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PREFACE 

This report covers the work completed on the researr.h project -Wing Propel­

ler Interference Studies.- The work was supported by the NASA/Langley Re­

search Center, Analytical Methods Branch of the Low-Speed Aerodynamics Di­

viSion, through Cooperative Agreement HCCl-6S. The project was monitored 

by Dr. Chen-Hue1 L1u, LSAD-Aerodyn&~ics Methods Branch, NASA/Langley Re­

search Center.· 
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STUDIES ON THE INTERFERENCE OF WINGS AND PROPELLER SLIPSTREAMS 

By 

R~adas K. Prabhu1 and Surendra N. Tfwarf 2 

SUMMARY· 

The small disturbance potential flow theory is applied to determine 

the 11ft of an airfoil in a nonuniform parallel stream. The given 

stream is replaced by an equivalent stream with a certain number of 

velocity discontinuities. and the influence of these discontinuities is 

obtained by tm method of images. Next, this method is extended to the 

problem of an airfoil in a nonuniform stream of smooth velocity 

profile. This model allows perturbation velocity potential in a 

rotational undisturbed stream. A comparison of these results with 

numerical solutions of Euler equations indicates that. although 

approximate. the present rrethod provides useful information about the 

interaction problem while avoiding the need to solve the Euler 

equations. 

. . Th~ .assumptjons. of the .classical lifting line theory applied to· the 

~ing-slipstream interaction problem are scrutinized. One of the 

assumptions (uniform velocity in the slipstream) of the classical theory 

is dropped. and the governing equations are derived for the spanwise 

lift distribution on a wing in a single axisymmetric slipstream. 

Spanwise lift and induced drag distributions are obtained for two 

typical cases~ ~nd the effects of nonunfformity in the slipstream 

iGraduate Research Assistant. Deparment of Mechanical Engineering and 
Mechanics. Old Dominion University. Norfolk. Virginia 23508. 

2Eminent Professor. Department of 11echanical Engineering and Hechanics. 
Old Dominion University, Norfolk. Virginia 235~8. . 

x 



.. 

, , ~ 

velocity profile are examined. 

The method of matched asymptotic expansions is applied to the 

problem of a large aspect ratio swept wing in the slipstream of multiple 

overlapping propellers. The flow is assumed to be ~teady, inviscid and 

incompressible. It is also assumed that the height of the slipstream is 

of the order of the wing chord, and its spanwise extent is of the order 

of the wing span. Three different flow regions are identified by 

employing different stretching transformations, and asymptotic 

expansions are introduced using the chord-to-span ratio as the small 

expansion paramete~. The details of the nonuniform flow in the 

slipstream enter into the wing-sectional analysis. In the outer limit, 

. the wing shrinks to a swept lifting line, and the slipstream reduces to 

a thin sheet of jet carrying the momentt.m gain from the propeller. The 

curva ture of thi;> jet sheet resul ts in a pressure difference whi ch is 

represented by a vortex sheet. The governing equations are solved by 

discretization. Comparison of the present results with the experimental 

data as well as other numerical solutions showed generally good 

agreement. 

xi 
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Chapter 1 

INTRODUCTION 

The cost of aviation fuel has gone up substantially in the lctst 

decade and this is expected to be an ever increasing trend. Added to 

this is the uncertainty regarding the supplies. These flctors combin£:d 

with the national concern over energy conservation have lead aircraft 

designers as well as the operators to give prime importance to fuel 

efficient propulsion systems for the future aircraft. Prior to the so­

called oil crisis in 1973. the fuel cost was a relatively small fraction 

(about 25 percent) of the direct operating cost. and it was of less 

concern to the designers/operators. Today. however. it is claimed that 

* this fraction has risen to abcJt 60 percent [1. 2] • and that it is the 

major part of the aircraft operating cost. 

_ ; . It ·was .only propellers. that. provided pi·")pulsive. force to ·aircraft 

before jet engines appp.ared on the scene. As fl ight speeds increased, 

the propellers posed serious problems of rapidly decaying propul sive 

efficiency and increasing noise and vibration levels. As a reslJlt, more 

pO'tlerful and efficient jet engines took over and dom1..1ted the scene. 

and propellers were neglected for many years. It is well ~nown that the 

old techno'l"gy propellers are the most efficient mode of propulsion up 

to a Mach number of about 0.6. The interest generated in the propeller 

*Numbers in brackets indicate references. 
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technology since the oil crisis has lead to the development of the prop­

fan, which is claimed to operate a! an aerodynamic efficiency of about 

80 percent at a Mach number of 0.8 [3]. 

With the prospect of the use of prop-fans on transport airplanes, 

there has been concern regarding the associa ted problems. The 

interference of slipstreams with other parts of the airplane, in 

particular with the wing, is one of the major problem areas. With the 

flight speeds going up to M-O.S, compressibility effects can no longer 

be neglected. The nowfield behind the propeller is highly rot.ltional 

and the effects of vortici ty in the slipstream cannot be ignored. 

Therefore, the problem in its complete form is quite complex. 

Consequently, considerable efforts (analytical, nUlll3rical and 

experimental) are befng made to understand the rather complex nowfield 

associated with the wing-slipstream interference. 

2 

The probl~m of determ1r.fng the influence of the propeller 

slipstream on the wing lift has been studied quite extensivf:ly in the 

past, and a considerable amount of literature is available. Because of· 
. .. . 

the highly nonuniform na ture of the flow in the slipstream. the problem 

is essentially a nonlinear one; as a result, the work done during the 

1930's was based on approxi::ate and semi-empirical methods (4, 5]. 

These methods provf ded sa ti sfactory resul ts 1n the speed-power range for 

which they were developed. Koning (6] gave an analytical treatment for 

a wing in a propeller slipstream based on the lifting-Hne theory. It 

was assumeCl in this ana lys1 s tha t the incrl:ment 1n' ve loci ty in the 

slipstream was small. Ferrari (7) developed what is generally referred 

to as the classical lifting-line theory for wings in slipstreams. The 

main assumptions in' this theory were that (1) the sl ipstream was in the 



.... 

form of a circular cylindrical tube extending to infinity both upstream 

and downstream, (2) the velocf ty in this tube was uniform (UJ)' and (3) 

the relation between the 11ft and angle of attack for the wing sections 

was obta ined by considering them to be in uniform flows wi th ve loci ties 

UJ and U. for sections inside and outside the slipstream tube, 

respectively. One of the drawbacks of this theory is the third 

assumption. It is obvious that the lift produced by an airfoil would 

depend on the Jet height. Ting and Liu [8] employed the method of 

fmages 'and studied the lifting characteristics of thin airfoils in a 

nonuniform parallel streams. This method can be used to determine ~ 

lift of an airfoft in a uniform jet. Chow et al. [9] numerically 

investigated the two-dimensional nonuniform flow past an airfo11 by 

solving the Euler equa tions. These resul ts demonstra ted the fact that 

the 11ft of an airfo11 depends not only on the jet height but also on 

the nonuniformity in the approach stream. Recognizing th~S fact. 

Kleinstein and Liu [10] made some improvements to the classical 

theory. The lift data for the wing sections within the slipstrear.'l was 

obtained· by employing the methods of [8] dnd [9J, and was used in the 

classi",', theory. However, the assumptions (1) and (2) of the classical 

theory were still reta fned while computing the downwash due to tra it fng 

vortices. These resul ts demonstrated the effects of IIlGdffyfng the 

assumption (3) mentioned earlier. 

There were other attempts to improve upon the classical theory of 

Ferrari. Rethorst (11) employed the WeiSSinger approach and developed a 

lifting-surface theory. Wu and Talmadge (12J. and Cumberbatch (13] 

extended the methOd of (11] to wings extending througl, mul tiple jets. 

Jameson [14] modeled wide slipstreams by rectangular and elliptic jets. 

----------- ----_ ...•.. ----_ ... _-_ ...•.. " .. -. 

-. '.-'" ~- . -
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and by using the standard imaging technique developed a lffting-surface 

theory. In 411 these analyses one of the /Min assumptions was that the 

velocity in the jet (representing the slipstream) was uniform. 

Ting et al. (15J scrutinized the assumptions of the classic! 1 

lifting-line theory. and suggested a new approach to solve the problem. 

a was recognized tha t the hef ght of the Slipstream is of the order of 

the wing chord, and the spanwfse spread of the combined multi-propeller 

slipstream is of the order of the wing span. Three different flow 

regions were identified by employing dffferent stretching 

trans forma ti ons. Asymptotic expansions were made by using the 

reciprocal of the wing aspect ratio (lIAR) as the small parameter. This 

analysis showed that the details of the nonunffor.n stream enter 

primarily into the local sectional anlysi s; behind the wing, the 

slfpstream acts like a thin jet sheet which supports a pressure 

difference across itself. By solving the governing integral ecjuation. 

the wing 11ft distribution was determined. Maarslngh (16J r.ade an 

evaluation of this method by comparing these results with the data 

. obtain-ed -from SOl1'.t! - specfally designed experiments (17J. Some 

differences between the two sets of results weI"(! found. and these are 

suspected to be due to inaccuracies in the 11ft-curve slope data that 

was used in the computations of Maarsingh (16J. 

IHbner and Ellis (18] considered slipstreams of arbitrary cross 

section. and, instead of the standard imaging technique, represented the 

slipstream boundary by vortex sheaths, and prol7eeded on the basis of 

lifting line theory. Lan (19J. developed a method based on the quasi­

vortex-la tti ce l1'.ethod and a tl'lo-vortex-sheet representa tion of the 

slipstream. Both of these methods accounted for the rotation in the 

-------_.--------

-! 
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51 ipstream. 

Levinsky, et al. [20, 21J developed a large-tO t-angle 1f ftfng­

surface theory applicable to tflt-wing and tilt-rotor V/STOL aircraft 

configurations. An actuator dfsk analysis for an inclined propeller was 

C:eveloped, and was combined with Weissinger lifting-surface theory for 

the wing at arbftrary wing angle of attack. Configurations wi th one, 

two. or four slipstreams were considered, and effects of slipstream 

swirl were included tn all but single slipstream case. Comparisons with 

experimental data showed that the theory predfcts span loading 

reasonably well for small angles of attack and small propeller tilt 

angles. 

With the availability of high speed computers and efficient 

computational techniques, there has been a new trend in the approach to 

the solution of the wing-slfpstream interaction problem. Numerical 

techniques have been employed to solve the linearized potential flow 

equations, full potential equations, and Euler equations. 

Rilk (22] investigated the propeller slipstream-wing interference 

'pr'obTem at 'transon'ic speeds. It was noted tha t a nearly uniform 

Slipstream interacting with a thin wing allows the perturbations to be 

potential although the undisturbed flow within the slipstream is 

rotational. The resulting potential flow (boundary value) problem for 

transonic flow was solved by a finite-difference scheme. In genera I, 

hOlo:ever. _ the assumptions made in this work may not be fully valid; for 

example. the nonunfformity in the slipstream may be large enough to 

cause potential flow assumptions to yield erroneous results. 

Ch~narasekaran and Bartlett (23] modified the Hess panel code to 
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handle the effects of the propeller slipstream. The slfpstream boundary 

was modeled by a system of ring vortices. and the effects of swirl in 

the slipstream was included. A comparison of the results with 

experimenb 1 da ta showed some differences. which were attributed to 

viscous and compressibility effects as well as to uncertainftfes in the 

estimation of the flowfield behind the propeller. 

Harain (24] and Samant et a 1. (25) made assumptions simflar to 

those of Rizk (22) regarding the slipstream. but did not assume that the 

perturbations were small. Instead, the problem was investigated on the 

basis of the full potential flow equations with a rigid boundary fOr the 

slfpstream tube. These results compared reasonably well withavaflable 

experimental data; however, it should be recognized that the advantage 

of using the accurate full potential equation is sacriffced by the 

approximation of irrotational flow. 

Whitfield and Jameson (26] solved the three-dimensional Euler 

equations coupled with the energy equation. The Euler equations had the 

force terms included to simulate the propeller eff~cts. The .viscous 

effects were accounted for, although approximately. by coupling the 

three-dimensional Euler equations with the two-dimensional inverse 

integral boundary-layer equations. In spite of these sophistications. 

the spam/ise lift distribution obtained by this analysis fafled to show 

good agreement consistently wi th the experimental data of Welge and 

Crowder [27]. This method. however. provides detailed information on 

velocity and other flON quantities in the entire computational domain. 

