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Abstract time-dependent, or iterative, solution starting
from a reasonable guess of shock location and

The shock-layer flowfield is obtained with or shock-layer variables, whereby a firm theory of
without viscous and heat-conducting dissipations initial-value problems can be used. Moretti and
from the conservative laws of fluid dynamics Bleich's(2) three-dimensionalcode was made avail-
equations using a shock-fitting implicit finite- able in 1967. Since then, it was improved and
difference technique. The governing equations are adopted by many organizations for their specific
cast in curvilinear-orthogonalcoordinates and applications. The most important ones, probably.
transformed to the domain between the shock and are the finite-volume code by Rizzi and Inouye,(3)
the body. Another set of equations is used for the A-scheme code by Hall,(4) and the split-
the singular coordinate axis, which, together with coefficient code by Daywitt.(5) Whereas smooth
a cone generator away from the stagnation point, bodies are the objective aimed at in Refs. 2 and
encloses the computation domain. After initializ- 3, indented nosetips are of primary interest as

, ing the flow variables on a prescribed grid, a investigated in Refs. 4 and 5. These Euler codes
time-dependent alternating direction implicit fac- are based on explicit technique and confined to
torization technique is applied to integrate the the shock layer, a common feature shared by many
equations with local-time increment until a steady other versions developed in the 1970 decade.
solution is reached. The shock location is up-
dated after the flowfield computation, but the The development of three-dlmensionalNavier-
wall conditions are implemented into the implicit Stokes (3D NS) codes has progressed relatively
procedure. Since primitive variables and few slowly but still shown impressive accomplishment.
metrics are used, the numerical formulation is The first attempt was made by the author(6) in i
simple and the core requirement is not stringent. 1974, when he used MaeCormack's two-step scheme
Innovative procedures have been introduced to and a finite-differenceprocedure to calculate the
define the initial flowfield, to treat both shock and body variables as opposed to using
perfect and equilibrium gases, to advance the Moretti's characteristic procedure. Since dense
solution on a coarse-to-flne grid sequence, and to grid points used to resolve the diffusive fluxes
start viscous flow computations from their corre- near the wall penalized the rate of convergence,
sponding inviscid solutions. The code has proven results were unsatisfactory even at the cost of
capabilities for a wide range of free-stream several hundred hours of IBM 360-67 computer
conditions and body configurations. Among the time.(7) Obviously, after demonstrating the
examples shown are the Space Shuttle Orbiter feasibility of NS methodology, more powerful
equilibrium flow case at Mach 22 and an angle of numerical techniques and computers are needed to
attack of 40.8°, and an aerobraking orbital trans- perform any computation for practical purposes.
for vehicle perfect-gas case having a 60° cone and As soon as Beam and Warming's alternating direc-
sonic shoulder at Mach 34.8. These results are tion implicit (ADI) faetorization technique(8)
obtained from a grid no greater than 28 by 18 by 7 became fully developed, it was adapted and
and converged within 300 integration steps. They modified to be suitable for the peculiarity of
are of sufficient accuracy to start parabolized blunt-body problems. The computation time was
Navier-Stokes or Euler calculations beyond the reduced to a mere 10 hr of Univac 1182 computer
nose region, to compare with flight and wind- because of the use of less restricted time-step
tunnel data, and to evaluate conceptual designs of size. The implicit code was used successfully to
reentry spacecraft, solve some very difficult problems for the Space

Shuttle Orbiter at high angles of attack, and
I. Introduction preliminary results have been reported in 1981.(9)

During this period, Kutler et al.(IO) developed a
Although the solutions of blunt-body flow 3D shock-fitting NS code on the basis of Pulliam :_

have been pursued ever since the beginning of and Steger's(11) generalized-coordinateNS code.
supersonic flight, they received most attention Since the motivation of Kutler's work came from

later in the design of spacecraft to alleviate the the need to predict aerodynamic characteristics
aerodynamic heating during entry. If the viscous for an indented nosetipat relatively low angles

" effect is confined to a thin boundary layer adja- of attack, the code is known to have had stability
cent to the body, the inviscid assumption can be difficulties and failed to converge for flow
invoked to simplify the complexity of the problem, incidence angles of greater than 30°.
Even so, the governing equations are nonlinear and
of mixed characteristics bounded by the bow shock; The purpose of this paper is to present the
hence, only numerical methods are applicable. The detailed formulation, the method of computation,
classical approaches for inviscid flow computation and the verification sample cases of the 3D NS
developed before 1960 have been summarized in the code, which has undergone continued refinement
book by Hayes and Probstein,(1) wherein three- since 1981. A substantial acceleration of conver-
dimensional (3D) problems were barely touched gence rate has been realized by means of implicit
because of the limited computer resources avail- damping and of local-tlme step at a constant
able then. The new era of blunt-body flow com- Courant number (CN). The accuracy of equilibrium-
putation began with the pioneering work of air solution is enhanced by using Tannehill's
Moretti,(2) who introduced a shock-fitting proce- routines for the equation of state and the trans-
dure to the well-formulated time-dependent finite- port coefficients.(12,13) Additional schemes to
difference approach. The problem has become a sequence the computations from coarse to fine



grids are also found useful to shorten the number and limitations of the 3D NS code and includes
of iteration cycles. The performance of the 3D NS remarks on proper use of the code. The discussion
code is much superior to that of its original of results in sec. 5 begins with the explanation
version, the capabilities of considering different of important parameters and their effects on the
body geometries have been broadened, and strong solution, then ends with sample results demon-
flow asymmetry can be easily handled, strating the code usage. Appendix A contains

detailed derivation of the governing equations on
• The code is intended to meet two main re- the singular coordinate axis.

quirements: prediction of wall heat-flux distri-
bution and definition of flow variables on an 2. Theoretical Formulation
axial plane in the supersonic region. The NS
methodology is applicable to blunt reentry space- 2.1 Geometric Consideration and Coordinate
craft at high altitude where the low-density and Systems
low-Reynolds-number conditions invalidate the thin

boundary-layer (BL) assumption for a decoupled Because of the commonness of blunt entry
Euler and BL approach. The NS code is also needed bodies, a flowfield solution is often needed to
for determining the flowfield around a highly provide the heat-flux distributions over a non-
blunt body truncated by a sonic shoulder as the spherical nose, wide-angle body with sonic
pressure and boundary layer are strongly influ- shoulder and to determine the flow variables on an
enced by the abrupt change of body contour. Gen- axial plane for computations downstream. Figure I
eration of flow variables to start the downstream depicts the three basic configurations differing
computation by a space-marching technique can be in the orientation of the coordinate system and
conventionally done with an axisymmetric two- the wind direction. The flow incidence angle a
dimensional (2D) code for a spherical nose. How- and the reference angle CT have either a positive
ever, for nonspherical nose shapes and high angles value or a zero as shown, or both can have posi-
of attack, the 3D NS code should be used. tire values for additional convenience to define

the region of interest. For most cases, there is
The formulation and methods of calculation a plane of symmetry so that the flowfield Is only

