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1. INTRODUCTION

The importance of vortical flows in a variety of aerodynamic applications i3 well-known
and has been the subject of study for almost a hundred years. Despite numerous theoretical
and experimental studies of these flows, however, they are siill not fully understood and
therefore still continue to gain the attention of the aerodynamicist. In this report three

selected problems involving vortical flows are analyzed and discussed, namely
(i) The trailing \,;ortex behind a wing

(ii) Rotor blade-vortex interaction

(ii) The leading edge vortex on a flat plate

On each case a simplified mode! of the flow is formulated and approximate solutions

are found to gain insight into the basic physical phenomena involved.

II. DISCUSSION OF SELECTED PROBLEMS
(i) Trailing Vortex

Vortices appear as a necesgary congequence of aerodynamic lift and persist indefinitely,
in the absence of laminar or turbulent diffusion, after the passage of an aircraft. In this
regard their rate of decay due to diffusion is of practical interest inasmuch as their continued
presence behind an aircraft constitutes a potential hazard to following aircraft particularl-y
at low altitude in the terminal area. An analysis of thg decay of a vortex pair generated

by a wing is given in Appendix A.

The analysis provides approximate closed form solutions for each of two regions (2) a
persistence region in which the circumferential flow within the vortex remains unchanged
but the axial flow accelerates to the free stream value, and (b) a decay region in which the
circumferential flow decays through turbulent diffusion while the axial flow rem:ﬁnc at the

free stream value,

In particular the analyeis provides expreszions for the léng‘.b of persisience of the
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vortex bafore the onset of decay in terms of the aircraft span, wing aspect ratio and lif}
coefficient. The analysis also gives the vortex radius and velocity profile as a function of

distance behind the aircraft.

(ii) Rotor Blade-Vortex Interaction

One of the primary sources of helicopter noise, under certain flight conditions, arises
from the interaction of the vortex produced by a blade with the aerodynamics of the
following blades. This phenomena, zometimes called blade-slap, is discussed and analyzed
in Appendix B. The analysis has three major parts (a) the rotor-tip vortex, (b) the unsteady

acrodynamics of the interaction with the following blade, and (c) tbe acoustic pressure field.

The analysis of the vortex formed by the blade tip includes the effects of turbulence and
viscosity at the center of the vortex and therefore does nct introduce a singularity as is the
case for inviscid vortex models. In the unsteady azrodynamics analysis the disturbance due
to the passage of the vortex over the blade is represented as an unsteady gust using a Kutta

condition at the trailing edge and the assumption of a flat wake. Acoustic pressures are

then determined, using the Hawkings-Fiowes Williams cquation and the results expreassed

in terms of the vortex characteristics, ie vortex strength, core size and Reynolds number.

A comparizon of vortex velocity profiles are found to be in good agreement with exper-
iment. The unsteady lift is found to be dependent on the core size (which in turn varies
as the blade radius), on distribution of blade loading and on the Reynolds nmnber based
on vortex strength. Extensions of the analyzis to determine the cffect of spanwise non-
compact sources and the eflect of variations in blade tip shape on acoustic signature were
also undertaken. There a2ppears to be o significant difference between the resuita of the
non-compact source analysis and those for the compact source; even in the {ar fields there
is an appreciable variation in scoustic rignature, both in amplitude and shape, dcpendipg
on observer position. Finally the effect of tip shape on acoustic signature is determined

and compared to the effect of tip shape on blade 2erodynamics efficiency. Reductions in
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acoustic pressure of as much as 6dB may be realized by tip shaping but with an appreciable

 loss of lifting efficiency (of the order of 20% - 30%).

(iii) Leading Edge Vortcex on a Flat Plate

The classical solution for flow over a flat plate in 2-dimensions satisfies a trailing edge
Kutta condition but produces a singular behavior at the leading edge. An alternative
ziodel has been studied which requires the introduction of a vortex sink placed above the
leading edge of the plate. The flow equations are solved and the position and strength
of the vortex sink determined in terms of the angle-of-attack of the plate. The rolution
so found represernts the flow near the root of a thin wing where the sink gives rise to a
strong rpanwise flow contained within the detached vortex, and gives a ron-zerc drag for

the plate.

A comparison is made of this solution with the results of two classical solutions, namely
the attached flow with the leading edge singularity and the totally separated flow (Helmhols
Solution). The vortex-sink sclution is found to exist in the angle of attack range 0 < @ <

72° with maximum lift occurring at a = 45°. This work i3 given in detail in Appendix C.

ii. CONCLUDIOVG REMARKS

The understanding of vortical flows continues to need further improvement in view of
the fundamental role they play in a variety of aerodynamic protlems and applications.
Although much progress has been made in the analysis of invizscid vortical flows there con-
tinues to be a lack of complets understanding in areas involving vortical flows interzcting
with turbulent phenomena. In some cases, 23 for example in the case of the trailing vortex,
such interactions can not be ignored since they determine the rate of vortex decay (and
thercfore the extent of the hazard to a following aircraft). In other cases, as in the case
of the blade vortex interaction, turbulence removes what would otherwise be an inviscid

singularity in the precsure at the vortex center, and permits a realistic assessment of the
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acoustic signal propagated by the blade. Otber problems such 23 vortex bursting, which
lie cutside the scope of this report are also of interest in aerodynamic design and deserve

increased attention in the future.
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ON THE STRUCTURE OF THE TURBULENT VORTEX
by

Leonard Roberts
Joint Institute for Aeronautizs and Acoustic
Durand Bldg - Room 269
Stantord University
Stanford, CA 94305
LSA

SUMMARY

This paper provides an analysis that describes the trailing vortex generated by a lifting
surface, the structure of its turbulent core and the influence of axial flow within the vortex on
its initial persistence and on its sutsequent decay. Similarity solutions of the turbuleat diffusion
equation are given in closed form and results are expressed in sufficiently simple terms that the
influence of the lifting surface parameters on the length of persistence and the rate of decay of
the vortey can be evaluated readily.

SYMBOLS
wing reference area
aspect ratio b*/A
aircraft wing span
distance betweea vortices
induced drag coctficient
lift coefficient
2rr /KTy
characteristic length of vortex persistence
wing lifting efficiency, Cj /2 ARCp

o

con-:.ta.nt. 0.06

outer edge of turbulent core
UbfvAR

distance in radial direction

lift distribution parameter, fj £ay
=sinh{4s%/e - 11/12)
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velocity function

maximum value of V
circurnferential velocity
distsnce in axial direction
r/d

=y/(8/2)

distance in spanwise direction
=r/r(z}

(5tog1)!

cireulation

coeflicient of eddy viscosity
coefficient of kinetic viscosity
density
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1. INTRODUCTION

The structure of the wake vortex generated by a lilting surface such as an aircraft wing or
a rotor blade has been the subject cf much previous study, both thenretical and experimental
{sce Tor example ref. 1-1). The trailing vortex. alter its imt1a} formation is known to ¢comprise
two phases, namely (1] a region of persistence for fong distances compared to the wing span and
{23 a region of decay in which the circumferential velocity is reduced. and the vortex diffuses
radially with incrensing distance {fig. 1]. Ia this regard it is of particular interest to understand
the structure of the vortex in suftictent detail to predict the velocity distribution in the vortex,
to explain the initial persistence, snd characterize its subsequent rate of decay in terms of the
aeradynanmic properties of the lifting surface.
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2. ANALYSIS
The Potential Flow

The potential flow due to 2 vertex pair has been analyzed by Spreiter and Sachs (ref 1). In
their approach the vortices are considered as a pair of rotating cylinders around which a potential
flow exists in the plane normal to the axis of the vortices. The relevant expresuons which relate

the charactezistics of the wing to those of the vortex pai. are derived here, for completeness, as .
follows.
Tle lift is expressed as . ) .
1 1
L= ;pL’zCLA = p(rbl‘lfo GdY. (1

where I is the circulation at the root, G = F— is the spanwise distribution of lift, and ¥V = :‘l
is the dimensionless spanwiste distance,

The integral in equation (1) is denoted by

t
/ GdY =3 {2)
°
# is a parameter which characterizes the lift distribution.

The vortex sheet behind the wing rolls into a eylindrical vortex, the inner part of the eylinder
containing the vorticity shed from the tip and the outer part containing that shed from the root;
thus I'y is the strength of the vortex at its outer edge ry.

From equation {1), I'j may be written

94

AK N (3)
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where the aspect ratio is AR == §3/4.

Follewing further the Spreiter-Sachs analysis, the induced drag is r-lated to the rate of
formation of rotational kisetic eacrgy in the wake. This relationship is written

D= %p(/szA= / / %pr';'ds' (1)

where the integral is performed over the entire plane normal to the direction of flow,

Equations {1} and (4} c3n be combined to given aa expression which relates the energy integral

to the wing efficiency
[[E)s=% | (5

cl. . s o
where ¢ = ;yor is the wing efliciency factor.

The integral in equation 5 has contributicns from the potential flow outside the vortex pair
and {rom the vortex pair 1tzell; thus

[l J@] L@ |

where the substitution vy = s has beea made withio the vortex pair. d

The contribution from the potential flow is evaluated in closed form and may be writtea

)] -2 x
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where by is the separation distance between the vortices. The cortribution from the vortex pair
must be evaluated from the radial distribution cf {T = G withia the vertex. This contribytion
is found by solving the turbulint fiow equations aud, as seen later, gives

['(_"_)’i: _n
Jo \T"y r 1s (&

Substitution of {6). {7), and (8) into {5) gives an expression for ry,

b

- o -1

n=3S (9
where § == sinh{1s7/e - 11/12)

The relationship (9) between the vortex radius £y and the separation distance &, will hold
even when ry varies with the distance z along the vortex since the flux of rotational energy must
be constant and equal to the induced drag at all values of 2.

A determination of the separation distznce by between the vortices requires that an additional
condition be prescribed. [t is assumed that the centroid of vorticity is conserved during the roll-up
process and thus the imtal spanwise separation of the vortex is given by

o) 8 't
2 2/ =3
{alter integration by parts).
The initial radius of the vortex is
. .

ni(0) = 3s5 ! (10}
The iritial vortex radius r(6) and the circulation 'y, given by equation (3) are important
parameters in the description of the turbulent core of the vortex 2s seen in the following enalysis.

