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PREFACE .

This report covers the work completed on the researcﬁ project "Wing Propel-
ler Interference Studies.“r The work was supported by the NASA/Langley Re-
search Center, Analytical Methods Branch of the Low-Speed Aerodynamics Di-
vision, through Cooperative Agreement NCCl1-65. The project was monitored
by Or. Chen-Huei Liu, LSAD-Aerodynamics Mathods Branch, NASA/Langley Re-

search Center,
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STUDIES ON THE INTERFERENCE OF WINGS AND PROPELLER SLIPSTREAMS

By

Remadas K. Prabhu! and Surendra N. Tiwari2
- SUMMARY -

The‘smali disturbaﬁce potential tlow.theory is appiied‘to determine -

‘the 1ift of.an afrfoil in a nonuniform parailel'streah. The - given
| stream is replaced by an equivalent stream with a certain number of<
velocity discontinuities, and the influence of these discentinuities is

obtained by the method of images. Next, this method is extended to the

problem of an airfoil in a nonuniform stream of smooth velocity

profile.  This model allows perturbation velocity potentfal in a

’}oteticna] undisturbed stream. A ‘cbmpafisen of theseb resdlts with :
B numerical solutions of Euler equations {ndicates that, although
'approximate, the present method providas usefui information about the

interaction problem while avoiding the need to solve the Euier_ )

equations.

The assumptions of the ciassicai lifting iine theory applied to’ the
uihg-slipstream interaction problem are scrutinized. ~ One of the
assumptions (uniform.veiocity‘in the slipstream)'of the classical thecry‘
is dropped, and the goyerning equationsrare'derived for the spanwise

. 1ift distribution on a wing in a single raxisymmetric fsiipstream.
: Spanwise 1ift and iﬁduced ‘dragA distributions are obtafned for two

‘ typicei cases; and ‘the effects of nonuniformity in the slipstream

lgraduate Research Assistant, Deparment of Mechanical Engineering and
Mechanics, 01d Dominfon University, Norfolk, Virginia 23508..

2kminent Professor, Department of Mechanical Engineering and Mechanics.
0ld Dominion Univer51ty, Norfolk Virginia 23508
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velocity profile are examined.

& | | |
The method of matched asymptotic expansfons {is applied to the
‘f problem of a large aspect ratio swept wing in the slipstream of multiple

overlapping propeliers. The flow is assumed to be steady, inviscid and

-

1ncompressib1e. It is also assumed that the height of the s'libpstreafn is
of the order of the wing chord, and its spanwise extent is of the order
of the wing span., Three different flow regions - are identified by

employing different stretching’ transformations, . and = asymptotic

A NE TR TRy

_expansions are 1ntroddced' using the chord-to-span ratio as the small
expansfon parameter, The details of the nonuniform flow in the
slipstream enter; into the wing-sectional analysis. In the outer limit,
" the i\'ﬁng shrinks to a swépt 1ifting line, and the slipstream reduces to
~a thin sheet of jet carrying the momeﬁtun gain from the propener.' The
curvature of this Jjet sheet results in a pressure difference which is

represented by a vortex sheet, The governing equations are solved by

R
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discretization. Comparison of the present results with the experimental

R

‘data as well as other numerical solutions showed generally good

(R Jrea

agreement.
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Chqpter 1

" INTRODUCTION
The cost of aviation fuel has gone up substantially in the last
decade and this is expected to be an ever increasing trend. Added to

this is the uncertafnty regarding the supplies. These fictors combined

with the national concern over energy conservation have lead aircraft

'designers as well as the operators to give prime {importance td “fuel
“efficient propulsion systems'for the future aircraft. Prior to the so-

- called oil crisis in 1973, the fuel cost was a relatively smallrfraction

(about 25 percent) of the direct opérating cost, and it was of less
concern to the designers/operators. Today, however, it is claimed that
this fraction has risen to abcd4t 60 percenﬁ [1, 2]* , and that %t is the

major part of the aircraft operating cost.

L ‘If-was.only_propellers»that brbvided piropulsive. force to -aircraft
befofe Jet engines appeared on the scene. As flight speeds increaséd,
the propellers posed serious problems of rapidly decaying propulsive
efficiency and ihcreasing noise and vibration levels. As a result, more
powverful and efficient jet engines took over and domi..ated the scene,
and propellers were neglected for many years; It is well known that the
old technoiugy propellers are the most efficient mode of propulsion up

to a Mach number of about 0.6. The interest generated in the propelier

*Numbers fn brackets indicate references.
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technology since the oil crisis has lead to the development of the prop-

~ fan, which is claimed to operate at an aerodynamic efficiency of about

80 percent at a Mach number of 0.8 [3].

With the prospect of the use of prop-fans on transport airplanes,
there has been concern regarding the assocfated problems. fhe
interference of slipstreams with other parts of the airplane, 1in
particular with the wing, is one of the major problem areas. With the

flight speeds going up to M=0.8, compressibility effects can no longer

be neglected. The flowfield behind the propeller is highly rotational

and the effects of vorticity fn the slipstream cannot be d{gnored.

Therefore, the probleﬁ in its complete form {is quite complex.

~Consequently, = considerable effcrts (analytical, numerical and

experimental) are being made to understand the rather complex flowfield

assocfated with the uing-slipstream'fnterference.

The problem of determining the influence of the propeller
slipstream on the wing -1ift has been studied quite extensively in the

p&st._and a considerable amount of l{iterature is available. Because of -

Ehé highly nonuni form néthfe of the flow in the slipstream, the problem

s essentfally a nonlinear one; as a result, the work done during the

1930's was based on approximate and semi-empirical methods [4, S5J.
These methods provided satisfactory results in the speed-power raﬁge for
which they were developed; Koning (6] gave an analytical treatment for
a wing in & propeller slipstreém based on the lift1n§-11ne theory, It
was assumed in this analysis that the increment in velocity in the
slipstream was small. Ferrari (7] developed what is generally referred
to as the classical lffting-line theory for wings in slipstreams. The

mafn assumptions in this theory were that (1) the slipstream wis in the

o ey e i temamsnen
E VRIS



forni of a circular cylindrical tube extending to infinity both upstream
and downstream. (2) the velocity in this tube was uniform (ug), and (3)
the relation between the 11ft and angle of attack for the wing sections
was obtained by considering them to be in uniform flows with velocities
U; and U. for sections d{nside and outside the slipstream tube,
‘-respe'ctﬁely. One of the drawbacks of this theory {s the third
assumption. = It {s obvious that the 1ift produced by an afrfoil would
depend on theijet height., Ting and Liu [8] employed the metﬁod of
{mages ‘and studied the Hftihg characteristics ofr thin airfoils in a
" nonuniform parallel streams. Th.'ls method can be used to determine the
Hft of an airfoifl in a uniform jet, Chow et al. [9] numerfcally
1nvestigated the two-dimensfonal nonuniform flow past an airfoil by
solving the Euler éduations. These results demonstrated the fact that
the liftiof an airfo'inl depends not cnly on the jet height but also on
the nonunffomity in  the approach stream, Recognizing this fact,
7 KTeinstein and Liu [10] made some f{mprovements to the classical
theory, The 1ift data for the wing sect'blonskwithin the slipstrean was

ob'tained~by employing the methods of (8] and [9], 'a‘nd was used in the

classical theory. Howevér. the assumptions (1) and (2) of the cla‘ssical

theory were still retained while computing the downwash due to‘traiHng
vortices. These results demonstrated the effects of mcdifying the

assumption (3) mentioned earlier.

- There were other attenpts to improve upon the classical theory of
Ferrari. Rethorst [11] employed the Weissinger approach and developed a
lifting-surface theory. Wu and Talmadge [12], and Cumberbatch [13]

extended the method of [11] to wings extending through multiple jets.

Jameson [14] modeled wide slipstreams by rectangular and elliptic jets,

B L I
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and by using the standard imaging technique developed a lifting-surface _

theory. In all these analyses one of the main assumptions was that the

velocity in the jet (representing the slipstream) was uniform,

Ting et al. [15] scrutinfzed the assumptidns of the classical
1ifting-line theory, and suggested a new approach to solve the problem. |
It was recognized that the height of the slipstream {is of the order of
the wing chord, and the spanwise spread of the combined multi-propeﬁer
slipstream {s of the order of the wing sﬁan. Three different flow
regions  were identified by embloying different .stretching
transformations. Asyn{pwtic expansions were made by using the
reciprocal of the wing aspect ratio (1/AR) as the small parameter. This
analysis showed that the detailé of the nonunifqm stream enter
primarily into the local sectional a\nlysis; behind the wing; the
siipstream :acts ke .a thin jet sheet which supports a pressure
difference across itself, By solving the governing integral equation,

the wing 1lift distribution was determined. Maarsingh (16] made an

 evaluation of this method by comparing these results with the data

-6btain'ed “from some' specially designed experiments (17]. ) Some

differences between the two sets of results were found, and these are
suspected to be due to inaccuracies in the YJift-curve slope data that

was used fn the computations of Maarsingh [16].

» Ribner and El1is [18] considered slipstreamé of afbitrary» cross
section, and, instead of the standard imaging technique, represented the
slipstream boundary by vortex sheaths, and proceeded on the basis of '
1ifting line theory. Lan [19] developed a method based on the quasf-

vortex-lattice method and a two-vortex-sheet representation of the

‘slipstream. Both of these methods accounted for the rotation in the
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slipstreaﬁ.
Levinsky, et al. [20, 21] developed a large-tflt-angle 1lifting-
surface theory app!fcable to tilt-wing and tilt-rotor V/STOL aircraft

' ~configuratfons, An actuator disk analysis_for an Inclined propeller was

ceveloped, and was combfned with Welssinger 1ifting-surface theory for
the wing at arbitrary wing angle of attack, Configurations with one,
two, or fbur slipstreams were considered, and effects of slipstream
Swirl were included in all but single slipstream case. Comparisons with
experimentali data showed that the theory predicts span loading

reasonably well for small angles of attack and small propeller tilt

angles,

- Hith the avaflability of high speed computers and efficient

" computational techniques, there has been a new trend in the approach to

the solution of the wing-slipstream interaction problem. Numerical
techniques have been employed to solve the linearized potential flow

equations, ful potential equations. and Euler equations.

Rizk [22] 1nvestigated th° propeller slipstream-wing fnterferencev

"problem at ‘transonic speeds. ' It was noted that a nearly uniform
. slipstream interacting with a thin wing allows the perturbatfons to be
- potential  although the undisturbed flow within the slipstream is

_rotational. The resulting potential flow (boundary value) problem for

transonic flow was solved by a finite-difference scheme. In general,
however, .the assumptions made in this work may not be fu11y valid; for

example, the nonuniformity In the slipstream may be Iafge enough to

~ _cause potential flow assumptions to yield erroneous results.

Chandrasekaran and Bartlett [23] modiffed the Hess panel code to
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~handle the effects of the propeller slipstream, The slipstream boundary

was modeled by a system of ring vortices, and the effects of swirl in

the slipstream was {ncluded. A comparison of the results with

experimental data showed some dffferences. which were attributed to

vfscou§ and compressibiiity effects as well as to uncertﬁinities in the

estim&tion of the flowfield béhind the propelfer.

~ Narain [24] and Samant et al, [25] made assumptions similar to

those of Rizk [22] regarding the slipstream, but did not assume that the -

perturbations were small., Instead, the problem was fnvestigated on the
basis of the full poténtial flow equations with a rigid boundary for. the
slipstream tube. These results compared reasonably well withvavaiiabie

experimental data; however, §t should be recognized that the advantage

of using the accurate full potential equation is sacrificed by the |

_approximation of irrotational flow.

. Whitfield and Jameson [26] solved the three~-dimensional Euler

équations coupled with the energy equation. The Euler equatioﬁs had the

force terms included to simulate the propeller efchts.  The ,viscous

: éffects were accounted for, although approximately, by coupling' the

three-dimensional Euler equations with the two~dimensional fnverse

integral boundary-layer equations. In spite of these sophistications,
the ‘spanwise 1ift distribution obtafned by this analysis failed to show
good agreement consistently with the experimental data of Welge and

Crowder {27]). This method, however, provides detailed information on

velocity and other flow quantities in the entire computational domain.

As may be expected, such an effort would require a large computer memory

and a considerable amount of computing time. For example, the :6mputer

code developed in [26] required 900,000 words of memory and 341 seconds

'
rmm s o Ao o cenm.
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-of computingltime on Cray-1S computer for a relatively hoarse (96x16x16)

grid.

As a result of this ifteraturé survey, it is apparent that there is

ainéed for further research in this fieldvon the following topics:
(1) Airfoil iﬁ nonunifqrm‘flow
(2) Iﬁprovements-to 1ifting 1ine and lifﬁing surface fheories
| (3)  51f§s£ream swirl and distortion effects
(45 vCompressibility and viscous effects
- (5) Swebt wing - slipstrea@ fnterference
| (6) Intefference of”slipstream‘with other‘parts of the airplane

The main purposé of the present study s to fnvestigate some of these

topics. The following paragarphs describe briefly the work undertaken

~ 1in this study.