are tailored to satisfy the goals and selected for needed to the right side of the wind vector.
use on scalar computers (Univac 1182) having 3 The computation region extended from the body to
million instructions per second (MIPS) and 262 000 the shock and enclosed by the Z-axis, and the
words of main core. In view of the body config- cone generator with various vertex angles are
urations illustrated in Fig. I and the absence of seen in Fig. I. As has been done in practice, a
embedded shocks, the conventional, weakly conser- spherical-polar system is used to define the
vative NS equatLons are cast in ourvilinear- physical space over the frontal portion of the
orthogonal coordinates and converted to the blun_ body, then a cyllndrical-polarsystem is
spherical-polar frame by two metrics. The singu- used downstream of the interface shared by both
lar axis is governed by a different set of NS coordinate systems.(6,9) If a more complicated
equations in order to eliminate solution errors body such as an indented nose is to be considered,
introduced by other means of solution. A conformal mappings of meridional plane may be used
straightforward central-dlfference quotient is to generate a family of coordinate lines less
used to approximate the derivatives of the con- oblique to the body wall than those in the
vective and diffusive flux terms. The numerical spherical system. Fortunately, the lack of con-
solution is time-dependent starting from an trol of the location and the orientation of the
approximate shock and initial assumption of flow coordinate lines at the boundary does not pose a
variables. The shock is fitted explicitly, but serious limitation to the computation of smooth
the wall and the shock layer itself are updated by bodies. Furthermore, the present formulation
the ADI factorization technique, which, in turn, requires only two metrics in contrast to nine
leads to three systems of linear algebraic equa- metrics and a Jacobian associated with the
tions of block-matrix structure. Primitive generalized-coordinateformulation. Consequently,
variables are sought for by the implicit solution the arithmetic is comparatively reduced.
to lessen the amount of arithmetic in evaluating
Jacobians. The Euler solution is often obtained Three additional coordinate systems are used
to initialize the NS computation, although, in to complement the physical spherical system for
some cases, the direct application of coarse-to- the purpose of interrelating the velocity vector
fine grid sequence is more cost-effectivefor NS components. They are referred to as wind, body,
computations. Either is needed to reduce the and intrinsic frames and shown in Fig. 2. The
computation cost. unit vectors are defined in Table I.

The remaining portion of the paper is divided Let curvilinear coordinates (_,_,_)be _ = n -
into four sections and an appendix. The vector 8, q = r, and _ = _. Then, the unit vectors
notation of coordinate systems is defined immedl- (i,j,k)and (I,J,K) shown in Fig. 2 are related by
ately following this section. Duplication of gov-
erning equations already presented in earlier
publications(6,9) cannot be totally avoided for d_ = ! dX + J HY + K dZ = i d_ +] d_ + k d_
the completeness of this final report. In the
third section, the well-known factorization tech-
nique is briefly outlined with emphasis placed on and
the Jacobian matrices and damping terms which are
different from other work.(8,10,]1) The fourth

section is intended to summarize the capabilities X = _ sin _ cos _, Y = _ sin _ sin _, Z = -_ cos



The relationships are given in Table I. If the where
body surface is represented by f = q - B(_,() = O,
then its outward normal gradient is Vf = j - iB_/B

- kB</(B sin _). After normalization of Vf, n = ....
Vf/]Vf[,the tangent and binomial vectors, also u= u, f= _ - u*lu)f + hz- u _ *,g = y_f+ y_hlg
shown in Fig. I, are obtained from t = n × k and b

_ t × n. The intrinsic frame on the shock g = q -
(_,(): 0 is defined likewise, except that n is )u p,inward. Note that all unit vectors follow the

right-hand rule. )u2- P + n p'u*

The body configuration is prescribed analyt- } = puv+ n_ _* = p'v*
ically in terms of a series of conics or their 0 0

degenerated form assuming symmetry with respect to p'e*-p*
the Z-axis, or on a number of X-Y planes away _u_+ _ _
from a spherical cap. The cylindrical (r,@,Z)
coordinates are used to define the body, then the rpv "_

independent variables are changed to (_'q'()" [2(puv+ nn_)

2.2 Equations in Computation Space I :

r= P( u2+v 2)+n -n_-n n
The conservative laws of a single-component,

compressible, viscous flow are given in vector
notation as follows. [P_e+ ..

u* = u(O,q,O), w = 0

ut+ _ + gy+ hz+r=O (I)
The derivation of Eq. (2) is given in Appendix A.

where x_ _, y : q(S,B)_z : <, u : hlh3_,_[ : h3_ In Eqs. (I) and (2), complete stress tensor
g = y_hsf+ y_hlh3g+ y<hlh,h = hlh, r = r, ht = 4, and heat-flux components are shown, but the order-
h3 = q sin _, and metrics y_, y_, and y(are held of-magnitudeanalysis applied to the same equa-
nondifferentiablewith respect to y. Note that Yt tions on body intrinsic coordinates indicates that

is absent, even though S = S(_,(,t). The convec- n_ and nn(are the only important ones in f, g, h,
tive and diffusive fluxes are of the following and r. It shOuld be pointed out that n_ in r can-
expression, not be eliminated at all.

In the preceding expressions,p, u,v,w, and s
are density, velocity components in (_,q,(},and

"pu pv total energy, respectively. Variables of Eqs. (I)

P ] pu2+ pvu+ and(2)aremadedimensionlessfrom
pu n_ n_

= pv |, f= puv+n_n _= pv2+nnn

[ = P_ P_,P-P P_,pw puw+n_( pvw+nn( p p'lp'®,u=u'/ p'_/p' ,e=e'/ ' I ' - '1 '

LP_A pue + _ pve+ ¢_ T= T'IT',_= _'IRN,t = t'_lR N

"pw 0 The primed variables indicate dimensional
quantities,whereas the subscript ® refers to

pwu + n(_ h3(hl)n(puu+ n_n)-(h3)_(pw2+ n(() free-stream condition; RN is the nose radius, and
- p,T are, respectively,pressure and temperature.

= pwv + n(n r = -h,(hs)n(pw2 + n<<)- h3(hl) (pu2 + n_)

- pw 2 + n(< (h3)_(pwu + n<_)+ hl(h3)_(pwv + _(n) Two components of the stress tensor, n0 andqi, are defined in orthogonal coordinates as

pwz + @< 0 follows:

Equation (I) is used everywhere except onthe(Fig.I), w _ _V_YM (e__ _l(e_+e +_,)wherein : 0 and _ : 0 by defi- _(_ _
Z-axis
nition. The exact form of the governing equation n_ =p Re
is

ut +fx+gy+r=O (2) e_=2 I OuoF:,+ hlh 2 _ (3)

V_"_yM 7 _ OT

q_ = _ (¥ - 1)PaRe h1



The Stokes assumption has been used to derive may be solved by means of Newton's technique.
formulas for the stress tensor. Parameters in Eq.
(3) are the ratio of specific heats ¥, Math number

M, Reynolds number Re, and Prandtl number PR. _n+l= _n+ (_y)n(y,_y,n)Definitions of Re and PR are given by Re =
p_V_N/p and PR = Cp_/K; V_ denotes free-stream
speed, p and K the coefficients of viscosity and
thermal conductivity, and Cp the specific heat at where
constant pressure. These are dimensional quanti-
ties. Finally, the thermal equation of state