As may be expected. such an effort would require a large computer memory 

and a considerable amount of computing time. For example. the :omputer 

code developed in [26J required 900.000 words of memory and 341 seconds 
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of computing time on Cray-1S computer for a relatively coarse (96x16x16) 

grid. 

As a result of this literature survey, it is apparent that there is 

a need for ~urther research in this field on the following topics: 

(1) Airfoil in nonuniform flow 

(2) Improvements to lifting Hne and lifting surface theories 

(3) Slipstream swirl and distortion effects 

(4) Compressibility and viscous effects 

(5) Swept wing - slfpstream interference 

(6) Interference of slipstream with oth~r parts of the airplane 

The main purpose of the present study is to investigate some' of these 

topics. The following paragarphs describe briefly the work undertaken 

in this study. 

As . n'oted . e'arl'fer~ the nonunfformity of the slipstream is not 

modeled"properly in the classical lifting line theory for wing­

slipstreani interference. This has been improved by using the sectional 

11ft data obtained by either the linearized potential flow method for 

the wing section in an equivalent jet or the solution of two-dimensional 

Euler equations. Whereas the assumption of uniform flow for the 

computation of the sectional lift data fn the classical theory h a 

drastic simplification, employing the Euler equations. although 

providing the necessary rigor, requires considerable computing effort. 

Approximating the actual nonuniform velocity profile in the slipstream 

7 
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by an equivalent uniform jet is a good approximation. However, it is 

found that better approximations are possible under the framework of the 

linearized potential flow theory. Chapter 2 includes a study of thin 

airfoils at small angles of attack in nonuniform parallel str.eams. 

These results are compared with numerical solutions of the Euler 

equations. 

8 

It is assumed in the classical lifting-line theory for wing 

sl1pstrE::am interference that the slipstream is in the form of a uniform 

circular jet, for the computation of downwash due to the trailing 

vortices. The veloci~ distribution in the slipstream is far from being 

uniform. However, this approximation (made to simplify the problem) was 

carried over in the subsequent developments. For example, Kleistein and 

Liu (10J retained this assumption in their modification of the classical 

theory, and so did Rethorst and his coworkers (11-13J in the development, 

of the lifting-surface theories. In the present study, the assurr:ption 

that the velocity in the Slipstream is uniform is dropped, and the 

effects, of ,the nonuniform~ ~i.es ,in, the s11 ps tream on the downwash of a 

large aspect ratio wing are studied. Chapter 3 includes the lifting­

line theory for large aspect ratio wings in slipstreams that can be 

represented as axfsymmetric jets with smooth velocity profiles. 

Spanwise lift and induced drag distributions are computed for two 

typical cases. Resul ts are compared with those obtained by other 

theories. 

The asymptotic method has been a powerful tool in the analysis of 

large aspect ratio wings (28J. The method 1s simple, ard provides a 

better physical insight into the problem. The asymptotic method has 

also been used in an analysis of unswept wing-slipstream interference 
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[15]. M asymptotic method for the analysis of the interference en a 

large aspect ratio swept wing with multi-propeller sl1pstrellm is 

presented in- Chap. '4. It 15 assumed as in (15] that the height of the 

slipstream is of the order of the wing chord. and that its width is of 

the order of the wing span. By employing different stretching 

transformations; three different regions are identified. Expansions are 

introduced in each region by using the ratio of the chord to the span as 

the small parame~r. The de ta 11 s of the nonun fformf ti es f n the 

slipstream enter in the two-dimensional flow past wing sections normal 

to the lifting-line. The spanwfse component of the velocity is shown 

not to affect the sectional 11ft data. For the outer solution. the wing 

planform reduces to a swept lffting-line, and the propeller slipstream 

behind the wing reduces to a thin sheet carrying the sectional momentum 

gained through the propellers. The curvature of this sheet res~l~s in a 

pressure difference across itse 1f. whi ch is represented by a vortex 

sheet. The governing equations are solved by a discretization 

procedure.. . Several. examples. a~e. considered for which experimental 

results are available. Present results are compared with these 

experimental data as well as other numerical results. 

9 
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Chapter 2 

AIRFOIL IN NONUNIFORM PARALLEL STREAMS 

The study of aerodynamic characteristics of lifting surfaces in 

nonuniform flow is of considerable practical interest. Wing sections 

behfnd a propeller experiencing a jet-like velocity profile, and 

taflplane sections of 11 conventional airplane experiencing a wake-l1Ke 

velocity profile are two examples of such problems. These problems are 

cornplex and require sfmpl Hying assumptions. Even if the viscous and 

compressibility effects are neglected, the presence of vorticity in the 

app,.oach1ng stream necessitates the solution of the Euler equations. 

Befng nonlinear, the Euler equations require numerical treatment which 

has been done by several workers [9,29]. 

This nonlinear problem can be simplified considerably by replacing 

the' given' nonuniform stream 'by an equivalent uniform jet. The advantage 

of this approach is the simplification of flow from rotational to 

irrotational, with a finite number of surfaces of' velocity 

discontinuity. Karman gave the basis for a linearized potential flow 

analysis of such problems [30]. Glauert employed this method to solve 

the problem of an airfoil in the presence of a uniform jet (31]. The 

airfoil was replaced with a single vortex, and the airfoil 11ft was 

determined by cOr:1puting the streamline curvature and increment in axial 

veloc1ty. ring and Liu [8] developed a method that is essentially an 

extensfon of Glauert ' s method, which could be used to compute the 

10 
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chordwise pressure distribution and the 11ft of a thin airfoil in a 

uniform jet. 

In this chapter the basis for linearized potential flow ana lysis 

for the problem of an airfoil near a surface of velocity discontinuity 

is reviewed. The method of solution of the integral equation of (8] is 

simplified. The analysis in then extended to cover the case of five 

streams with four surfaces of discontinuity. Next. the problem of an 

airfoil in a smooth velocity profile is treated by the linearized 

potential flow analysis. This problem is also solved by a more 

rigorous. although more expensive. method by solving the Euler equation 

using a roodffied version of the Euler· code (29]. Resul ts obtained for 

two examples by different methods are compared. 

2.1 Fundamental Basis for the Analysis 

The present linearized potential flow analysis· is based on the 

method due to Karman (30] for representing the flow past a body in the 

proximity of a surface of velocitj discontinuity. Consider two parallel .' ,. ... ' 

streams wfth velociti.es Uo and Up the line AB being the undisturbed 

streamline separating the two streams (Ff g. 2.1). Let a body be placed 

in the lower stream. and let (uo' va) and (ul' VI) be the perturbation 

velocity components in the ·lower and the upper streams respectively. If 

the disturbed streamline separating the two streams makes an 

angle ~ with the undisturbed streamline. then 

Assuming uo. Ul' va and VI to be small compared to Uo and UI' 

transferring this condition to the undisturbed surface. and retaining 

11. 
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only the first order terms, this r~lation can be simplified to 

(2.1) 

Also, the static pressure is assumed to be continuous across the 

surface, i.e., 

where PO and Pl are the sta tf c pressures below and above the surface of 

discontinuity. 

reduces to 

Retaining only the first order terms, this relation 

(2.2) 

Equations (2.U and (2.2) are the two necessary conditions that must be 

sa tisfied across the undisturbed surface of di scontinufty, and form the 

basis for the analysis in this chapter. 

Glauert (31] considered an airfoil near a su~face of discontinuity 

(Fig. 2.2). The airfoil was represented by a vortex of strength f • . 
Since the problemis'Unear', it was demonstrated [31] that application 

of Eqs. (2.1) and (2.2) lead to a flow in the upper stream as that due .' 

to a point vortex of strength (r+K)U1/UO at the point P, and a flow in 

the lower stream as that due the vortex r at P together with its image 

of strength K at the point pi, where 

K a r(U~ - U~)/(U~ + Uf) ~ r~ 

A logical extension of this approach is to replace the airfoil by a 

vortex distribution y(x). O<x<c, instead of a single vortex. Each of 

the vortex elements of this distributiony(x)dx forms images as 
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described aDove. The downwash at the airfoil chora can be determined in 

t\;:rms of y(x) and its image strength ~y(x). and the unknown y(x) can 

be determined by satisfying the flow tangency condition on the airfoil 

mean camber line. This problem can be treated as a particular case of a 

more general problem of an airfoil in a jet of finite width, which is 

considered in the following section. 

2.2 Airfoil in a Jet of Finite Width 

A more interesting problem is the flow past an airfoil placed in a 

uniform jet of finite width. Consider the general case of t/ll"ee 

parallel streams of velocities U1' Uo and U-l with two surfaces of 

discontinui~ AA and 8S separated by a distance h as shown in Fig. 2.3. 

Let an airfoil of chord c be pla ~d in the middle stream at a distance a 

below the surface M. In this case, the conditions (2.1) and (2.2) have 

to be satisfied at both the surfaces AA and SS. Ting and Liu 

represented the airfoil by a vortex distribution y(x), O<x<c instead of 

.a. s~ngl.e .v,?rtex [8]. The conditions (2.1) and <.2.2) were. applied 

repeatedly across the surfaces AA and 88, and an infinite set of image 

vortex distributions (Fig. 2.3) were obtained to describe the flow in 

the middle stream. The downwash vex) at a point x on the y-axis due 

to y(x) and all its images is given by 

1 IC (1 at j r l1(x-E;) + v(x-E;) 
vex) .. 2i (x-~) + 1: (Ilv) ~ 2 2 2 2 

o j"'O (x-~) + 4(jh+a) (x-~) + 4(jh+b) . 

where (2.4) 
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. (2.5) 

The linearized flow tangency condition on the airfoil requires 

. VeX) • Uo(a - m(x)] on y·O (2.6) 

where a: is the angle of attack and m(x) is the slope of the airfoil mean 

camber line. Equations (2.3) and (2.6) form an integral equation for 

the unknown y(x). Note that in Eq. (2.3) the first term. is the 

familiar singular term that appears in the classical thin airfofl 

theory; the other terms are not singular. 

The above equation was solved in [8] by employing a rather lengthy 

procedure. As the integrand in Eq. (2.3) is no more singular than the 

one in the classic.! 1 airfoil integral, all the methods of solving the 

classical integral are applicable in the present case also. In 

particular. discretization of y(x) is possible. Lan's method of (32] 

discretizing y(x), and employing a cosine distribution for the vortex. 

and control points is known to produce excellent results for the 

classical airfoil problem. 

·problem. 

Hence, this method is used in the present 

As the first step towards the solution of Eq. (2.3). x and tare 

replaced by a and ~ using the following transformation: 

x • (1 - cosa) c/2 (2. 7a) 

t • (1 - COH) e/2 (2.7b) 

Then. the Eqs. (2.3) and (2.6) together transform into the following: 

( ( )J 1 I'll 1 + ~ (IIv)j [ \.I(eos¢'-eosa) 
Uo a: - m e II !i t(cos~cose)" 2 2 2 o . kmO (cost-eosa) + 16(jh+a) Ic 

'~'~-:C:-_'.:.:: :c,-''",,'' 'e-. ----
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+ v(cost-cos9) + 2Ilv(cos~cose) ]} () 
2 2 2 2 2 2 2 y. dt 

(cos~cose) + 16(jh+b) Ie (cost-cosS) + 16(j+1) h Ie (Z.8) 

Next. the vortex points and the control points are chosen as follows: 

.k • (Zk-1)~2N. k·I.Z ••••• N (Z.9) 

9f • h/N. f·I.Z ••••• N (Z.10) 

Wfth this. Eq. (Z.8) reduces to 

1 N. 
{ (COSOk ~cosaf) UO(cx - m( Sf) J.1if t 

k·1 

• j l1(cost" -COSSi ) v(COS\ -cosei ) . 