The Turbulent Vortex Core

For any location £ Jownstream of the Lifting surface ths characteristics of the vortex will be
influenced by turbulence and, to a lesser degree, by kinematic viscosity. There will exist a eore
within which the circamferential velocity will differ from that given by the potential flow (fig.
2). This vortex enre flow can be described by a differential equation expressing the transport of
angular momentum as follows:

G 8G b 146G
u— == =l g m—— 1
.73 ér ér ( lr &r (n
where v is the kinematic viscosity and ¢ is a turbulent eddy viscosity.

The eddy viscosity for vortex flows has been investigated by Hoffiman and Joubert (ref 5} and
a mndel formulated in a way aralogous to the traditivnal mixing length theory of Prandtl. A
dimenrsional snalysis suggests that the eddy viscosity is related to the citcumferential shear stress

) through the relationship
n\
=kl ~)r
1y 4
v
whery
T = vy ty
rd - br r
- which may be comnined to give
& KTy 6G
= Bl rrg) = — 1,22 a
¢ 6r( 1) 2x | or 12
where the constant k must be determined experimentally. The value & = 0.05 appears to fit the
evperimental data.
9
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When equation (12) is substituted into equstion (11) the sesult is written

KTy 8 SG\16G
§C G _ KT, K‘ )_ (13

—— (el — — r— —
"6:+"6r= 2r ér ér Jr br

where
2xv 4arvdR 1

¥, B UbCpa

c=
{substituting for [y from equation {3}).

The quantity ¢ is seen to vary inversely with the Reynolds number ’;’1’; Yased on a chatae.
teristic chord length, =y. For s typizal aircralt wing ¢ is of the order of 10" % or 107° and the
effects of kinematic viscosity on the overall wake characteristics are gegiigible. However, ia tne
region close to the center of the vortex (where r{? < r) the effect of viscosity will change the
local velocity gradients significant!y, creating 8 “1aminar sub-core™.

Equation 13 must be solved for the distnibution G{r) subject to appropriate boundary condi-
tione, and using suitable approximate expressicas for u and v, the convective velocity components.
Two cases are considered hiere corresponding to the region of persistence, where the vortex remains
tightly rolled, and the region of decay where the vortex increases its radius and decreases s
cireumlerential velocity with distance along the vortex.

(1) Eegion of Percistence: Immediately behind the wing it is to be expected that the axial veloaity
u 1n the vortex core will be less than the [ree stream value, U but must accelerate to this val e in
3 distance d say. The velocity components along and uormal to the centerline of the vortex may
be approximated as

F =
saticfyving the equation of continuity.

Jor r < d

130w
Bl

L
_—

aM

The accelerating flow along the axis (see fig. 3a) causes a radial inflow which in turn convects
vorticity inward to halance the outward diusion by turbulence. This causes the vortex to remain
tightly rolled until the axial velocity teturns to its free-stream value and the infow ceases.

{21Region of Decav: At far distance behind the wingz where the axial velocity has recovered to
the free stream value

) v
i?=l"E~-0 fur > d

Here (<re fig. 2b) there is no radial inSow but radial diffusion is balanced by axial conveetinn
resulting in a :preading of the vortex and a5 will be seen, a decay in the circumferential velocuty,
with distance along the vortex.
Approximate Solutions

For both of these regions simple approximate solutions for G can be obtained {rom equstien
(11). First it is convenient to define dimensionless variabies

LA P L e
ritg) U " onfl)

and seek self similar solutions of the form G = G(z)

2 z z
== = =
3

The tesulting ordinary differential equation, derived from equation 13, is written

[(c+:G"‘)(—:“] +43°6 = 0 (1)

whete - ]
s M=l d (ﬁ(’) “ul2) .
=1l d:[ r.ui) U )

and the prime denotes dilerentiation with respect to =.

Sinee . must be independent of ¥ for similarity to hold. the exponents m and = in the
expressiens for £i(}) and u{2} respectively must satisly the relation 2m +n = 1, thus giving from
equation (15). )

1 ... - L
3? = ;:(‘r](l)/k'rld (13a)
10
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Since m = L‘vl. it can be seen that in the region of persistence (I <Lp= f.n =1) the
corresponding Value of mis m1 = 0, so that ri{z) = ry{1} = ry(0). Slmllarl,\, in the region of

decay (£ > L = 1,n =0) the value of mis m = }, so that ri{z) = r.(l)(ﬁ)g.

In order to obtain the solution. G(z2). equation (14} must be solved subject to the boundary
conditions G{1) == 1. G’'(1) = O (assumning that the core merges with the potential salution (G =
1). } and G(0) = O giving zero circumferential velocity at the center of the vortex.

Equation 14 is nonlinear: however an spproximate solution can be found in two steps: since
¢ is a small parameter the solution G for ¢ = 0 is found valid except for a small region pear
the center of the vortex where :G' < ¢, and an improved solution, using the approximation
¢+ 2G' = ¢+ :G', is then found from the resulting linea: equation.

Thus, with ¢ = 0, equation 14 becomes

Y .
[dc.’J +43%¢ =0 (14a)
t
and a solutjon satisfying the boundary conditions is determined as

1-G={1-z) (18)

The term {¢ + =G} is now appronimated as

r+:6"==sc+:é‘"&'2(l—z)(:+§)

so that equation 14, with J = 1, becomes
¢
[(1—:)(z+f-,)7] +26' =0 (148)

Which has the improved solution
- os ¢
1—c=u-—:)-(1+—c—) | (16a)
=1

Equation 16 closely approximates equation (16a) for small values of ¢ except for = = 0f¢),
corresponding to a ‘laminar subcore’ at the center of the vortex.

All of the relevant characteristics of the vortex can now be determined using equation (16a),
i.e., the length of persistence, the radius of the turbulent core. the radius of the laminar sub-core,
the velocity profiles and the variation of vortex size and velocity with distance £ along the axis.

First the integral of equation 8 can now be evaluated using the approximate solution G=

1 —{1— 2z} giving
/ (r) dr /‘ézg__l
o \I/ r oz 12
thus verifying equation 8. '

The characteristic distance of persistence, d is found from 133, with 3 = 1, as

= U
d= 10 T r3(0) (17)

The same result, expressed in terms of the zerodynamic parameters of the wing (b, Cp. and AR)

is written R
# -'l :S_‘-lb

= maa {17a)
The radius of the turbulent core ry is determined as
r1 = r;{0) fori;- <1
(18}

vzt . r
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corresponding to the region of persistence and decay respectively.

Alternatively, in terms of the wing parameters

rl=33_l% f0f§<l
18a)
Skz CL ’__, z *b k4 (
=(TA—-§)8 (E):.; '0!’2)1

with d given by equation 17a.

The circumlerential velocity vy is determined from vy = L as

Ixy

vy = -—FL— V(=)

T
2xr((0) d <!
I‘. '§ I (lO)
=g ) >
where
¢ 1-U-2(1+%)
Vi = = = ——rr—noo 1
(=7 1 z i< (20)
Viz)=- 2> 1
with z = '——‘—;) and ri{z) given by equation (18), d by equation (17).
Alternatively
1 Cp _ z
"‘=2~.4sz WV for =<1 .
{19a)

i -
1 - i,
= .(Bxk ) ( ’I) . ‘(%) V(WU for 5 > 1

with d given by equation (17a). The variation of vy with % is shown in fig. 4.

The velocity profile V/(z) represented by equation 20 has the following characteristics (described
in fig. 5):

{a) For z & ¢,V(2) ~ 32 giving a linear variation with slope 2 near the center of the
vortex corresponding to the laminsr subcore,

(b) Fore &z < );V{z) =2~z corresponding to the turbulent core,
{¢) For 2z > 1;V(z) =} corresponding to the potential vortex.

The maximum circumferestial velocity is found by differentiation of V'(2). For ¢ < 1 it can
be shown that the maximum occurs at 2 = 2" == (f log )* and has the value

3 T
,. c 1\?
Vo= 2—2(;]0;;) (200)

For most purposes, the limitiog case ¢ = 0 corresponding to infinitely large Reynolds number,
can be taken giving
Vi=2at :=0

Uh.(;p KA L.

O}‘ FCOR QJ,.LH l



3. RESULTS AND DISCUSSION

The analysis has provided approximate closed-form solutions that describe the structure of
the turbulent vortex pair generated by a lifting surface. Two regions of the wake are identifed;
a region ol persistence foliowed by a region of decay. The initial persistence of the wake is
associated with an acceleration of the flow along the axis of the vortex causing a radial inflow
which counteracts the outward radial didusion. When the axial velocity recovers to the free
stream vajue the inflow ceases and the vortex starts to decay.

In the interest of brevity the results discussed here will be primarily for the case of an
el'iptically loaded wing with briefl mention of the_ mﬂueuce of inboard and outtoard loading which
may be determined when the quantities s 20d ¢ = ,M, are known. The general expressions

for the quantities of interest are given in equations (17)-(20) which reduce to the simpler forms

discussed below with s = % and e == 1 corresponding to elliptic loading.

The length of persistence d for a wing of elliptic loading is given by

AR
d=104—0b

CL
and shows that the length of persistence varies directly as the product of the span and the agpect
ratio and inversely as the lift coefficient. For a iypical large transport aircraft in a high lift
conﬁzuration (b=200ft. AR=7 and Cr=1) the length of persistence is approximately 14,000t
2.65 miles). On the cther hand for a typical fighter aircraft (b=50ft, AR=1, Cp=2) the length
of persistence is only 250f. .
Considering now a description of the vortex, in the persistence rerion, the radius of the

turbulent core ry, where the flow departs from the potential vortex is given by

ry =175

independent of aspect ratio and lift coefficient. The laminar subcore radius, taken as the location
ol maximum velocity depends on the Reynolds number and {for elliptical loading) 1s:

. wef € 1 i
r =.l:o(§log-c-) b

where ¢ = 4x|o . Re= ue For Re = 10°,¢ = .004 the value of ¢ is

= 018

thus, for a transport aircraft of 200/ épan. the maximum velocity occurs near the ceater of the
core at a radius of 3.6/t.