I ' I/'yp: +2 _ + 132p = pRT (4) 132 ! _ n

is required to complete the system of governing 2.4 Boundary Conditions
equations. In this equation, R refers to the gas

constant. The number of dependent variables is Flow variables along q : S(_,_)as given by -
limited to six since c = e + 0.5(u2 + v2 + w2) and Eqs. (I) and (2) are made to satisfy the Rankine-
the specific internal energy e can be related to T Hugoniot (RH) relations by introducing a local
by the caloric equation of state e = CvT, where Cu shock speed jSt a_ (_,(). Thus, the incoming free-
is the specific heat at constant volume, or by e : stream velocity V® and t_e flow vector immediately
e(p,p) for equilibrium air. downstream of the shock V are modified by the

shock speed in the stationary intrinsic frame.
2.3 Mapping Functions Let prime refer to the intrinsic frame. Then

Equations (I) and (2) are dedicated to the

flowfield calculation between the shock and the _, _
body. This calculation is accomplishedby so- V : _-jSt,V': _ +jSt
lecting a coordinate transformationequation such
as y = q = (q - B)/(S - B), which implies that

for a g_ven _ and (, _ corresponds to equally where V = [V sm (a- aT)+ KV®cos(a- aT}
spaced _ varying from 0 to I. The convenienceof

addressing a radial location within the shock _ =IU + KW®= iu®+jv + kw®layer can be extended to clustered locations of q
by using any one of the three exponential func-
tions

Table I can be used to relate u_, v,, and w® to U®
and W_.

y = (exp(__)- l)l(exp(_)- I) (5a) An iteration procedure_secant formula) is
used to find _t by matching V' with nlu + n2v +
n3w, whereas V' is governed by the RH equations

y = smh(_)/smh_ (5b) shown in the following:

In[Cp + _)/(p - _)] (5e) n.(V® - pV') = 0y=
ln[(p + 1)/(_ - D] _' 2

(n.VJ + 1 =p(n.V') 2+p

Hence, for a given set of y points, uneven distri- _,, _
butions of _ points can be defined. However, more b.(Vo_-V')= 0 (6)
cluster points toward the body often results in
fewer points away from the shock. By comparing _,
the characteristicsdue to different exponential t.(V- V'): 0
functions, it is found that the last function from

Tannehill(14) offers the most desirable clustering h +0.5V'2:h+0.5V '2
near y = I while maintaining an approximately
linear relation y _ q for y < 0.8.

For a given St, another round of iterationsis
As shown in Fig. 3, the degree_of clustering needed to solve Eq. (6). The iterated variable is

is determined by the slope of y_ at q = I, which, the density ratio across the shock for an ideal-
in turn, is controlled by the parameter _. To gas model; the process converges within three to
find _ for specified values of y'and _', a non- four iterations. For an equilibrium-airmodel,
linear equation the iterated variable is the enthalpy, which is

available as a function of h = h(p,p) in a curve-
fit subroutine in Ref. 12.

f(_)=y'In _ + 1 p+ _'-- +ln - -0
_-z __n,



The wall boundary q : B([,() imposes differ- steady state is reached. At best, this simple
ent types of conditions depending on whether the procedure is physically sound; however, it is not
flow is inviscid or viscous. In accordance with computationallyrobust if the body imparts a great
the mathematical characteristicsof a parabolic amount of disturbance to the free stream, such as
equation, either pressure or density needs to be in a hypersonic stream. Hence, the code uses an
calculated, whereas other variables may be speci- alternate procedure that prescribes the essential
fled. Thus, in the viscous calculation,no-slip features of the inviseid flowfield and starts the
velocity and isothermal or adiabatic temperature calculationwith a rather crude initialapproxi-
are specified on the wall. These conditions are marion.
simply _ = O, e = ew or n.Ve= O. For the hyper-
bolic equation, only one condition is allowed; To accommodate the various shock shapes and
therefore, n.V = 0 is generally required. In an body configurationsdisplayed in Fig. I, a reason-
attempt to ensure that the flow variables still ably accurate procedure for inviscid flow caleula-
satisfy conservative laws, th_ velocity components tions has been implemented into the code. The

F _ P

parallel to the wall, V b :_'_ and Vt : t.V, stagnation properties and _ocation are determined
are multiplied by a factor V.V/(V'b2+ Wt2), then on the pitch plane from n.V : O, then, taking
converted back to the (_,_,()frame by into account the angle of attack, a body angle is

found to be equal to

u : blV b+ tlVt,u : b2Vb+ teVt, w : bsVb (7)

e = cos- l(n.t cos(a - aT) + n.k sm(a - aT) )

[ \

The pressure and density as computed from Eqs. (1)

and (2) remain unchanged. With 8, a distribution of Mach number is estimated
tobeM =12sin81orM =I.Isin81for8

The outflow boundary, specified as a cone n/4. Using the Maeh distributionand the stag-
generator with _ = _ma_,is to be located well nation properties, isentropicexpansion formulas
within the supersonic flow and on the portion of can be applied to calculate the remaining flow
the body where a rapid change of flow direction is variable on the body. This procedure is found to
not expected. Inside the viscous layer, when the
outflow is subsonic, one-point extrapolation is be more versatile than the one based on the Newto-
used. Otherwise, the flow variables are obtained nian pressure and the conservation law of total
by a linear two-point extrapolation of interior enthalpy on the wall, e.g.
results. On the pitch plane Y = O, the flow
variables are to satisfy k.Vu : 0, where u : p,

p, e, u, and v, and to satisfy k.V(k.Vw) : 0. Pw = 1 + (n.V_)2

The remaining boundary _ = 0, a singular line
in physical space, necessitates rigorous analysis. H w = h®+ 0.SV_ = hw + 0.5(_® - n(n.V®))a_
The best approach to handling this boundary is to

solve the governing equations in special form (Eq. Pw = YP_(Y - 1)hw(2)) on the same basis as for the interior region.
But Eq. (2) is only to be used once in conjunction

with flow variables on the pitch plane. Then, The flow vector tangent to the wall is readjusted
flow variables on other meridlonal planes are ob- in accordance with Eq. (6) discussed in sec. 2.4.
tained from The shock standoff distance at the stagnation

point is obtained simply from 8o = 0.15M®/(M® -
I)1.I;8o is multiplied by 0.5 if an equilibrium-

p(0,_,O= p(0,_,0) air model is used.

u(0,q,0= u(O,q,8)cos_ The complete shape is estimated from S : B +
8o exp(al_+ a cos _I)for Fig. la, S : B + 8o(I +

v(8,q,0= v(0,_,0) a(2/n(_ - aT COS ())2) for Fig le, and S : B + 8o(1
+ a cos _) for Fig. lb, where a is an input param-

" w(0,q,_ = -u(0,q,8)sin( eter. The shock location takes the following formfor M _ I, S = d/(cos _ + I/¢),a quadratic curve
intersecting_ = 0 and ,/2 lines; d and c are pa-

e(O,_,_: e(O,_,O) rameters to be determined for each case consid-
ered. Once the shock is known, the stationary RH

2._ Initial Flow Approximation equations areused to calculate shock variables
which are used with the wall variables to deter-

The present approach to solving blunt-body mine the variables inside the shook layer by
problems is a special class of time-dependent linear interpolations.
method that retains the unsteady derivative of the
governing equations but merely simulates pseudo- For viscous flow calculations, it is recom-
physical phenomena. In a truly numerical simu- mended to start from a nearly converged inviscid
lation of flow over the body, it is often neces- calculation for which the major portion of the
sary to start the time-dependentcalculation at shock layer is well established. In this way, a
the instant the body is immersed into the free substantial reduction of computation time can be
stream, and the calculation continues until the accomplished.