- < As “noted "earlier, the nonuniformity of ihe slipstreéé is not
modeled” properly in the classical liftfng line vtheory for wing-
slipstfeam interference. This has been improved by using the sectional
1ift datﬁ obtained by either the linearized potential flow method for
the wing section in an equivalent jet or the soluiion of two-dimensional
Euler equafions. whereés the assumption of uniform flow for the
compuiation of the sectional 1ift data in the classfcal theory is a
draétic simplffication, employing the Euler equations, although
providing the necessary rigor, requires considerable . computing effort,

Approximating the actual nonuniform velocity profile in the slipstream
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by an equivalent uniform jet is a good approximation. However, it is
found that bet;er approximations are possible under the framework of the

linearfzed potential flow theory. Chapter 2 fncludes a study of fhin

airfoils at small angles of attack fin nonﬁniform paratlel sinéams.

These results are compared with numerical solutions of the Euler

equations,

- It {s assumed 1in thé classical 11ff1ng-line theory for wing
slipstreamlinterference that the siipstream fs in the form of a uniform.
ciréular Jet, for the computation of dowﬁwash due to the trafling
vortfces. The velocity distributfon in the slipstream 1s faf from being
uniform. However, this approximation (made to simplify the problem) was
carried over in the subsgquent_deveiopments. For example, Kleistein and
Liu [10] retained this assumptfon in their modification of the classical
theory, and so did Rethorst and his coworkers [11-13] in the develobmént-
of the 1ifting-surface theories. In the present study. the assumption

that the velocity in the slipstream {s uniform is dropped, and the

,effect; of the nonuniformities 1in the slipstream on the downwash of a

lafgé aspect ratio wing are studied. Chapter 3 includes the 1ifting-

line theory for Jarge‘aspect ratio wings in slipstreams that can be

represented as axisymmetric Jjets with smooth velocfty' profiles.

Spanwise 1ift and induced drag distributions are computed for two
typical - cases. Results are compared withgmthose obtained by‘ other

theories.

The asymptotic method has been a powerful tool in the analysis of
Iafge aspect ratio wings [28].  The method is simple, ard provides a
better physical insight into the problem. The asymptotic method has

also been used in an analysis of unswept wing-slipstream interfefence
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(i15]. An asymptotic method for the analysis of tbe interference cn a
vlarge aspect ratio swept wing with multi-propeller slipstream 1is
presented in Chap. 4. It {s assumed as in {15] that the height of the
slipstream {s of the order of thé wfng chord, and that its width is of
the order .of the wing span, By employing different stretching
transformations; three different regifons are {dentffied. Expansions are -
fntroduced in each region by using the ratio of the chord to the span as

the small parame.er, The details of the nonuniformities in the

~slipstream enter in the two-dimensional flow past wing sections normal

‘to the lifting-line. The spanwise component of the velocity is shown

not to affect the sectional 1ift data.  For the outer solution, the wing

planform reduces to a swept 1ifting-line, and the propeller slipstream

" behind the wing reduces to a thin sheet carrying the sectional momentum

gaihed through the oropellers. The curvature of this sheet results in a

pressure difference across 1tself; which 1is représented by a vortex

,sheet. The governing equations are solved by a discretization

. proéedurg._, _Several examples are considered for which 'experimental

results are available. Present results are compared with these

experimental data as well as other numerical results. .
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AIRFOIL IN NONUNIFORM- PARALLEL STREAMS

" The study of aerodynamic characteristics of lifting surfcces in
nonuniform flow is of considerable practical interest. Wing sections
behind a propeller experiencing a Jet-like velocity profile, and

tailplane sections of a conventional airplane experifencing a wake-like

complex and require simplifying assumptions. Even if the viscous and

compressibilfty effects are neglected, the presence of vorticity in the

~ approaching stream necessitates the solution of the Euler equatfons.

Being nonlinear, the Euler equations require numerical treatment which

has been done by several workers {9,29].

A_vg1ocity profile are two examples of such problems. These problems are _

- This nonlinear problem can be simplified considerably by rep]acing

. the: given nonuniform stream by an equiva]ent uniform jet. The advantage

of -this approach is the simplification of flow from rotational to
{rrotational, with a finite number of surfaces of - velocity
disccntinuity. Karman gave the basis for a linearized potential flow

cnalysis of such problems [30]. Glauert employed this method to solve

the problem of aﬁ cirfoil in the presence of a uniform jet [31]. The

ajrfoil was replaced with a single vortex, and the airfoil 1ift was
determined by computing the streamline curvature and increment in axial
velocity. Ting and Liu [8] developed a method that is essentially an

extensfon of Glauert's method, which could be used to compute the
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chordwise pressure_distribution and the 1ift of a thin airfoil in a

uniform Jet.‘

In this chapter the basis for linearized potential flow analysis

for the probiem of an airfoil near a surface of velocity discontinufity

is reviewed. The method of solution of the {ntegral équation of [8] 15

simplified. The analysis in then extended to cover the case of five
streams with four surfaces of discontinuity. Next, the prbbfem of an

afrfoil in a smooth velocity profile {s treated by the linearized

'vpotentiaI rf1ow analysis. . This problem 1is also solved by a more

rigorous, although more expensive, method by solving the Euler equation

using a modified version of the Euler code [29]. Results obtained for

two examples by different methods are compared.

2.1 Fundamental Basis for the Analysis

The present linearized potential flow analysis {is based on the
method due to Karman [30] for representiﬁg the. flow past a body in the

proximi;y of a surface of velocity discontinuity. Consider two paraliel

streams with velocities Uy and U;, the line AB being the undisturbed

streamline separating the two streams (Fig. 2.1). Let a body be placed

in the lower stream, and ]et (ug, vo) and (uj, vj) be the perturbation

velocity components in the Tower and the upper streams respectively. If

the disturbed streamline  separating. the two Sstreams makes an

angle B with the undisturbed streamline, then
' tgnﬁ 2 v0/(U0+ uo) = vll(U1+v1)

Assuming ug, u;, vg and v; to be small compared to Uy and Up,

transferring this condition to the undisturbed surface, and retaining
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Fig. 2.1 ‘A bodx‘near a surface of velocity discontinuity.
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- reduces to

only the first order terms, this relation can be simplified to |
Also, the static pressure is assumed to be‘ continuous across  the.
surface. {.e., | |

- (1/2) p[u0 - (u 2

0) "oJ « py - (1/2) p[u1 (Ul+u1)2 - v

'where Po and pl are the static pressures below anq above the surface of
discontinuity. . Retaining only the first order terms, this relation
- UgUg = ugYy S a2

Equations (2.1) and (2.2) are the'two‘necessary condftions that must be

' satisfied across the undisturbed surface of discontinuity, and form the

basis for the analysis in this chapter.

Glauert [31] considered an airfoil near a surface of dwscontinuity

':V(Fig. 2.2). The airf011 was represented by a vortex of strength T.

- Swnce the problem is- linear. it was demonstrated [31] that app]icatlon

of Eqs. (2.1) and (2.2) lead to a flow in the upper stream as that ‘due -
to a point vortex of strength (rWK)Ulluo at the point P, and a flow in
the lower stream as that due the vortex I' at P together with its fmage
of strength K at the point P, where ' » |

'_K-r(u u)/(u #uf)=m

A logical extension of this approacn is to replace the airfoil by a

vortex dfstribution ¥({x), O<x<c, instead of a -single vortex, Each of

. the vortex e]ements of this distribution y{x}dx. forms images as
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described above, The downwash at the airfoil chora cén be determined in
terms of y(x) and its image sfrength uv(x). and the unknown y(x) can
be determine& by s&tisfying the flow tangency conditicn on the airfoil
- mean cémber line. This problem can be treated as a particular case of a
more general problem of an airfoil.in_a jet of finite width, which is

considered in the following section.

2.2 Afrfoil in a Jet of Finite Width

A more interesting problem is the flow past an airfoil placed in a
uniform Jet of finite width, Consider the general case’ of three
vpar;allel Stréams of velocitiés Uj, Up and U_; with two surfaces of
discontinuity AA and B8 separated by a distance h as shown in Fig. 2.3.
Let an airfoil of chord ¢ be ptla =d in the middle stream at & distance a-
below the surface AA. In this case, the conditions (2.1) and (2.2) have
to rbe satisfied at both the surfaces AA and B8. Ting, and Liu
represented the airfoifl by a vortex distribution y(x), O<x<c instead of
a _single ’vqrfex_ [8]. The conditions (2.1) and- (2.2) were applied
repeatedly across the surfaces AA and BB;-and an infinite set of image
vortex distributions (Fig. 2.3) were obtained to describe the flow in
the middle.stream. The downwash v(x) at a point x on the y-axis due
to v{x) and all its images is given‘by

[ ~ p{x~E) N v(x~E)
(x=E)2 + 4(jh+a)®  (x-8)° + 4(jh+d)2

S SR S i
v(x) 3% fo [(;:5-) +jfo (uv)

4

o 2uv(x~E) 1} vz
P ylg) dg (2.3)
(x-8)% + 4(J+1)%n°

where b (2 - )/ - 2y | O (2.8)
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The linearized flow‘tangency condition on the_aiffoil requires
“v(x) = Ugla - m(x)] on y=0 - (2.6)

where « 1s the angle of attack and m(x) {s the slope of the afrfoil mean

camber 1ine. Equations (2.3) and (2.6) forh an integfal equatidnAfob '
the unknown y(x).  Note that in Eq. (2.3) the first term is the
familiar singular term that appears 1in the classical thin airfoil

theory; the other terms are not singular.

- The above equation was solved in [8] by employing a rather lengthy
procedure, As the {ntegrand in Eq. (2.3) is no more singular than the
one in the classical airfoil integral, all the methods of solving the

classical 1{integral are applicable 1in the present case also. In

particular, discretization of y(x) is possible. Lan's method of [32]

discretizing y(x), and employing a cosine distribution for the vortex
and control points is known to produce excellent results for the

classical airfoil problenm. Hence, this method is used in the present

" ‘problem.

As the first step towards the solution of Eq} (2.3), x and & are

replaced by 6 and ¢ using the following transformation:
x = (1 - cosé) ¢/2 . - (2.73)
- &= (1 -cose) c/2 - S s (2.7b)

Then, the Egs. (2.3) and (2.6) together transform fnto the foliowing:

Uyla - m(6)] = [ {T_.__.____T z (a9 ¢ {cos¢-cos8)
0 IF' cos#-cosy (cos@—cose)2 + 16(jh+a)2/c2__

D L L Tt o L —— e . N R A T -t
; 2 Clde s ea e 4 t 3 PHE P00 - [ s A
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v(cosd-cose) . 2uv(cos é-cos8) 1} v(e) do
z .

+
(cose-cos)® + 16(jh+b)%/c®  (cos¢~cos@)® + 16(j+1)° h/c (2.8)

Next, the vortex points and the control points are chosen as follows:
ok = (Zk‘l)ﬁ/ZN. ‘ k‘l.z....." - (209)
61 = {n/N, i31,2,00.,N (2.10)
With this, Eq. .(2.8) reduces to
| ] [a‘- m(o,)] = 4 '2‘: { 1 -
' . Tcosé, -cosb,)
N 0 i N kel cqsok co‘sei ,

u(cose, -cose,) B v(cosék-cosei)

S e (] +
=0

(cos¢k-cosei)2 + 16(jh+a)2/c2 (cosok-cosei)z + 16(.1h+b)‘2/cz '

. Zuv(cowk-cosei)

. . ]} Y( ‘ ) Sin F] 1=1,2.040.NV (2011)
(cos(:»k-cosei)2 + 16(5+1)%h%/c? '_% L :

This is a set of linear simultaneous equations for the unknowns ¥{ ok).