+J:O (\.Lv) [ (cos+,,-COS9i)2 + 16(jh+a)2/cZ + (coUk-COS9i)2 + 16(jh+b)2/c2 ' 

(2.11) 

This is a set of linear simultaneous equations for the unknowns Y(~k)' 

k,-I,Z ••••• t~. and can be solved easily. 

coefficients of the airfoil are given by 

C • -(1t/ZN) m 

The lift and pitching moment' 

(2.12) 

(2.13) 

Note that the series with index j in EQ. (Z.ll) converges fast. and 

hence can be truncated. It has been found sufficient to take N-1S and 

obtain good accura,;y for the y(x) distribution. 
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2.3 Airfoil in the Middle of Five Streams 

Consider the problem of an airfoil in the presence of an infinite 

series of jets of the same width h. Let the velocity in the nth jet be 

denoted by Un' --<n<+-. Let an airfoil be located in the middle of the 

principle jet in which the velocity is Uo• If the airfoil is 

represented by a vortex of circulation r. then the flow in any jet can 

be described by an infinite series of equispaced point vortices at the 

centers of each jet. The strength of these image vortices for the nth 

jet is denoted by K(n.s). --<s<+-. In general. the following relation 

is true: 

K(n.n) • O. n I- 0 . (2.14) 

K(O.O) • r (2.15) 

By applying conditions (2.1) and (2.2) at the surface of discontinuity 

between the nth and (n+1)th jets. the following recurrence relation can 

be obtained for the strength of vortices: 

. P~+i K(n+l.n+s+l) = K(ri.n+s+l)" -" ~n+1 K(n.n-s). 

where 

ex • n 

P • I(1-a2) n n 

. (2.16) 

(2.17a) 

(2.17b) 

Equation (2.16) can be solved in principle; but as pointed out by 

Glauert the solution is extremely complex [31]. If. however. only five 

streams are considered as shown in Fig. 2.4. then the problem is 

simplified to some extent. When the conditions (2.1) and {2.l) are 
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applied to the four surfaces of discontinuity, four relations similar to 

Eq. (2.16) are obtained wfth n assuming the values 2,1,0 and -1 only. 

Denoting K(Z,s), K(l,s), K(O,s), K(-l,s) and K(-2,s) by Is' JS1 r
s

' Ks 

and Ls respectively, Eq. (2.16) can be written for the four different 

va'/ues of n as follows: 

where 

f3 K -L -ex L -1 5-1 s-l -1 -5-2 

I - 0 5 

L - 0 5 

for 5) Z, 

for s < -z 

(Z.lSa) 

(Z.lSb) 

(Z.18c) 

(2.1Sb) 

The solution of the set of Eq. (Z.18) can be obtained by substituting 

suc·cesshely· POSitfvgoand'negative values for s. However, with some 

algebraic manipulations, it is possible to obtain the following 

recurrence relations for rs: 

s ) Z, (2.19a) 

r - - cr r - cr r - cr..cr r s 0 -l-s -1 -3-s u -1 s+2' s < -2, (2.19b) 

Some of the values of rs computed using these relations are given 

below: 
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rJ • (~~ - ~~>r 

r_3 • (~'1 - cz_1 ~>r 
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\ 
'. 

r4 • (~~ - ~~~ - cz1cz_1fo>r • r_4• etc. 
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In general rn • anr. --<n<- where an's are constants that depend only on 

UZ ••••• u-Z• Now. following the procedure adopted in the previous 

section the airfoil is replaced by a vortex distribution yex). Q<x<c 

instead of a single vortex. Then the images will also be vortex 

distributions an r(x). Note tha t it is not necessary to place the 

airfofl in the middle of the central jet. The image system for the 

primary stream. when the airfoil is offset from the centerline is shown 

in Fig. 2.4. The downwash induced by the distribution r(x) and all its 

images. at a point x on the y-axis is given by 

1 c 1 - a2n+1 (x-E;) 

vex) ."2"i fo {1"X=U + n .. ~- (x_~)2 + 4(nh+a)2 

.. ' 

(2.20) 

This is the required expression for the downwash at a station x on the 

y-axis. The unkno~1O r(x) in Eq. (2.20) is determined by employing the 

flow tangency condition at the mean camber line. 

As the first step in the solution, x and 1; are transformed into e 

and ~ respectively as in Eq. (2.7). 

transformed into the following: 

Wi th these. Eq. (2.20) is 

" 
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(2.21) 

On dfscretizing y(~) and choosing \ and Si as the vortex points and 

control points respectively as in Eqs. (2.9) and (2.10). the integral in 

Eq. (2.21) can be replaced by a finite sum 

1 ~ ( 1 .. !2n+1CCOS\-COsSi) 

VC6i ) - N k-l (COS\-COS01) + n:-CD (coUk-COSSi)Z + 16(nh+a)2/c2 

.. a2n (cos~k -cos Sf) 
+ t 2 2 2 2 } y( \) sin~k' i .. 1.2 ..... N (2.22) 

n"-- (cos~k-COSSi) + 16n h Ic 
n~O 

The linearized flow tangency boundary condition on the y-axis at the , 
control points requires 

f • 1.2 ••••• N (2.23) 

T~e. resul,ting set o,f simul~~eous equations can be solved for the 

unknowns Y(~k)' k .. 1.2 ••••• N. The 11ft and, the pitching moment of the 

airfoil can be computed using the relations (2.12) and (2.13) 

respectively. 

Although the summation in Eq. (2.22) goes from -CD to + CD. it is 

sufficient to take only a few terms. This 15 because the image vortices 

at greater distances from the airfoil are weaker and contribute very 

little to the downwash. It is found tha t abou t 15 terms in the 

summation are sufficient to provide better than 0.1 percent accurate 

resul ts. _ 
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The two problems considered earlier, namely an afrfo11 near a 

surface of velocity discontinuity (Sec. 2.1), and an airfoil in a jet of 

finite width (Sec. 2.2). can be obtained as special cases of the present 

problem. For example. if U2 • U1 and Uo • U-1 • U-2' then the problem 

considered in Sec. 2.1 is obtained, whereas if U2 • U1 and U-2· U-1 • 

then the problem considered in Sec. 2.2 is obtained. Thus a single 

computer program (meant to solve the present problem) can be used to 

obtain the results for all the cases con'.idered so far. 

2.4 Airfoil in a Stream of Smooth Velocity Profile 

So far.the problem of an aitofl in a stream with a finite number 

(one, two, or four) of surfaces of velocity discontinuity was 

considered. This analysis can in principle be extended to the case of 

an undisturbed stream with a large number of velocity discontinuities. 

The solution of this problem would be, as pointed out earl ~er. rather 

complex. However. if the changes in the velocities in adjacent small­

width streams are small, then an elegant solution can be Obtained. This 

approach' -can. be 'used to' solve for the pressure distribution on an 

airfoil in a stream of smooth nonuniform profile. 

Consider, as in the previous section. a large number of jets each 

of the same width h. the uniform velocity in the' nth jet being denoted 

by Un. Let the airfoil be placed on the axis of a jet in which the 

velocity is Uo (Fig. 2.5). and let the airfo11 be represented by a 

vortex r • The discontinuity surfaces cause image vortices to be 

formed. The strength of these image vortices is governed by Eq. 

(2.16). It is assumed that the variation of velocity in adjacent jets 

is small. 1.e •• (Un+1 - Un) • un « Un. for all n. In this case the 
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expression for an reduces to the following simple form: 

for u «U n n 

26 

(2.24) 

With' an '«1. a first order solution can be obtained for Eq. (2.16). 

The resulting image system for the primary jet is found to be following: 

• r 

r2n • 0 

• - a r , n 

at y-O 

at y • (2n+ 1) h n) 0 

at y • (2n+l)h n < -1 

(2.25a) 

(2.25b) 

(2.25c) 

(2.25d) 

If the airfoil is represented by a vortex distribution r(x) instead of a 

single vortex r. then the image system would be very simflar (Fig. 

2.5). The downwash at a point x on the airfoil due to y(x) and all its 

images is given by 

1 c '1 CD an (x-!;) 
vex) - 2,; f (1'X'=U + E 2 2 2 o n .. O (x-!;) + (2n+1) h 

-CD 

- E (2.26) 
n--1 

Note that an's are defined in Eq. (2.24). For a given (thin) airfoil at 

a (small) angle of attack, the slope of the mean camber line is knOl.,n, 

and as in the previous section, the unknown vortex distribution rex) is 

determined by satisfying the linearized flow tangency boundary condition 
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on the y-axfs. Note that in deriving Eq. (2.26), it was assumed that 

the differences in velocities in adjacent jets are small. 

Analysis of an airfoil in an infinite series of jets is of little 

practical interest. However, when the differences in velocities in 

adjacent small-width jets are small, the velocity profile may be 

considered as an approximation to a nonuniform smooth velocity 

profile. It is possible to formally extend the present analysis to the 

case of an undisturbed stream of a smooth velocity profile by reducing 

the width (h) and correspondingly increasing the number of jets. For 

small h (ady), u • (dU/dy)dy, the expression for an reduces to 

1 dU 
a • - - - dy n U dy (2.27) 

where U and dU/dy are measured at (Zn-l)h/2 ,. ndy - dy/Z. The corres­

ponding image is located at (2n-l)h • 2ndy - dYe In the limit as h 

tends to zero. the summations in the integrand in Eq. (2.26) are 

replaced by the corresponding integrals. With this. the downwash Eq. 

{2.26) can 'be "rewri tten ·as . " . 

+ f 0 1.'@ (x-f;) dY } y( t) dE; 
_CD U ely (x_;)2 + 4l (Z.28) 

If the given velocity profile U(y) is even in y, and the airfoil is 

placed on the line of symmetry, then Eq. (2.26) reduces to the following 

simpler form: 

1 c 1 CD 1 'U 
v (x) ,. = f {-r::-::7'I'" - 2 (x- -:) J ':'T £.. ely } y (t) dE; 

,"It 0 \X-~I '7 0 u dy (x-t)2 + 4/ 
(2.29) 
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It can be shown that, for U and dU/dy of the order of unity, the 

linearized flow tangency boundary condition on y=O is 

vex) = UO(a- m(x)J (2.30) 

where Uo = U(y=O). 

For a given smooth velocity profile U(y) with U(y) ~ 0, -ao<y<"', the 

integrals within the brackets in Eq. (2.28) or (2.29) can be evaluated 

using any standard technique and the unknown y(x) can be determined 

following the method described in Sec. 2.2. 

2.5 Results and Discussion 

The lffting characteristics of a flat plat airfoil in nonuniform 

flow are determined using the potential flow approach of Sec. 2.4. 

Also, the given nonuniform velocit¥ profiles are replaced by equivalent 

stepped profiles, and the methods of Secs. 2.2 and 2.3 are applied for 

the computation of the airfoil lift. T:1ese results are compared with 

the numerical solution of the Euler equations. 
. .. .. . .. . . -. . ~.. .. .' . . 

The lift of a cambered Joukowski airfoil in a nonuniform stream was 

studied by Chow. et al. (9] ana tlie results are available in (15]. In 

this example the Yelocit¥ distribution in the undisturbed stream was 

assumed to have the fol1owing Gaussian profile: 

U(y)/U = 1 + a exp (_(y/d)2] 
CD • 

(2.31) 

where "a" is the maximum excess velocity nondimensionalized 

using U",. and "d" is "a" measure of the spread of the nonuniformity. 

The value of "d" was chosen as e/1.81 and the value of "a" was varied 

from zero (uniform flow) to 1.0. The airfoil was placed on the 
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centerline of this nonuniform stream. As the present method is based on 

linear analysis, the 11ft-curve slope computed by this method 'does not 

depend on the airfoil camber. Hence for the present potential flow 

study, the airfoil is replaced by a flat plate. 

Figure 2.6 shows the l1ft-curve-slope of a flat plate 

(nondimensionalized using the corresponding value in uniform flow) in 

the nonuniform stream plotted against the parameter "a". The potential 

solution obtained for the flat plate in (1) equivalent uniform jet (Sec. 

2.2), (2) equivalent modified jet (Sec. 2.3), and (3) the given Gaussian 

velocity jet are also shown in the figure. Also shown in the figure are 

the results obtained from [lsl. ,One of the observations from this 

figure is that for a given value of the parameter NaN, the potential 

solution with the uniform jet approximation gives the smallest value of 

c..t whereas the given nonuniform jet gives the largest· value. The 
ex 

Euler soludon gives a value in between these, and it appears that the 

modified jet approximation gives results closer to the Euler solution. 

The available Euler code [29] for .uniform flow past an airfoil 

section was modified so that it could h·lndle a nonuniform approach 

stream. Using this version of the code, the chordwfse pressure 

distribution and the lift of a NACA 0012 airfoil in a jet of Gaussian 

velocity profile were computed. The value of the parameter "d" was 

chosen as O.Sc and the value of Naif was varied. As in the previous 

example, potentia; solutions are obtained for a flat plate in (1) 

equivalent uniform jet, (2) equivalent modified jet, and (3). the given 

Gaussian velocity jet. All these results are shown in Fig. 2.7. The 

potential solutions display a behavior observed in the previous 

example. However, the lift-curve-slopes ·~"'tainecl by the Euler equation 
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are comparatively smaller than in the previous example. 