2.6Wall Shear, Heat Flux, and L/D Calculations If a and aT are nonzero, the drag and lift forces
can be obtained in the wind frame from

Vector components of velocity, stress, and
heat flux can be easily obtained in the wall in-

trinsic frame from those in the spherical frame. L : Lcos(a- a T) - Dsm (a - cT)With reference to Table I, a transformationmatrix
T may be defined to relate the components in both

frames by D: L sin_ - aT)+ Dcos(c- aT)

nl n2 _3] _. Implicit Difference Method
T= t, _ _.I Difference Approximations

L51 h] The computation space (x,y,z)is discretized
into a three-dimensi0nalnetwork of grid points,
which are defined by

such that

X m = (m -- 2)Ax, Y. = (n - 2)Ay, ze = (e - 2)Az (10)

()(I('I<)u t =T v and qt = q, with Ax : Xmax/(mc - 2), Ay : 1/(nc - 2), Az :
./(Ic - 2), and m = 1, 2, ... mr, n = 2, 3, ...

u \w/ kqb / q( nc, and e : 1, ... lcp, where lcp= lc + 1. The
subscripts m and e cover a range of grid points

Likewise, a tensor can be transformed accordingly beyond the computationdomain (Fig. 2) in order to
by incorporate the boundary conditions. Equation

(10) indicates that any point in the computation
space can be addressed by the intersectionof
three independent families of coordinate lines,

n'= TnT T (8) but the metrics and the dependent variables still
require three-dimensionalarrays such as Pn.md:

where the prime denotes the intrinsic frame and p(xm,yn,ze) and hn,m,e : h(xm,Yn,Ze).
superscript T denotes transpose of the transforma-

The partial derivativesare approximated bytion matrix. The expanded expression of stream-
wise and crossflowwise shear stress components and central- and one-sided-dlfferenceformulas
of the body-normal heat-flux component are as
follows:

6xP = (Pm+l - Pm-I )/2 Ax

nnt = nl(tln_ + t2n_q) + n2(tlnq_ + _nnq) + na(ttn<_+ t2n<n) 8x+p = (Pm+l - Pm )/Ax' 8x-P = (Pm - Pro-*yAx

nnb = nl(bln_ + b2n_n+ bsn_() + n2(blnn_ + b2nq, + _nq<) wherein subscripts n and e are excluded for brev-
ity. The one-sided quotients and subscripts m ±

+ n3(bln(_+ b2n_q+ _n<() I/2 are used primarily for the diffusive flux
terms in Eqs. (I) and (2). For example,

qn = nlq_ + n2qq + nsq_

The drag and lift are obtained by integrating the 8x(PU]hl)= [(Wh*)m+*a(6x+u)m-(Wht)m-la(6x-U)m]/ax
pressure and shear stress on the body surface from

8z(PhlY,(U/hl)y ) = [ (_hff,)e +la 6y(Whl)e+ la

D= I£ [_max(n'KnJo\ .n + t'Knnt + b'Knnb)dO -(PhlYq)e-'_6Y(_h')e-_]/Az
(9)

where

L= (n'l.nn+t'In t +b'Innb)dO

8y(_hl)e±l_ = [(_hl)n+l,e± 1 --(_hl)n_l, e + (Wht)n+ld
where do = B2 sin _ d_ d_ and the scalar products

are, for example, _ (Whl)_l,e±l]/2Ay

n.K= nlsm_- n2_s_ Special expressions for diffusive terms are needed
on x : 0 wherein h3 : O, but details will not be

n.l = nlcos_s _+ n2sm _s_- n3sm _ presented here. (



3.2 ADI Faetorization Technique It is seen in Eq. (12) that the first step is
to find the residual explicitly, then to smooth or

The resultant finite-differencecounterpart k

of Eq. (I) is to filter out the localized errors in Aun,m,_by
subsequent implicit steps performed along each
coordinate. Obviously, the implicit calculations
are not needed for numerical stability considera-

6t+u+ 8xf+ 8yg + 6_h+ _,m,e= 0 (11) tion alone if Atn,m,emeet the Courant-Friedrich-
Lewy (CFL) criterion, or any step can be deleted
if (Ati)min > CN(Atn,m,e)m_n, where i : n, m, or e

where and CN denotes the Courant number. Nevertheless,
the primary function of implicit solutions seems
to be more in the acceleration of the overall rate

8t+u= (uk+1 - U_,m,eyAt+ O(A_) of convergence than in maintaining solutionn.m,e stability. Numerical experimentshave suggested
that implicit solution is even preferable (without
concern in computation cost) to the explicit

,m+l,e- l,e)/2Ax,etc. solution because the effect of boundaries can betransmitted across the entire line. To illustrate
the manner in which boundary conditions are incor-

The spatial approximations are solved slmul- porated into the trldiagonal system of equations,
- the third equation of (12) is rewritten in alge-k+t

taneous[y with the unknown vector Un,m,eto allow braic form for index n.
greater changes of 8tu+ and, hence, to result in a
faster rate of convergence from initial approxima-

tions to the final solution. A factorization b2Av2+ _Av3 = _2technique due to Beam and Warming(8) which empha-
sizes the noniterative nature of the well-

** *established ADI method and solves for the inere- anAv:_t + bnAv + cnAvn+l = Cn (13)
mental vector of the conservative variable u has
been adopted and modified. In this version, ,. - .
because the primitive variables v : (p,u,v,w,e)T anemAVnem_1+bncmAV::m=¢ncm
are used, the Jacobian matrices have simpler
expression and involve less arithmetic. The
solution procedure comprises five steps, where

: -t 2 + _dr) )

(.d+SxA-Sxx(D+_d//)) * -1 k 4 k • 2
AVn,m,e -=-'_P (Au.... e -- de8 Un,m,e) bn -- _n+ (_y)2 (En + _dl)

(-_[+ 6yB -- 6yy(E + r,diD)AU:,m, e = _AU:.m.e

= 1 B -- _dt) )•* cn 2_y( n+l- _y(E +1+

bncm : bncm for u,v,w
Vk+l : Uk AUk+l

w n,m,e n,m,e + n,m,e
= bnem + c T /T forpncm hem nc(12)

Equation (13) solves for Avn from n : 2
. where _ is the inverse of the local at multiplied through ncm = nc-I; on the wall, Aunt : Avne : Awnc

by a constant Courant number, and d; and de are the : Aencm : 0 for no-sllp and isothermal conditions
implicit and explicit damping coefficients to be and Pne = Pncm implies APne. It is noteworthy to
discussed later. Jacobian matrices P, A, B, C, point out that implementationof boundary condi-
D, E, and F have analytical expressions. Each of tions is relatively inconvenientfor conservative
the three equations in the middle of Eq. (12) variables.
represents a tridiagonal system of linear equa-
tions with 5 by 5 matrix coefficients. A standard
algorithm has been used earlier in Ref. 9.