" k=1,2,...,8, and can be solved easily. The ‘Iift'a'nd pitching moment’

'coefficiénts' 6f thé 'airfbi] are given by

N | o
Gy = (w/N) kfl 7(3() sing, } (2.12)

" _ o
Cn - -( n/2N) kfl 7(%) sin'ek(l-coscsk) (2.13)

Note that the series with index j in Eq. (2.11) converges fast, and
hence can be truncated. It has been found suffiéient to take N=15 and

obtain good accurasy for the y(x) distribution.
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2.3 Airfoil in the Middle of Five Streams

_Considér,the problem of an airfoil in the presence of an infinite
series of jets of the same width h., Let the velocity in the nth.jet be
denoted by Un' -a¢n<+w, Let an afrfoil be located 1n.the middle of the
principle jet 1in which the ‘velocity is Ug, If “the airfoil fs
represented by a vortex of circulation I', then the flow in any jet can
be described by an infinite series of equispaced point vortices at the
centers of each Jet. The strength of these image vortices for the nth
Jet 1; denoted by K(n,s). X §Ctem, in general, the following relation

is true:
K(an) =0, nf0- O (2.14)

K(0,0) = T o - | | (2.15)

By applying conditions (2.1) and (2.2) at the surface of discontinuity

between the nth and (n+l)th jets, the following recurrence relation can

be obtained for the strength of vortices:

“K(n+l,n+s+1) = K(ni,nés+l) '.“h+1 K(n,n-s), -=xn<o " (2.16)
o ~el5Cm
where :
o = W22 17wiad, ) (2.17)
By ™ /(l-a%) _ - (2.17)

Equation (2.16) can be solved in principle; but as .pointed outuby
Glauvert the solution is extremely complex {31]. If, however, only five

streams are considered as shown in Fig. 2.4, then the problem 1is

simplified to some extent., When the conditions (2,1) and (2.2} are
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applied to the four surfaces of discontinuity, four relations similar to
Eq. f2.16) &re obtained with- n assuming the values 2,1,0 and -1 only.
Denoting K(2,s), K(1,s), K(0,s), K(-1,5) and K(-2,s) by Ig, Jg, T, K
and L respectively, Eq. (2.16) can be written for the four different -

values of n as follows:

Bé Ise2 " Ise2 ™ % I1s o (2.183)
Bl Igi1 = Toap = o T | (2.18b)
By Ty =Ko = oK | - (2.80)
i”-xva-1 "legtogla, (2.180)
where o I, =0 for s>2,
Jy = 0, =T X,;=0

. » Ls =0 for s < -2

The solution of the set of Eq. (2.18) can be obtained by substituting

- sucbessivé]y‘positive'and'ﬁegative values for s. However, with some

algebraic manipulations, 1t 1is possible to obtain the folldwing
recurrence relations for Ps; |
Tg=q rl;s el t qnlon > 2, . (2.1%)
D= =al o =a; Ty - aa, rs+2, | sz, (2.195)
I‘o =T, I‘l = all". and 1‘1 = -czOI'.

Some of the values of T computed using these relations are given

below:
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In general Pn = anr. -e¢n<e where a,'s are constants that depend only on.

n
Uz.;...U.z. iNow. following the procedure adopted in the previous
section the airfoil {is replaced by a vortex distribution y(x), O<x<c
instead of a’ single vortex.  Then the images will also be vortex
distributions a y(x). Note that if fs not necessary to piace the
airfoil in the middle of the central Jjet. The image sysfem for the
prfmary'stréam; when the airfoil is offset from the centerline is shown

in Fig. 2.4. The downwash induced by the distribution y(x) and all its

images, at a point x on the'yfaxis is given by

2on+1 (X8

1 1
vix) = +
R R o R v alnhva)?

= a2n(x-£) e '

+ T 3 = hr(&) dg (2.20)
ne~e (x=E}“ + 4n"h
n#0

‘This is the required expression for the downwash at a station x on the

y-axis. The unknown y(x) in Eq. (2.20) {s determined by employing the

flow tangency condition at the mean camber line,
As the first step in the solution, x and £ are transformed into ©

and ¢ respectively as in Eq. (2.7). With these, Eq. (2.20) is

E

transformed into the following:



[ 1V W]

e Mt et e rnir =

MO et 4. 2 A A e b o 11 &

23
) ' 1 * 1’ e 32n+1(cos¢-cose)
~ y(e) = | ==t
S %= 0 (c9s°'c°se) n=-o (cos¢-cos8)° + 16(nh+a)?/c®
- . (cos¢-cose) ‘ :
+ I } v &) sine d¢ (2.21)
ne-o (coso-cose) + 16n° he /c ‘

n#0

.0n discretizing v(4) and éhoosing % and 6i as the vorfex points and

control points respectively as in Egs. (2.9) and (2. 10), the 1ntegra1 in

Eq. (2 21) can be replaced by a finite sum

N - a (cosé -cose,)
2n+1'€95% i

V(G)- z {-(——'_—FT b

i 15‘ °°s°k €0s 0 ne-e (cos@k-cosei)2 + 16(nh+a)/c®

® a (COSQkaOSe ) C

+ I 2 57 } W4 ) sing, 1s1,2,..,8  (2.22)
ns-= (cosé ~cos, )% + 16n°h /c o o
n#o k ) '

The Tinearized flow tangency boundary condition on the y-axis at the
control poiants requires

v(e;) = U la -}m(éi)J,' f=1,2,..0 (2.23)

The Eesulting_vset of 'simul;apeous equations can be solved fof the
unknowns y(¢k). k=1,2,...,N. The 1ift and. the pitching moment of the
airfoil can be computed using the relations (2.12) and (2.13)

respectively.

Although the summation 1in Eq. (2.22) goes from -= to +=, it f{s
sufficient to take only a few terms. This is because the image vortices
at greater distances from the airfofl ére weaker and contribute very
little to the downwésh. It is found that about 15 terhs in the

summation are sufficient to provide better than 0.1 percent accurate

" ‘results. .
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The two problems considered earlier, 'namely an afrfoil near a

sdrface of velocity discontinuity (Sec. 2.1). and an afrfoil in a jet of
finite widfh (sec. 2.2), can be obtained as special cases of the present
problem, For éxample. if Uy = U; and Ug = U.; = U_p, then the problem
considered in Sec. 2.1 {s obtained, whereas if Uy = Uj and U_j = Uy,
then the'prob1emrconsidered in Sec. 2.2 is obtained.b Thus a single
computer program.(meant to solve the present problem) can be used to

obtain the results for all the cases con,idered so far.

2.4 Adrfoil in a Stream of Smooth Velocity Profile

' ”Sd fan,;he problem of an_aifdil in a stream with a finite number
(one, two, .of four) of surfaces of velbcity discontindity waé
éonsidered. This analysis can in principle be extended to the Ease of
an undisturbed stream with a large number of velocity discontinufties.
,fhe solution of this problem would be, as pointed out earlier, rather
’tomplex. However, {f the changes 1n>the velocities in adjacent small-
width streams are small, then an elegant solution can be obtainéd. This
approach'lcan. be'~u$edv to -solve for the pressure distribution on an

-afrfoil in a stream of smooth nonuniform profile.

Consider, as in the previous section, a large number of jets each
of the same width h, the unfiform velocity in the nth jet being denoted
by Up. Let the airfoil be placed on the axis of a jet in which the

‘ velocity bis Ug (Fig. 2.5);v and let the airfoilx be representéd' by a
vortex T' . The discohtinuity surfaces cause 1image vortices to te
formed.”_ The strength‘ of these {mage vortices {is governed by Eq.
(2.16). It is assumed that the varfation of velocity in adjaéent jets

is small, f.e., (Uyq = Uy) = uy €< Uy, for all n. In this case the
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2 2
uc - u 2V u + u u ’
o =D n+l nn ] for u <<y (2.24)
n2 s af+wu ¢ Un hon
n n+l n n'n +°n

With | e [<<1, a first order solution can be obtained for Eq. (2.16).

The resulting image system for the primary jet is found to be followihg:'

T, =T  at y=0 o  (2.25)

T =0 R o (2.250)
Tone1 = 9T aty = (2n+1)h n >0 . -(2.25¢)
=-al  atys=(awlh nc-l  (2.25d)

If the airfoil is represented by a vortex distribution y(x) instead of a
single vortex I' , then the image system would be very similar (Fig.
2.5). The qownwash at a point x on the airfoil due to y(x) and all its

- images is given by

ah'kx-i)

1 S 2
vix) = 5= [ —v+ L
ém o{ U8 7 a0 (x-802 + (2ne1)2n2

e « {x-E)

) > 5 } v(€) dg (2.26)
n=-1  (x=E)° + (2n+1)“h

Note that an's are defined in Eq. (2.24). For a given (thin) airfoil at
a (small) angle of attack, the slope of the mean camber line is known,
and as in the previous section, the unknown vortex distribution y(x) is

determined by satisfying the 1inearized flow tangency boundary condition



. on the y-akis. Note that in deriving Eq. (2. 26), it was assumed that

- the differences in ve]ocities in adjacent jets are small.

Anaiysis of an airfoil 1n an infinite series of Jets is of Tittle

practical interest. However, when the differences {n velocities 1in

' adJacent smal]-width jets are small. the velocity profile may be

considered as an approximation to a nonuniform smooth velocity
profile. It is possible to formally extend the prasent analysis to the
case of an undisturbed siream of a smooth velocity profile by redueing

the width (h) ‘and correspondingly increasing the number of Jets. For

small h (=dy), u = (dU/dy)dy, the expressicn for a  reduces to

n
2 R

- mhere d and du/dy are measured et (2n-1)h/2 = ndy - dy/2. The corres~

ponding image is located at (Znel)h = 2ndy - dy. In thevlimit as h

i tends' to zero, the summations in the 1ntegrand in Eq. '(2.26) are

replaced by the corresponding integra]s. With thls.vthe downwash Eq. .

2. 26) can be rewritten -as -

1 du (x-Ei dy
v(xi = 7-17-T T ——t

. . ) . . oo

+f %d—” (=B ¥ }ovte) ae (2.28)

N _ (x-£)° + 4y E e :
“"If the given veiocity profi]e U(y) 1s even 1in y, and the airfoi] is

p]aced on the line o.‘symmetry, then Eq. (2 26) reduces to the fol1owing

. simpler form

v(x) =Tf {TX-:T Z(X z) f ‘U (—x—.——zx:—a-z‘ } Y(E) dg . (2;29)
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It can be shown that, for U and dU/dy of the order of unity, the

linearized flow tangency boundary condition on y=0 is
~vix) = Ugla = m(x)] - (2.30)

where Ug = U(§=0).

For a given smooth Qelocity profile U(y) with U(y) ¥ 0, -xXy<=o, the
1ntegra1$ within the brackets in Eq. (2.28) or (2.29) can be evaluated
using any standard ‘technfque and the unknown y(x) can be determined

following the method described in Séc. 2.2.

2.5 Results and Discussion

The Iifting'characteristics of a flat plat airfeil in nonuniform

. flow are determined using the potential flow apprecach of Sec. 2.4.

Also, the given nonuniform velocity profiles are replaced by equivalent

stepped profiles, and the methods of Secs. 2.2 and 2.3 are applied for

the computation of the airfoil 1ift, These results are compared with

i'the_numeri;al solution of the Euler equations.

The 1ift of a cambered Joukowski airfoil in a nonuniform stfeam was
studied by Chow, et‘aT. [9] ana the results are available fn [15]. In
this example the velocity distribution {in the undisturbed stream was

assumed to have the following Gaussian profile:

UyI/U_ = 1+ a exp [-(y/d)2) C L (2.31)

where a is the maximum » excess velocity " nondimensionalized
using U_, and "d" is "a" measure of the spread of the nonuniformity.
The value of "d" was chosen as ¢/1.81 and the value of "a" wa§ varied

from zero (uniform flow) to 1.0. The airfoil wés placed on the
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cenferline‘of this nonuniform stream, AS the present method is based on
linear analysis, the 1{ft-curve slope computed by this method does not
depend on the afrfoil camber. Hence for the present potential flow

study, fhe airfoil is replaced by a flat plate.

Fiéure 2,6 shows the 1{ift-curve-slope of a fiat plate
(hondimensionalized U$ing the corresponding value in uniform flow) in
the nonuniform,streamvplotfed agafnst the parameter “a“. The.potentiél
soldtion obtained for the flat plate in (1) equivalent unjform jet (Sec.
2.2), (2) equivalent modified jet (Sec. 2.3), and (3) the inen Gauésian
velo;ity'jet are also shown in the figdre; Also shown in the figure are
the re#u?ts obtained from [15]. One of the observations from this

figure s that for a given value of the parameter "a", the potential

solution with the uniform jet approximation gives the smallest value of

€y whereas the given nonuniform Jet gives the largest value. The

a . .
Euler soluifon gives a value in between these, and it appears that the

modified jet approximation gives results closer to the Euler solution.