The maximum velocity is given (again for elliptic loading) by
. . C[
= L16—=U
Uy 1.1 AR
Thus for the transport aireraft (AR = 7,Ct = 1) and U'=300ft fsec the maximum velocity near
the center of the vortex iz 50ftfsec; for a figbter aircraft (AR = 1,Cp = 2 and U == 300ft/sec)

however, the maximum velocity would be 700ft /see (ignoring compressibility effects).

In the decay region, i.e. for £ > 10. 4436 the radius of the turbulent core and the subcore

nir) = .175(‘1)*6 054( i}{)g( )*b

R CL ¢ 1 H 2\t
r'(z) = 034( U?) (2103;) (E) b

For the transport aircraft given in the previous example the turhulent core extends to a
radius of 70°t at a distance of 10.6 miles bebind the aircraft and the radius r°, at wkich the
maximum velocity occurs, is approximately 7ft. The velocity v; at this point is 23ft/sec. For the
fighter aireralt the velocity rate of decay with distance is grester (since the velocity reduces by a
factor of 2 in a distance r == 54, and d is only 250t ia this case),

grows as (4) Jde,

and

12

T

N



s\,

Wil e B o T Y S N S SO IR R GRS N

PRI TN T e . .

Frota the general equation for d (equation 17a) and vy {equation 10a) it can be inferred that
configurations which have smaller values of vy on the vortex wake (small Cy, large AR, large s)

also have larger distances of persistence, {and those configurations having higher values of vy have
smaller distance of persistence). Morvover, from 10a it can be seen that in the decay region the
only dependence on the span distribution parameter s is vy ~ st a relatively weak dependence
which suggests that the reduction of the high velocities in the {ar wake through tailoring of the
span distribution of Lift is not a very promising technique.

Although comparison with experiments is not made in this paper it has been found that
the general trends are ressonsbly well represented by the analysis given here. The dependence
of persistence on the axisl flow at the center of the vortex probably deserves further analysis,

* however, including the iniduence of promotiag decay through mass injection thereby permitting
the axial flow to recover earlier to free stream cunditions.

Finally, application of the solutions given here to rotor wakes also deserves mention. In this
regard the effects of Reynolds number on the behavior of the velocity vy near the axis of the
vortex may be much more important, particularly in a proper description of the interaction of
the vortex with a following blade. In this situation the eflects of viscosity in the laminar subcore
play an essential role in eliminating the singularity in the velocity gradient thereby permitting a
realistic calculation of the vortex-blade interaction including the scoustic deld so generated.
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INTERACTION OF A TURBULENT VORTEX
WITH A LIPTING SURFACE

D.J. Lee* and L. Roberts*

Joint Institute for Aeronautics and Acoustics
Department of Aeronautics and Astronautics
Staaford University, Stanford, California

ABSTRACT

The impulsive noise due to blade-vortex-izteraction
is analyzed in the time demain for the extreme case
when the blade cuts through the center of the vortex
core with the assumptioas of oo distoriion of the vor-
tex path or of the vortex core. An apalytical turbuleat
vortex core model, described in terms of the tip aero-
dypamic parameters, is used and it's effects oo the un-
steady loading and maximum acoustic pressure during
the interaction are determioed.
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NOMENCLATURE

speed of sourd in the medium at rest
equivalent tip area

equivalent tip aspect ratio

blade eemichord

nozdimezsionz] constant %

induced drag coeficient of the tip

[ift coefficient of the tip

Theordorsen function

charzcteristic lesgth of vortex persis.
tence

width of the siznal in time
aerodynamic efficieacy ﬁ;t.—;

blade surface function or frequency Hz
pocdimensional circulation  functioa
r/r, .

Bessel function of the first kind of order
0,1

constant 0.06 or reduced frequeccy

wb/U
span leagth of the acoustic source
Mach pumber
uBit vector ia j direction
zcoustic pressure at the position of tke
observer or presaure oo the surface
compresdive stress tenanr
distance between moving source and ob-
gerver or rotor radius

compoasnt in ¥y, ¥, ys direction
cylizdrial cocrdinate
turbulest vortex core radius
isitiz] £y
lamiaar sub core radius

balf the distance between the equivalent
vortex pair

Reypolds number 'y /v
rotor radics at maximum circulatien

*CGraluate Studest, Student Member AIAA
*Director, Fellow AlAA

Copynght T Amercas [aviivie of Aeroasaiies snd
Asirgaautcs, Inc., 1938, Al ngits reserved.

R,

initial distance from the observer and
source iz y, direction

nondimenrional time Ur/b

tip loading parameter 3, = [, Gdy/(R ~
R)

blade surfice

reception time (or observed time)

petiod of the accustic signal

convecting blade speed

vortex velocity in r, 4, £ directiocs

vortex velocity function

Maximum velocity futiction at z = 2*

cormal component of a gust velocity en

the blade

blade fixed coordinate in aerodynamics

space fixed coordinate in acoustics

initial distance from the vortex ccre to

the lezding edge of the following blade

blade fixed cocrdinate ia acoustics

r/e,

r/n

circulation oa the blade tip or circula-

tion in vortex core

maximum circulatica on the blade tip

maximum circelation on the vertex =
-

delta function

delayed reception time due to the span

length

eddy viscosity k¥ {r/p)}r

gradient {2, 2,2

absolute viscosity

kinematic viscosity p/p

air decsity

air dezsity in the redium at rest

signal width/pericd

time at the leading edge duriag the ia-

" teraction

disturbed potestial fusction

angular frequeacy

belicopter rotor aagular speed

Kissner function

emission (or retarded time) for movizg
source or circurfereatial shear stress

1. INTRODUCTION

Oane of the primary sources cf noise for a belicepter,
under certain fight conditions, arises from the iaterac.
tion of the vortex produced by a blade with the aero-
dyramics of the following blade. To snalyze this impul-
sive poise, sonitimes callsd *blade glap,” three parts of
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the phenomena must be cocsidered; the tip vortex gea-
erated by the blade, the uasteady pressure produced
on the following blade duricg the interactios, and the
acoustic radiation due to this unsteady pressure field.

This phesomena was £rst studied by Leverton and
Taylor! experimentally using a rotating blade acd two
opposed 2irjets to simulate the tangential velocity pro-
file of the vortex. Using the theory? of nonuniferm flow
past 3 thin airfoil, Sears® treated the line vortex as a
gust; the vortex is forced to meve parallel to the blade
span with a displacement of balf of the chord height.
Parthasarathy and Karamcheti® solved this problem
with a free poiot vortex, whore path is disturbed by
the blade during $5e interaction from the intial beight
of balf ckord, and they calculated the quadrupole ef-
iect corresponding to the acoustic sources i the Scw
felds. Widnall,* who formulated as acoustic model for
an oblique forced vortex usiag toe quasi 2.D ucsteady
aercdynamics obtained by Johason* and Filatcs,” ex-
tended the theory to study the blade tip loading shape
effect® and the high speed effect?. The Bets igviscid vor-
tex model’® was used to relate the tip loading sbape and
the viscous core was treated by usiog an effective dis-
taace between the center of the vortex aad the blade. A
sumber of researcherst!43-13 bave recently studied tran-
sonic eflects oo the unsteady aerodynamics due to the
iaduced velocity of the vortex and others!* have tried
to predict the noize of the rotating blade using the mea-
sured 22rodynamic pressure!s on the blade surface.

In this paper, we attempt to study the efect cf the
turbulest viscous vortex core on the urneteady loading
and acoustic preesure for the case of 3 close eaccunter
with a following blade in certain fight condition 23
shown ia Fig.la. To analyze this phenomena, a simple
analyticz! model of the vortex core, which is turbulest
and viscour, is obtained by relaticg it to the tip aerody-
pamic parameters and we srsume that the interacticrs
occur ia the persistent region of the vortex. To simplify
the problem, we contider the situation where the vor-
tex filameat geasrated from the rotaling tip is aligned

AQTOR MAKY

’
Sremese”

COILnama $LICHT

’ _)k'\/ A \ 4
1 ¢ ot i
1 "
% \/ \ \
(b} plaa view
Fig. 1. Trajectories c{ rotating tip vortex ¢

paralle! to tte following blade a9 shown io Fig.lb; in
that situation the maximum acoustic pressure due to
icterartion is observed '*1'. Eves with the aseymp-
tios of 2-D aerodynamics, the flow is too compiicated
to acalyze completely a2 izdicated ia the experimest
dese by Ziada and Rockwell'® 80 we assurne that dur-
ing the interacting the vertex path aad vortex core are
not distorted when cut by the followizg blade. Acoustic
pressure is calculated for the finite unsteady source mov-
ing straight toward the fixed observer and asalyzed in
the space fixed coordinate and reception time domain,
whereas the source is described in the body £xed coor-
dinate aad emission tirme dozmain. Bared on the 22alysis
meptioned above, the trade-off of noise and performace
is discussed.

3. ANALYSIS
2.1. ROTOR TIP VORTEX

it is cbservaed that the retor tip vortex quickly rolls
izto a concentrated vortex acd persisis for masy spaa
lengths before it decays (23 in the case of the fixed wing
tip vortex). However, because of the unsymmetric cir-
culation shape toward the tip and the unrolled inboard
vortex sheet of a rotor blade, the rotor vortex is more
complicated to describe. Thus, for simplicity the ro-
tor vortex Seld is modelled as a vortex pair, ie., a tip
vortex with 23 equivalest counter vortex of the same
streagth , whick replacea the uzrollad inbeard vortex
sheet. The carvature of the vortex filament is neglected
locally during the formation and the oncomizg veloc.
ity cear the tip is acaumsd equal to the velocity at
the position cf the maximum circulztioa oa the gpan.
With this tip vortex rmodel, the vortex core structure
acd streagth are reluted with the tip aerodynamic pa-
rameters and are determised by followiag the general

approach used by Spreiter- Sacks'® for tke poteztial pa-t

and by Roberts,!? , for the turbuleat viscous core.

Relation between tip aerodynauilc parameters
and vortex core

Consider a rotor blade ¢f radius, R, rotaticg with az
angular velocity O in a stream cf uziform velocity Uy.
The blade wiil have a poitt of maxirsum circulation
at a radizl distance R,. With the 2esumplica of as
equivalent tip vortex, it is cooveniezt to consider the
lift and drag oa the rotor cutboard of the radius R,.
Thus

Ly = 3(0R) Curds (1)

Gezerally, the lift coeZicient Cp, 2ad equivalest tip area
A, are the fupctiozs of azimuthal 2zgle . The lift c2a
be expressed, alternatively, as the igtesral of the distri-
buticn of circulation around she blade 1 .