3,_ Jacobian Matrices inition, _ : P A., _[: PA Au, Ag : PB Av, Ah :
I'C Av, A_ : PD A(Svx), Agv : PE A(SVy), Ahv : PF

The nonlinear difference equation (11) is A(Svz),where subscript v refers to the diffusive
l[nearized according to Newton's method prior to fluxes, and x, y, and z denote the respective
the factoring of spatial operators into Eq. (12). derivatives. Note that the linearized difference
The iteration steps of solving a set of nonlinear equation contains no Jacobian matrices due to
equations can be minimized if the Jacobian matri- mixed derivatives, because of the nature of the
ces are exact and updated at each step. By def- ADI factorization technique.
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where g : ¥ - I and ¥ : I + p,,(pe) for both ideal-gas and equilibrium-air models.



3.4 Numerical Damping and Time Increment the diagonal dominance of the matrix. The allow-
able CN is also determined in part by the close-

Two types of damping terms are included in ness of initial approximations to the solution;a
Eq. (12); a second-order term with constant value smaller value is often needed at the beginning of
is used in the implicit operators, whereas a mix- the iterations,then a larger value is used later
ture of both second- and fourth-order terms is to optimize the convergence rate. If the maximum
used in the explicit operators. The implicit incremental variable of Ap/p is used to gauge CN
damping terms are of the following form. for the next iteration, then At is heuristically

controlled by the outcome of each iteration.

-dt(Sxx + 8 + 8zz)Avk+l Therefore

Thus, this value enhances the diagonal dominance At= CN(ADmin_l+
of the matrix and effectively extends the range of
CN numbers. Although there is discernible lag of
convergence history initially when the implicit where _ = max (Ap/p)n,m,e.The local-time Increment

• damping is used, the convergence rate is faster as for a constant CN
the solution reaches the asymptotic state. The
best aspect of all is that the final results are

nearly independentof di. CN(A_,_A_sin_AOmi n
2 ,ml (15)

The use of explicit damping terms, however, _tn'm'e = 1.5[an,ml + (U_m e + v2 + Wn,m,el ]exerts a profound effect on the solution stability ,, n,m,e
and accuracy, because the added numerical dissipa-
tions become a permanent part of Eq. (12). The is to be used for all grid points in Eq. (12).
positive aspect is to smooth out spurious oscilla- However, the shock position is still updated by
tion of results caused by the indiscriminating
difference across flow gradients; the negative

shortcomingsare that they tend to mingle with the sk+l= Sk + (St)m,eAt (16)physical dissipation and markedly change the nat- m,e m.e
ural phenomena. For the blunt-body flowfield
computation, the explicit damping terms can be
selectively used and are beneficial rather than The shock speed is smoothed before entering in Eq.
pernicious to the final solution. The second- (16) by
order terms are only used for the inviscid portion
of the shock layer. They consist of an expression

giving a blanket smoothing and another expression (St)m,e= 0"5((St)m_le+ (St)m_/depending on the pressure gradient, such as -, .

if _ + a cos _ > Cl, where cl ranges from 0.5 to

+de(6xx + 6 + 8zz)U k + d_8 + 6yy + 6zz)Uk 0.9.

4. Code Capabilities and Limitations

where, for y < c3, de.2 = 0.02 to 0.2, dp =
18x2p/(4p)l, and c3 is a parameter delineating the As indicated in sec. 1, the code is developed
boundary layer from the inviscid shock-layer flow. to provide flowfield data for the body configura-
The fourth-order damping terms are used for the tions shown in Fig. 1. The body contour may be
entire domain excluding the points on and adjacent given either analytically or by a lofting proce-
to the boundaries. They are of the following dure. The contour is allowed to be indented, if a

" form. uniform Xm is considered adequate to resolve the
mild changes of body curvature. A choice can be
made between a perfect gas and equilibriumair,
but the turbulent eddy viscosity has not been

-de(6_+ 64+ 6_uk incorporated. The computation domain is prefer-y
ably no greater than 45° in the angular span of
the cone generator since the shock fitting becomes

where deA : min (At,de2). less accurate as the angle COS -I (i'V_/IV_ I) de-
creases. The speed of the incoming flow is

The time increment At = I/_ in Eqs. (11) and unrestricted for the perfect-gas solution; how-
(12) iS a multiple of (At)mingiven by the CFL ever, it may impede the accuracy of shock fitting
conditions for stability, because, with an additional shock speed intro-

duced, the resultant temperature behind the shock
could be higher than the range of the curve fit

At= CN(Atmin)= CNmin(A_,_A_,_sin_A0 for equilibrium-airproperties. The location of
minl.5_a[ + (u 2+ v2 + m2)_2_ (14) the coordinate origin also controls the size of]n,m.e domain which is required to cover the entire

subsonic region inside the shock layer. For
instance, with an angle of attack of 40°, the

where a is the speed of sound. The Courant number sonic line is found to extend as far as 3RN from
CN is greater than unity but its magnitude the nosetip. Higher flow incidence angle may
depends partly on the values of di and de. It is cause the grid lines to intersect the shock and
seen that the fourth- and second-orderdamping on the body at excessively skewed angles and to give
the right-hand side are independent of t,but the rise to computational errors. The configuration
damping on the left-hand side as well as _ affects



of Fig. la represents the nose of a high lift-to- critical than for the inviseid calculation;
drag (L/D) vehicle; hence, both nose and axial- placement is preferably on the axial plane, where
plane data are needed as shown in Ref. 9. The flow is less accelerating than on other parts of
configuration of Fig. Ib, suitable to start a the body. The local-time increment is advanta-
method-of-characteristicssolution, was considered geous to use since St is smaller while the rate of
in Ref. 2. The configuration illustratedby Fig. convergence for the heat-transfer and friction
Ic has sonic shoulder of varying degrees of coefficients, CH and CF, respectively, is faster.
curvature and a wide-angle conic frontal surface. The Courant number is in the range of CN = 20 to
This type of body is being investigatedfor 35, a factor of 2 lower than that used for global-
aerobrakingnear the upper Earth atmosphere. The time increment. The criterion for convergence is
following discussion will highlight the parameters the same as that for inviseid computations plus
used to set up the computation, the uheck made to the values of CH and CF.

The Euler code is robust and accurate while Although the 3D NS code has performed excep-
forgiving to the spatial resolution, CN number, tionally well in terms of the grid points and
and damping coefficients. As long as the outflow integration steps used for the strongly asymmetric
boundary is well outside the subsonic zone, coarse flowfield considered, surprises do occur in lack
grids of 5 by 12 by 0 and 10 by 12 by 7 for 2D and of convergence,solution smoothness, and accuracy
3D eases, respectively, are sufficient to yield of results. The remedies to overcome these diffi-

results accurate to the third digit. The ealcula- culties are I) reducing grid spacing and CN, 2}
tion is stable with CN = 3 to 15 for global-tim_ increasing de, and 3) selecting a different Z,.
increment and CN : 3 to 6 for local-time inere- The following section will demonstrate much of the .
ment. The time steps are between k = 100 to 300 usefulness and the versatility of the code for a
to achieve convergence. The criteria of solution wide range of practical problems.
convergencesare based on the maximum incremental
variable c = max IAp/pl,the maximum range of shock _. Discussion of Sample Cases
speed St = Imax St - min Stl,and the maximum