. The available Euler code [29] for uniform flow past an airfoil

_ section was modified so that it could handle a nonuniform approach

stream. Using this version of rthe code, the chordwise pressure
distributiqn and the 1ift of a NACA 0012 airfoil in a jet of Gaussian
velocity profile were computed. The value of the parameter "d" was
chosén as 0.5¢c and the value of “a” was varfed. As in the previous
example, poteﬁtfa? solutions are obtained for a flat plate id (1)
equivalent uniform jet, (2) equivalent modified jet, and (3).;he given -
Gaussian velocity Jjet. All these results are shown in Fig, 2.7. The
potential solutions display a behavior. observed 1in the previous

example. However, the 1ift-curve-slopes ~htained by the Eu]er'equation
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Y oo : R
1 - are comparatively smaller than in the previous example.
) The chordwise pressure distribution (Acp) on the flat plate
z ) | (obtained'by the potential solution) and on the NACA 0012 airfoil
, | {obtatned by the Euler solution) at 5-degrees angle of attack are
: _ compaked in Fig. 2.8. The nohunifdrm velocity profile is assumed to be
‘ f Gaussian with a = 0.5 and d/¢c = 0.5, It may be observed from this
figure that there 1is a reas.onably good agreement between the two
: _ 5 . | . results. | |
3 As -the 'last_examp]e.' 1ifting characteristics of a flat plate
’ ] | 7 airfdvﬂ in a Jjet with aAmodif.ied Gaussian profile are. studied. The
| nonuniform »ve’locity profile is assumed to bé the folloﬁing:
S S U= 1+ ay exp (- (yPrdd))
3 - 3, Lexpl=ly-dy)2/a2) + exp {~(y+ay)2/d2)] (2.32)
‘ S - with dj/c = 0.6, dy/c . 0.25, d3/c = 0.155 iam‘i ay/ay = 0.7.> Thé factor
’i ' | | : allserves as the varfable. | R '
;}i . | ‘. -'»This 7ve'locjty- profi‘Je; sketched in‘Fig'. 2.9, is ty(pical of. the
‘ axfal velocity distribution generally observed behind actual
propellers.  The maximum velocity occurs not on the centerline but
slightly away from it on either sfde. It is obvious that tr;e
AT , o ' ' appfo'ximation of a unfform Jet would not be meaningful in bthe present
e , - case. Hence, this approximation is not considered. However, potential
1_// ‘ - solutions were obtained fo}' a flat plate in .an equ'ivalent modified je.t
f/,,,/" ‘ . “and in the given nonuniform profile. The results are shown in Fig. 2.9
o . along with the Euler so]ution for the NACA 0012 airfoil. It {s observed

from this figure that in. this case the potential solution predicts
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values which are slightly smaller than those obtained by the Euler

é i B : .- solutions,
% - | An interesting observation can be made by comparing ﬁhe results 1ﬁ
} Figs. 2.7 and 2.9.. For the example shown in ng. 2.7, the éuIe}
; ; , } sqlution gave vé]yes of C‘a smaller than. the correspondiﬁgv potential
i ’ solution, but this trend was reversed in the results for the example
é showﬁ in Fig. 2.9. It was shown by the solution of Euler equatfons for
2 ’ an airfoii in nonuniform flow [91, that the stagnation stfeamline comes
% from a region slightly below the airfoill location. This implies that in
é J," ! : ' the example considered vin' Fié;. 2.7, the airfoil (plated' on the
% - ; centeriine of a jet-like‘ Gaussian velocity prdfi]e) would have a
é f ’ - . _stagndtfon streamline with a total pressure slightly lower than the one
E | i o ,  'corresponding‘to the centerline. Aléo, this streamline comes from a
é - 47’ region haQing positive vorticity. In contrast, for the example
% ;_ 7 copsidered in Fig. 2.9, the airfoil (placed on the centgriine of a
? v»;3f"//, ' - modified Gaussian profile) Qduld experience a stagnation streamline
3 fi:y’; ' having élfghtly hiﬁhgr totalbpressure than the centerline streamline,
g'.( 'andfcom{né féom é.fégfdn of hegative vdfticity. These differehﬁes might
’% . . . haVe'contribﬁted to the reversal of the trends observed in Figs. 2.7 and
| s‘ 29, | R
Some differences are observed between the Euler solution and the
é ﬁ R potehtial solution. Among several reasons for this, the important one.
% . | | fs that the potentia1'so]utidn does not accéunt for thevfnteraction of
é - : S the vortfcity in the undisturbed.stream with the airfoil. The effect of-
i o S the airfoil thickness which is ﬁeglectediin the potential solution could
E . _;ﬁ;;;';" L | f have contributed to the discrepangy. Yét another factor is the
Ef»j?a;” g , 7 abproximatibns in the numerical solutions of the Euler equétions; For
i v
i

-



S

B B )

i
<1
d
1

PR A PO SO L I

i

R S WG Y W5, Wit 1
~

.. -

oo BTN

s T e

<, Y ,

£/

- B 4 H . S . ’ . .
T y : W - - Tr—— x A S MR A b A
: i N e ey ol e e S e L e T RN Coeh

L
"
°f

’

o

~“unreasonable.

: ..
/. , / . .// /,/’ )
. . , . . AT .
‘ . . -

36

example, in the computer codes [9,29] the perturbations are assumed to
he zero on the computatibnal boundary. Considering :hese factors, the

differences between the potentfal and the Euler solutions do not seem

- If the undisturbed stream has a smooth nonuniform velocity profile
and an airfoil is placed in it,'then the pressure distribution and the

1ift of the airfoil are to. be determined by solving the Euler

e eduations. Being nonlinear these equations are not amenable  to

analytical study and require numerfical treatment.  When a small

perfurbation approximation 1s introduced, the Euler equations or'
equiva]entlyvthé vorticity transport equation reduces to the following
linear partial differential equation (written in terms of perturbation
velocity components):

U(uy = v )x f Uyy vs(0 .  ' ' (2.33)

‘where U = U(y) is the undisturbed nonuni form velocity, and u(x,y) and

v(x,y) are the perturbatipp velpcity components assumed to be small

compa}ed to U(y).. Subscripts x and y represent differentiation with

'respect to x and y, respectively. Since U(y) is assumed to be known,

the above equation {s a 1linear partial differential equation with -

variable coefficients. This equation together with the corresponding
continuity equation has to be solved to determine the airfoil 1ift. The
lfneArized potential flow solution obtained earlier obviously satisfies
the equation (ﬁy = Vg) = 0. Hence, it {s evident thatAthis solution

would also be a solution of the linerized Euler equation only if Uyy is

small.

»

The concept of allowing the perturbation velocities to be potential
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although the approach stream 1is rotational is not new. Rizk [20]

émp]oyed this concept when studying the effects of a slipstream having

nonuniform axial and rotational components of velocity :on a wing, It

- was assumed thét'the undisturbed flow in the slipstream was nearly

uniform and that the disturbances due to the wing were small. Tnhis lead
to a result where the perturbation velocities could be described by a

velocity potentia1.~ This approach, although appro_ximate',: allows

‘obtaining basic information about the interactfon problem while avoiding

the need to solve the Euler equations. One of the assumptions of the

~classical 1ifting-1ine theory for wings in slipstreams-(and some of the

related works) 1fs that the propeller slipstream is in the form of a

uniform Jjet. This is a dréstic simplification. Although the present

_ analysis does not bring out the {interaction of the vorticity 1n the

stream with the airfoi]. it is hoped that it would provide a much better

approximation than the earlier ones to the actual problem,

.




’ ’
K ,
. L’
/ o
PR ’
R " 0
/

- _A'
o
/
‘ ’]'
. / e
e
»
E
P
F
- s
s 4
4 Y. .
/ /
’ . ,/
- /./"

Chapter 3

A-MODIFIED LIFTING LI“E THEORY FOR WING-SLIPSTREAM INTERFERENCE

- Consider fhe problem of detérmining the 1ift distribution on a

large aspect ratio ﬁing as influenced by a single centrally Tocated‘

propeller §lipsfream. The classical theory [7] solves this problem

- making the following three assumptions in addition to those of the

classical 1ifting line theory applied to large aspect ratio wings: A

1y

(2)

)

The propé11er slipstream is confined within a stream tube of

circular cross section in which the velocity is uniform (U;).

The relation between the sectional 1ift and angle>of attack is

the same as that of an airfoil 1in uniform flow {with

- velocitigs UJ and U_ for wing sections inside and outside the
‘slipstream_respectively). '

EY ..

While computing the downwash, the stream tube representing the

‘slipstream is assumed to extend from upstream i{nfinity to
downstream infinity,

Figure 3.1 illustrates these assumptions_in'some detail, Although

the ~assumption that the propeller sliostream is a stream tube of

circular cross section is reasonable, the assumption of uniform velocity

within the tube is not realistic. Therslipstream behind a propelier has

neither a uniform velocity distribution, nor a velocity discontinuity.

The second assumption concerning the 1lift-curve-slope of the wing

sections washed by the propeller stream is also not realistic.

8
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These rather drastic simplifications of the. classical theory

prompted severai workers to study the problem in detai]. Rethorst [11]

studied thisAproblem and developed a Tifting-surface theory, HoWever, '

it was 'assumed that the propeIler' slipstream was in the form of a

uniform circular jet.  Kleinstein and Lfu [10] scrutinized the

assumptions of the elassical theory and d{mproved on .one of the

assumptions. The 1ift-curve slope of wing sections in the siipstream

was computed taking fnto account the finite width of the slipstream.

" However, the assumption that the slipstream was in the form of a uniferm
"jet was retained for the computations of the downwash. These results

hrought out the effects of the assumption (3) above;

In the present analysis the slipstream is assumed to be in the form

of an axisymmetric jet with a smooth velocity profile and without a

distinct boundary. The reiation between the sectional 1ift and the

angle of attack is obtained from a local two-dimensional analysis. For

- the purpose.of computing the downwash due to.the trailing vortices, the

v-slipstream is -assumed to extend  from far upstream to far downstream.

With these assumptions, the governing equations are derived for the lift

_ distribution on a wing in slipstream.

3.1 Governing Eqdations~for a Wing in a Single Slipstream

The ciassicai 1ifting-1ine theory given'by Ferrari [7] for the wing

slipstream interaction problem is an extension of Prandtl's iifting line
theory for large aspect ratio wings. The equation governing the

spanwise distribution of circulation I(y) is

Ply) = (1/2) U cly) ¢, (y) Caly) - wly)/u] @
Tyl _ Pl , |
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. oo rb'where cly) 1s the wing chord, c (y) is the 1ift curve slope and cdy) is
e 8 . the ‘angle- of attack; also UsU for [y|<R, 1.e., for wing sections inside

R being the the slipstream tube radius. The downwash w(y) is given by
~the relation R '

: N(.Y) = U %;%‘1;_ az (I + f )T__d;-(_:) & I dr{n) }

=R (y=R“/n) _
fyler (3.2a)
e - ' R s o
o o - 1 dr(n) dr(n) dr(n)
R > . {I -(——-)-—_ e e (I + [ ) —="}
///,»~’ S e o y=n) 72 -R y EI -s R (y-RZ/n)
, C I | SRR 7 S € )

where ¢ = (B-1)/08341), &, = (D?/(P41) and = U/U. It may be

jrecal]gd ‘that {n deriving these relatidns; thé threeA assumptions
P §} o B mentioned earfier have been made. Further, when the slipstream is
L | abséht; 1.e;,' U = U; » the factors g and e, become zero, and Egs.

(3.1) and (3.2) reduce to those‘of Prandtl'sulifting-line theory.

- T S ; If the Jet representlng the slipstream has a sma]l excess veloc1ty,
R ' . e., UJ-U = u«<l, , then terms of the order of (u/U J in e1 and ¢,
.:j i B - . may be neglected., In this case g~ u/y_ and €~ 0; as a result Eqs.
) ’ L - (3. 2a) and (3. 2b) are simplified to
w(y) gﬁ' (e u f_antw

s T T

S o y|<R (3.32)
R ,»‘_R(y_w bl

LU r—-rd,”;" TR ":‘;’)} lvbr,  (3.30)
i : T ‘.. Now consider a high aspect ratio wing with the propeller slipstream

L T ‘ . ’ going past 1; symmetrically, as shown in Fig. 3.2. Let ;he undfsturbed

the slipstream tube and U=U_ for |¥[>R, i.e., for wing sections outside,
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Uy(2) = Uty=y,,2)

U=y 1 +F(rd)

re = y2+z » F-is a given function.
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Fig. 3.2 The schematic of the present analysis.
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- velocity distribution be given by Uly,z) = U(r) = U_[1+F(r2)] where r? =

y? + 22, Outside the slipstream (i.e., for r » R), F(r2) = 0 aﬁd.U(y.z)
- U - o |

- The. flowfield inside the slipstream tube {s rotational.
Nevertheless, it is assumed that the perturbation velocity field due to
the wing 1is irrotational. This concept of potentfa] disturbances in a

rotation§1 background_f]ow was employed by Rizk while considering the

, wing-s1fpstréém fnteraction problem [22], The effects of the swirl and

i compressibility were includaed and the resulting equations were solved by

a numerical technique.