The chordwise pressure distribution (6Cp) on the flat plate 

(obtained· by the potential solution) and on the NACA 001Z airfoil 

(obtained by the Euler solution) at 5-degrees angle of attack are 

compared in Fig. Z.8. The nonuniform velocity profile is assumed to be 

Gaussian with a • 0.5 and d/c • 0.5. It may be observed from this 

figure that there is a reasonably good agreement between the two 

reSUlts. 

As the last example.· lifting characteristics of a flat plate 

airfoil in a jet with a modified Gaussian profile are studied. The 

nonuniform velocity profile is assumed to be the following: 

U(y)/U. • 1 + a1 exp {-(lld~)} 

- aZ (exp{-(Y-d3)Zld~} + exp {-(Y+d3}Zld~}J (Z.3Z) 

with d1'c • 0.6. dZ/c • 0.Z5. d3/c • 0.155 and aZ/al D 0.7. The factor 

a1 serves as the variable • 

. ~ This .velQcity p.rofi.1e; sketched in Fig. 2.9. is typical of the 

axial velocity distribution generally observed behind actual 

propellers. The maximum veloci ty occurs not on the centerline but 

slightly away from it on either side. It is obvious that the 

approximation of a uniform jet would not be meaningful in the present 

case. Hence, this approximation is not considered. ~owever, potential 

solutions were obtained for a flat plate in an equivalpnt modified jet 

and in the given nonuniform profile. The resul ts are shown in Fig. 2.9 

along with the Euler solution for the NACA 0012 airfoil. It is observed 

from this figure that in this case the potential solution predicts 

. _.~~. ___ ... ____ ..... __ " . .....J.. ___ : •• __ ~_ •• ~ -.~ .•• -.'. 
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values which are slightly smaller than those obtained by the Euler 

, solutions. 

An interesting observation can be made by comparing the results in 

Figs. 2.7 and 2.9. For the example shown in Fig. 2.7. the Euler 

solution gave values of c.l smaller than the corresponding potential 
IX 

solution. but this trend was reversed in the results for the example 

shown in Fig. 2.9. It was shown by the solution of Euler equations for 

an airfoil in nonuniform flow (9J. that the stagnation !:treamline comes 

from a region slightly below the airfoil location. This implies that in 

the example considered in Fig. 2.7. the airfoil (placed on the 

centerline of a jet-like Gaussian velocity profile) would have a 

stagna ti on streamli ne wi th a total pressure s11 ghtly lower than the one 

corresponding to the centerline. Also. this streamline comes from a 

region having positive vorticity. In contrast. for the example 

considered in Fig. 2.9. the airfoil (placed on the centerline of a 

modified Gaussian profile) would experience a stagnation streamline 

having slightly higher total pressure than the centerline streamline. 

. and' comi'ng f~orri a region of ~egative vorticity. These differen~es might 

have contributed to the reversal of the trends observed in Figs. 2.7 and 

2.9. 

Some differences are observed between the Euler solution and the 

potential solution. Among several reasons for this. the important one 

is that the potential solution does not account for the interaction of 

the vorticity in the undfsturbedstream with the airfoil. The effect of· 

the airfoil thickness which is neglected in the potential solution could 

have con tri bu ted to the discrepancy • Yet another factor is the 

approxima ti ons in the numerica 1 sol uti ons of the Euler equations. For 
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example. in the compu'ter codes (9.29] the perturbations are assumed to 

be zero on the compu ta ti ona 1 bounda ry • Considering these factors. the 

differences between the potential and the Euler solutions do not seem 

unreasonable. 

If the undisturbed stream has a smooth nonuniform velocity profile 

and an airfoil is. placed in it. then the pressure distribution and the 

lift of the airfoil are to be determined by solving the Euler 

equa tions. Being nonlinear these equations are not amenable- to 

analytical study and require numerical treatnent. When a small 

perturbation approximation is introduced. the Euler equations or 

equivalently the vorticity transport equation reduces to the following 

linear partial differential equation (written in terms of perturbation 

velocity components): 

(2.33) 

where U = U(y) is the undisturbed nonuniform velocity, and u(x,y) and 

v(x,y) are the perturbation velocity components assumed to be small ... . . 

compared to U(y). Subscripts x and y represent differentiation with 

respect to x and y, respectively. Since U(y) is assumed to be known, 

the above equation is a linear partial differential equation with 

variable coefficients. This equation together with the corresponding 

continuity equation has to be solved to determine the airfoil lift. The 

lfnearized potential flow solution obtained earlier obv,iously satisfies 

the equation (uy - vx) .. O. Hence, it is evident that this solution 

would also be a solution of the linerized Euler equation only if Uyy is 

small. 

The concept of allowing the perturbation velocities to be potential 
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a 1 though the approach stream is rota ti ona 1 is not new. Rizk (20) 

employed this concept when studying the effects of a slipstream having 

nonuniform axial and rotational components of veloci ty on a wing. It 

. was assumed that· the undisturbed flow in the slipstream was nearly 

uniform and that the disturbances due to the wing were small. This lead 

to a result where the perturbation velocities could be described by a 

velocity potential. This approach. although approximate. allows 

'obtaining basic information about the interaction problem while avoiding 

the need to solve the Euler equations. One of the assumptions of the 

classical lifting-line theory for wings in slipstreams (and some of the 

related works) is that the propeller slipstream is in the form of a 

uniform jet. This is a drastic simplification. Although the present 

analysis does not bring out the interaction of the vorticity in the 

stream with the airfoil. it is hoped that it would provide a much better 

approximation than the earlier ones to the actual problem. 
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Chapter 3 

A·MODIFIED LIFTING LINE T~EORY FOR WING-SLIPSTREAM INTERFERENCE 

Consider the problem of determining the lift distribution on a 

large aspect ratio wing as influenced by a single centrally located 

propeller slipstream. The classical theory (7] solves this problem 

making the following three assumptions in addition to those of the 

classical lifting line theory applied to large aspect ratio wings: 

(1) The propellerslfpstream 15 confined within a stream tube of 

circular cross section in which the velocity is uniform (UJ). 

(2) The relation between the sectional 1 ift and angle of attack is 

the same as that of an airfofl in uniform flow (with 

velocities UJ and U. for wing sections inside and outside the 

slipstream respectively). 
0' 

(3) while computing the downwash. the stream tube representing the 

slipstream is assumed to extend from upstream infinity to 

downstream infinity. 

Figure 3.1 illustrates these assumptions in some detail. Although 

the assumption that the propeller slfostream is a stream tube of 

circular cross section is reasonable. the assumption of uniform velocity 

within the tube is not realistic. The slipstream behind a propeller ~as 

neither a uniform velocity distribution. nor a velocity discontinuity. 

The second assumption concerning the lift-curve-slope of the wing 

sections washed by the propeller stream is also not realistic. 

r. 

I 
f 
f 

I 



., .... ; .. 
" 

". \ " 

~'r . 

I 

", ". ~ 

-'-r 
0--

R ,-
I 

--.,.;,----

U(X) ... 

U
J .... 

............. ------ -----.. -
h 

-~--.. \ . . '" , "~ '. 
. ~ '\." -._", .' ..... '. ------- .'.". '" .- .~ 

. ~- ----. . .... v~ ~. • , . -..:...-.~.. . .4:! '. ~,l1lttr~.~~ I 
... '--- .. _ .=:S::S::~iiQ;5IA'7i&:tL; .. -~.---

,., 

dr 
..L. 

°co 
\ ~ 

-r-l 

c==::-

r-

A .A Section AA 

-- ~ B B 
---

UJ 
I f-

\' -' f--

I.' 
e====- ! 

, ,. 
I ~~ ! . 
!' .-, 

Section BB I . 'flj 

Fig. 3.1 The SChCllI<ltic of the classical analysis. -t;'. 

\.' W 
\0 

~;l:l~~"'~"""'-""" ----.---..--"...-.. ~,.--~.~ 

\ 

""" 
'-: 



/, 

I / 
-4 

" , 
J 
~ 
,1 
i 
i 

,~,/' .' 

~, 

/ 'j , " 

//, 
/~: I 

_,/ II 
, ~: ; 

/ I 

-!'~--'//'-
--/ 

,4 ! 

. i 
I ' 

I 
I 

/ . 1 /' . 
I, 

" 

J :~, 
/1 

:. I 

40 

These rather drastic simplifications of the classical theory 

prompted several workers to study the problem in detail. Rethors~ (11] 

studied thfsproblem 'and developed a lifting-surface theory. However. 

it was assumed that the propeller slipstream was in the form of a 

uniform circular jet. Kleinstefn and Liu [10] scrutinized the 

assumptions of the classical theory and improved on one of the 

assumptions. The lift-curve slope of wing sections in the slipstream 

was computed taking into account the finite width of the slipstream. 

However. the assumption that the slipstre3m was in the form of a unifcrm 

jet was retained for the computa ti ons of the downwash. These resul ts 

brought out the effects of the assumption (3) above. 

In the present analysis the 31ipstream is assumed to be in the form 

of an axisymmetric jet with a smooth velocity profile and without a 

distinct boundary. The relation between the sectional 11ft and the 

angle of attack is obtained from a local two-dimensional analysis. For 

the purpose of computing the downwash due to the trailing vortices. the 

slipstream fsassumed' to extend from far upstream to, far downstream. 

With these assumptions, the governing equations are derived for the lift 

distribution on a wing in slipstream. 

3.1 Governing Equations- for a Wing in a Single Slipstream 

The classical lifting-line theory given by Ferrari [7] for the wing 

slipstream interaction problem is an extension of Prandtl's lifting-line 

theory for large aspect ratio wings. The equation governing the 

spanwise distribution of circulation r(y) is 

r(y) II (112) U c(y) c.l (y) [a(y) - w(y)/U] ( 3.1) 
a 
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. where c(y) is the wing chord. c..t (y) is the lift curve slope and aCy) is 
. « 

the angle of attack; also U=UJ for lyl<R. i.e •• for wing sections inside 

the slipstream tube and U=U. for /yl>R. i.e •• for wing sections outside. 

R bef ng the the s11 pstream tube radi us. The downwash w(y) is given by 

the relatfon 

s 
w(y) • h {J 

. -s 

-R 
1r~ 111 -ez (f 
y TJ -s 

R 
[ dr(;, } 
-R (y-R IT» 

+ [s) dr( TJ) + £. 
R '{y'=;i'f .I. 

. 1 {Is dr( TJ) [R dr( TJ) 
" • 4i -s (Y-TJ) - £2 -R (Y-TJ) 

IYI<R (3.2a) 

-R s 
£. (f + f) dr( TJ) } 

.I. -s R (y_RZ / TJ) 

IYI>R (3.Zb) 

It may be 

,recalled that in deriving these relations. the three assumptfons 

mentioned earlier have been made. Further. when the slipstream is 

absent. i.e.. UJ .. UID ' the factors EJ. and £z become zero. and Eqs. 

(3.1) and (3.Z) reduce to those of Prandtl's lifting-line theory. 
. , . 

, • If" the' j~t representing the slipstream has a small excess velocity. 

i.e •• UJ-U ... u«U ... then terms of the order of (u/U
ID

) in '1 and £2 

may be neglected. In this case £1" u/UIDand £2" 0; as a result. Eqs. 

(3.2a) and (3.2b) are simplified to 

wry) 1 {f-S 
dr( TJ) + ~ JR dr( TJ) } 

.. 4i -s (Y-TJ) U. -R (y-R2/TJ) 
(3.3a) 

.. 1 {/ dr( n) 
-R s dr( TJ) } 

" 4i (Y-TJ) -U- (J + f ) 2 • lyl>R. (3.3b) 
-s CD -s R (y-R / n) 

Now consider a high aspect ratio wing with the propeller slipstream 

going past it symmetrically, as shown in Fi g. 3.2. Let the und is turbed 
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Fig. 3.2 The schematic of the present analysis. 
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velocity distribution be given by U(y,z) • U(r) = U [1+F(r2)J where r2 • .. 
y2 + z2. Outside the slipstream (i.e., for r > R), F(r2) • 0 an'd' U(y,z) 

• U ... 

The flowfield inside the slipstream tube is rotational. 

Nevertheless, it is assumed that the perturbation velocity field due to 

the wing is irrotational. This concept of potential disturbances in a 

rotational background flow was employed by Ri.~k while considering the 

wing-slipstream interaction problem [22J. The effects of the swirl and 

compressibility were includ~d and the resulting equations were solved by 

a numerical technique. 