deviation of total enthalpy AH. For coarse grid Five problems have been selected to represent
solution, 0.001 _ _ _ 0.01, 0.01 _ Et _ 0:1, and a partial spectrum of current interests; their
AH _ 0.005 are considered sufficient. The free-stream conditions, computationdomain, grid,
criteria can be lowered according to the reduced and body shape are given in Table 2 in accordance
grid spacing. The seemingly high threshold for St with the required computational effort. All are
is due to the inaccuracy of shock fitting near the laminar flow and isothermal wall, and the computa-
upper end of the shock. It should be noted that tion domain contains an axial plane at Zo. Coarse
the corresponding root-mean-square (rms) value of grids were used so that a scalar computer such as
S_ is generally one order of magnitude less than Univac 1182 will have sufficient size and speed to
_t.(15) For most calculations, the time increment execute simple 2D cases in time-sharingmode and
and damping coefficients are observed to exert 3D cases overnight. Before addressing each indi-
noticeable effect on the converged results; it is vidual case, we will explore some basic issues

a recognized characteristic associated with the that have revealed interesting and noteworthy
ADI technique. The explicit damping terms enhance observations, which are shared by the shock-
the computational stability as wel! as the code fitting implicit numerical procedure for both
robustness. Both second- and fourth-order damping Euler and Navier-Stokes codes.
are used and an additional shock-speed-smoothing
scheme is introduced to ensure that the shock and The convergence rate, as expected, varies
flow variables have no anomalous oscillation. The with the time increment even though the shock
damping coefficient de _ 0.1 is recommended for position is decoupled from the implicit calcula-
inviscid calculations. The effect of damping tion. Shown in Fig. 4a is the convergence history
helps to expel the errors outside the domain, as of the time integration for an inviscid flow over
AH may vary from 0.2 to 0.005 during the time a sphere at a = 0° and M = 5.94 obtained with CN
integration. If AH has a constant level of = 3, 9, and 15. This Naval Surface Weapon Center -
error, a slightly greater de may be needed. (NSWC) case is designated NSWC-I. Using global-

time increment, the higher value of CAT leads to
The viscous calculations can be performed lower value of _tand _ over nearly all time steps

from the results of their inviscid counterparts except near k = 200. At the end of computation,
or, alternatively, by going through a straight- both _t and _ are seen to level off where the
forward coarse-to-fine grid sequence. Both have errors due to truncation, linearization, factor-
been used and found to be cost-effective. After ization, and numerical damping have reached equi-
interpolating the coarse invisoid grid to grids of librium. Further calculations did not alter the
28 by 10 by 0 or 28 by 12 by 7 on a nonuniform level appreciably. The convergencehistory
grid exponentially stretched toward the shock, the obtained from the calculations using local-time
grid spacing adjacent to the wall is estimated by increment is plotted in Fig. 4b. Despite the
Ay = 0.2RN/(_Re)I/2,where _ is a parameter equal lower CN = 6 value permitted by local-time incre-
to (Tst/Tw)l_;the subscripts stand w refer to the ment, the rate of convergence is seen as rapidly
stagnation and the wall, respectively. As more decreasing as that in Fig. 4a for CN = 15 using
grid points are packed toward the wall, sparse global time. As marked in Figs. 4a and 4b, the
grid points are seen near the shock. To prevent shock standoff distance and the pressure on the
shock-fitting errors caused by the stretched grid stagnation point only differ by I% from each
from accumulating, more than 28 points may be other. Both cases (8 by 12) are considered very
occasionally needed to maintain St to a negligible accurate for AH of less than 0.1%. Discernible
level. The grid spacing Ax and Az is not as advantages of acceleratingthe convergence process
important to the accuracy unless around a sonic are noted for viscous flow computations. Figure
shoulder as in Fig. Ic or for the indented nose 4c shows the convergence rate for both local- and
investigated in Ref. 10. One should be cautioned global-time integration. The value of St is also
that the placement of the outflow line is more smaller in local-time calculation. The oonver-
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gence rate for global-time integration does not The NSWC case 2 (Figs. 9 and 10) was consid-
speed up as much as expected for CN = 50. Hence, ered to certify the conventional approach of
local-time integration has been used for all finding starting data for aft-body calculation at
results discussed later. The converged CH value a > 0°. Since the flowfield over a sphere-cone is
of 0.0042 compared favorably with the value 0.0043 symmetric to the wind axis, an interpolation of
obtained by Hsieh.(15) the available2D axlsymmetric results will provide

data on an axial plane for 3D cases. By selecting
The significance of using local time as Zo = -0.5, the outflow line at _ = n/2 is quite

opposed to global time is further exemplified by close to the sonic line on the windward plane and,
Fig. 5, wherein the shock speeds are compared, thus, may present upstream propagation of extrapo-
The local-time solution gives a uniformly lower lation error at the downstream boundary. The one-
shock speed than those obtained with global-time point extrapolation is deemed more stable than the
calculation. The greatest St occurs at _ = n/2 two-point extrapolation that is used for the
for both cases. The error in _t, estimated by supersonic region. The pressure values are dif-
]_t]/(V_yM_),imposes little upstream influence ferent at the stagnation point between the invis-
because of its proximity to the outflow line. cid and viscous calculations. In Fig. 10, the
It is inherently associated with the finite- heat-transfer distribution exhibits a small
difference shock-fitting scheme that is an approx- oscillation caused by the shock locations. More
imation to the original method-of-characteristics oscillations appeared in CH and St when a grid of
shock fitting advocated by Moretti.(2) Regardless 28 by 12 by 3 was used instead of 33 by 12 by 3.
of the error magnitude, the shock locations are Five additional grid points between the shock
very close to those shown in Ref. I for M = 3: layer had resulted in more accurate shock fitting.
8o = 0.229 vs. 0.23 and 8n/2 = 1.O4 vs. 0.9. Favorable comparison of the axial-plane data is
Another important observation is that the con- found for 2D and 3D calculations at a = 10°.
verged results obtained using different damping
coefficient or CN values may not be in perfect The AEDC case (Figs. 11 and 12) refers to the
agreement, test environment of tunnel B, which was used

extensively to develop an aerodynamic data base
A comparison of CH and CF distributions be- for the Space Shuttle Orbiter. For a simple

tween the NS and the boundary-layer (BL) results hemispherical cone, the axial plane was placed at
is shown in Fig. 6 for the Arnold Engineering Zo : 0.5 to minimize the upstream influence within
Development Center (AEDC) case at a = O°. The the boundary layer. The Reynolds number is not
invisoid and viscous pressure distributions are high, and the wall temperature is about half the
almost identical for this Re range. The NS code total temperature; hence, a grid of 28 by 12 by 5
has predicted higher CF over the entire wall, but is adequate to fit the shock and to resolve the
yielded a Clldistribution that coincided with crossflow gradient. In Fig. 12, a mild hump is
that of the BL code(16) except at the stagnation displayed on the CH distribution that can be
point. The outflow boundary _ = 98° is obtained attributed to the shock shape near _ = O. A few
by means of two-point extrapolation. No adverse more grid points tn _ may smooth out both. The
upstream influence is noticed since the flow no inviscid and viscous results are otherwise con-
longer moves as fast as that on the spherical sidered excellent. The data generated on the
nose. axial plane at Zo = 0.5 Were used to initialize

both the Euler and the parabolized NS computation
The preceding examples were obtained with de.2 by the author(9) to an axial station equal to Zo =