~Under the ' assumption that the disturbances are potential, the
lifting-1{ne theory is applicable and the wing is replaced by a 1ifting
line. The circulation I'(y) at a station y on the lifting line is given

by
Tly) = (1/2) Uly,0) ¢ly) ¢, (y) Caly) = wiy)/U(y,0]  (3.8)
o . a _

) The ]ift curve 's1ope~cx iyi is ' determined b} 'considering the
. v a .
airfoil section in a stream of uniform velocity U for sections outside

the slipstream, and by considering the airfoil section in a stream

having a 'nonuniform velocity profile vat the corresponding spanwise
statfon for wing sections wjthin the slipstream. In tle presént casé;
the wing sectioﬁ at the sbanwise station y = y; would be in a $tream‘of
velocity U(y=yi,-z), The 1ift curvé slope for the wing sectibn in this
nonuniform stream is obtained by a.tﬁo-dimensional analysis. This can.
be actomplished by solving the Euler -equations, which require
considerablé computational efforts. A simpler, although approximate,

method is the linearized potential flow method described in Chap. 2.
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" For the <sakg of consistency as well as simplicity the 1linearized

potential flow results are used here,

Before proceeding to determine the downwash N(y) in the present
case, it 1s useful to recall the results in the classical setting, ﬁhere

the velocity within the slipstream tube {a circular section of radius R)

o

is constant. Consfder A vortex (representing the wing trailing vortex)

of strength y located at a distance n'from the center 0 of thg»circle

representing the slipstream tube (Fig. 3.3).' First, consider thé case

where In | < R. By applying the {nterface conditions of continuity of

pressure and streamline slope across the surface of the tube it can be

shown [6], that the flow within the circle is described by a vortex of

. strength y at n . together with its refracted image of strength_(elv) at

the f{nverse point R%/n ; whereas the flow outside the circle is

described by a vortex of strength (1-:2)7 at n along with an additional

vortex of strength (u 517) at the center of the cir;le. Similarly, for

the case where the vortex is located outside the sliﬁstream boundary

" (i.e., |n] >R}, it can be shown that the flow within the circle fs

described by a vortex of strength (1 - cz)y located at n, and the flow

" " ‘outside the circle is described by the vortex y along with its refracted

image of strength (ely) located at the inverse point RZ/n. and another

vortex of strength (517) at the center of the circle. These results are

~illustrated in Fig. 3.3.

Now consider a propeller stream with a smooth axisymmetric velocity

profile. For the purpose of analysis let this stream be divided into a

- large number of stepped, concentric annular cylinders'df width & (Fig.

3.4). Let the axial velocities in the adjacent annular Jjets with the

interface at a radial station r be U and U + u. Consider a vortex of

ol i o T s A




. ' . v ; Trailing Vortex

Vo : ~7 -
, y \-

-

< ) . . . \
] .

Lifting Line

EQUIVALENT FLOW

{
B
X
£
K
.
i
L)
T
4
]
&
]
3
]

ACTUAL FLOW
‘ QUTSIDE INSIDE

VORIEX Y
-~ QUTSIOE

~ VORTEX
INSIDE

UL G EYP TN ST PN

a=¢r b=€&f c=(l-€)Y
depe) eslloe)y f=€Y
: R L e a(pRa) () Cem(p-1)Y (p24)

Jet Velocity

T ‘ o v o - ™ Buter velocity

S » L - ‘ .
- Fig. 3.3  Image system for a uniform jet.

e e e e Far S aa e LA e gD TAI ARS8 S e © e g G S st
/ . iyt - Am ot 228 e g e e e Y S T ¥ P 3 W e 7 g B 5 < .




Vi i i Sataw i

i
H
]

o . —

‘.\_.-m,.',‘p...‘.... P AU
i ~

46

Trailing Vortex
/ ., 1
& o e
: \e
/F\ - y n
8 ) .
SS— Uftin_q Line
/ musk REGION CUTER REGION
g [Yl<‘R ' [YI>R
/.
VORTEX INSIDE £33
[7<r
// N . R ‘
SIS . |- VORTEX outsioe
>R
‘.

P =y

W=7; OT-Rzln

| Fig. 3.4 “Image system for a nonuniform jet.



. s t
JURSITPIISITTR FRSULISUUNETIT Ipwns 50N 1) \

A
RN

LR

Y h e d LT |
[OERRSRAREEY (e TRAP4AF SR SR

RN

strength y located at Q (0Q = n). It is easy to see that the

difference u in the velocities of adjacent Jets at the radiuﬁ r results

“in an {image system as described in the previous paragraph. Firsf

consider the case where |n| < r. It can be shown that the flow in the
region |y| < r is described by the vortex at Q with its refracted image
of strength (clv) at the inverse point T (OT = rzln ), whereas the flow

in |y| > r is described by the only vortex at Q. Next, consider the

case where |n| < r. It can be shown that the flow in the region |y| <

r is described by the vortex at Q along with its refractedbimage of
strength (-ely) at the fnverse point T. These results are {llustrated
in Fig. 3.4. ’ |

‘The downwash at the spanwise station P (0P = y) due to the vortex

" of strehgtﬁ Y located at Q (0Q =19) and {ts image '(whenevgr

applicable) resulting from the surface of velocity discontinuity at the

radius r is given by

twly,m) = - { 1 x: Jy|<r _> ' (3.5a)

o ‘ y— /n '
= -{T: %} ly|>r 7(3.5b)
L | « R

for the region |nj<r, and

Aw(?.n) --L P——-} Jyler (3.6a)
= - { — y]>r O (3.6b)

%— y- rZ/n ' !

for the region ]n[>r{ In the limit as 4r tends to zero,

H
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usUlr + &) - Ulr) = (dU/dr) dr = U dr
sotht  g=ewe s @)

Letting r to vary fron zero to R ihe belowfng expression is obtained

for the downwash at y due to a trailing vortex of strength ¥ located

B atn:

'Inl-

;My.n)- {-,-,, " - ]%}-y—_:-g;}. L IR

Iyl

--{-,,-{—i— T 1t Y

If P(y) is the unknown circulation distribution a]ong the 11fting line.

} lyl<|n] (3.85)

then 1 = -(dr(n)/dn) dn. Using this in Eqs. (3.8a) and (3.8b), and

: integrating from tip to tip the following expression 1s obtained for the

downwash w(y) at thg spanwise station y due to the trailing vortices

‘resulting from the distribution I(y) as influenced by the axisymmetric

Jet:

wiy) = [ aly,n) dn
L Llfam, (Y, ”yl_ Royu'_ar
Yo U_s v=r »{I_s, fy} {(fo f’n])Uy-rzln

} dr(n)

. , ' . o e |
SO A ERY ) artn] @
Yo Iv1” ¥ y=rZrn ; SRR
This equation along with the relation

Ply) = (1/2) U(y,0) cly) ¢, (y) Caly) = wiy)/(Uly,0)] (3.10)

[ & maee
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‘ . ',' oL : . form the requ‘lred' integro-differeritial equation for the unknown T(y).
i - For a given wing, c(y) and aly) a;‘e known; in addition, the velocity
“"‘ , : » ' distribution in the propeller stream U = U(y,z) 1s assumed known. The
: R sectional 1ift-curve slope can be determined by the method described in
Chap. 2. MWith these informations, Eqs. (3.9) and (3.10) can.be solved
It:// ' for the unknown I'(y). It may be observed at this stage that the effect
‘ ‘ - of the nonu.niformitx in vthe slipstream is twofold; it modifies the
, ‘ seg:t’longl liff-curve slope as well as thevt.iownwash distribution,
é , -~ 3.2 Method of Solutfon
3 . , , :
j A s{mple method of solving the Egs. (3.9) and (3.10) for the
3 ““__'_,';;.—:"_Jf ‘ : "unknown spanwise distribution I'(y) is to assume ft to be piecewise
; - | conétant. This di§tribution results in a finite number (say N} of
’?’ T ~ trailing vortices. The contribution to downwash from each of these
4 s e ' trailing voi"tices can be computed easily using Eq. (3.8). A summa tion
e T o - of these individual contributions over all the N trailing vortices gives
3 ’ the required qdvnwash W,
! | First, it s converﬁent to transform y and ninto angular
- coordinates © and ¢ by using the following transformations: | |
' y = s cosé = (3.11a)
Y . .
q n=s cosé : (3.11b)
-‘i;:-//; o Next, the traih‘ng' vortices are placed at the following N spanwise
g . - ' locations: B |
L 0, = (2k-1)w/2N K=L,2,. N "(3.12a)

:
j
'
!
|
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‘The strength of the trailing vortices at these stations are denoted

by v(k) 4ns U_. The control points are chosen at the  fo11ow1ng N

spanwise locations:

o = AWN T iEL2,0 N (3.12b)

If ri denote the circulation at the spanwise station Yy=s cosei, then

N : S
F(i) =4xs U, £ vk), 121,2,...,N (3.13)
N S

This expréssion is used in the discretized version of Eq. (3.10) which
fs rewritten as o |

i : ' | |
4ns. U kz (k) = (172) u(i) c(f) ¢, (1) Lali) - w(i)/U(D)],
‘ ‘31 [+ 4 . . .

i=1,2,...,N  (3.14)

where U({), ¢(1), czf(i) and w(i) are the velocity in the slipstream,
[+4 .
the wing chord, the 1ift curve slope and the downwash at the spanwise

~ station ¥y =S cosei. respectively. The computation of downwash w(i) is

simplified considerably as there are only‘ a finite number (N) of

‘trafling vortices. '~ The contribution to downwash from each of the

trailing vortices is given by Eq. (3.8). Hence, the downwash wi(i) at
the control point 1 due to the N trafling vortices (together with their
images) from one side of the wing centerline is obtained by summing the

individual contributions. The result is as follows:

(o, b0 (gt s O
wilf) = U, T v(K) { g * -
1 X=1 cos 6, =cos ¢ |°°59i’
y __d{r/s) } for lcos ’(lCOSe , (3 15a)
, % i .

U cosei-(r/s )2/cosek

.
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N © | 1 (!]cosei] R/s
=U, Z k) { oog=eoes * - :
kel SORHTEOS% T Yo Ycos ]
o d‘?’;’ for |cose, [>|cose, | (3.15b)
cos8;~(r/s)"/cos¢, S

This equation can be written symbolically as

X |
W) = U, T Gli,k;U)
k=l - .

: . 1 fcosa |  R/s
G(1,k;U) = e 4 -
. ) ) COSQ,‘ C0$¢k . (fo o ’COS ei ,

‘d(r/s)

. Ul
U coso; - (r/s)zlcos¢k ’

for ]cos¢k|<]coéei] (3.16a)

1 [cose, |  R/s

= + it ) u' d(r/s)
€056,~C0S¢ u 2
€089 k0 |cose, | cos & =(r/s)"/cos o,
for [cose, |>|coss, | - (3.16b)

There is a similar contribution to downwash from the trailing vortices

on the other half of the wing, so that the total déwnwash w(i) at .the
control point i {s given by '

Ty | -
w(1) = u_ £ ¥(k) [G(i,k;u) = G(1,-k;u)],
. k=1~

121,2,...,0 (3.17)
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Upon using this expression for w(i) in Eq. (3.14) the following set of
simultaneous equations is obtained for the unknown y(k), k=1,2,...,N:

i ’
£ ylk) {1+ u(1) {6(1,k;0) - G(i,-k;0) }]

k=1
+k f . vk u(i) {G(1,k;U) = GUi,=k;U) } = u(i) i) U(i)/u_ (3.18)
: ={+ S . oL i
where = ull) = cli) ¢, (1) /81s | (3.19)
i : . “a . :

For a givenbvelocfty distribution U(r), the integrals in the function
G(i,k;U) ‘can be evaluated using any standard integration method. The

1ift cdrvelsldpe <y (i) of the wing section fis computed making‘a two-
_ « _ !

 ,dimensfona1 analysis for the nonuniform flow past the wing section at

- the spanwise station s cos8,. The Tinearized potential flow .method

described in Chap..zvis used for this purpose. With this information

"all the coefficients in the set of simultaneous equations (3.18) can be

determined and the equations can be solved for the unknowns ;y(k),

" k:1,2,...,N.  Finally the circulation (i), 1ift, and induced drag

distribution, and other quantities are computed.
3.3 Resuits and Diséussion

As the first example, a rectangular wing of>aspect ratio 6.0 is

"'chosen. The velocity distribution in the slipstream isvassumed to have .

the following Gaussian profile:
‘ 2, 2,2, '
Uly,z) = U [1+a exp{~ (y“+z°)/d"}] (3.20)

with a = 0.5 and d/s = 0.3, The spanwise 1ift distribution on the wing

’
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with this slipstream {s shown jn Fiq.  3.5, along with the lift

diStribution for the wing in the uniform flow for comparison. The

figure includes yet another 1ift distribution on the wing with an

equivalent jgt of uniform velocity. The velocity and the diameter of
this equjvalent uniform jet are obtained by equating the mass and
momentum in the given slipstream to the corresponding va]ue$ ‘in the

unifofm Jet. The wing in the given nonuniform slipstream analyzed by

‘the present method produces a 'CL = 0.58 whereas for the equivalent

uniform jet the C; = 0.57, Even.thoughvthé two total 1ift coefficients
aré neafly the same, thé'Iift distributions are very different. The
present method does bring out the éffect of nonuniformity of the
velp;ity distribution fn the slipstream on the 1ift distribution. The
induced drag distributfon illustrated in Fiq. 3;6 also demonstrates this

fact.