Lup = 5P2) - AR = Fulia [ Gl 2 (2)

RR-.

where ', is the circulation at R., 39d C = /T as
shown in Fig.2. Then, from (1} 224 (2),

C‘l i

= (AR.)(R - Ra) 72—
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Fig. 2. Relation betweea the spacwise circulatico
azd tip vortex

where

."'/.'Gd(R—yR..) “

The quantity s, represents the load characteristic of the
tip and AR, is the equivaleat aspect ratio with equiva-
leat spagn length of 2- (R - Ra).

1t is well knowg that a size of the roiled up vortex is
related 1o the lift-induced drag and is determined by the
integration, io the plane normal to the axis of the vor.
tex, of the rate of formation cf rotaticaal kinetic eaergy,
a3 was used by Spreiter'? d.e.

D= / fm -;-p(v’ +uw?)ds 4-2/.'l %pv:km’r (s}

where

D, = %p(ﬂﬂ.)’co.;ﬁn C©
and
r
v o (7

The rotational eaergy bas two parts; cae {rom the po-
tential part of the two poist vorticies cutside of the
equivaieatl tip vortices and the other from the vertex
cores of tadius r,. The vortex core tirucure iy azsumed
oot affected by the vortex pair, 30 it becomes a circu-
lar €cw and its circulation T is a functica of the ra.
disl distazce r. The sireagth of the poizt vortex, T is
assurned the same a8 the maximum circulation on the
tlade, Tw,which is actually almeost S0% of [ in the
experiment data of Tung®,

By comtining Equaticn (2) and (7), Equation (5)
caa be exprezsad as below after integratica of the po-
testial part.

4] (e “wyby\er

et ()5 @
where the quantily ¢, is the tip 2erodynamic eSiciency
defined 1s P

Ly

* TARCon ©)
azd rg is balf of the reparatica distascs between the
vortex pair determined by using the conservation of ¢ea-
troid cf the verticiy

re=(R=Ra) [y dy = (R-Rs (10)

Thea r,, the radius of the turbulent vortex core, may
be expressed in closed form a» sbowa below

€

ro = (R - Ra)se [ainh (:-:‘i—%)]- (11)

The rotaticaal energy of the core is obtaized from the
G in equation (16) , which will be discussed in the fol.
lewing sectioa.

The turbulent vigcous vortex core

For large distances from the vortex cecter, the tip
vortes: bebaves like a point vortex of cozatast streagth
. Mear the center of the vortex, where the turbulent
and viscous eflects are significant, the vortex core can
be described by a differential equation expressing the
trassport of angular momentum, 2xrve, in body fixed
cylindrical coordinzie (r,4,3), 28 showe in Fig.3. As-
suming the axial gradieat is smalier thaa the radial gra-
diest, the equatioa is writtes

o ity

where u is the axial velocity azd v is the radial velocity,
and v.e are the kisematic and eddy viscosity, respec-
tively. The oddy viscosity {or vortical fiow bas been
analyzed by Hoffmaa and Joubert? iz a way analagous
to the traditional mixing leagth theory of Prandtl :

e = krfp)ir (13)
where
tlo= E%("‘n) (14)

{k = 0.06 appeass to fit the experimantal data’ at 3
distance, d where the vertex starts decayisg).

1o the axial direction, there is 3n axial velocity de-
fect in the core due to the vizcosity such that the mean
velocity io the plane cormal to the axial direction is
zero at the trailing edge, It is assumed bere that the
axial velocity varies ligearly {rom the trailing edge to a
distance, d, where the vortex starts decaying, Thez, the
inward radial velocity v is determined from the coati-
ouity equation. This 1zfow izto the cester balances the
viscous and turbulezt diffusion such that a persistent
regioa of the Lip vertex exists.

With the velocity composents «,v assumed azd
eddy viscomty formulated ia equation (13), a timilar-
ity sclutica for G was obtained by [loberta’® with the
boundary conditicns that the taogential vejocity, vy at
tbe center is tero 20d the core merges with the potes-
tial flow. The tazgenatial velocity of the vortex czn be

Fig. 3. Tip vortex gesmetry
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Fig. 4. Vortex velocity distnibution

expressed as follows :

T,
2rry{2)

V(z) (15)

Ve =3

where
V(z) = G{s)/s
= [1-(1—:’)(“3{-)']/: £g1 (16)
=1/z 221

The similarity variable, 2, is defined as r/r (z), where
the turbulest core rading r, remaics coostaat and equal
to r,(0) for £ < d and increases as £, {0)\/z/d for » >
d. The persistence distance, d 1s ¢/4k°(QRL(0)/T,).
Tte velocity fusction V(2) of equation (16) is valid for
small ¢ ,which is a ncadimeasional parameter related to
the iaverse to the Reynolds Number, Re, dedced 23

Irv 2r |
‘e R T ERe a7

where Re, based on the maximum circulatioa [, in the
vortex, is related to the blade chord lesgth 28 a chare-
teristic leagth ; o

JORLMR-RY Cu Ty
v

Re AR, " " (18)

(fcr a typical model rotor blade ¢ ~ 0.01 to 0.1 2ad
Re ~ 10% to 10%).

Tte velocity fuction V{z) caa be expressed iz a sim-
ple form 23 shown ia Fig. 4. ¢

2
Vis)= 2 for ke laminar sub core

13

V(z)=x2-2 [fortbe turbulest core (1)
The maximum velocity V* = 2 = 22° occurs at the po-
gition z° = (¢/2 log1/c)**? as showa in Fig.4 3ad the
velocity profile pear the center,in the lamioar sub core,
shows that the velecity gradieat is steeper for emaller
value of ¢; that iy, for large Re, which property becomes
importane for clos2 eaccuzters of the vortex with a fol.
lowing tlade.

2.2. UNSTEADY AERODYNAMICS
DURING THE INTERACTION

‘Yith tke tip vortex defined in the previous section,
the unsteady flow field duricg the izteraction between
the vortex core and the following blade will be described
with the aszsumption of go distortion cf the vortex paih
or of the vortex core. Even though the vertex is turbu.
leat and viscous, it is assumed that the flow around the
airfzil is a potential fow during the interaction. These
assumptions meas that the vortex is {orced, not {ree,
and the verticity field of the vortex core and the irro-
taticnal €eld around the blade can be split asd cou-
pled through the surface bouadary of the blade 23 ex-
plaized more generally by Kovissnzy?® 1ad Goldstein?t;
this is the same assumption as for traditicnal guat thes
ory. Thus the vortex behaves like a convecticg wave.
These concepts were visualized by Regler® in the prob-
lem of the iateractios of a vortex array, reprecenting
the turbuleat flow, with a semi-infinite plate. It shows
that the stream {unctison representicg the vortical fields
is oot distorted but the combined stream fuzctios ia-
cludiog the disturbed irrotaticnal fields, satisfying the
beundary condition of no Sow through the eolid bound-
ary, is distorted to give a vortex on either side of the
plate. This flow pattern is ia geasral agreement with
the experiments of Yu’® in the extreme case for which
the center of the vortex core meets the biade. Within
these astumpticns, only the aormal compeaest of the
vartex velocity oo the tlade surface is irmportaot espe-
cially ia case cf no angle cf attzck betwaen the convecd.
ing Qow and blade. Eves though the zesumptiocs zre
valid cnly when the normal componeat ¢f the velocity
is small compared to the convecting veiccity, we use the
assumptions generally to derive the unsteady loadicg o
the tlade surface during the isteraction.

Unatesdy loading on the eurface

The goveraing equatico for the iscompressible small
perturbatioa poteatial fuction, &, is

V=0 (20)

aod the boundary cozditisns are

a3
Zn-w,(:-(h) jzlcd 2=0

p=0 lz[2% z=0

(21)

Ur
et

Te

Fig. 5. Coordinate system of tke blade durizg icterac-
tion
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where w, is the sormal componest of the vortex gust.
The pressure is gives by the Bernoulli equatica

8¢ a3
,,,-,,(3_,-05;) (22)

Using the coaservation of circulation in the fow feld
acd the Kutta condition at the traiicg edge, the Lift for
a2 sharp-edged gust was obtaised by Kissaers, (with the
assumption tbat the shedding vorticies from tha trailiag
edge covect with the same velocity of the {ree stream),
as

L{s) = 2%p,Ubu,¥(s) (23)

where v, = cozstant acd

< ax ' - ! - soilieat)
¢(,)=2_~; _C(k)..ldk) 5-’.(?‘ -’n(k.¢ dk

- 13

(24)
aad
'
9= l%, k= h-z; (25)

The variatle g is condimensicaalized time ana k is the
reduced frequency. The fuzction v (s) is the Lf: resporse
functicn for the step gust, calied the Kissaer functica.