= 0 and deA _ O. If de.2> 0.0, _tand _ would 30.
have shown lower magnitude, but the calculation
was stable without using de,2. For three- The geometry of the Space Shuttle Orbiter was
dimensional cases, however, de,2is important in defined by a lofting technique using blueprint
stabilizing the calculation. To examine its configuration. The Orbiter nose consists of a
positive effects, the AEDC case was computed using spherical cap at the nosetip and nonanalytical
three different de.2values and the history of shape. The nonspherical configuration and a _ 40°
convergence is presented in Fig. 7. An invlscid necessitate 3D NS calculations not only to deter-
calculation was obtained with de.2= O.1 from k = O mine CH values but to find initial data for
to 200, then the viscous calculation proceeded at parabolized NS calculations. Under equilibrium-

. different de.2values. The influence of de,2to the air assumption, the subsonic zone is well within
stability is self-explanatory. Nevertheless, the the domain located at Zo = 0.5. Using a grid of 8
explicit damping is incapable of removing the by 16 by 8 and after 300 steps, the inviscid
spurious oscillations along a coordinate line. results have St = 2.9 and z = 0.009. The viscous
For instance, the CH distributions were noted to calculations continued with a grid of 28 by 16 by
swing up and down during the calculation with CN 8 and another 300 steps of integration. The
= 50 but to be smooth with CN = 30. The results results have St : 0.4 and CH = 0.04. The Mach
at k = 600 (including 200 steps for inviscid contours of the shock-layer flow are shown in Fig.
calculation) are plotted in Fig. 8, but not shown 13. There are marked differences between inviscid
is that the shock standoff distance near 0 = 10° and viscous results which may be attributed to the
also oscillates with CN = 50. The value of CH vortical flow enhanced by the presence of a vis-
depends on the temperature gradient at the wall cous layer on the leeward side of the body.
and thus is directly proportional to the shock- Another interesting pattern is that the locations
layer thickness at that point. Therefore, the of maximum p and maximum CH are not necessarily at
accuracy of the viscous parameter, being very the same point on the body. (See Fig. 13.)
sensitive to the inviscid layer and shock calcu-
lations, should be used to evaluate the quality of The grid points used to approximate the body
the overall solutions. In contrast, the wall and the shock are illustrated by Fig. 14 in two
pressure distribution is relatively insensitive to perspective views. They are very coarse for the
shock shape and diffusive fluxes and cannot be size of the shock layer. The normalized data for
used for that purpose, the fifth Space Transportation System flight (STS-
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5) are also presented. The discrepancy between 4. Hall, D. W., "Calculation of Inviseid Super-
the NS prediction and the data was also noted sonic Flow over Ablated Nosetips," Alga Paper
between the BL results and the data. No pressure 79-0342, AerospaceSciencesMeeting,New Orleans,
data are available for comparison; however, the La., Jan. 15-17, 1979.
viscous pressure is somewhat higher than inviscid
pressure on the windward side. 5. Daywitt, J., "Improvements in Techniques for

Computing Supersonic Blunt-Body Flows," AIAA
The aerobraking orbital transfer vehicle Paper 81-O115, 19thAerospaceSciencesMeeting, St.

(AOTV) configuration represents the front portion Louis, Mo., Jan. 12-15, 1981.
of an ellipsoid/60° cone proposed by the NASA
Lyndon B. Johnson Space Center for a flight 6. Li, C. P., "g Numerical Study of Laminar Flow
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the pitch plane. The purpose of Fig. 16 is to Field Simulations," NASA SP-347, Mar. 1975,
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T. J. Mueller, and B. R. Patel, gSME, 1981.
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equation to solve for the singular axis, the ex- Implicit Finlte-DifferenceSimulations of
plicit scheme has been replaced by an ADI factor- Three Dimensional Flow," AIAA Paper 78-10,
ization technique combined with numerical damping 16th Aerospace SciencesMeeting, Huntsville, AIm.,
and local-time increment. The code has a reliable Jan. 16-18, 1978.
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Appendix g - Derivation of Eo. (2)

Equation (I) is undeterminate or singular since
along the Z-axis because of sin _ = O and w = O.
In the removal of sin _ or _ from the flux terms,

h-(_has a complicated expression and needs special ( )_ : ( )x + Y_( )y, ( )4 = ( )z + Y_( )y, and
analysis. Consider a typical component of _; the
mixed derivative of second order results in

(). = ( )y

(pw)<_= p(_w+ p_w(+ p(w_+ pw(_ (At) The final form is

But the velocity components are related on the Z- - -"-_*(f+ y_fy)(- ux+y_uy*)-uaxis by h(_= u \ x

u=u(0, q,0)_s(,v=v(0, q,O),w=-u(0, q,O) sin( This term, in conjunction with (f + r)/sin _ from
Eq. (I), completes the derivation Of the convec-
tive portion of Eq, (2).

Hence, when evaluating Eq. (At) on the pitch plane

= O, one observes that An evaluation of the diffusive fluxes on the
Z-axis is not pursued analytically; instead, an
approximated expression is derived using differ-

w = O,w<= -u(0,q,O),w_ = O,w<_= -u_(0,q,0) once formula and grid notation presented in sec.3.1. Let H be the diffusive fluxes, Then

and (pw)<_= -p_u(O,q,O)- pu_(O,q,O)_ -(pu*)_• H_( =Hzx + y_Hzy

where u* : u(0,q,O). Thus, the convective h flux where
becomes

- u (0,q,0) _ - -- zx
h_ = - u _ u_(0,q,0) u

Hzy = [(Hn+1,2,3 + Hn_l,2,1)/(2 AT)

and - pu " P 1

f: pU2 , U, : ' pu,

puv pv

0 0

pu_ + pu. _P_ + P
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Table 1 Unit vectors in reference coordinate frames

Wind frame Cartesian frame Spherical frame

I, J, g I,J,K i,j,k

Cartesian I cos a + K sin a 1 i cos _cos _ + j sin _cos _ - k sin

frame _ 1 i cos _ sin ( + j sin _ sin _ + k cosI.J,K =

-_sin a + Kcos Q 1 i sin _ -j cos

/cos _cos ( + Jcos _ sin ( + K sin _ 1
Spherical
frame I sin _cos _ + J sin _ sin _- K cos_ .1
hJ, k =

-lsin_ + Jcos_ 1

in1 +jn2+ kn3
Intrinsic
frame i tl + j t2

n,t, b = ibl +jb2 + kb3

_.t

e.g., V=iu.jv+kW-IU+JV+KW, U=I.V=I.iu+I.ju+I.kw

Table2 Listofsamplecases

Case M u, deg aT, deg Zoa Grid Modelb T w Rec R N,d ft

NSWC-1 2.g7 0 0 0 8by 12 P 1 1.01 × 106 0.1623

5.94 28by 12

NSWC-2 5.94 10 0 -0.5 8by 12 by 3 P 4.4 1.01 y 106 0o1823

33by 12 by 3

AEDC 8 30 0 0.5 8by 12 by 5 P 6.5 0.71 × 106 0.0413 -_

28by 12 by 5

Orbiter 22 40.8 0 0.5 8 by !6 by 8 E 8.5 14 000 2.36

28 by16 by 8

AOTV 34.8 0 15 NA 10 by 18 by 5 P 8.4 8272 10

28 by 18 by 5

aLocatien of the Cartesian frame relative to the center of the nose curvature on Z-axis.