As the second'example, a trapezoidal wing of aspect ratio 6.67 and

tapér ratio 0.5 is-chosen. The velocity distribution in the slipstream

- {s.assumed as-

Uly,2) = U, [1+a,; expl- (y2 + zz)/di}
(3.21)

-a, exp{- (y2 + zz)/dg}]
In fhié mbdified Gaussian profile, the'maximum velocity occurs ndt on
the axis but away from {ft. = With O<ay<l+aj, this distribution is a
better approximation to the velocity distributfon in the slipstream of a
propeller. In the example chosen aj = 0.6, a, = 0.75, d;/s = 0.3, and
dy/s =-0.05. The spanwise 1ift distribution on the tapered_wfng with

this slipstream is shown in Fig. 3.7. This figure c]éarly shows the .
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l.0

0.8

0.6

0.4

U(y,z)/U,,- 1+ a, exp [-(y2 + zz)/d2 -

- az e.xp [-(yz + zz)/dg

al = 0.6, "2 = 0.75, dl/s a 0.3, dz/s = 0.05

B , =T === Wing alone

—————e Wing with Jet

— v . " ——
-
el

i ] I 1

0.2 - 0.4 0.6 0.8

n

1.0

Fig. 3.7 Spanwise 1ift distribution on a tapered wing of

AR = 6.67, A =0.5 at a«= 0.1 radian.
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effeét of the nonuniformity' on the 1ift distribution. Figure 3.8

i1lustrates the spanwise induced drag distribution on the wing.
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LT Chapter 4

N ASYﬁPTOTlC fHEORY FOR THE INTERFERENCE
OF SWEPT WINGS AND MULTIPLE SLIPSTREAMS

The asymptotic method was employed by Van .Dyke [28] for the

analysis of large aspect ratio wfngs 1n uniform flow. This method was

subsequently applied to wings with jet fiaps by Kerney [33] and Takuda
(34]. Ting, et al, [15] applied this method to study the interference

rbf unswépt wing§ and multiple propeller slipstfeams. As noted earlier,

“the asymptbtié method is simple and provides physical insight into the

broblem. The present:thapter deals withvanvextension of Tidg's me thod

to;swept wings, f.e., the application of the asymptotic method to the

problem of interference of large aspect ratio swept wings and multiple

propeller slipstreams.

4.1 Mathematical Formulation

"' Comsider a large aspect ratio ‘swept wing in a uniform flow (Fig.

"~ 4,1). Propellers placed ahead of the wing produce slipstreams which

flow past the wihg. It is assumed that the wing geometry and the

velocity distribution in the slipstream are known. The problem is to

_determine the 1lift distribution on the wing as influenced by the

incompressible and 1inviscid.

slipstream.

In the present amalysis, the flow is considered to be» steady,
This amounts to a considerable

simplification; however, the resulting problem is nonlinear due to the
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nonuniform flow in the slipstream, and the governing equations are the |

Euler equations.

'In the analysis that follows, two right-handed Cartesian coordinate
systems are used. The (x,y,z) system has the x-axfs in the direction of
the free stream and the z-axis in the 1ift direction. The (x',y',z')

system is obtained by rotation of the first system through the quarter

chord sweep angle A about the z-axis. It should be noted that the z'- -

axis fs identical to the thé z-axis and that the y'-axis lies along

the quarter-chord line of the wing ﬁlanform.

In the absence of the wing, it is assumed that the undisturbed
velocity field can be written as follows:

FY

v(x/co.y/s,z/co) iy, . (ahead of the propellers) (4.1a)

i U(yls.z/co) (behind the propellers) (4.1b)

-

iug ,__,_"  o (for large>!z|) (4.1¢c)

s
where i is the unit vector in the x-direction. This amounts to assuming

" that there is a jump in the axial velocity across the propellers and

that there is no swirl in the propeller stream. The velocity field

- around a propeller is qufte 'complex. There is inflow ahead of the

propeller. There is a prgssufe Jjump and not a velocity jump across the
propeller, . The velocity field in_the slipstream is periodic rather than
steady because of the finite number of blades, and has the swirl.
component in addition to an 1ncrgased axial velocity. In spite of this,
the drastic idealizatioﬁ implied in Eq; (4.1) for the velocity field

around the propellers is quite common, and springs from the fact that

. detajled treatment of the swirl and periddicjty in the stream makes the

T
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problem.extremely complex. Attempts have been made by several workers

 to take into account the effects of the swirl in a simplified manner by

#ssuming that the swirl only introduces a 'change> in the spaqwise

distribution of " the sectional angle of attack. In the absence of any

superior appfoach. this simple method 1s adopted in the present study.

The analysis starts by making the assumptioh that for large aspect

ratio wings with multiple tractor propellers, the height (h) of the

- slipstream behind the propellers is of the order of the mid-chord;co.

whereas the spanwise spread (2%) of the combined propeller slipstreams

'{s of the order of the wing span b=2s. Thus there are two length scales

o énd b in the problem; hence, different stretching transformations are
possible. Following the c¢lassical analysis for large aspect ratio
wings, the outer,feﬁion s introduced with the corresponding stretched

variables §,§.2 defined as follows:

" Xx=x/s,. y=yls andz=zls ' ' (4.2)

“ With x,y,Z fixed and AR+= (or e+0, where e=cy/s), the wing shrinks to a

line,, 1n.which,a11 the singularities that may be used ;o,represeht it

are concentrated. The undisturbed velocity becomes

- ¥

+ _ : :
Ve=iu, A . (ahead of the wing) (4.32)

o
= i -

u (behind the wing except on the cut z=0) (4.3b)

The momentum gained by the stream in passing through the propeller f{s
now contained in this thin sheet which acts very much like a jet flap.

The spanwise distribution of the momentum in this sheet is givén by

C A
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All the details of the flow past the wing section are lost in this

Bk bt 41

'outer 1imiting process.  To recover these details, the {inner regfon is

introduced with the {inner variables X, ¥, and z defined by the

‘foHowving transformation:

e o0 AN i bt @ et

i : . L R | 'Q-x'/co. y=y'/s and ;-'z'/c0 (4.5)

A A a

. . . The following relations exist betweén the variables (x,y,z) and .

(X‘.y'.Z‘):

a
)

X' = XcosA + ysinA, y' = ycosA -~ ;sinA and 2' =z (4.5)

IR TN SN

Now, -the undisturbed velocity behind the propellers can be expressed as '

+>

v(‘x/co,y/s,z/co) = i U(y/s.z/co)

il e £ S i B

<> .
= i Ul(y'cosa = x'sinA)/s,2'/cg]

LN

B B

>

T Uf(ycosA - exsinA),z]

*
.
N

1

N
]

f [U(ycosA,z) - extanA —x(ycosA,z) +...]
: dy

+ -~ - :
1 U(ycosA,z)  for e << 1 S 83

@ Eaeisbat oo e e sbrart ot

" The undisturbed stream for the inner region, therefore, is given by (in
. j ‘ _ . the transfdrmed coordinate system)

* "~ -~

e o . A V = [U(ycosA,z)cosa, U();cosA.f)éinA, 0] (4.8)

[T, T ST SRR ORe S T ST AN
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introduce disturbances in these f1owfields,

68 .

The ahal}sis of the flow in the propeller {tream behind the wihg

requires the introduction -of another region (called the third region)

“with the corresponding variables X,y and z defined as follows:

X=x/s, ye=y/s and = 2/c, . - (4.9)
In this region, the undisturbed velocity is given by
' ;‘+ R +b__‘ _
V=i Uly/s,z/cy) = 1 Uly,2) - (4.10)

The three flow regions are shown schematically in Fig. 4.2. Equations

(4. 3) (4.8) and (4.10) represent the undisturbed ve]ocity field for the

three regionsvconsidered. The effect of the presence of the wing is to

The disturbances in

velocity and pressure depend on the small parameter e=c0/$ which, in

turn, 1is related to the reciprocal of the wing aspect ratio, In the

~following sectibns. these disturbances are introduced in the flowfields

of the three regions, and the governing equations are derived. The

solution obtained in each region is ma;ched with the others as described

in Sec. 4.4, and a solution for the entire problem is obtaiﬁed.

4.2 The Inner Region

The disturbances in velocity components and pressure for the inner

“region are expanded in power series of ¢ as follows:

Ux,¥,23e) = u‘ Ry + e ik5.2 4. (4.11a)
C(§,§ 2;€) = v(O)(x y.z) + cv(l)(x,y,z) S S T (4.11b)
;(;’932 g) = W(O)(x:y- )+ W(l)(x

,y,z) +ou {4.11¢)
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a) The Outer Regfon

o
) |

U= (u cosAu sinA,0)

b) The Inner Region

(¥,

‘e) The Third Region

Fig. 4.2 The three flow regions,
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pX,y,25€) = p‘°’<£.y 3+ o1 (x,y,2 2 4. (4.11d)

The undisturbéd velocity components inen by Eq. (4.8) and the
disturbance quantities given by Eq. (4.11) are substituted in the
continuity and the momentum equatfons. Upon equating the coefficients

of like powers of € on either side of the equatioﬁ§; 'thé following

. leading equations are obrtained:

al0) 4+ 10 o g
X b4 :

(4.12)

(UcosA + u(O))‘(O) (0)(UcosA + G(O)). ,'_“&0)/9 {4.13a)
, X » ] X

(UcosA + uw))vw) “”(UsinA + ";(0))‘ = _ (4.13b)
X B 4

(0))‘;(0) ‘(O)N:(O) s - "gO)/p

(UcosA +u {4.13c)
X Z Z
If a stream function w(o)(x,y,z) is defined such that
‘S.O) 2 UcosA + u(O) (4.14a)
2 - :
L0 o - g0 (4.14b)

X

then Eq. (4.12) fis automatically satisfied. Now, it should be noted

that Egs. (4.13a) and ‘(4.il3c) do not involve the ;-component of the

velocity, and that by eliminating the pressure, they can be reduced to

the two-dimensional vorticity transport equation
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67
(UcosA + G(O))w.'+ ;(O)uu =0 _ (4.15)
: e s .
wherev
w=wiOle (Ucosa + 0l®), - (l0) 4 3LO)y (4.16)

X , z XX 2z

A combination of Egs. (4.14a), (4.14b) and (4.15) results in

LI G (4.17)
Z X X b 4 ) .

{0 only, or equivalently wis

constant along &(0)=éonstant (i.e., along the projection of the

~streamlines on  the §=constant plane). - Thus, the problem reduces to

solving the Poisson equation

o3l = - (2 4 D |  (4.18)
xx 2z . o .

This equation applies to the flowfield behind the propellers. In the -

‘ plané»of the propellers, the disturbances due to the wing section may be

neglected. Consequently, the boundary condition at'thé'bropeller plane

would be
-~ z -~
o0 = [y ez | (4.19)
"0 _ .
The other boundary conditions are (1) far away from the a1rfoi1 FJ(Q)
and ;(O) tend to zero, (2) on the airfoil the normal ve]dcity component

is zero, and (3) at the trailing edge of the airfoil the pressure is’

continuous (which is equivalent to the Kutta condition). Note that in
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‘this problem, ; appears only as a parameter,

_ _'The solution of Eq. (4.18), or the equivalent Eq. (4.12), (4.13a)
and'(4,i3c), yith the aboVe boundary'conditions ¢an be obtained by a
suftable numerical technique. The results would yield the values of the

“(0) (0)

velocity components u and w everywhere in the field including

the airfoil surface.

,t_ The y-momentum equation, Eq. (4.13b), may be rewritten as follows:

[(UcosA + u(O))b ‘O)a.J(UsinA + v‘O)) = 0
ox oz
or ’ o : ‘ :
2 lusina + WOy o  (4.20)
A- where'%g = (UcosA + uw))a + ;(O)a Note that-e- is the derivatfve
' ax z '

along the proaection of the streamline {in the x-z plane. Equation

_(4.20) implies  that (UsinA + v(O)) remains  constant along  the

A A

. 'streamlines projected on the x~-z planes. Since the airfoil is one

such streamline it is concluded that (USinA + v(o)) is a constant on the

. Lafrfoil.. VLet 2*.be the velocity far ahead of the. airfoil on the zero

streamline. Then, it {is evident that U sinA = (Usina + W), Note

_that, even though (Usind + v(O)) is a constant on the airfoil, both
'sinA and 0

“being functions of z. vary along the airfoil surface.

»The oressure coefficient cpvon the airfoil defined by

¢, = ()220l o (4a2)

can be reduced to

c (x z) = [U cosZA ~ (UcosA + uw))2 (;(0))2],Ui (4.22)
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Hence the difference 4, is given by

Acp(x) = cp(x.zx) - cp(x.zu)

(0))2 (0))2

- - {(UcosA +u + (w }/Ui (4.23)

where { } represents the difference between ‘tne' lower and the upper

surfaces of the airfoil. The sectional 11ft coefficient c, 1s obtained

by 1ntegfatfon of Acp(;) along the'chord. Thus, {1t is seen that the

1ift obteined'by the solution of Eq. (4.13) is not affected by the

) Spanwise componient of the've1ocity. In summary, the governing eduations
»fdr the inner solution are the cnntinuity and momentum Eqs. (4.12) and

’ _,(4.13). with the apprnpriate boundary condiiions. The solutfon of these

nould yield the 1ift of the. airfoil which is independent of the spanwise

velocity conponent. This 1ift is a function of the sectional angle ofv

attack, and may be wrftten as follows:

‘ x(a.y) (1/2)pU c(y)cx(a,y) ' | f‘ (4.24)‘ 7

Notice that invthis relation y appears only as a parameter.