Under the' assumption that the disturbances are potential, the 

lifting-line theory is applicable and the wing i5 replaced by a lifting 

line. The circulation r(y) at a station y on the lifting line is given 

by 

r(y) = (1/2) U(y,O) c(y) c! (y) (aCy) - w(y)/U(y,O)J (3.4) 
a 

, .. 
The lift curve slope c! (y) is determined by considering the 

a 
airfoil section in a stream of uniform veloci~y U~ for sections outside 

the slipstream, and by considering the airfoil section in a stream 

having a nonuniform velocity profile at the corresponding spanwise 

station for wing sections within the slipstream. In tl.e present case, 

the wing section at the spanwise station y = Y1 would be in a stre~m of 

velocity U(Y=Yl' z). The lift curve slope for the wing section in this 

nonuniform stream is obtained by a two-dimensional analysis. This can 

be accomplished by solving the Euler equa tions, which require 

considerable computational efforts. A simpler, although approximate, 

method is the linearized potential flow method described in Chap. 2. 
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For the sake of consistency as well as simplicity the linearized 

potential flow results are used here. 

Before proceeding to determine the downwash wry) in the present 

case. it is useful to recall the resul ts in the classical setting. where 

the velocity within the slipstream tube (a circular section of radius R) 

is constant. Consider a vortex (representing the wing trailing vortex) 

of strength y located at a distance '1'1 from the center 0 of the circle 

representing the slipstream tube (Fig. 3.3). First. consider the case 

where 1'1'1 I < R. By applying the interface conditions of continui ty of 

pressure and streamline slope across the surface of the tube it can be 

shown (6]. that the f1()1 within the circle is described by a vortex of 

strength y at '1'1 together with its :-efracted image of strength (~y) at 

the inverse point R2/TJ; whereas the flow outside the Circle is 

described by a vortex of strength tl-Ezh at '1'1 along with an addit~onal 

vortex of strength (11 ~y) at the center of the cir~le. Similarly, for 

the case where the vortex is loca ted outside the sl i pstream boundary 

(i.e •• Illi > Rl. it can be shown that the flow within the circle is 

described by a vortex of strength Cl - Ezh located at '1'1. and the. flow 

o~tSid~ 'the ci~cie is' ~iesc~ib~~ bY' t~~ vortex y along with its refracted 

image of strength (tl y) located at the inverse point R2/T1. and another 

VO,rtex of strength (tly) at the center of the circle. These results are 

. illustrated in Fig. 3.3. 

Now consider a propeller stream with a smooth axisyrrmetric velocity 

profile. For the purpose of analysis let this stream be divided into a 

large number of stepped. concentri c annular cylinders of width t:r (Fig. 

3.4) • Let the axial velocities in the adjacent annular jets with the 

interface at a radial station r be U and U + u. Consider a vortex of 
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strength y located at Q (OQ .. TI). It is easy to see that the 

difference u in the veloci ties of adjacent jets at the radius r resul ts 

in an image system as described in the previous paragraph. First 

consider the case where / Tli < r. It can be shown that the flow in the 

region /yl < r is described by the vortex at Q with its refracted image 

of strength (t1y) at the inverse point T (OT • r2/Tl ), whereas the flow 

in /y/ > r is described by the only vortex at Q. Next, consider the 

case where /TII < r. It can be shown that the flow in the region IYI < 

r is described by the vortex at Q along with its refracted image of 

strength (-£l Y) at the inverse point T. These results are illustrated 

in Fig. 3.4 • 

. The downwash at the spanwise station P (OP .. y) due to the vortex 

of strength y located at Q (OQ .. TI) and its image (whenever 

applicable) resulting from the surface of velocity discontinuity at the 

radius r is given by 

£ . 
A. ( ) _ L {1 + l} 
LJ.W Y,Tl - - 41t Y-TJ 2 

y-r ITl 
Iyl<r (3.Sa) 

• .- or.:' 

'" ~ h {Y:TJ} /y/>r (3.Sb) 

• 
for the region /Tll<r, and 

t:;.w(Y,TJ) .. - fi fy:T)} /yl<r (3 .6a) 

/yl>r (3.6b) 

for the region IT)/>r. In the limit as l:i.r tends to z!!ro • 
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u • U(r + fr) - U(r) • (dU/dr):.dr • U' dr 

so that £1 • -u/U· -(U'/U) dr -(J.7) 

Letting r to vary from zero to R the following expression 15 obtained 

for the downwash at y due to a trailing vortex of strength y located 

at " : 

1 /,,1· R U' dr 
~(y .,,) • - h {y::ii + (f - 1/ /] u 2 } 

. 0 Y y-r I" 
/Y/>/ TIl (J.8a) 

1 'yl R U' dr . · -h {y-TI + [J - I, /] U 2
/

}' 
. 0" y-r TI 

(J .Sb) 

If r(y) 15 the unknown circulation distribution along the lifting line. 

then y • -(di"( n)/dTl) d". Using this in Eqs. (J.Sa) and (3.8b), and 

integrating from tip to tip the following expression is obtained for the 

downwash w(y) at the spanwise station y due to the trailing v.ortices 

resulting from the distribution r(y) as influenced by the axisymmetric 

jet: 

. . . . ·s . 
w(y) :a f flw(y.,,) d" 

-$ 

+ /..y {(flnl - l, I)~' d2 } dr(TJ)] 
o y y-r I" 

This equation along with the relation 

r(y) • (1/2) U(y.O) c(y) c 1. (y) [aCyl - w(y)/(U(y.O)] 
C% 

' .. ",. 

(3.9) 

(3.10) 
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form the required integro-differentia 1 equation for the unknown r(y). 

For a given wing. cry) and aCyl are known; in addition. the velocity 

distribution in the propeller stream U • U(y,z) is assumed known. The 

sectional lift-curve slope can be determined by the method described in 

Chap. 2. With these informations. Eqs. (3.9) and (3.10) can be solved 

for the unknown r(y). It may be observed at this stage that the effect 

of the nonuniformity in the slipstream is twofold; it modifies the 

sectional lift-curve slope as well as the downwash distribution. 

3.2 Method of Solution 

A simple method of solving the Eqs. (3.9) and (3.10) for the 

unknown spanwise distribution r(y} is to assume it to be piecewise 

constant. This distribution resul ts in a fini te number (say N) of 

trailing vortices. The contribution to downwash from each of these 

trailing vortices can be computed easily using EQ. (3.81. A summation 

of these individual contributions over all the N trailing vortices gives 

the required downwash w. 

First. it is convenient to transform y and" into angular 

coordinates e and ~ by using the following transformations: 

y • s cose (3.lla) 

TJ • S cos~ (3.llb) 

Next. the trail ing vortices are- placed at the following N spanwi se 

locations: 

~k = (2k-l) 1t/2N ka 1,2 ••••• N . (3.l2a) 
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The strength of the traf1ing vortices at these stations are denoted 

by y(k) 4ns U •• The control points are chosen at the following N 

spanwfse locations: 

i·l.2 ••••• N (J.12b) 

If r f denote the circulation at the spanwfse station Yi = s COS9p then 

i 
r(i) • 41tS U. t y{k). i·l,2 ••••• N 

k·1 
(J.13) 

This expression is used in the dfscretized version of Eq. (3.10) which 

is rewrftten as 

f 
4ns U. t y(k}· (lIZ) U(i) c(i) c

1 
(i) (a(i) - w(i)/U(i)J. 

ka 1 a 

f-1.2 ••••• N (3.14) 

where ueo. c(o. c
1

' (1) and wei) are the velocity in the slipstream. 
a 

the wing chord. the lift curve slope and the downwash at the' spanwise 

station Yi = s cosai , respectively. The computation of downwash wei) is 

simpl ified considerably as there are only a fini te number un of 

'traf1ing vortices.' .. The 'co~tribut1on to downwash from each of the 

trailing vortices is given by Eq. (J.S). Hence. the downwa5h wl(f) at 

the control point i due to the N trailing vortices (together with their 

images) from one side of the wing centerline 7S obtained by summing the 

individual contributions. The result is as follows: 

(3.l5a) 
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This equation can be written symbolically as 

where 

.. . . ~ .. 

N 
w1(i) • U. t G(f,k;U) 

k-l 

U' d(rls) 
U cosef - (rls)2/coS¢k • 

1 Icos ed 
·COS9i-COS9k

+ (/
0 

. (3.1Sb) 

(3.16a) 

(3.16b) 

There is a similar contribution to clownwash from the trail ing vortices 

on the other half of the wing. so that the total downwash wei) at the 

control point i is given by 

N 
w(i} .. U 1: j(k) (G(l,k;U) - GC1.-k;U)], 

CD kill 

i .. 1,2 ••••• N (3.17) 

5,1 
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Upon using this expressIon for w(i) in Eq. (l.14) the following set of 

simultaneous equations fs obtained for the unknown y(k). k=1.2 ••••• N: 

f 
1: y(k) [1+,,(1) {G(f.k;U) -G(i.-kiU>}] 

k-1 

N 
+ 1: y(Jd,,(1) {GCf.kiU) - GCf.-kiU)} - ,,(f) a(1) U(1)/Ij. 

"-1+1 

where ,,(0 • c(f) c.t (0 18TtS 
cz 

(3.18) 

(3.19) 

For a given veloci ty distribution U(r). the integral s fn the function 

G(i.kiU) can be evaluated u.iing any standard integration method. The 

11ft curve slope c.t (1) of the wing section is computed making a two-
ex 

dimensional analysis for the nonuniform flow past the wing section at 

the spanwise station s COS9i • The linearized potential flow method 

described in Chap. 2 is used for this purpose. With this information 

all the coefficients in the set of simultaneous equations (3.18) can be 

determined and the equations can be solved for the unknowns .. y(k), 

k=l,Z, •••• N. Finally the cfrCl,llation r(i),lift, and induced drag 

distribution, and other quantities are computed. 

3.l Results and Discussion 

As the first example, a rectangular wing of aspect ratio 6.0 is 

chosen. The velocity distribution in the slipstream is assumed to have 

the following Gaussian profile: 

(l.20) 

with a = 0.5 and dIs = 0.3. The spanwise lift distribution on the wing 
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with this slipstream is shown in Fig. 3.5, along with the lift 

distribution for the wing in the uniform flow for comparison. The 

figure includes yet another lift distribution on the wing with an 

equivalent jet of uniform velocity. The velocity and the diameter of 

this equivalent uniform jet are obtained by equating the rr.ass and 

momentum in the given slipstream to the corresponding values 'in the 

uniform jet. The wing in the given nonuniform sl ipstream analyzed by 

the present method produces aCL .. 0.58 whereas for the eqiJiva lent 

uniform jet the CL II 0.57. Even though the two total lift coefficients 

are nearly the same. the lift distributions are very different. The 

present method does bring out the effect of nonuniformity of the 

velocity distribution in the slipstream on the lift distribution. The 

induced drag distribution illustrated in Fig. 3.6 also demonstrates this 

fact. 

As the second example, a trapezoidal wing of aspect ratio 6.67 and 

taper ratio 0.5 is chosen. The velocity distribution in the slipstream. 

is. assumed as, . ~..' .. 

U(y.z) = U
CD 

[l+a l exp{- cl + z2)/d~} 

-a2 exp{- (y2 + z2)/d~}] (3.21) 

In this modified Gaussian profile. the maximum velocity occurs not on 

the axis but away from it. With O<a2<l+al' t.his dlstribution is a 

better approximation to the velocity distribution in the slipstream of a 

propeller. In the example chosen al = 0.6. a2 = 0.75. dl/S = 0.3, and 

d2/s = 0.05. The spanwise lift distribution on the tapered wing with 

this slipstream is shown in Fig. 3.7. This figure clearly shows the 
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Fig. 3.5 Spanwise lift distribution on a rectangular wing 
of AR = 6.0 at ex = 0.1 radian. 
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Fig. 3.6 Spanwise induced drag distribution on a rectangular 
wing of AR= 6.0 at ex :: 0.1 radian. 
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effect of the nonunfformfty on the lift distribution. Figure 3.8 

illustrates th~ spanwise induced drag distribution on the wing. 
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Fig. 3.8 Spanw;se induced drag distl'ibution on a tapered wing 
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Chapter 4 

AN ASYMPTOTIC THEORY FOR THE INTERFERENCE 
OF SWEPT WINGS ANO MULTIPLE SLIPSTREAMS 

59 

.0 

The asymptotic method was employed by Van Dyke [28] for the 

analysis of large aspect ratio wings in uniform flow. This method was 

subsequently appl ied to wings wi th jet flaps by Kerney [33] and Takuda 

[34]. Ting. et al. [15] applied this method to study the interference 

of unswept wings and multiple propeller slipstreams. As noted earlier. 

the asymptotic method is simple and provides physical insight into the 

problem. The present chapter deals with an extension of Ting's method 

to swept wings. i.e., the application of the asymptotic method to the 

problem of interference of large aspect ratio swept wings and mul tiple 

propeller slipstreams. 