bp-perfect gas (¥ ----1.4), E - equilibrium air.

cFree-stream Reynolds number per foot.

dNose radius on Z-axis.
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/ I

i Z - Z-AXIS,

W - WIND AXIS
i

Fig. I Capabilities of the Navier-Stokes/Euler
blunt-body eode. a) Portion of a
complete Orbiter flowfield, b) Stag-
nation region of blunt body. c) OTV
with raked-off body.

x 1Z Y= fi = 0 SHOCK

y = fi = 1 BODY

Y -- EQ. (5c)

------ EQ. (5a,b) I1
(A_)_=1 = 0.0085 I

I
I

K I
/

/
/

/_ Y • t/ j

COORDINATES

(r, 8, _) SPHERICAL-POLAR J
(n, t, b) SURFACE INTRINSIC 0 1
(X, Y, Z) CARTESIAN
(x, y, z) COMPUTATION

Fig. 3 Comparison of the 8rid-clustering

Fig. 2 Schematic of the physical and computa- functions.
tional coordinates.
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10 -- 10 -

NSWC-1

M=5.94, a=0 °

8.12.0 LOCALt CN=6
d=0.1

6o= 0,1478

NSWC-I: M = 5.94, a =0°, d2 = O,d4,p = 0.1 6"/2 =0.647
8.12.0

1 1
CN 60 Pc

-- 3 0.1489 45.81---- 9 0.1474 45.54 +

.... 15 0.1473 45.95
GLOBALt

St 0.1 t 0.1

V'\ / _t

\ /
O.Ol \ L_J O.Olt

0.001 I I 0.001 I
lOO 200 o lOO 200
k k

a) b)

1 --

NSWC-1 6o 8_r/2

M = 5.94, a = 0° -- LOCAL t 0.1502 0.609
---- GLOBAL t 0.1519 0.613

0.1

St /I"- St

CH ..../"

O.Ol c.
Fig. 4 Convergence history for 2D NSWC-I case.

a) Effects of time-increment step size
on invlscid solution, b) Effects of

0.001 I I I local-time integration on inviseid
200 300 400 500 solution, c) Comparison between

k global- and local-time convergence
c) ratesforviscouscase.
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GRID PRESSURE MACH

1.0 1.0

X .50 X .50

<
91.o-o'.so".s 1;o ' ' ' g 12o

(_t)ma×

Fig. 5 Inviscid flowfield results for the NSWC-I
case (M = 2.97, a = 0°); Xm.x =
0.58102. Shock speed: 0.003187 (left
plot);0.005339(rightplot).

M =8, RN =0.0413FT,T=_= 99=R, Re/FT= 707000
A0= 8°, Ar= s/6100 --

NS ------ EULER O BL

60 0.03 0.03 --

P/P_
1=

40 CF 0.02 CH 0.02

20 0.01 0.01 --

1 I
0 90 0 90 0 90

@,DEG 8, DEG 8, DEG

a) b) c)

Fig. 6 Comparison of NS and BL results for an AEDC 2D case. a) Wall pressure distribution, b) Fric-
tion coefficient, c) Heat-transfer coefficient.
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M = 8, Re/FT = 0.71 , 106, Tw/Tst = 0.510 -- 0_04 --

28=12,5

j_\ CN

_t M = 8, = 30
1 -- _ LOCAL t .J'..'1.'''_'_'_

50

CH002
d = 0.1 INVISCID

CN = 25

0.01

St 0.1 )/'_ _ /s"

Sr

o I
g0 0 90

8, DEG

0.01 --
0.03

VISCOUS d MAX CH MAX _H
0.1 0.03694 -0.08

--_ 0.06 0.04028 -0.162 /%._
.... 0.03 0.05406 -0.78 0.02

o.ool I I I
0 200 400 600

CF 0.01
Fig. 7 Convergence history for an AEDC 3D case

and effects of damping parameters. ..

-0.01 I I
80 0 90

8, DEG

Fig. 8 Comparison of friction and heab-transfer
coefficients for an AEDC 3D case using
different tlme-step sizes.

g

GRI D MACH PRESSURE

1.0 1.0-

.5 .5"

X 01 X O.

-0.5! -0.5 Fig. 9 Inviscid flowfield results for the NSWC-2
case (M = 5.94, a = 10°);Xmax :

-1.0 -1.0 0.9496. Shock speed, 0.017368 (left
-0.5 O .5 1.0 .25 .5 .75 1.0 plot); stagnation pressure, 44.5016

(St)max P (right plot).
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GRID MACH PRESSURE GRID PRESSURE MACH

1.0

1.0. __ 1.0. _.

= .5. .5. .5

X 0 X 0 X 0

-0.5 _ -0.5 -0.5

-1.0 _ -1.0
o 25 _ _5 110 0 .25.5 75 10 -1.0

c, p o 25 .5 ._5 1.0
P

Fig. 10 Viscous flowfield results for the NSWC-2
case (M : 5.94, a = 10°);Xmax : Fig. 11 Inviscid flowfleld results for the AEDC
0.9496. Stagnation Stanton number, ease (M = 8, a = 3_), Xm=x = 1.2161;
0.00374 (left plot); stagnation stagnation pressure, 77.2282.
pressure, 43.2118 (right plot).

,S
_,',:,.

MACH-VlSCOUS MACH-INVISCID
• GRID PRESSURE MACH 1.0

'°l1.0 1.0 .5 .5

.5 X 0 X 0 """_"----,
_..=

X 0 X 0 -0.5 ,r --'7 -0.5 -x=
f

,,.j-J' -10 25 .5 751.0 "1"°02 .;_.6 .81:0
-05

"1°025 5 751.0 "1°02 .4 6 .8_:0 CH p
CH P

Fig. 13 Inviseid and viscous flowfield results
Fig. 12 Viscous flowfield results for the AEDC for the Orbiter ease (M = 22,

ease (M = 8, o : 30°). Xm_ : 1.2161; o : 40.8°, equilibrium alr); Xm_ =
stagnation pressure, 82.1822 (right 1.613. Stagnation Stanton number,
plot); stagnation Stanton number, 0.03796 (left plot); stagnation
0.03695 (left plot), pressure, 663.748 (right plot).
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1.0 ,., ,_, _.o '," ','°

.5 O NS COMPUTATION

+ .STS-5 DATA

X 0 ,,,€,,

-1.00 .25 .5 .75 1.0
CH

Fig. 14 Shock shape and comparison wlth flight
data for the Orbiter case (a = 40.8°, t
= 650 see). Xmax = 1.613; stagnation
Stanton number, 0.040736.

Fig. 15 Shock shape for the OTV case (M = 34.8,

(IT = 15°).

1.0

X 0

-0.5

-1.0 PRESSURE
0 .2 .4 .6 .8 1.0 CONTOURS

P

1.0 1.0

X 0 X 0

-0_5 -0.5 __
-1.0 -1.0 i _

0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

p CH

Fig. 16 Inviscld and viscous flowfield results
for the OTV case; Xmax = 2.493.
Stagnation Stanton number, 0.02512
(lower right); stagnation pressure:
1540.56 (upper left); 1553.33 (lower
left, viscous case).
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