~ 4.3 The Third Region

In the analysis of the third region, 1,e., in the propeller stream

. far behind the wing, the stretched coordinates X,y and z defined by Eq.
"(4 9), and the undisturbed ve]ocity defined by Eq. (4.10) are used The

7 perturbation ve]ocity components and the pressure are expressed in power

series of £ as fol]ows.

CEgEe =065 « aP G50



e WY ARG

NP WA

. Lt e
(UM TOVRVS SOV

.

T e
SR SEFIRE WSRO FRPR VIO ARt

P

e b e
.

-

-

ek i e e
D ._(2;

o

- ————ray
T M A o, S P R
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WG WG « OG5 - .. (4.25)
R =’e§“j’(;,;,2}‘ s HPEED . (a.250)
B(R..55¢) = 5‘“(?.3.2),+ &' (x,5.2) fe tasa)

These pqrtufbation components and the undiéturbed velocity given by Eq.
(4.10) are substituted in the‘continuity and mohentwn equations. The
subsequent analysis would be- identical to the analy;is performed in [15]
while studying the third region behind unswept Qihgs. Therefore these

details are not given'here; but only the major conclusions from this

, 'analysis are 1isted below:

(1) To the first order, there is no pressure discontinuity or change
in streamline inclination across the jet sheet.

(2) ° The momentum integral J(y) remains constant with respect to x.

(3) To the second order, there is a pressure difference across the
Jjet sheet given by

L E I € o R ) P

%,9,04) = p el (x,y,0-) = ~ eatl)

X

x,y,00d(y)  (4.26)

where
T

Equation (4.26) is the familiar result of the thin Jjet approximation

that states the pressure difference across the sheet is equal to the

70

product of the momentum in the Jjet sheet and its curvature., These
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results will be used in the analysis of the outer region that follows.

+

4.4 The Outer Region

The undisturbed velocity: in the outer region is unifofm (EqS.
(4.3a) and (4.3b)); hence, the V§iowfie1d away from the ﬁing and the
propeller streams is irrotational. Therefore the disturbance velocity

~ e o m

field can be described by a velocity potential &(x,y,z; e) which

satisfies the Laplace eduation
—.?"'—..2-"'—.2.2-)@-'-0 (4.27)

Bernoulli's -‘equation provides an expression for the pressure
disturbances as

= (1/2)pUi[i - i+ v&Vuolzl | . (4.28)

Equatiens (4.1) and (4.2) are the go¢ern1ng equations 1in the outer

-.region.. . As the first step towards the solut1on, ®-is expanded in a

power series of e as

PP S Pl

- o(x,y,z;€) = €2 (2)(x

.y.z) + 9 oY z) + ... (4.29)

where both 5(1) and Q(Z) in turn satisfy the Lapiace Eq. (4.27). Next

the velocity and pressure_d1sturbances are also expanded in power series

of ¢ as follows:

;(;,;.;;e) = s;(l)(; ;,;) + € u(Z)(x,y.z)'+ oo (4.30a)

.;(;,;,‘z-;c) 5\7(1)(;;5) + € v(Z)(;,;,;) + ... oo (4.205)
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C wlXy.zie) = e (x,9.2) + ‘2’(2.5.2) P - (4.30¢)
S(:,;.; e) s cp“)(x.y.z) + (2)(;.;,: + . (4.30d)
Thus, . oL :
ol . os.l)(x,y,z)/s (4.313)

) X
v . ‘“(x.y.z)/s (4.31b)
Wb e g e S s (4.31¢)

) 2 )

pll) ou, @(1)(;,;,;)/s (4.31d)

The ‘unkn.own 5(1)’ is a soﬁtion of the laplace equation. It is obtainea
by distributing the singu1ar1ties along the line x-'n|y| 0, and on the
plane z =0, x m|y[>0 and by matching with the solutions of the {nner and
the third regions respectively. Note that m is the tangent of the wing
quarter chord sweep-back angle, | » ‘

By an analysis of the inner region’l it was shown that the wing
section &t a vspanwise station; produces a lift force x(a,).'.) (Eq..
4.24). This implies that there is a vortex distribution along the

T4 . line ;-ml;[=0.‘ The strength I‘(;) is related to the

1ift 2(a,y) as follows:

Ily) = 2(ay)/oy,

= (12 ely)e (o) (4.32)

v e e it
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The spanwise variation of I requires the presence of a trai11ng'Vortex
sheet extending downstream from the 1ifting line, " This is the well

known vortex system of 1ifting-1ine theory.

By a matching with thé solution of the third region, it was';hown
that, to a first approximation, there is no discontinuity in efther the
pressure or the streamline inclination across the jet sheet behind the
wing. Therefore, the first order outer solution 5(1) is not affected by
tﬁe bropellervstream behind the 1ifting line. Based on this first order
aualy#is. the flow in the outer reéiqn is described by the potential due ‘

to P(;) and the associated trailing vortex system, and is given by

- 13 " .
I G RV 1L PR 433
Tl (y-m)© + 2 , : ’

where R? = [(;-mlnl)2 + (y-m?2 + 221, Upon approaching the lifting
line (i.e., for small ;-m];l and 2), the inner limit of &1} s
obtained. This yields the downwash &(x-m|y|+0,y,0). By matching with
“the inner solution, the effective angle of attack at each spanwise,

station {is 6btained as

) = a(y) - et = e () s | (4.34)

The circulation r(;), given by Eq. (4.32), now becomes

rly) = (12)uelyle (e - & y) o (8.35)
Equations (4.34) and (4.35) are the required governing equations for the
firstIOrder analysis. Note that in this analysis, the effect of the

nonuniform flow in the slipstream enters only in the sectional analysis.
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The first order analyéis discussed so 4 faf i§ valid

fqr‘c*o. or AR»= , It was shown in the analysis of the third region

that terms“proportional to J(;) appear in the seond order analysis;

hence 1t is necessary that J(;) be of the order of 1.0 for the first-
order theory to be valid. It is well known that the first order theory
for large aspect ratio wings in uniform flow gives satifactory fesu]ts
for wings of aspect ratio as Tow as 1.0 [33]. Hence, only the
contributfon of the momentum in the propeller stream wifl be considered _

in an extension of the present analysis.

At the outset it is noted that 5(1) is an odd function in ;: It

was shown by an analysis of the third region that p(l)(;,§;;) is
continuous across z=0. Hence 1t is concluded that
‘1’(§.y.z-0) =0 | (4.36)

In view of Eq. (4.31a) and (4.31d), it may also be stated that behind

the wing
(1)(X.Y.Z‘0) = 0 ' " ‘ (4.37)

Howevér, because of the vorticity dr(;)/d; on the plane ;=0 behind the

. wing, v(l) is discontinuous across the jet sheet and is given by

W”&JZW)=@MMy=-“”&L;m) (4.38)

Nevertheless, [v“)]2 is continuous across the jet sheet. Furthermore,

S0 (1)

i{s continuous,

since 6 is also continuous across the jet sheet.

- Next, upon considering the O(ez) terms in the Bernoulli equation

the following equation is obtained:

e e i e emmen e e e -
e R g s o : : TN
et R et e et D e BT AL L e e e X
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_ ?5‘
(2)/p == u(Z) [(v(l) 2, (wm) 172 ' (4.39)
Since [v“')]2 and ;(1) are continuous, the pressure difference across

the sheet is given simply by

AE(Z)- 5(2)(; y,250+) - p‘Z)(;.;.;-o-)
= -pU_ [u(Z)(;.y.z=0+) - u(z’(x.y.z=0-)] (4.40)
This ~ discontinuity ~(2) is equivalent to a vorticity

distribution y(x,y) on the jet sheet and, in view of Eq. (4.26).

y(x,y) can be expressed as

Y(x.y) = - ce(l)(x.y.O)J(y)/pU s = - 6. (x.y.O)J(y)/dJ s (4.41)
x ,

At the lifting line, 5 is not zerb {(i.e., the jet sheet has a non-zero

'1nc1inatfon at the lifting line). This would require a vertical force

all)

of magnitude J(y)ee at the 1ifting line. To account for ihis force,

a circulation distribution PJ(;) is introduced along the lifting line,

_The magnitude of this circulation is given by

ry = = 3 e/ = - ayrEre (4.42)

Thus. in this limited second order analysis, referred to as the
systematic analysis in [15], the vortex system consists of the
circulation P(;) along the 1ifting line, the circulation FJ(y) whi;h

accounts for the change in the inclination of the jet sheet on passing

over the wing, and-a distribution y(x,y) behind the wing, which accounts

for the curvature of the jet sheet. This system of vortices produces a

- . downwash distribution e(;.;) which 1is obtafned from the following -

I
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‘Thes'e are the 'goverm’ng equati.ons' for the unknowns f(y).

s (3 Mot S e T ety L AR T € A L2 et 4 R T L R ai s L] e i P TR e S i L e S R RS e e 2 s

-
-

velocity potential:

R 1 -
°(anoz)A='1‘ zr{n)

oo Falaly o,

AT 2 (yen?
- L zr(n)  xemln]
f J~ (1 +Xminly 4,
LERY 7z (y-n)® R
; ) , o |
1 zy(E,n) {x-%) -
”'?!x Tt {1+ — ~z)dadn (4.43)
mjnl 2z yon Y L(x=0)° + (y=n)€ + 2°]

The downwash is related to the ‘unknown quantities by the following

relations:
Py = (12U c(y)e, cag(;) - 8(x,y)1, X enly]  (4.44)
: a . .
ryly) = - Ay 6y /ev,, x> mly| " (4.45)
PR R T i VR I ' (4.46)

X‘
I‘J(y) and
v{x,y).

4.5 Method of So'lution

The goveraing equations for the unknowns TI(y), I‘ {y) and y(x,y)

- are the Eqs. (4.44) - (4.46) together with the Eq. (4.43) for the

downwash anglevs required in the solution. The downwash angle computed
by Eq. (4.43) on the 1ifting line at the wing centerline is infinite
because of the discontinuity in the slope of the lifting line at the

wing root. This is a familiar bproblem in the swept wing analysis.
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Rigoroﬁs studies of swept wings in uniform flow by Cheng, et al. £36,37]

- have sr_aqwn that the 1induced velocity ap'p_rOaches infinity like the

logarithm of the distance from the centerline. This behavior does not

allow computation of the spanload at the wing centerline of

symmetrically swept wings. Thurber [38] studied swept wings with curved
centerlines having Zero sweep at the wing centerline and zero tip chord

(crescent wings) in uniform flow. This planform has Hmited'app'lication
in the present context.

The method developed by Lan [39] 1s employed here to compute the

" ~downwash from Eq. (4.39). . This method starts with the Weissinger

velocity potential, and, placing the lifting line on the quarter-chord
‘libne.' éomputes the downwash at the three-quarter-chord line, A briéf

descripti’on of this method is presented here,

Consider the first integral on the right-hand side of E£q. (4.43).

'This is the potential due to Tly) along the lifting line, i.e.,

e G .1l 1 zl{n)
L . . . 1 ..4‘“‘-1' zz +(y'ﬂ)2

a+ (XEE)}dn (4.47)

where R2 = (x—a)2 + (y-ﬂ)2 + 22 and tildes are dropped - for

convem‘enée._ The origin for the co-ordinate axes is assumed to be at
the mid-root chord.  Also,

g=- co/d + mf | (4.48)-

x = = cyl4 +'c(y)/2 + mly| (4.49)

These are introduced in Eq. (4.47), and the resulting expression is




e

 expanded for small c(y). By retaining only first order terms in the

éxpansioﬁ, and diffgrentiating them with respecf to 2z, the required

expressfon for 6; (evaluated at z=0) 1s obtained as

1 " 2
0,(x,y,0) = k= [ Ll xemlnl | el fymnl?y o (4.50)
v =1 (y-n) 1 h

where m' -»m-(¢0/4)(1-x)'1s the tangent of the mid-chord sweep, and

R = (x-n'[n])% + (y-mi?.  The right hand side of E3. (4.50) is

integrated by parts to arrive at the following expression for 01:
1 )Y! H -1 y—n dn 1 ﬁ 0 y-ﬂ dn . °

The functions P(n) and Q(n) are defined in [39]) and details on the
derivation are available in [40]. The integrals are reduced to'finite
sums by discretizing I{y). Thus, £q. (4.51) reduces to the following:

N ,P(nk) Q(nk) |

| 1
© 0, (Xy,¥:,0) %5~ T Al(nm,) — -
R S T T

{4.52)
By writing Ar(nk) 2 P(yk+1) - P(yk), Eq. (4.52) may be expressed as

\ | |
~ IUCEAUEE R ALY (4.53)

This is the required expression for the downwash due to ‘the My)

distribution. A similar expression is obtained from the second integral

on the right-hand side of Eq. (4.43), i.e.,
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8,(x;,¥440) -kf;rd(yk)A(i,k) o (4.54)

The vortex sheet behind the wing is assumed to extend downstream from
the wing-tréiTing edge. The continuous distribution v(x,y) fis rép]aced
with a finite number (M) of discrete vortices of strength : 71"’

located at «x 231,2,.4.,M behind the wing. Each of these vortices is

1.
further represented in the same manner as I(y) is discretized, so that
the jet sheet behind the wing is represented essentially by a Vortex"
lattice. . The downwash computed from this system of vortices {s

expressed as

2=l k=1

. M N ' :
93(xi.yj,0) =L L vx(yk)e(i,j.k.x) . (4.55)

Equations (4.53) - (4.55) together provide an expressioﬁ for the
downwash angle in terms of the unknown r(yk), rh(yk) and Ji(yk)’
k=1,2,...,N; 2=1,2,...,M.  This expression is used in the discretized

versions of Eqs. (4.44) - (4.46), and the resulting set of simultaneous

“equations are solved for the unknowns.