For the vortex gust, we caa use the Dubamel theo-
rem to obtain ke Lift usipg the Ki:sner functicn. Thus,

L{s) = 275.U [u,(om,) - ﬁ’#m - a):la]

{206)
Here, the velocity of the vortex gust w, is obtained after
the trazsicrmatios of the coordisates s shown 1a Fig.s

r, z, - ab
v gy (_.__'l ) (27)
and the gradiest of the gust velccity is
dw, (e, T b, 2,-0b
pubad 1320 RN ALY Lol
dr 2er, vy { r ) (28)

where the quastity at time @ is cf thé convecting vortex
velocity at the leadicg edze azd z, is the izitial distance
between the center of the vertex and the iesdiag edge.
As skowa ja Fig.6, the gradiest of the gust velccity dee
pesds op tte turbulezt vortex size, ry, the lam’ wrsud
cereradicy, r* acd the slopeat the centercftbec,  2/c.
The lift caa be evaluated easily azalytically or numeri.
cally if tbe Kizsezer function, which bas the integraticn
for the whole razge of frequency as showa ia equatisa
(24), c3a be approxirmsted 13 a simple azalytical form.

at the leadicg edge (center shifted by 1,,8)

ry
(W3}

ig. 6. Proflecf the convecting vortex velocity gradient

Dehavior of the Kdssner function

The approximate form of the Ktssaer functisn caa
be expressed in a series of expogential terma as Y is

v(s) = 1 -05e01% ~0.5¢" 122 (29)

This is valid for the whole razge of s except pear the
crigic where a more accurate f2nan can be obtained by
usizg the asymtstic express;on ¢f the function® sear the
origin, 3 € 2, (the time required {zr the front of the step
gust 2 pass cver the chordj, as follows

vs) = 127 % 130’

\/ZT;(l s 9 23 ,) s<2 (30)

Compariag (29) and (30), there is to significant differ-
eace in the unsteady loadicg a3 stown i3 Fig.7 . But
if this lcadicg acts as the accustic source, 3 wgnifcazt
diflerecce cccurs near the origia becautze it iavolves the
gradient of the functica. Theafers < 2,

- Zi.,) (31)

() VI i1l 31 1
"—( %'~ 21340

s
Js [ 4 2

1s 212
and for s 2 2,

52{—’) = 0.5 0.13¢ 0 1M L g 5emtre03 (33)
s

The gradieat of the function has az iztegrable sicgular-
ity at the crigin azd the exporestial terms are modified
to give a3 smooth fupction at 8 = 2. This is shown in
Fig8.
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2.3. ACOUSTIC PRESSURE

The acoustic pressure field for a moviag body in
the presence of a vortex can be obtained by using
the Ffowcs-Williams and Hawkings equation®™ in the
medium at rest and by assuming the notunifermity is
conficed to the sources. The signal is azalyzed in space
fixed coordinates and the sources are described in body
fixed ¢oordinates. The cquation has monopcle, dipole
and quadrupole sources corresponding to thizkness, sur-
face pressure and uasteady flow fields. Here we consider
only the dipole source because, 2ssuming a thin airfoil
and low mach number, we can neglect the moaopole and
quaripole terms. As expliined by Curle®, the dipsle
source ia the equation implies the effect of scatteriang
due to the body for wave lengths of the sigmal large
compared with the body sise; thena the source can be
represented by the total force on the surface. Actually
the observed acoustic sigaature durizg the blade vor-
tex interaction contains all frequencies®! Lut considering
that most of the ezergy comes {rom the lower {requen.
cies, 3 compact source can give the basic property of
the sigaal. Here, in our problem of a finite source with
large AR, a spacwise moncompact fource is assumed.

The inhomogencus wave equation with a moving
dipele source is

(6%; - aZV’) (p=p) = ‘5% (?'té(l)‘%{') (33)

where a, is the speed cf sound ia the medium at rest
and p,, is the compresssd stress, and [ is 3 fucction of
the body surface.

The solution in 3-D space is

- 1 3 1y Ny
plit) = ~w s [m], ds{y) (34)

w_berc p=alp—p,) asd R =| £~1Us, - §| as shown iz
Fig.9. The source is evaluated in emission tizae 7,. The
time relation

rw - R(r,.9)

- (35)
is related to the Doppler shift because of the moving

— s e e e

source aad ..
/11~ M- R/R)| (20)
is the Doppler factor in amplitude.

Par fleld spproximaticn

For the far field , the solution can be exprested in
terms of a time derivative instead of a space derivative
and for a chordwise compact but spanwise poncompact
source, it can be written as follows (after usiag the re-
lation of (35))

R;
A%, R 1~ M- 5_ K
w3
[ [ ue)] an
where R® is the distance {rom the cbserver to the cean-

ter of the source. For rectilinear moving source, the
emission time is obtained as shown below

P(:‘. ‘) ==
(37)

t - B
f, = ——t.
T =AM
\/(t - L‘.:‘.l)’ =(1=A7) {t* - _.._,x""":i.l;-m'}

-
4

’ 1~ AL

(38)
The acoustic pressure is corzpozed of two parts; the di-
rectivity function of the poict source aad istegraticn of
the source along the span. The integrand of the time
variation of the lift can be obtained 23 showd below
using the Dubame] integration of tke gradieat of the
Kissaer function, defned in (31} and (32), which rep-
resents the acoustic responss function {or the step gust,

aL
;(a.m) =2xp,Ub

()  ftdwy (o) 3¢ls - o)

' [w'(o) ds +/s do PR

(39)

The accustic pressure also depends o2 the gradient of

the gust which is function of ry and ¢ as shown in Fig.6.

The schematic diagram fer the Dubamel integration is

shown ia Fig.10, where the contributica of the gradi-

eat of the center of the core ia large because of the

delta-function-like acoustic response fuctice. The con-

tributicn to the integral along the span of equation (37)

comes from two factors: ose from the lift variaticz along

the span, whick is zero in our 2.D 2erodynamics, and

the other {rom the emitsion time variztioa alcag the
span as seen in equation (33).

v Ju,{2)

— ¢ - (]

ds ( ! Jdo
/i \

Fig. 10. Schematic diagram of the Duhamul's
iategration
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An alternative {orm of the integral in equation (37)
can be obtained by changing the variable of integration
yy to 7 as shown below

eely) 3

e~ [ L

Then, from the relation of the variables y; and r in (38),
P__/"’ aL{s) {1 = M) = 1= RAL)

-9 MV(E- e - MR -+ BY)

' (41)
where the quantities R, aod R are the noadimensisa-
alized distances by the semichord length 4 and { is tke
noditnensionalized reception time by 4/U as ¢ in (25).
This form is useful in evaluation of the integral because
the integrand is the direct function of the variable of
integration, s

2ys(t, 1)
Tdf (40)

ds

Interference of the spanwice non-compact source

The integral of the spaawise noncompact source
can be interpreted as the interference betweea multiple
point source signals. Then L(s)/8s caa be expressed
in the emission time domain with measured or com-
puted values of L{s) fcr each span location. Each signal
is transformed to the recepticn time domain as shown
in Fig.11{8) with the time relation t = 7, - R(r,, ¥5)/a,.
The amplitude is the same for corresponding ¢t and 7.
Then each signal is summed in the reception time do-
main as shewa in Fig.11{¢) . The delayed time (in the
reception time dorain) due to tke differeat source po-
sitions causes the inter{erence, which ceatributes to the
amplitude in a destructive way aad also to the directiv-
ity pastern in addition to tke point source directivity.

The interierence is closely related to the ratio of At
and d, (pondimecrsionalized by b/U), wheve the width
of the signal, d, depeads oo the position of the maxi-
mum velocity of the vortex and the maximum delayed
time ajong the spas, At depends on the observer posi-
tioa, as shown in Fig.12. If the observer ia far from the
plane of symmetry of (‘*e source, greater interference is

T " ar L .

! !
|

A, iy

Fig. 11. Interference process of the spaawise noncompact

scurce
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Fig. 12.
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Fig. 13. Simplified model sigaal in tme domaia and its
spectrum

maximum acoustic pressure is observed; then the source
can be appreximated s a point source to evaluate the
maximum acoustic pressure i this simple geometry .

The effective matio of At and d, can be estimmated
from a simplified point source sigaal and its epec.
trum as shown ia Fig.13. Assuming that the spec.
trum begins to decay sigaificaztly at npy = N wkere
the the solidity p, is defined as d,/T,, the correspond-
ing angular frequency of nth(= N/p,) harmonic, v, is
2en/(TW/U) = 22 N/{d,5/U). Thus tte reduced fre-
queacy, k. is wab/U = 22X/d; and the frequency, fa
is wa/2x = N/(d4/U), acd the nondimersionalized pe-
riod, Ta is 1/fa U/b = &,/XN. Frow Fig.13, it is seen
that for N = 1, thea T, = dy, the contributiozs cf the
waves for which periods are less thaa d, are smmall. Soif
the delayed time is greater thao the period T, (approx-
imately, At > d,/4), interference will occur,

3. RESULTS & DISCUSSIONS

From the previous 2palysis, we ficd that the ua.
steady lift and the acoustic pressure are closely related
to the slope of the vortex velocity, which is the fuaction
of the vortex turbulent coresize r and 2 nondimentional
parameter ¢ {ioverse of Reyrolds Number Re).

The vortex velocity profile is computed azd com-
pared with the experimeatal data obtaiced by Tuzg™.
be unsteady lift aund acoustic pressure are calcu.
lated and the variation of maximum acoustic pres-
sure with the parameters r, and ¢ is examized. The
coise;/ performance trade-off for blade tip loading shape
is also discussed.
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Vortex Velocity Profile

The vortex structure generated by a blade baving
radius R = 1.05m and sspect ratio AR = 13.7, are
ccmputed. The geceral structure shows good agree-
ment with experiment even though the maximum ve-
locity and its position are uaderpredicted as shown in
Fig. 14. The velocity profile predicted with our analy-
1is is compared with that predizted with Bets analysis
for the persistence region. Both sbow generaily good
agreement outaide of the core but within the core the
present analysis is more realistic since the Bets vertex
has infigite velocity especiaily for the elliptic tip load-
ing. In both cazes, the distasce from the location of
tke maximum circulation to the tip is taken to be $%
of the blade span leagth. It should be mentioned that
the maximum rotational velocity of the vortex is almost
40%% of the rotating tip speed in this case. But if the
position of maximum circulation is shifted toward the
root, the maximum velocity cf the vortex is reduced
substantially.

Unstesdy Lift and Acoustic Signsl

Typical nondimersional unsteady lift and acoustic
pressure for the vortex gust are plotted in Fig.1S. It

VORTEX AGE v = 65.¢° /R

(a) velocity profile

.9 ’;ff' 2
-
. i
&
£/, j°
° n/e
‘.| 3 rjre e m‘;;

(b) circulation profle

Fig. 14. Vertex core velocity profile comparision
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Fig. 15. Typical variaticn of unsteady Lt and acoustic
signal

is observed that the lift profle is similar to the vau-
tex velocity profile but distorted due to the behavior of
the Kissner function which introduces a time lag near
the crigin. The acoustic signal, iz the emission time
domaip, is similar to the slope of the vertex velocity
profile because the 2coustic function acts like a delta
function which 2ssumes the value of the slope during
the integration. So the amplitude of the peak acoustic
pressure is related to the slope of the vortex at the cea.
ter of the lamicar sub core, 2/¢ and the width of the
signal is relateu o the radius of the laminar core, r*.