4.1 Mathematical Formulation 

, Consider 'a large 'aspect ratio 'sw'ept wing in a uniform flow '(Fig • 

4.1). Propellers placed ahead of the wing produce slipstreams which 

flow past the wing. It is assumed that the wing geometry and the 

velocity distribution in the slipstream are known. The problem is to 

determine the lift distribution on the wing a~ influenced by the 

slipstream. 

In the present analysis. the flow is considered to be steady. 

incompressible and inviscid. This amounts to a considerable 

simplification; however. the resulting problem is nonlinear due to the 
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nonuniform flow in the slipstream, and the governing equations are the 

Euler equations. 

In the analysis that follows, two right-handed cartesian coordinate 

systems are used. The (x.y.z) system has the x-axis in the direction of 

the free stream and the z-axis in the lift direction. The (x' ,y' ,z') 

system is obtained by rotation of the first system through the quarter 

chord sweep angle A about the z-axis. It should be noted that the z'­

axis is identical to the the z-axis and that the y'-axis lies along 

the quarter-chord line of the wing planform. 

In' the absence of the wing, it is assumed that the undisturbed 

velocity field can be written as follows: 

+ + 

V(x/co,y/s,z/cO) • i U ... (ahead of the propellers) (4.1a) 

+ 

• i U(y/s,z/cO) (behind the propellers) (4.1b) 

+ 

= i U 
at 

(for large I z /> (4.1c) 

+ 
where i is the unit vector in the x-direction. This amounts to assuming 

that there is a. jump in _t~e .. axi.al. velocity across the propellers and 

that there is no swirl in the propeller stream. The veloci ty field 

around a propeller is quite complex. There is inflow ahead of the 

propeller. There is a pressure jump and not a velocity jump across the 

propeller. The velocity field in the slipstream is periodiC rather than 

steady because of the finite number of blades. and has the swirl 

component in addition to an increased axial velocity. In spite of this. 

the drastic idealization implied in Eq. (4.1) for the velocity field 

around the propellers is Quite common. and springs from the fact that 

detailed treatment of the swirl and periodicity in the stream makes the 
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problem extremely complex. Attempts have been made by several workers 

to take into account the effects of the swirl in a simplified manner by 

assuming that the swirl only introduces a change in the spa~wise 

distribution of' the sectional angle of attack. In the absence of any 

superior approach, this simple method is adopted in the present study. 

The analysis starts by making the assumption that for large aspect 

ratio wings with multiple tractor propellers, the height (h) of the 

'slipstream behind the propellers is of the order of the mid-chord' cO, 

whereas the spanwfse spread (2.1) of the combined propeller slipstreams 

is of the order of the wing span ba2s. Thus there are two length scales 

Co and b in the problem; hence, different stretching transformations are 

possible. Following the classical analysis for large aspect ratio 

wings, the outer region is introduced with the corresponding stretched 

variables x,y,z defined as follows: 

x • xIs, y = y/s and i a z/s (4.2) 

With x,;,i fixed and AR- (or &~, where &=cO/s). the wing shrinks to a 

lin.e •. in .w.hich.all the singular.iti~s. that may be used to represent it 

are concentrated. The undisturbed velocity becomes 

.. .. 
V .. i U. (ahead of 'the wing) (4.3a) 

.. 
• i U .. (behind the wing except on the cut z=O) (4.3b) 

The momentum gained by the stream in passing through the propeller is 

now cont4ined in this thin sheet which acts very much like.a jet flap. 

The spanwise di stribution of the momentum in thi s sheet is given by 
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.. . .. 
J(y) • peol UCU - U.)dZ -. (4.4) 

All the details of the flow past the wing section are lost in t"is 

outer lfmiting process. To recover these details. the inner region is .... ... 
introduced with the inner variables x. y. and Z defined by the 

following transformation: 

II; A AI 

X • x'/cO. y. y'/S and z· Z'/CO (4.5) 

... ... ... 
The following relations exist between the variables (x.y.z) and 

(x I .y I • Z I ) : 

A A A A 

X' • xcosA + ysinA. y' • YCOSA - xsinA and z' • z (4.6) 

Now. the undisturbed velocity behind the propellers can be expressed as 

+ + 

+ 
• i U(y'coSA - x'sinA)/s,z'/cO] 

+ A A • 

,-. f ut (YCOSA - ocsi nA) , z] 

+ ... ... 
= i (U(ycosA,z) - ~tanA ~(;COSA,;) + ••• ] 

ay 
+... .. 

• i U(ycosA,z) for E: « 1 (4.7) 

The undisturbed stream for the inner region. therefore. is given by (in 

the transformed coordina te system) 

+ A A ~ A 

V = (U(YCOSA,z)COSA, U(ycosA,z)sinA, 0] (4.8) 

/ 

I 
f 
I 

I' 
I 

I 

l r 



, 

" 1 
] 
>, I 
;~ 

i 

., -
, 

! 
i 
! 
'~ .. .. ,/ 

'1 
l 
1 
) 

" 

., 

~ --------

]. ~.~ 
~ .. 
~.~ .l 

" -, '. 

•• '-". I 

I ._. _'\."", 

I" " 

'-. ' 

I 

i 
I 

, I 

.I , 
i' 

/ .'.: I 
j' 

.64 : 

The analysis of the flow in the propeller ~tream behind the wing 

requires the introduction of another region (called the third region) 

'with the corresponding variables i,y and z defined as follows: 

x • xIs, y. y/s and i .. z/cO (4.9) 

In this region, the undisturbed velocity is given by 

+ + + 

V • t U(y/s~z/cO) = i U(;,i) (4.10) 

The three flow regions are shown schematically in Fig. 4.2. Equations 

(4.3) ,(4.8) and (4.10) represent the undisturbed velocity field for the 

three regions considered. The effect of the presence of the wing is to 

introduce disturbances in these flowfields. The disturbances in 

velocity and pressure depend on the small parameter E=cO/s which, in 

turn, is related to the reciprocal of the wing aspect ratio. In the 

following sections, these disturbances are introduced in the flowfields 

of the three regions. and the governing equations are derived. The 

solution obtained in each region is matched with the others as described 

in Sec. 4.4. and a solution for the entire problem is obtained. 

4.2 The Inner Region 

The disturbances in velocity components and pressure for the inner 

region are expanded in power series of E as follows: 

AI A ... ... 

.. ~(O)(;.y.;) ~(l) (;.Y.i) U(X.Y.Z;E) + + ••• (4.11a) 

... AI AI A 

• ~(O) (;.;.;) ,;(1)(;.;.;) v(x.y.z; c) + + ••• (4.11b) 

... AI ... A A( 0) A A A 

+ ~(l)(;.y.;) w(x.y.z; E) .. w (x.y.z) + ••• (4.11c) 
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a) The Outer Region 

b) the Inner Region 

o x 

c) The Thfrd Region 

Fig. 4.2 The three flow regions. 
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~ • • • A(O) _ • • -(1) _ • • 
p(X,y,Z;t) • p (X,y,Z) + tp (X,y,Z) + ••• (4.11d) 

The undisturbed velocity components given by Eq. (4.8) and the 

disturbance quantities given by Eq. (4.11) are substi tuted in the 

continuity and the momentum equations. Upon equating the coefficients 

of 1fke powers of & on either side of the equations, the following 

leading equations are obtained: 

~~O) + ;~O) • 0 (4.12) 
x z 

(UcosA + ~(O»~~O) + ;CO)CUCOSA + ~CO»A a_p~O)/p (4.13a) 
x Z x 

1 .. ' 
(UCOSA + ~CO»;~O) + ;CO)CusinA + ;CO»_ • 0 ;1 --, 

.; 

.1 

, 
,-
! 

~. 

--... -.... . 

,I 
I , 
I 

\ I 

./ 
.... 

i 
I 

/ 
I 

/' 
./ 

x Z 

x Z Z 

If a stream function ;CO)C;.;.;) is defined such that 

.. 
;~O) • UcosA + ~CO) 
z 

~(O) -(0) 
ciI_ • - w 
x 

C4.13b) 

(.4.13c) 

(4.14a) 

(4.14b) 

then Eq. (4.12)' is automatically satisfied. Now. it should be noted _ 

that Eqs. (4.13a) and (4.13c) do not involve the v-component of the 

velocity. and that by eliminating the pressure. they can be reducecl to 

the two-dimensional vorticity transport equation 
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(UcosA + ~(O»w.+ :(O)w •• c 
X z 

where 

( ;~~) + ;~~» 
x z xx zz 

A combination of Eqs. (4.14a). (4.14b) and (4.15) results in 

~~O) w. - ;~O) w • • 0 
z x x z 

, , 

(4.15) 

(4.16) 

(4.17) 

This implies that w is a function of ;(0) only. or equivalently w is 

constant along ;(O)=constant (i.e.. along the projection of the 

6l 

streamlines on the y=constant plane). Thus. the problem reduces to' 

solving the Poisson equation 

w(;(O» :z - (cII~~) + ;~~» (4.18) 
xx zz 

This equation applies to the flowfield behind the propellers. In the 

plane of the' propellers; the' dfstiJrbances due to the wing section may be 

neglected. Consequently. the boundary condition at the' "propeller plane 

would be 

(4.19) 

·(0) The other boundary conditions are (1) far away from the airfoil u 

and ~(O) tend to zero. (2) on the airfoil the normal velocity component 

is zero. and (3) at the trailing edge of the airfoil the pre~sure is' 

continuous (which is equivalent to the Kutta condition). Note that in 
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.. 
this problem. y appears only as a parameter. 

The sol utfon of Eq. (4.18). or the equivalent Eq. (4.12). (4 .13a) 

and (4.13c). with the above boundary conditions can be obtained by a 

suitable numerical technique. The results would yield the values of the 

velocity components ~(O) and ;(0) everywhere in the field including 

the airfoil surface • 

or 

.. 
The y-momentum equation, Eq. (4.13b). may be rewritten as follows: 

[(~~OSA + ~(O» i) A + ;(0) i):l(UsinA + ;(0» = 0 
ax az 

2-(UsinA + ;(0» = 0 
as (4.20) 

. where 2- = (UcosA + ~(O»i)A+ ;(o)a
A 

• Note that ~ is the derivative 
as ax i)z ~ 

along the projection of the streamline in ~ x-z phne. Equation 

,(4.20) implies that (UsfnA + ;(0» remains constant .along the 
A A 

streamlines projected on the x-z planes. Since the airfoil is one 

such streamline it is concluded that (UsinA + ;(0» is a constant on the 

.airfoil •. Let :J*, be theveloc~ty far ahead of the. airfoil on the zero 

streamline. Then. it is evident that u·sfnA = (UsinA + ;(0». Note 

,tl"lt. even though (UsinA + ;(0» is a constant on the a irfoil. both 

l~inA and ;(0) being functions of;. vary along the airfoil surface • 

The pressure coefficient c on the airfofl defined by 
, P 

c
p 

= '. (p-p ... )/(1/2) PJ: (4.21) 

can be reduced to' 

(4.22) 
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Hence the difference 6cp is given by 

A • A A _ 

6cp(X) • cp(x.z l ) - cp(x,zu) 

• _ {(UcOSA + ~CO»2 + (;CO»2}/u: (4.23) 

where { } represents the difference between the lower and the upper 

surfaces of the airfoil. The sectional lift coefficient c l is obtained 
,. 

by integration of flCp(X) along the chord. Thus. it is seen that the 

11ft obtained by the solution of Eq. (4.13) is not affected by the 

spanwise component of the velocity. In summary. the governing equations 

for the inner solution are the continuity and momentum Eqs. (4.12) and 

(4.13). with thf! appropriate boundary conditions. The solution of these 

would yield the lift of the airfoil which is independent of the spanwise 

velocity component. This lift is a function of the sectional angle of 

'attack. and may be written as follows: 

.. 2.... 
l( a.y) = (1/2) pU",c(y)c,t( a,y) (4.24) 

.. 
Notice that in this relation y appears only as a parameter. 

