthermore from a study of seventeen

Cepheids with good photometry and radial velocities Ivanov (1981) finds that the

slope of his surface brightness-color relationship is also dependent upon period

to the same degree and sense as reported here, ranging from 2.1 at short

periods to 1.6 at long periods.

I

A	 ^
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IV. The Period I.uminodty Relation

We now test tl a formulation of the blue Feinheit method for an ensemble of

points using data obtained for a sample of Cepheids in the Small Magellanic 	 ..

Cloud (Gascoigne and Kron 1985). The observations plotted in Figure 4 and 5 are

the first photoelectric observations obtained by these authors for each of the

stars. The periods were known in advance from photographic studies but the

observations are essentially random samplings of the Cepheide' light curves. In

principle, the data could have been obtained in one night of observing.

Figure 4 shows the B photoelectric data plotto"' as a function of period.

Because the obse:vations are random-phase the width of the period-luminosity

relation is quite large. In addition to the intrinsic width of the relation, known tc,

be about 1.2 mag at B for time-averaged observations, the plot has the

additional scatter induced by the add: Live effects of the amplitude of each

Cepheid seen superimposed to various degrees on top of the mean relation.

Since typical amplitudes of Cepheids at B are known to be similar in magnitude

to the intrinsic width of the instability strip itself we should expect the random-

phase period-luminosity relation to be about twice as wide as the time-averaged

period-luminosity relation. That this is indeed the case is illustrated in Figure 4.

The solid lines mark the maximum extent of the random-phase period-

luminosity relation which has an observed width of 2 magnitudes. The broken

lines inside and parallel to that relation show the expected width for the time-

averaged relation.

Figure 5 shows the same data now transformed to the phase-independent - -

Feinheit function. The full width of this randomly sampled period-luminosity

relation has dropped by a factor of three with respect to the blue, confirming

our expectationss based on the observations of one star through its cycle.

Furthermore the slope of the F-log P relation is noticeably steeper than the B-

V
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log P relation. Were one simply interested in having an economical means of

determining modern distances to galaxies in which Cepheids were already

detected (as has been the case for the Magellanic Clouds and several other Local

Group galaxies for some yearf now) then one eight's worth of observing,

regardless of the period range of the Cepheids involved, would suffice.

This situation is highly reminiscent of the advantages claimed fo: observing

Cepheids in the near infrared, where the scatter in the random-phase 11--band

observations was also shown (McGonegal of at. 1982) to be less than the time-

averaged B observations. In fact the two methods are in the end equivalent, with

Fand the infrared each primarily responding to radius (i.e. surface area)

variations. In both cases the only variable remaining during the cycle is the

geometric term, Fis by construction designed to transform the temperature

terms away, the infrared by its very nature is insensitive to temperature-

induced variations. Radius-is the only physical variable remaining and common

to both observations. A cursory comparison of the form, phase shift and

amplitude of Fand the infrared light curves for individual Cepheids as a function

of phase shows that the two are basically indistinguishible from that predicted

by the radius variations alone.
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X Dlecuedon and Conclusions

Do any of the other advantages found in the infrared accrue to the Feinheit

method? Radiation observed at H(1.8µ) In known to suffer about three times less

extinction due to interstellar dust as compared to V. That is, A il — E(" or H =

Flo + E(B-t), Because of the form of Fit too, implicitly cancels some of the

effects of interstellar extinction. For example, if F = V- 2(B-P), then

F = io + Ay - 2(B-Y)o - 2E(B-V)

=Fe+E(8-9

Accordingly, F and H have similarly low sensitivities to reddening.