Reynolds Number and Vortex Siss EJect

It is to be expected that both the peak unsteady lift
and the acoustic pressure decrezse with larger turbulent
vortex core size r, and smaller Reynolds Number(Re =
[ /v) because the gust fuaction is T',/22r, - V(a/r,).
But the acoustic pressure i3 more sepsitive to the slope
of the core(Re ~ 2/¢) showa in Fig.6, becauze again the
bebavior of the delta function like the accustic function
varies a3 the slope of the laminar core, 2/¢c. For the
maximum acoustic presaure, the efiects of the Reynolds
Number and vortex size are sbowa ia Fig.16. To re.
duce this peak pressure, it is obvicus that we need to
reduce the vortex rize r, and Reytolds naumber Re. One
method would be to iscrease the distazce, (R~ R.) be-
tweea the location of the maximum circulation and tip,
because v, and Re both are directly related to it from
the equation (11) and (18). But this would result in a
loss of lift near the tip which is proportial ta (AR, )?
with the same lift coefficient. The otker methed would

_be to change the tip luading shape which is related to

ry for tie fixed value of (R = Ra) and [},

26
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Fig. 16. Effects of Reycolds Number Re and vortex
sise r; 00 maximum acoustic pressure

Necise Performance Trade-Off

The influence of blade loading oa the noise and per-
formance has been studied. Tke variations of the cir
culation sbape of the forrm ['/T; = (sin8)3*~}, where
cos® = y/(R - R.), are considered 23 shown in
Fig.18{a)(m = 1 is elliptic lo2ding). For large value
of m, the core radius increases sad there iz a reduc-

‘ ) tion of poise compared with the eiliptic loading, but
the tip loadisg relief also gives a reduction in the tip
terodynamic efiiciency defined ia Equation (9) as shown
in Fig.18(¢). From Fig.19, 3 maximum acise reduction
SdB is obtained for m = 2 with 25% lces of eficiezcy
and 2 poise reduction of 328 with 57 loes of eficiency.
For the triangular loading there is more than €48 re-
duction in noise but 2lso more than 30% reduction ia

eficiency.
1
P
r o S
(G) fn . -
]
L
(8) Kidu
rliR-p,) 04
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(C) T3 oBrienty :
. T
. ' ) 1
a
Fig. 17. {a) Tip circulation profile (b} variation of 1/ R -

e R.. and Op(dB) with tip-loadicg parameter m
{c} Variation of tip efficiency with tip-loading
parameter m
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4. CONCLUSIONS

The blade vortex interaction where the turbulent
viscous core is cut through by the blade is analyzed with
the assumptions of no distortion of the vortex path and
or vorticity of the core during the interactioz. From the
analysis and results, the {ollowing conclusions can be
drawn :

{1) The detailed vortex structure including the viscous
and turbulent core geaerated by the rotor tip can be
approximately predicted with a simple turbuleot core
model and equivaleat tip medel.

{2) The ioteraction between the vortex core and the
blade is analyzed with the gust analogy under the as-
sumpticns of po distortions ¢f the vortex for the extreme
case where the center of the core is cut through the vor-
tex.

(3) Acoustic pressure is obtained by istroduzing the
accustic response fucction for the step gust f{or the
chordwise compact source. It shows that tbe spanwise
pog-compact source gives a sisable effect whea the ob-
server is off-center of the source because of the lirge
interference effect,

(4) Maximum acoustic pressure varies with Reynolds
Number and vortex size, which are related to the tip
loadiag.

{5) Shape modification gives 3 maximum reduction of
6 ~ 8403 including the triangular loading, but a reduc.
tion of 348 in maximum scoustic pressure compared
with the elliptic loading, is expectad for §5% legs in eS-
ciency.

For the extreme case of cuttiag through the core by
the tlade, the chorcwizse non-compact source should be
considered in order to obtain results over the raage of
{requencies in the bigh speed case. It sbould menticoed
that the gon-linearity due to the large maximum vor-
tex velocity and due to the quadrupols for this case,
which would be the same order of the dipole, should be
cocsidered also.
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ABSTRACT

An attempt has been made to model the so called “Leading Edge Vortex" which
- } ) forms over the leading edge of delta wings at high angles of attack.

A simplified model has been considered, namely that of a two-dimensional,
S : inviscid, incompressible steady flow around a flat plate at an angle of attack with a
stationary vortex detached on top, as well as a sink to simulate the strong spanwise

flow.

PR The results appear to agree qualitatively with experiments. A comparison has
also been made between the lift and the drag of this model and the corresponding

results for two classical solutions:

(i) that of totally attached flow over the plate with the Kutta cendition satisfied at
the trailing edge only,

(i) the Helmholtz solution of totally separated flow over the plate.
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NOMENCLATURE

English letter symbols:

a

b

[+
Co
CL
Cm

radius of the cylinde'r.

length of the span of the plate,
chord length of the plate,

drag coeflicient.

Jift coefficient.

pitching moment coefficient.
pressure coefficient.

distance between the streamlines leading to the two stagnation points on
the plate.

drag force.

total force on the plate.

total vortex strength.

bound vortex strength.

leading edge vortex strength.

non-dimensional total vortex strength.
non-dimensional bound vortex strength.
non-dimensional leading edge vortex strength.
lift force.

rass (ow rate.

sink strength.

non-dimcnsi_onrai sink strength.
non-dimensional parameter showing position along th~ plate.
porlar coordinates in the z-plane.

non-dimensional distance from the center of the cylinder to cquilibrium
point,

wing area.

velocity componenta,

free stream velocity.

complex potential,

cartesian ccordinates in the z-plane.
complex variable in the original circle plane.
complex conjugate of z.

complex variable in the rotated circle plane.
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Greek letter symbols:

a
r

To

¢

;l
Elq'
&'
Ao

P

Subscriptas:

c
P

angle of attack.

total circulation.

circulation due to the bound vortex,
complex variable in the final plate plane.
complex variable in the Joukowski plane.
coordinates in the s-plane.

coordinates in the ¢/-plane.

doublet strength.

air density.

in the plane of the cylinder.
in the plane of the plate.
radial component.

on the surface of the cylinder.
on the surface of the plate.
at the trailing edge.

in the z-plane.

tangential componeni.

in the ¢-plane.

refers to the origin (center of the cylinder).

ccfers to the equilibrium point.
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1. INTRODUCTION

So far there are two well-known models for the flow over a flat platz at an angle
of attack. That of totally attached flow with the Kutta condition satisfied at the trailing
edge only, and that of totally separated flow (Helmbholtz solution).

"The present model, considering partially separated flow lics somewhere between the
two and despite the fact that it too is Lwo-dimensional, gives some very uscful represen-
tation of the threc-dimensional fow over delta wings. On such wings the leading edge is
usually sharp, causing thus flow separations even at moderate an gles of attack. These flow
separations take the form of two free vortex layers joined to the leading edge of the wing
and rolling up to form spiral shaped vertices above the upper surface cf the wing (Figure

1a).

These vortices induce additional velocities at the upper surface of the wing. The
corresponding pressure distribution shows distinctly marked minima beneath the vortex
axes (Figure 1b). Accordingly, an additions! lift force occurs which depends nonlinearly
on the angle of attack (Figure lc).

In the theoretical study inade here, a simplifed model has been cousidercd, namely
that of a two-dimensional, inviscid, incompressible steady flow over a flat plate at an angle

of attack, with a stationary vortex detached on top as well as a sink to simulate the strong

spanwise flow caused by the pressure gradient due to sweep in the three-dimensional case.

37
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2. ANALYSIS OF THE FLOW FIELD

In the original circle plane (also called z-plane) the fow field consists of the following
components:
(i) Uniform wind V,, coming from the negative z-axis.
(i) A doublet Ag at the origin to simulate a circular cylinder Iz} = a.

(ifi) A bound vortex ky at the origin to account for the circulation I'y around the plate.
Note that although the flow is aligned with the z-axis the plate is at an angle of

attack, requiring thus circulation I'g for the Kutta condition to be satisfied (sec
Figure 2a).

(iv) A steady vortex k; of finite radius placed at zy(r,8;) to simulate the leading edge
vortex.

(v) A steady vortex —k; at the inverse square point of z; induced by the circle theorem
(see Appendix Al.1). '

(vi) A steady vortex k; at the origia also induced by the circle theorem (see Appendix
AlL.1).

(vit) A sink m; (m; < 0) placed at 2, (r1,9;) to simulate the spanwise fiow along the

center of the vortex.

(viii) A sink m, at.the inverse square point of 2y, induced by the circle thcorem (sce

Appendix AL.2).

(ix) A source —m, at the origin also induced by the circle theorem (sce Appendix AL.2).

2.1 The Complex Potential
For the componcnts described above (regrouping them together), the complvcxb po-
tential i3 given below:
a? . { a?
w =V, (z + —;-) +(—m, +ik) lnz+(my+1k;) In(z - z,) + (my —1k;) In (z - -—) (1)

4

where

k=ko+ky (2)
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2.2 The velocity Field

Differentiation of the complex potential gives the velocity field:

dw . _,'o.
== (ur —dug) e

)

wkich applied to equation (1) gives:

2.2.1 Radial Components ’ -

U, = Voo ( 2) cosf - :nr—l + myfr —ricos(0 —8,)] + kyr sin(6 - 6,)

a
1-= r2 +r2 = 2rr; cos(0 — 6,)

(4)

+ myrirry — a%cos(6 - 0,)) ~kyria? sin(9 ~ 6,)
rirf +a* - 2rrya? cos(0 - 0y)

2.2.2  Tangential Components

14+ —
r.

0=~V ( 02) 5in 0 — é + myrysin(0 - 0,) — ky[r — r{cos(0 - 0y)]

r? +r? ~2rrycos(0 - 9,)

(5)

+ myria®sein(0 - 0,) + kyri[rry — a®cos(0 - 8y))
r’ri +ad - 2rrja2 cos(d - 6,)

2.3 Conformal Transformation Used to Analyze the Flow Field

A'solution for the flow ficld is provided by a mapping sequence that transforms the

potential flow about & circle into a fow about a flat plate at an angle of attack with a

detached vortex/sink combination. The steps are the foliowing (sce also Figure 2):

a.
b.
c.

d.

original circle plane (z-plane),
rotated circle plane (2'-plane), 2’ = ze'®,

*
a

Joukowski plasic (¢"-planc), ¢' = 2’ + 57,

final plate plane (¢-plane), ¢ = ¢'e~%9,

The first step is a simple rotation in order to make the fJat plate depicted inaide the circle

aligned with the z-axis. The sccond step is the Joukowski transformation which transferms

the circle into a Oat plate. The third step is another rotation which gives the plate an

angle of attack with respect to the horizontal free stream velocity.