4.3 The Third Region 

In the analysis of the third region. f.e •• in the propeller stream 

far behind the wing. the stretched coordinates x,; and i defined by Eq. 

'H.9). and the undisturbed velocity ,defined by Eq. (4.10) are used. The 

perturbation velocity components and the pressure are expressed in po~er 

series of £ as follows: 

-C- - -) -(0)(- - -) + .. ~(1)('x-.y-.z-) u X.y,z;£ ~ u x.y,z ~ 
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2- (2) - - -+ e u (x,y,z) + ••• (4.25a) 

- - - - -(1)- - - 2-(2) - - -v(x,y,zie) = ev (x,y,z) + e v (x,y,z) + ... (4.25b) 

- - - - -(1) - - - 2-(2) - - -w(x,y,Z;t) = EN (x,y,z) + e w (x,y,z) + ... (4.25c) 

(4.25d) 

These perturbation components and the undisturbed velocity given by Eq. 

(4.10) are substituted in the continuity and momentum equations. The 

subsequent analysis would be identical to the analysis performed in [15] 

whfle studying the third region behind unswept wings. Therefore these 

details are not given here; but only the major conclusions from this 

analysis are listed below: 

(1) To the first order, there is no pressure di scontinui ty or change 

in stream1in~. inclination across the jet sheet. 

'(2) The mo~entum' int~gral JeY) remains constant with respect to x • 

( 3) 

where 

To the second order, there is a pressure difference across the 
jet sheet given by 

.. - ee~l) (x,y,O)J(;) (4.26) 
x 

e(1) = ';(1) /U 
CD 

Equation (4.26) is the familiar result of the thin jet approxir..ation 

that states the pressure difference across the sheet is equal to the 

product of the momentum in the jet sheet and its curvatu:-e. These 
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results will be used in the analysis of the outer region tha~ follows. 

4.4 The Outer Region 

The undisturbed velocity in the outer region is uniform (Eqs. 

(4.Ja) and (4.3b); hence, the fiowfield away from the wing and the 

propeller streams is frrotationa1. Therefore the disturbance veloci ty 

field can be described by a velocity potential «x,y,z; E) which 

sati~fies the laplace equation 

(4.27) 

Bernoulli's equation provides an expression for the pressure 

disturbances as 

+ 

p = (1/2)PU:(1 - Ii + V;/U.12] (4.28) 

Equatic,ns (4.1) and (4.2) are the governing equations in the outer 

~egioll.· , As . the first step. towards the solution, ~,is expanded in a 

power series of E as 

- - - .. ..( 1) - - - 2 -( 2) - - -
~(x,y,z;c) = £~ (x,y,z) + E ~ (x,y,z) + ••• (4.29) 

where both ;(1) and ~(2) in turn satisfy the lapiace Eq. (4.27). Next 

the velocity and pressure disturbances are also expanded in power series 

of E as follows: 

u(x,y,z; £) £u"(1)(x",yOO,zOO) + 2"(2)(-" -) + 
EU x,y,z ••• (4.30a) 

"- .. --v(x,y,z; c) (4.20[i) 
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- - - - -(1) - - - 2-(2) - - -w(x,y,Z;t) • tw (x,y,z) + .: 'II (x,y,z) + ••• (4.30c) 

- - - - ~p-(l)(x-,y-,Z-) + 2-(2) - - -p(x,y,z;c) • ~ t P (x,y,z' + ••• (4.30d) 

Thus, 

(4.31a) 

(4.31b) 

;(1) • ;~l)(;,;,;)/S (4.31c) 
z 

The unk~own ;(1) is a solution of the Laplace equation. It is obtained 

by distributing the singularities along th~ line ;-mIY!=O. and on the 

plane ;=0, ;-mIY!>o. and by matching with the solutions of the inner and 

the third regions respectively. Note that m is the tangent of the wing 

quarter chord sweep-back angle • 
. ' ~ . 

By an analysis of the inner region it was shown that t:'e wing 

- -section at a spanwise station y produces a lift force l(a,y) (Eq • 

4.24). This implies that there is a vortex distribution along the 

lii line ;-m/y/=O. -The strength r(y) is rela ted to the -lift l(a,y) as follows: 

- -r(y) .. .t( ex.y) I pU CD 
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(4.32) I 
I 

- -= (l/2)U ... c(y)c J.( a.y) 
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The spanwise variation of r requires the presence of a trailing vortex 

sheet extending downstream from the lifting line. This is the well 

known vortex system of lifting-line theory. 

By a matching with the solution of the third region. it was shown 

that. to a first appr-oximation. there is no discontinuity in either the 

pressure or the streamline inclination across the jet sheet behind the 

wing. Therefore. the first order outer solution ;(1) is not affected by 

the propeller stream behind the lifting line. Based on this first order 

analysis, the flow in the outer region is described by the potential due .. 
to r(y) and the associated trailing vortex system. and is given by 

(4.33) 

where R2 = (;_ml~I)2 + (;_~)2 + i2J. Upon approaching the lifting 

1 ine (Le., for small ;-mlyl and ;), the inner limit of ';(1) is 

obtained. This yields the downwash G(;-mlY'I..o,y,o). By matching with 

the inner solution, the effective angle of attack at each spanwise. 

station is obtained as 

(4.34) 

-The circulation r(y), given by Eq. (4.32), now becomes 

- - - -r(y) = (l/2)U .. c(y)c;.( tlg a. y) (4.35) 

Equations (4.34) and (4.35) are the required governing equations for the 

first ortler analysis. Note that in this analysis, the effect of the 

nonuniform flow in the slipstream enters only in the sectional analysis • 
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The first order analysis discussed so far is valid 

for &+0. or AR-. It was shown in the analysis of the third region -that terms proportional to J(y) appear in the sc.'ond order analysis; -hence it is necessary that J(y) be of the order of 1.0 for the first-

order theory to be valid. It is well known that the first order theory 

for large aspect ratio wings in uniform flow gives satifactory results 

for wings of aspect ratio as low as 1.0 [33J. Hence, only the 

contribution of the momentum in the propeller stream will be considered 

in an extensio~ of the present analysis. 

was 

At the outset it is noted that ;(0 is an odd function in z. It 

shown by an analysis of the third region that ;(1)(;.;.;) is 

-continuous across z=O. Hence it is concluded that 

(4.36) 

In view of Eq. (4.31a) and (4.31d), it may also be stated that behind 

the wi ns 

(4.37) 

- - -However. because of the vorticity dr(y)/dy on the plane z=O behind the 

wing. ;(1) is discontinuous across the jet sheet and is given by 

(4.38) 

Nevertheless. [;(1)]2 is continuous across the jet sheet. Furthermore. 

since e(l) is continuous. ;(1) is also continuous across the jet sheet • 

. Next. upon considering the O( fh terms in the Bernoulli equation 

the following equation is obtained: 
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(4.39) 

Since [;(1)]2 and ;(1) are continuous. the pressure difference across 

the sheet is given simply by 

(4.40) 

This discont1nui ty in ~(2) is equivalent to a vortici ty .. .. 
distribution y(x.y) on the jet sheet and. in view of Eq. (4.26). 

yex.y) can be expressed as 

y(x.y) .. - .tS£1)e;.Y.0)J(Y)/pU.s • - 9_(x.y.0)JCY)/rJJ.s (4.41) 
x x 

-At the lifting line. 9 is not zero (i.e •• the jet sheet has a non-zero 

inclination at the lifting line). This would require a vertical force 

- "(1) 
of magnitude J(y)c9 at the lifting line. To account for this force, .. 
a circulation distribution rJ(y) is introduced along the lifting line. 

The magnitude of this circul~tion is given by . . . . . .. 

.. .. "(1) 
rJCY) = - J(y)c9 /pU. = - J(y)e/pU. (4.42) 

Thus. in this limited second order analysis. ref~rred to as the 

systematic analysis in [15J. the vortex system consists of the .. .. 
circulation rcy) along the lifting line. the circulation rJ(y) which 

accounts for the change in the inclination of the jet sheet on passing 

over the wing. and·a distribution y(x.y) behind the wing, which accounts 

for the curvature of the jet sheet. This system of vortices produces a 

downwash distribution e(x.y) which is obtained from the fo.11owing 

'p' -'--""---'~' -: ..... ";" •• -

" ........... a-......... ;...~ . .; ,"., .... ~ ... ,_ .... ~ ~ ...... . 

.. ----~,.-.. --.-
...?:-..'~""":,;p.."... ~ . *. --- . 



" ..-...-. /. 

/' 
./ 

I, \ . 

.I 

~_f.--
....... 

) 

-. 
'. 

I 
I'· . 

~.< ... . , 

i..' \ 

.... i 

. 

..:,. 

.. -- ~.:- -.---
\ . .;" 

-! 
I 

. , .' _.,.... r A . ,.' "\ . 
. ..-"<;- /. . 

V 

~.' .,' -' ~. ~ ......... ,.. .•... -..... : 

.C 76 

velocity potential: 

.. - - 1 1 z-r( ,,) x- m I I "'( ) f {I + -,,} d" ..,.X .• y.Z .=-4-n -1 ""2 2 R z + (y-,,) 

The downwash is related to the unknown quantities by the following 

relations: 

- --r(y) • (l!2)U.c(y)c,t (ag(y) .. e(x.y)]. 
a 

- ----rJ(y) = .. J(y) a(x.y)! pU"" 

y(x.y) = .. J(y) 9_(x.y)! pU..,s 
X 

. '. 

; + mlyl (4.44) 

(4.45) 

(4.46) 

.. 
These are the governing equations for the unknowns r(y). rJ(y) and 

y(x.y). 

4.5 Method of Soluti.on 

The governing equations for the unknowns r(y). rJ(y) and y(x.y) 

are the Eqs. (4.44) .. (4.46) together with the Eq. (4.43) for the .. 
downwash angle e required in the solution. The downwash angle comp~ted 

by Eq. (4.43) on the lifting line at the wing centerline is infinite 

because of the discontinuity in the slope of the lifting line at the 

wing root. This is a familiar problem in the swept wing analysis. 
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Rigorous studies of swept wings in uniform flow by Cheng. et al. [36.37] 

have shown that the induced velocity approaches infinity like the 

logarithm of the dfstance from the centerline. This behavior does not 

allow computation of the spanload at the wing centerline of 

symmetrically swept wings. Thurber [38] studied swept wings with curved 

centerlines having zero sweep at the wing centerline and zero tip chord 

(crescent wings) in uniform flow. This planform has limited application 

in the present context. 

The method developed by Lan [39] 15 employed here to compute the 

downwash from Eq. (4.39). Thi s method starts wi th the Wei sSinger 

velocity potential. and, placing ,the lifting line on the quarter-chord 

line. computes the downwash at the three-Quarter-chord line. A brief 

description of this method'is presented here. 

Consider the first integral on the right-hand side of Eq. (4.43) • .. 
This is the potential due to r(y) along the lifting line. i.e ••. 

(4.47) 

tildes are dropped for 

convenience. The origin for the co-ordinate axes is assumed to be at 

the mid-root chord. Also. 

(4.48) , 

x = - cO/4 + c(y)/2 + mlyl (4.49) 

These are introduced in Eq. (4.47), and the resulting expression is 

. ---.-_ .. _ .. __ ..... - .. ---
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expanded for small c(y). By retaining only first order terms in the 

expansion. and differentiating them with respect to z. the required 

expression for 91 (evaluated at z=O) is obtained as 

9
1

(X.y.0) • .b l 'r(Tl) (l + x-m~ITlI + c(Tl) (Y-Tl)2} dl1 
.. " -1 (Y-T) 2 1 -r Rf 

(4.50) 

where m' • m-(c
O

/4)(1-h) is the tangent of the mid-chord sweep. and 

R~ • (x-m' / Tl/)2 + (Y-11)2. The right hand side of Eq. (4.50)' is 

integrated by parts to arrive at the following expression for °
1

: 

o 1 
9
1

(X.y.0) • ~ J Q(,,) df(,,) dTl + ~ J fi.!ll df(,,) dTl 
.. " -1 Y-Tl dTl .. " 0 Y-Tl dTl 

(4.51) 

The functions P(l1) and Q(Tl) are defined in [39] and details on the 

derivation are available in [40]. The integrals are reduced to finite 

sums by discretizing r(y). Thus. Eq. (4.51) reduces to the following: 

(4.52) 

By writing Ar(Tlk) = f(Yk+1) - f(Yk)' Eq. (4.52) may be expressed as 

(4.53) 

This is the required expression for the downwash due to the r(y) 

distribution. A similar expression is obtained from the second integral 

on the right-hand side of Eq. (4.43). i.e •• 
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(4.54) 

The vortex sheet behind the wing is assumed to extend downstre~m from 

the wing trailing edge. The continuous distribution y(x.y) is replaced 

with a finite number (M) of discrete vortices of strength Y.t(Y) 

located at xl' .t-1.2 ••••• M behind the wing. Each of these vortices is 

further represented in the same manner as r(y) is discretized. so that 

the jet sheet behind the wing is represented essentially by a vortex 

lattice. The downwash computed from this system of vortices is 

expressed as 

(4.55) 

Equations (4.53) - (4.55) together provide an expression for the 

downwash angle in terms of the unknown r(Yk)' rJ(Yk) and .Y.t(Yk). 

k=1.2 ••••• N; 1=1.2 ••••• M. Tllis expression is used in the discretized 

versions of Eqs. (4.44) - (4.46). and the resul ting set of simul taneous 

equa ti O\1S are sol ved· for the unknowns • 

The lift-curve slope required in Eq. (4.44) is to be obtained by 

solving Eq. (4.18) or the equivalent Eqs. (4.12). (4.13a) and (4.13c). 