'>The 1ift-curve slope required in Eq. (4.44) is to be obtained by
solving Eq. (4.18) or the equivalent Egs. (4.12), (4.13a) and (4.13c).

However, in the present analysis, a potential flow method described in

‘Chap. 2 has been employed for this purpose, As noted earlier, this

method has been found to give results which compare reasonably well with

the solution of Euler equations.

The analysis presented thus far i{s applicable to incompressfble

flows. A limited extension is made to account for the compressibility

effects by introducing the Prandtl-Glauert factor B = /(I-Mz)» at
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approprfate places in the expressions for &, Eq. (4.43), as well as in

the 11ft-curve slope fh Eq. (4.44). A 'Eigorous treatment of the
nonuniform compressible flow past a wing section would require the
solution of the Euler equatfons coupled with the energy equation.

However, it is observed that the nonuniformities in the slipstreams at

: 3high speeds would be relatively smaller than at low speeds. Hence, it
| is hoped that the Prandtl-Glauert correction, which js known to provide -

:fexcellent corrections to the 1ift of airfoils in uniformAsubcriticaj

flow, will provide a reasonable correction in the oresent case where the

. approach flow is not uniform,

4.6 Results And Discussion

fhe"spanwfse Tift distribution and total 1ift have been computedv‘
for several configurations and compared with available experimental

data. As the flrst example, the configuration tested by Stuper [41] is

cons1dered In these experiments, the wing was rectangular and spanned

the wind tunnel walls, The ratio of chord to geometric span was 5.25.

- A sliostream -simulator was placed centrally ahead of the wing, The

ratio of the slipstream radius to the wing chord was 0.3, and the

velocity ratio.“of the slipstream was 1.36. Figure 4.3 shows the

| ‘spanwise distribution of the incremental 11ft non-dimensionalized with

“the " incremental 1ift as obtained by the strip theory.. Present

theoretical results are also shown in the figure. It is observed that

there is a good agreement between the two results, particularly in the

.region of the slipstream. Viscous effects at the jet boundary might+

have contributed'to the diserepancy around (y/r)=1.0. Experimentally

~ measured large values of incremental 1ift for (y/r)>1.0 could not be
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explained, but are suspected to be partly due to the tunnel wall

interference.

As the éecond éxample. the cqnfiguration tested by Possid (421 is

_considered. In th%s example, the wing had an aspect ratio of 6.5 and a

taper ratio of 0.5. A single model propeller was p1aced-ahead of the
wing. = Several sets of data are available with varyiﬁg velocity ratio
and angle of attack, rFigurg”4.4 shows the spanwise 1ift distribution
for thevwing alone, and for the wing with the slipstreams of velocity

ratio 1.4 and 1.6. In these tests only the incremental total 1lift

coefficients were measured. The present theoretical values of

ACL=.O.068 and 0.098 compare very well with . the corresponding

'experimentaI values of 0;07 and 0.10.

‘In the next examp1e‘considered. the wing (tested by Maarsingh {17])

“had a rectangular planform with an aspect ratio of 7.9. Two simulatoré

wera placed on each side of the wing at 42 percent and 79 percent of the
semispan; The simulated slipstream radius was 0.28 times the wing
.chord. -Test results are available for the wing alone and for the wing
witﬁ stipstreams having velocity ratios of 2.0 and 3.0. ngure 4.5
shows the spanwise 1ift distribution for the test configurations

obtained by the present analysis. The spanwise distribution of the

‘ - incremental 1ift (Acl) due to the jets for the two velocity ratios,

compared with the experimental values in Fig. 4.6. The results computed
by Maarsingh [16] using Ting's method [15] are also shown in this
figure. It should be noted that the present method degenerates into

Ting's. method for unswept wings. However, there are some minor

‘differences between the present results and those of Maarsingh [16].

These differences are suspected to be primarily due to the 1naccurate:
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"outboard stations; but the agreement is not as good at statfons close to

the wing root. It should be noted that the test configuration had a

body at the center, and the wing planform was modified near the wing
root. These details were not simulated in the present analysis. Some
of the differences between the present results and the experimental data
at the 1inboard stations may be attributed to these modeling

difficiencies.

The effect of the Jjet without swirl on the spanwise Tload

distributifon at M _= 0.8 and « = 3 degrees is_i!luétrated in Fig. 4.10,

The exporimental data, the results obtained by the present analysis, and
the solution of Euler equations [26] are included in this figure. It

should be noted that the jet is a rather weak jet with a maximum total

pressure'ratio of 1.075. As a result, it does not modify the load

distribution significantly; It can be observed from the figure that the
incremental 1ift values obtained by the present analysis agree closely
with the experimental data. _ A comparison of the Euler solutibn [27]
with experiﬁental data shews a trend similar to that which was observed

earlier .- at the wing inboard stations there is good agreement, but at

" the outboard statfons there is some discrepancy. Nevertheless, the

incremental 1ift values obtained by this method also compare well with

the experimental data.

The effect of the swirl in the jet on the spanwise 1load

distribution at M_= 0.8 and a = 3 degrees is illustrated in Fig. 4,l1.
The.experimenta1 data are available for the wing witﬁ Jet having ndmina}
swirl angles of 7 degrees up inboard, and 7 degrees down inboard. .These
experimental data are ﬁhown in Fig. 4.11a and 4.11b for the up inboard

and down inboard swirl distributions respectively. Present results and

90
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ey




t
i

]
B

[N . . P ., -
I A S ¥ Akt tearees i o s 1 e

[P p Rvtrg ng cir diaovth-o ) B 2 I3 et

VRS Bk e it et s

-——-— Present Analysis |

—=—Euler Solulion {Whilfield and Jameson)
| OO0 Experiments (Welge and Crowder)
1.0 - '

0.8 |-

cc -
g 0.0

Cmac 0.4 |-

0.2 |- . Simulator -
—w
| 1 ] |
0 - 02 04 06 08 1,00 0.2 0.4 0.6 0.8 1.0
. n . ‘ N

 Fig. 4.11 Effect of the swirl on the spanwise load distribution
_on the swept wing at M_ = 0.8 and a =3 degrees.

e6



.

the computed results frci: [26] are also included in these figures which
bring out the {interesting effect of the swirl in the slipstreém on the
spanwise load distribution. Quantitative agreement between the Euler
solution [26] and the experiments is good at stations close to the wing
root; the agreement 1is not as good at the outboard stations. In

contrast, a comparison of the present results with the experiments shows

‘a good agreement at the outboard stations but the agreement is not as

good at stations close to the 'wing root. This discrepancy in the
results near the wing root may be'attributed to the differences between
the theoretical model ﬁsed in the present analysis and the actual wind
tunnel model. A closer examination of figures reveals that the present

results agree with experimental data qualitatively;'but quantitatively,

the present analysis seems to slightly overpredict the effect of the

swirl,
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Chapter § .

CONCLUDING REMARKS

The small perturb;tion potential flow theory has been applied to
the problem of determining the chordwise pressure distribution and 1ift.
bf thin airfoils 1in nonuniform parallél streams with stepped velocity
prdfiles. The method has been extended to the case of an undisturbed
stream having a given smooth velocity profile wi;h no. veiocity
discontinuities, The analysis 1is based on.the method of {mages, and
Allows for potential disturbances in a rotational undisturbed flow.
Several examples . are considered and the present potentiai’ solutions

obtained by different approximations are compared with the Euler

 solutfons. The results indicate that although approximate, the present

_ method yields results which bring out the effect of the interference

problem, while avoiding the need to solve the Euler equation. In the

' present analysis the. thickness effects have been neglected for the

' bu}bdsé of éohputiﬁg the airfoil pressure distribution, The effect of

afrfoil thickness can 1in principle be 1included, but would require

further analysis.

The classical lifting-line theory for the interference of wiﬁg and
propeller slipstream has been modified in Chap. 3. The classical theory
assumes that the slipstream s in the form of a circular cylinderical
jet with a ve]écity jump across this cy1ihder. In the présent analysis,

this assumption has been dropped, and -the velocity distribution 1is
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assumed to ﬁave 'a given smooth profﬂe with no. velocity
discontinuities. The 1ift distribution in the examp’les‘ consibdered here
demonstrated that whereas the total 1lift may not be affected by the

‘assumption of ‘a uniform velocity profile for the slipstream, the

distributions coulldﬂbfefi very different in the two cases, The present
modification to the classical theory brings‘ out the effects of the

nonuniformity on the spanwise 1ift and indeed drag distributions,

The method of analysis developed here can also be extended to the
case of a wing in multiple nonoverlapping slipstreams. However, 1t- 1s‘
well known that thev'lffting line theory overpredicts the 1ift due to the
slipstream, - This is due to the fact that, while accounting for the
effects of the slipstream boundary, the trailing vortices are assumed to
extend to infinity in both direjction;, This discrepancy was recognized

and corrected in the development of 1ifting surface theories. The

1ifting surface theories produce good results, but are applicable oniy

PRI TN

yaarw B paes, omepe g

to slipstream in which the velocity is uniform, The present method can
be extended to the 1lifting surface theories as well as to the lattice
methods applied to the wing-slipstream interference problem,
"The problem of the fnterference. of multiple propeller slipstreams
i _ “with large aspect ratio swept wings has been treated in Chap. 4 by the

method of asymptotic expansions. Although this is only a first order
theory,  the {1mportant second order contributions from the propeller

slipstream have been included in the analysis. The method is quite

Pl

‘versatile in the sense that it can handle slipstreams of any given .
velocity distribution. The time dependencg of thg velocity field in the
slipstream is neglected. The increased axial velocity and the swirl -

component ‘in tihe slipstream are of primary concern {in the present
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analysis. One of the assumptions that the spanwise ‘extent of the
slipstream was of the aorder of the wing shan. was not satisfied in the
examples considered; but the results do not seem to be affected
noticeably. Viscous effects are neglected; but the compressibility

effect is accounted for by the Prandti-Glauert factor.

Several examples are considered for which experimenal data are
available, and in each case the spanwise lift distribution is obtatied
by the present methcd, and compared with the corresponding experimental

data, In most of the cases the agreement between the two results is

~very good. In the first exemple, the differences -between the

experimental data and the presehf rasults are suspected ;O‘be partly due
to the tunnel wall 1nterferencé 1h the measurements. In the last
example considered.v the experimenfal_ configuration had a body on fhe
centerline; also the wing planform was modified near the wing root.
These details were not simulated in the present analysis. It is
suspected that these differences have resulted in the difference’in the

two sats of results,

In the present analysis, the effect ¢f the swirl in the slipstream
fs accounted for" by dssuminé'fhat the swirl only changes the 10551 angle
of attack. This> approach yields results which compare well
qualitatively with the experimental data. Hcwever, the methcd seems to
slightly overpredict the effect of swirl on the spanwise load

distribution.

A comparison was made between the present rasults and the numerical
solution of Euler equations. The numerical soluifon of Euler equations

requires a large. computer memory and extensive computing effort. For
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example, the compdter program deveioped by Whitfield and Jameson [24]

required 900,000 words of memory, and 341 seconds computing time on

Cray-15 computer for a relatively coarse (96x16x16) grid. This grid

'provided results for only 6 stations along the wing semispan.' ‘This

method, however, provides details. of the flowfield in the entire
computational domain.  In contrast, the present method is simple, and
requires relatively small computational effort,  For éxample. . the
computer code deve'loped to compute the spanwise load distribution using
the  present method r,eiquifed” 130,000 words of memory, and about 40
seconds of corﬁputing time on CDC Cyber 1>75 computer, and"pfo-v-id.ed tﬁe
results at 40 stations »aloAng”the_ wing semfspgn. The spanwise 1ift
distribution obtaiﬁed by the p'reserit rﬁethod':compared faQorab'ly with

experimental data.
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