"
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Combining the three steps we have that

or

z= -;— + J(‘—g')2 ~ (ce=va)3?
and if we set .
¢=¢+1in
we get

2
§=rcosld+ gr-cos(0+2a)

2
n=rsinf - aTsin(0+2a)

On the surface of the cylinder (corresponding to the surface of the plate) r=a so

€.p = acos0 + cos (0 + 2a)]
Nsp = a[sin @ - sin (0 + 2a)]

now
dv _dw ¢£
d¢ ~ dz d¢
and :
dz 1
d¢  dg/dz
22621'::

z2c2ia — 62
re ci(?cx +20)

T rie(2a+20) g2

(6)

(7)

(&)

o)
(10)

(11)
(12)

(13)

Considering the surface again (r = a), expanding the right-hand side into sincs and cesines

‘and using cquation (3) we got Gnally

[u ] _ 9in (40 + 4a) — 2sin (20 + 2a) — 2cos (20 + 2a) [v0..]

Feede ™ 2+ 2cos (10 + 4a) — 4cos (20 + 2a) H0els
1 .

[v.,], = ~Feos (@0 ¥ 2a) [uo.. ],

Lo

(14)
(15)
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3. CONDITIONS

Boundary conditions in the final plate plane require that:
(i) the flow depart smoothly from the trailing edge;

(ii) the flow depart smoothly from the leading edge, i.e., the Kutta condition must
be satisfied at both edges of the plate. )

Also, the vortex/sink combination must be located at an equilibrium point in the

flow field, that is, a pbint where the velocity induced by all other components is zero.

3.1 Kutta Condition at the Trailing Edge

From equations (14) and (15) with 0 = —a we find th2 velocity components at the

trailing edge of the plate:

[ur }7% = =3 [wo., [0 . (o)
[ 7% = = 3 [u0..J27° (17)

For the Kutta condition to be satisfied there (i.e., u, finite and uy = 0) we muist have
[uon¢]l=—u = 0 (18)
or, from equation (5) with r =a and 6 = —«

(2Veoasina~ k) {r] +a? - 2rjacos(0; + a)] ~ 2myriasin(0, + a) + & (r] ~a?) = 0 (19)

3.2 Kutta Condition at the Leading Edgo

Similarly, for the leading edge we must have
o477 =0 o
and again from cquation (5) withr =g and =7 - a

(2Vwasin a+ k) [r? + a® + 2riacos(0, -+ a)] - 2myriasin(0; +a) = ky(rf —a®) = 0 (21)

Ly
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3.3 Vortex/Sink Velocity Condition

Equation (3) cannot be used to find the conditions which make the velocity vanish
at the location of the sink and vertex because the velocity given by equation (3) is singular
there. Threfore, the usual lifniting pfocess has to be used to find the velocity components
at the center of the vortex/sink combination. The strengths of the singularities can then
be adjusted so that they are stationary in the presence of the plate. Following the analysis
of reference 3 the complex velocity function in the final plate plane at the equilibrium
point is found to be

dz d?2/ds?),,

. _ 1 :
[up - "’P]n = [(u‘ - w")dg]" - §(m1 + ‘kl)![dz/d';];.

=0 (22)
The derivative :—; has been found in Section 2.3:

éi _ (zcia)2
d¢ ~ (ze*e)? ~ a3

d?z _d fdz\ d z2c%1a
ds* ~ d¢ \dg/  dg |z3¢%a —gq?

and substituting z froin equation (7), taking the derivative and substituting back ¢ from
equation (6) we get

while

Pz aZe? 424 + 3(z? + a2~ 7))
.d¢?." 2z (ae=2ra — 22)(z2e2 — g2)2

Also, from Figure 3 we have the following transformations:

Uy == Uc €030 + v sind
ttg = v.c030 — u.sind

or .
U, = upco3l —ugsiné

Ve =t eind + upcoad

Substituting all these into cquation (22) we get

[(u,1c080; — 1oy 5in0;) — ¥ (u,y sin Oy + ugy cos0,)] zfcg""

a? {4z} 4 3(? + a®e~%9)?] —0 . (23)
22;(zf — a%e~2ta)2 -

~ (my +1ky)

]
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where

Splitting into real and imaginary parts and substituting for u,; and uy; their equivalent

expressions from equ: tions (1) and (5) with r = r; and 0 = 0; we get

2V°°ri’(1;f —a?)2cos 8 cos(66) + 2a) — 4Voria?(r? — a?)? cosb; cos 46,
+ 2Veor1a®(r? — a?)? cos 0, cos(20; — 2a) — 2Vori(r{ — a*) sin 0, sin (66, + 2a)
+ 4Voria®(ri — a!) sin 0y sin 40, — 2V, r1a*(rf — a*) sin 0, sin(26, - 2a)
— 2kgrd(r? — a?)sin(60; + 2a) + 4kyria®(r? — a?)sin 40,
= 2koriat(r? — a?)sin(20, — 2a) + 2k;rSa? sin(60; + 2a)
+ kyria?(7r? - 11a?)sin 40, + Tk;ria?(r? — a?) cos 40,
+ 2k ria*(3r? — 2a°) sin(20, - 2a) + 6k, rZat(r? - a?) cos(20, ~ 2a)
+3(ky —my)(r? - a?)(cos 4a - sin4a) a® + 2m;r%a? cos(60, + 2¢) °
~ myria?(7r} — 3a?) cos 40, — Tmria?(r? ~ 6?)sin 40,

- 2myriat(3r? - 4a?) cos(20, — 2a) — 6m,rict(r} —a?)sin(20, — 22) =0 (25)

ard

2Voori(r? — a?)? cosd, sin(GOl + 2a) - Vooria?(r? — a?)2 cos 0y sin 40, ' t
+ 2Voriat(ri = a?)? cos 0y sin(20; - 2a) + 2Veori(r} — a*)sin 0y cos(60, + 2a)
- 4eri‘uz(r: —a%)sin 0, cos 40, + 2Voriat(rf — a?)sin 0 cos(20, - 2a)
+ 2kord(r] ~ a%) cos(GO; + 2a) — dkyria®(r? — a®)cos 40,
+ 2kgriat(r? - a?)cos(20, ~ 2a) — 2k,r%a? cos(60) + 2a)
- kyr}a®(Tr? - 11a?) cos 40, — Tkyria®{r? — a?)sin 40,
- 2kyria*(3rf - 2a?) co3(20; — 2a) ~ 6k, riat(r? — a?)sin(20, - 2q)
= 3(ky + my)(r] — a?)a%(cos da — sin 4a) + 2m ;3¢ sin(60; + 2a)
. - myria?(7r} - 3a2)sin 40, - 7mlr',‘aé( ? - a?)co34d, '

= 2myria® (37 - 4a?)sin(20; ~ 2a) — 6m ria?(r} - a®) cos(20; —22) =0 (26)

g
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3.4 Non-Dimensional Parameters

At this point some non-dimensional parameters have to be introduced if the system

of equations (19), (21), (25), and (26) is to be solved explicitly. These are the following:

ko
Ko = Vo

ki
b Ky = aVe
k
K= aVe
= M
M, = aVes

Rl = Ll'.

a

(27)
(28)
(29)
(30)

(31)

Substitution into the original cquations yiclds the following system of four equations

in ive unknowns Iy, K,;, M,, R}, and 6;:

(2sina — K)[R} + 1 — 2Ry cos(0; + )] — 2M R, sin(0, +a) + K, (R} - 1) =0 (32)
(2sina + K)[R? + 1 4+ 2R  cos{0, + @)} — 2M R, sin(8; + o) — K, (R? - 1) = 0 (33)

2RY(RT - 1)? cox0, coa(60; -+ 2a) — AR3(R? - 1)° cos 0y cos 40,

+ 2R (R} - 1)% cos 0, cos(20; — 2a) - 2R3(R} — 1) sin 0, sin (60, + 2a)

+ 412?(}?: ~ 1) sin 0y sin40, = 2R (R} - 1) sin 0 sin(20, — 2a)

- 2K It(R? - 1) sin(60, + 2a) + 4K R} (R} ~ 1) sin 46,

— 2Ky R} (R} - 1) sin(20; - 2a) + 2K, RY sin("1, + 2c)

+ K R{(TR? - 11)3in 40, + T R} (RT - 1) cos 40,

+ 2K, R}(3R? - 2)sin(20, — 2a) + 6K RI(R? ~ 1) cos(20, - 2a)
+ 3(K, ~ M)(R} - 1){cosda - sin 4a) - 244 IS cos(60 -+ 2c)
— M R{(TR? - 3) cos 40, — TM R} (11} - 1) sin 10,

- 2M R} (3R} -+ 4) co3(20, = 2a) - 6M N} (R} =~ 1)sin(20; —2a) =0  (34)

2R - 1)? cos0;sin(60, + 2a) — 4R} (R? — 1)? cos 0, sin 40,
+ 2R, (R? - 1)? cos 'y sin(20, - 2a) + 2R3(1} ~ 1) sin 0, cos(G0, + 2¢)

LL
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—4R}(R} - 1)sin 6, cos 48, + 2R, (R} — 1) sin 0; cos(20; - 2c)

+ 2KoR$(R? — 1) cos(68) + 2a) — 4KoR} (R} — 1) cos 40,

+ 2KyR3(R} — 1) cos(20; — 2a) — 2K R} cos(68; + 2a)

- K R}(TR? - 11) coséa, - 7k,12}(123 - 1)sin 48,

— 2K, R}(3R] — 2) cos(26, — 2a) — 6K R} (R} — 1) sin(26, — 20)

~ 3(K) + M;)(R? - 1)(cos 4a — sin 4a) + 2M R} 5in(60; + 2a)

—~ M R}(TR? - 3)sin 40, — TM R{(R? - 1) cos 40,

— 2MR}(3R? - 4)sin(20; — 2a) — 6M R}(R? — 1) cos(20; —2a) =0  (35)

3.5 Additional Condition

We see that the equations derived so far are not enough to give us a unique solution.
Therefore we must seek additional information in the nature of the flow. As mentioned
in the introduction the flow i3 assumed inviscid which iniplies that the total force on the

plate must be perpendicular to it (sce Figure 4). Therefore
D
tarna = — 36
ara = (36)

Now we have to relate the drag and the lift with the unknowns K and M.