However. in the present analysis. a potential flow method described in 

Chap. 2 has been employed for this purpose. As noted earlier. this 

method has been found to give results which compare reasonably well with 

the solution of Euler equations. 

The analysis presented thus far is applicable to incompressible 

flows. A limited extension is made to account for the compressibfl ity 

effects by introducing the Prandt1-Glauert factor ~ = IO-M2) at 
CD 
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appropriate places in the expressions for ~, Eq. (4.43), as well as in 

the 11ft-curve slope in Eq. (4.44). A rigorous treatment of the 

nonuniform compressible flow past a wing section would require the 

solution of the Euler equations coupled with the energy equation. 

However, it is observed that the nonun1formities in the slipstreams at 

'hfghspeeds would be relatively smaller than at low speeds. Hence. it 

is hoped that the Prandtl-Glauert correcti on, whi ch is known to provi de 

" excellent corrections to the 11ft of airfoils in un1form subcritical 

flow, will provide a reasonable correction in the present case where the 

approach flow is not uniform. 

4.6 Results And Discussion 

The spanwise lift distribution and total lift have been computed 

for several configurations and compared with available experimental 

data. 'As the first example, the configuration tested by Stuper [41] is 

considered. In these experiments, the wing was rectangular and spanned 

the wind tunnel walls. The ratio of chord to geometric span was 5.25. 

A sl, f pstream . sim,ulator:-. was, placed centra l1y ahead of the wi rig. The 
t ... • 

ratio of the slipstream radius to the wing chord was 0.3, and the 

velocftyratio of the slipstream was 1.36. Figure 4.3 shows the 

spanwise distribution of the incremental lift non-dimensional1zed with 

the incremental lift as obtained by the strip theory. Present 

theoretical results are also shown in the figure. It is observed that 

there is a good agreement between the two results, particularly in the 

region of the slipstream. Viscous effects at the jet boundary might­

have contributed to the discrepancy around (y/r)=l.O. Experimentally 

measured large values of incremental lift for (y/r»l.O could not be 

'.- r.::., 

" 
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Fig. 4.3 Additional lift distribution due to slipstream on a 
two-dimensional wing at a = 12 deyrees~ , 
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explained. but are suspected to be partly due to the tunnel wall 

interference. 

As the second example. the configuration tested by Possio [42] is 
. 

considered. In this example. the wing had an aspect ratio of 6.5 and a 

taper ratio of 0.5. A single model propeller was placed ahead of the 

wing. Several sets of data are available with varying velocity ratio 

and angle of attack. Figure 4.4 shows the spanwise lift distribution 

for the wing alone. and for the wing with the slipstreams of velocity 

ratio 1.4 and 1.6. In these tests only the incremental total lift 

coefficients were measured. The present theoretical values of 

l£L= 0.068 and 0.098 compare very well with the corresponding 

experimental values of 0.07 and 0.10. 

In the next example considered. the wing (tested by Maarsingh [17]) 

had a rectangular p1anform with an aspec~ ratio of 7.9. Two simulators 

were placed on each side of the wing at 42 percent and 79 percent of the 

semi span. The simulated slipstream radius was 0.28 times the wing 

·chord •. Test resu1 ts are available for the wing alone and for. the wing 

with slipstreams having velocity ratios 'of 2.0 and 3.0. Figure 4.5 

shows the spanwise lift distribution for the test configurations 

obtained by the present analysis. The spanwise distribution of the 

incremental lift <t.c l ) due to the jets for the two velocity ratios. 

compared with the experimental values in Fig. 4.6. The results computed 

by Maarsingh [16] using Ting's method [15] are also shown in this 

fi gure. It shoul d be noted tha t the present method degenera tes into 

Ting's. method for unswept wings. However. there are some minor 

differences between the present resul ts and those of Maarsingh [16]. 

These differences are suspected to be primari ly due to the inaccurate . 

.,' 
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Fig. 4.4 'Spanwise 11ft distribution with and without the 
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Fig. 4.5 Spanwise lift distribution with and without the 
slipstream on a rectangular wing of AR = 7.9 at 
a = 9.9 degrees. 
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outboard stations; but the agreement is not as good at stations close to 

the wing root. It should be noted that the test configuration had a 

body at the center, and the wing planform was modified near the wing 

root. These details were not simulated in the present analysis. Some 

of the differences between the present results and the experimental data 

at the inboard stations may be attributed to these modeling 

difffcfencies. 

The effect of the jet without swirl on the spanwise load 

distribution at M • 0.8 and IX· 3 degrees is illustrated in Fig. 4.10. .. . 

The exp<:'rimental data, the results obtained by the present analysis. and 

the solution of Euler equations [26) are included in this figure. It 

should be noted that the jet is a rather weak jet with a maximum total 

pressure ratio of 1.075. As a result. it does not modify the load 

distribution significantly. It can be observed from the figure that the 

incremental lift values obtained by the present analysis agree closely 

with the experimental data. A comparison of the Euler solution [27] 

with experimental data shC'ws a trend similar to that which was obsarved 

earlier - at the wing inboard stations there is good agreement. but at . . 

the outboard stations there is some discrepancy. Nevertheless. the 

incremental lift values obtained by this method also compare well with 

the experimental data. 

The effect of the swi rl in the je t on the spanwi se load 

distribution at M .. = 0.8 and ex liZ 3 degrees is illustrated in Fig. 4.11. 

The experimental data are available for the wing with jet having nominal 

swirl angles of 7 degrees up inboard. and 7 degrees down inboard. These 

experimental data are shown in Fig. 4.11a and 4.11b for the up inboard 

and down inboard swirl distributions respectively. Present results and 
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the computed results frc .• i [26) are also included in these figures which 

bring out the interesting effect of the swirl in the slipstream on the 

spanwise load distribution. Quantitative agreement between the Euler 

.solution [26] and the experiments is good at stations close to the wing 

root; the agreement is not as good at the outboard stations. In 

contrast, a compari son of the present resul ts wi th the experiments shows 

a good agreement at the outboard stations but the agreement is not as 

good at stations close to the wing root. This discrepancy in the 

results near the wing root may be attributed to the differences between 

the theoretical model used in the present analysis and the actual wind 

tunnel model. A closer examination of figures reveals that the present 

results agree witn experimental data qualitatively; but quantItatively, 

the present analysis seems to slightly overpredict the effect of the 

swirl. 
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Chapter 5 

CONCLUDING REMARKS 

The small perturbi!tion potential flow theory has been applied to 

the problem of determ'I!l1ng the chordwise pressure distribution and 1 ift 

of thin airfoils in nonuniform parallel streams with stepped velocity 

profiles. The method has been extended to the case of an undisturbed 

stream having a given smooth velocity profile with no velocity 

discentinuities. The analysis is based on the method of images. and 

allows for potential disturbances in a rotational undisturbed flow. 

Several examples are considered and the present potential solutions 

obtained by different approximations are compared with the Euler 

solutions. The results indicate that although approximate. the present 

method yields results which bring out the effect o'f the interference 

problem. while avoiding the need to solve the Euler equation. In the 

present analysis the thickness effects have been neglected for the 
. . .. . 

purpose of computing the ~irfoi1 pressure distribution. The effec~ of 

airfoil thickness can in principle be included. but would require 

further,analysis. 

The classical lifting-l ine theory for the interference of wing and 

propeller slipstream has been modified in Chap. 3. The classical theory 

assumes that the slipstream is in the form of a circu.lar cylinderical 

jet with a velocity jump across this cylinder. In the present analysis. 

this assumption has been dropped. and. the v~locity distribution is 

tJ·,.".. .. ~-·--~-····· -_ .............. ---.. -.. ---.. 
',. "4' 
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assumed to have a given smooth profile with no· velocity 

discontinuities. The 11ft distribution in the examples considered here 

demonstrated that whereas the total lift may not be affected by the 

assumption of a uniform velocity profile for the slipstream, the 

distributions could .b~ very different in the two cases. The present 

modification to the classical theory brings out the effects of the 

nonuniformity on the spanwise lift and indeed drag distributions. 

The method of analysis developed here can also be extended to the 

case of a wing in multiple nonoverlapping slipstreams. However, it is 

well known that the lifting line theory overpredicts the lift due to the 

slipstream. This is du~ to the fact that. while accounting for the 

effects of the slipstream boundary. the trailing vortices are assumed to 

extend to infinity in both directions. This discrepancy was recognized 

and corrected in the development of lifting surface theories. The 

lifting surface theories produce good results, but are applicable only 

to slipstream in which the velocity is uniform. The present method can 

be extended to the lifting surface theories as well as to the lattice 

methods applied to the wing-slipstream interference problem • 

. The problem of the interference of mul tiple propeller sl ipstreams 

with large aspect ratio swept wings has been treated in Chap. 4 by the 

method of asymptotic expansions. Al though this is only a first order 

theory. the important second order contributions from the propeller 

slipstream have been included in the analysis. The method is quite 

versatile in the sense that it can handle slipstreams of any given 

velocity distribution. The time dependence of the velocity field in the 

slipstream is neglected. The increased axial velocity and the swirl 

component in tile slipstream are of primary concern in the present 

'·0 .·1·" 
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ana lysis. One of the assumptions that the spanwfse extent of the 

slipstream was of the I)rder of the wing span. was not sa tisfied in the 

examples considered; but the results do not seem to be affected 

noticeably. Viscous effects are neglected; but the compressibility 

effect is accounted for by the Prandtl-Glauert factor. 

Severa 1 examples are consi de"red for whf ch experimena 1 da ta are 

available. and in each case tile spanwise lift distribution is obtal.1ed 

by the present method. and comp~red with the corrf:'spondfng experimental 

data. In most of the cases the agreement be tween- the two results is 

very good. In the first example. the dHferencesbetween the 

experfmenta 1 da ta and the present results are suspected to be partly due 

to the tunnel wall interference in the measurements. In the last 

example considered. the experimental configuration had a body on the 

centerline; also the wing planform ",'as modified near the wing root. 

These details were not simulated in the present analysis. It is 

suspected tha t these di fferences ha ve resu 1 ted in the difference in the 

two sats of resul ts. 

In the present analysis. the effect clf the swirl in the slipstream 

is dc"counted 'for' by assuming· that the swirl only changes the local angle 

of attack. This approach yields re!~u1ts which compare well 

qualitatively with the experimental data. Hc;wever. the methc,d seems to 

slightly overpredict the effect of swirl on the spanwise load 

distribution. 

A compari son was made between the present r,~sul ts and the numeri ca 1 

solution of Euler equations. The numerical solu=ion of Euler equations 

requires a large computer memory and exter.:;ive computing effort. For 

-- ... - .. ----•• _____._:E 
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example. the computer program developed by Whitfield and Jameson [24] 

required 900.000 words of memory. and 341 seconds computing time on 

Cray-IS computer for a relatively coarse (96x16xl6) grid. This grid 

provided results for only 6 stations along the wing semispan.This 

method. however, provides details of the flowfield in the entire 

computational domain. In contrast, the present method is simple. and 

reGlaires relatively small computational effort. For example. the 

computer code developed to compute the spanwise load distribution using 

the present method- required 130.000 words of memory. and about 40 

seconds of computing time on CDC Cyber 17S computer. and provided the 

results at 40 stations along the wing semispan. The spanwise lift 

distribution obtained by the present method compared favorably with 

experimental data. 
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