Although they are harder to quantify, it is certainly true that for both the

infrared and for Fthe effects of atmospheric line blanketting and the effects of

contamination due to main sequence companions are greatly reduced relative to

the blue. Again, the infrared is intrinsically insensitive to these effects, while for

F the sense of each effect is correlated in luminosity and color such that F

partially cancels their influence. Atmospheric line blanketting is notoriously

wavelength dependent with heavy crowding of lines favoring the blue and

- ultraviolet portions of the spectrum. Accordingly stars with low metal

abundance are bluer and brighter than their high-metallicity counterparts. This

effect combines fortuitously in the same sense as the temperature and surface

brightness combine; therefore, to first order metallicity effects are

compensated for in the Feinheit magnitude. Similarly, if a blue companion

contaminates the Cepheid's photometry it will make :he variable appear

brighter and bluer, again precisely the Hype of correlation F tends to cancel out.

In summary then, the Feinheit function is a means of explicitly minimizing

the surface-brightness variations of a Cepheid during its cycle, leaving only the

small residual radius variations. By combining the magnitude and color to

optimize this cancelation several other effects are simultaneously compensated

0
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for. As in the infrared, the Feinheit method accounts in part for reddening,

metallicity differences and contamination from blue comparuons. However,

there is one added advantage that Fhas over the infrared. Since fuses optical

data it can employ existing panoramic detectors to acquire new photometry. At

the moment infrared observations at faint magrttudes are limited to single-

channel devices using aperture techniques. For Cepheids in distant galaxies

crowding effects have set a limit on the accuracy of near-infrared stellar

photometry (Freedman. Grieve and Madore 1985; Madore of al. 1905). With CCDs

and profile-fitting reduction techniques, seeing limited photometry can be-  done

in the optical and be a full order of magnitude less susceptible to crowding and

confusion problems as compared to H-band photometry done through a five

areseond aperture, say.

Finally it should be noted that the Feinheit method itself is not restricted

for use on SVdata alone. Any combination of filters can be used to cancel the

temperature effects on the luminosity. For CCD's whose operating efficiency

peaks around the R-band it would be reasonab(c to reformulate Ffor that

natural system where P'= R - f (V-R), or F =1-y(R-1) would be obvious

alternatives. However, if the only physics contributing to Pis the radius

variation, the amplitude observed for Fshould be independent of the

combination of Alters employed.
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Captions to Figures:

Figure 1: Individual observations of the Cepheid X Cyg, from the compilation of

Moffett and Barnes ( 1984), plotted in the B-(B-V) color-magnit , le plane. The

loop is traversed cyclically with time in a clockwise direction, projecting a

variation in luminosity which is tightly correlated with (and causally linked to,

the color variation. The minimum projected variation with phase, the Feinheit

function, is seen looking down along the major axis of the loop. In th-s case the

cyclical variation in Fis about four times smaller than the variation seen in b

Figure 2: Phase plots for photoelectric data from Moffett and Barne= (1984) for

the Cepheid RR Lac. The upper two curves are the V and (B- V) light a-rld color

curves, respectively. Note the similarity of the shapes of the two curves. By

appropriately scaling the color data and subtracting them from the light curve,

the lower Feinhed function is found. Cancellation is not complete, but a residual

variation amounting to only a few tenths of a magnitude is left. Its variation is

cyclical in shape and shifted by about a quarter of a cycle with respect to the

color curve.	 -

Figure 3: The period dependence of the slope of the loop for cepheid

trajectories in the V-(B-19 color-magnitude diagram, as estimated from the ratio

of amplitudes tabulated in Schaltenbrand and Tammann (1971). The solid line

through the data has the form -0.3 log P + 2.1.

Figure 4: Period-luminosity relations for Small Magellanic Cloud Cepheids based

on random-phase photoelectric observations. Solid lines mark the width of this

empirical relation (2.0 mag), the inner broken lines show the width of the same

.^•. mot:.•..
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relation (1.2 mag) when time-averaged data are used. Compare with Figure 5.

Figure 5: The same random-phase data as in Figure 4 but now transformed to

the Feinheit magnitude. The width of the relation is three times narrower than

the corresponding B relation and is even a factor of two tighter than the time-

averaged B relation. Note the steeper slope of the F-log P relation in comparison

to the B-log P relation.
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