From Figure 5 we sce that the [luid between streamlines a and b dissappears into the
sink producing drag which can be calculated s follows: The rate of mass of Quid between
the streamlines a and b (which is distance d apart) must be equal to the rate with which

mass is dissappearing in the sink, i.c.,
m= ;medb = myph2n. (37)
Now the drog is given by the rate of loss of mcmentum of that fluid therefore
D= -V, (38)

combining equations (37) and (38) we get

D

— )
™= 27pbV o (39

“5



and from equation (30) we get
D

My = = bava

but
S =be

and from the Joukowski transformation we know that

c=4a
also, b
Cp = I,Vis
The last four equations combine to give
Cp = —nM,

- The lift can be found from the Kutta-Joukowski law

L=pV,I-b
and since
' =2xk
and ‘ L
Cr = 3pV2S
vie get
Cr ==K

after cinploying equation (29).

Now going back to cquation (35) we sec that

tana = —~——

K

(40)

(11)
(42)
(43)
(44)

(15)

(16)

(1)

(48)

(19)

thus we have a system of five cquations (32)-(35) and (49), which can be solved for the

five unknowns: Ry, 0,, Ky, Ky, and 5. This is done numerically (sce Appendix 2) and

the results are shown in the next sectisn.

o
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4. RESULTS

4.1 Position of the Equilibrium Point

As it can be seen from Figure 6 the equilibrium point is always ahead of the lcading
edge of the plate and it goes farther as the angle of attack increases reaching a maximum
distance of approximately 53 percent of the chord from the leading edge (measured along
the chord line) at 45 degrees angle of attack,

At the same time (sec Figure 7) after reaching a maximum distance above the chord
line of approximately 16 percent of the chord (measured perpendicular to the chord line),
it starts moving downwards crossing the chord line at a = 35° and getting farther under

it at higher angles of attack.

4.2 Vortex and Sink Strengths

‘The beund vortex strength increases almost linearly with angle of attack v;hile the
leading edge vortex strength grows nonlinearly reaching a maximum at a@ = 45° and
dropping to zero at a = 73° where the lower stagnation point reaches the trailing edge and
mnoves off the plate (Figure 8). Thus the total circulation is also nonlinear with angle of
attack and has a maxiznum at a = 50° (Figure 10). The sink strength on the other hand,

starting with very small valucs increases alnost lincarly with angle of attack (Figure 9).

- 4.3. Preasure Distribution on the Plate

The pressure distribution has Leen calculated at the ¢! plance (the most convenient

one since the plate is horizontal and lies along the £'-axis).

From the scquence of transformations shown in Figure 2 we have

or

"'=r [cos(0 + @) }- isin(0 + o)) + a_:_ icos(0 + a) - ssin(d + a)).

LT



aad since
gl = El + iﬂ'
we have
a?’ :
g = (r + —) cos(0 + )
and

on the surface of the plate r = a 30

€., = 2acos(0 + )

Np =0

(50)

(51)

(52)

(53)
(59)

To find the velocity field arcund the plate, a similar procedure as in Secticn 2.3 yields:

or
) _ 2,629
e (u,, —iug,) = ¢~ (u,, —iug,)- re

r?cl(ZD +a) uﬂc—la

and on the surface (r = a) vrg'gét.ﬁn:x"y

__1 cosf u
Yre =73 sin(0 + ) Pee
v = i sin @ u
Y =72 sin(0 + «) Oee
from which
~ 1
Ugp = -2-uauc.':c(0 + a)

Now from equation (5) and using equations (27)-(31) we find that

o ) o 2MyRysin(0 - 0y) + Ky (R? - 1)
—2 = 2 0- K -
Voo 208 =TT 3R, cos(0 - 0,)

L8

(55)
(56)

(57)

(58)
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Substituting equation (58) into (57) as well as the corresponding Solution sets for each

angle of attack we can find the pressure distribution from
CP.' =1- o (59)

Cp

measures the non-dimensional parameter

has been plotted for four angles of attack in Figure 11 where the horizontal axis

£
= 0 = 22
n = cos(0 + a) %a
which varies from —1 at the leading edge to +1 at the trailing edge.

It can be seen from the plottings that both stagnation points move towards the
trailing edge as the angle of attack increases but the lower one moves faster, being at
about 70 percent of the chord from the lcading edge at @ = 60° while the upper cne i
only at the mid-chord point.

4.4 Lift, Drag, and Pitching Moment

At this point a comparison wili be made between the results of:

(i) the classical solution of totally attached flow aver the plate with the Kutta condition
satisfied at the trailing edge only and a singularity (inlinite suction) at the lewding

edge (Figure 12a),

(ii) this modef with a detached vortex and a sink which make possible the satisfaction

of the Kutta condition at both ecdges removing thus the leading edge singularity
(Figure 12b),

(iii) the Helmholtz solution of totally separated flow over the plate (Figure 12¢).

The Iift, drag and monicat cocflicicnts for the three models are given below:

CLi =27sina Cpy =0 Chry = z;-sinﬁa . (c0)
Cra ==K Cpy=-nM; Caa= ;-sin 2a (61)
7 sin2a N 2zsina
C = — = ——— GZ\
L3 4+ 73ina Cops 44+ 7wsina ( ‘
Lo
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From Figure 13 it can be scen that our model with partially ssparated Qow (as the
leading edge vertex can be thoug®t of), gives the highest lift coefficicnt at least up to
a = 60°.

. At higher angles it looks like the first model gives slightly higher lift coefficients, but
this is misleading since at high angles of attack the flow separates at some point on the
upper surface, resulting in significantly lower lift cocflicients. Thus the first model breaks
down at high angles of attack.

From Figure 14 it can be scen that our model gives much higher drag cocfBcients
even than the third model in which the ow is totally separated on the upper surface of the
plate. This should not be surprising however, because the drag in our model is associated

with a large momentum loss of all the fluid that dissappears into the sink (sec Figure 5).

As a confirmation to the above comes Figure 153 which shows the same lift to drag
ratio for the second and third modecls (since L/D = tan « in botk cases). In other words
since the second model yiclds a much higher lilt than the third one, it also gives a much

higher drag which can be thought of as induced drag (lift related drag).

* Finally, it is interesting to note that our model has the same moment cosafficient and
the same pozition of acrodynamic center (at the quarter chord point) as the Grst madel.
The proof is as follows: Since there is a uniform wind, the velocity at a great distace from
the plate nust tend simply to the wind velocity, and therefore if |z] is sulficientiy large we

may write
B
_—= oo+:+"j e

or . B
w::V.mz-i—Alnz-{-—z--y...

Now the force and the niomect on the plate can be found from the theorcin of Blasius
and it turns out (after performiog the istegration) that the force dependa only on A while
the momcent depends only on B. lewever, comparing the complex potential for the fiest
two medels we can zee that B iz the same regardless of the presence of the vortex/sink
combinstion and therefore the moment ought to be the eanmie for the two models. In
equations (G0) and (G1) Cas is taken about the mid-point of the plate and is therefoce
positive. The =same relations but with a nmiinus sign on the right hand side are valid for

Cn about the leading edge. Equations {60} and (61) arc plotted in Figure 16.
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(i)

(ii)

(iii)

(iv)

(vi)

(vii)

5. CONCLUSIONS

The present inviscid, incompressible, two-dimensional model of a flat plate with a
dctached vortex close to its leading edge indicates that lift coefficients up to around
6 are achievable. Hizher valucs should also be possible if thickness and cammber are

added, considering an airfoil instead of a flat plate (reference 3).

In order to satisfy the IKutta condition at both _the trailing edge and the leading
edge, the presence of the sink is necessary (see equations (32) and (33)). This is
in agreement with physical observations of the leading edge vortex which forms
over delta wings at high angles of attack where the spanwise pressure gradient due
to sweep angle evacuates the vortex core. It is also in agreement with the model

prescnted in reference 3.

For a given lift (Cy) there are two possible solutions for the location of the equi-
librium point and the corresponding strengths of the vortex and sink. That of the
lower angle of attack gives a weaker sink and therefore less drag, while that of the
higher angle of attack gives a stronger sink and the associated higher drag. The vor-
tex strengths do not difier much for the two solutions since they are closely related
to the lift (which is the same for the two solutions). This result is also in agreement

with reference 3.

The upper limit fouad in the Cp versus a curve suggests that if a sironger vor-
tex would exist at the equilibrium point, unrealistic supercirculation would occur

resulting in the streamlines going entirely around the system.

A limitation of the present niodel appears at a == 73°, above which the lower stag-
nation point moves ofl the plate making thus impossible the Qow pattern depicted

in Figure 5, on which this model is based.

A comparison between Figures 8 and 1c shows very good agreement (at least qualita-

tively) between the results derived here and those found experimentaily in reference
1.

Finally, the presence of the vortex and the sink does not affect the position of the

aerodynamic center which remains at the quarter chord point.
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Figure 1. Schematic of the flow over a slendcr sharp-edged wing.
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gure 3. Velocity components in cartesian and polar coordinate systems.
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Figure 4. Force diagram on the flat plate.

— —

Figure 5. Streamline pattern around the at plate 2t an angle of attack with a
detached vortex and a sink.
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Figure 0. Sink strength versus angle of attack.
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Figure 11d. Presaure distribution along the plate for a = 60 deg.
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a. Totally attached fow.

b. Partially separated low.

AR

c. Totally separated flow.

Schematic of the fiow over a flat plate at an angle of attack, according

to three different medels.
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APPENDIX 1
Al.l

Consider a vortex of strength k; at the point z; outside of a cylinder |z| = a. Then,
the complex potential is .

w=so+7 (%)
=tk In(z - 2) - ik 1n (-a; - 5."1)

accordiag to the circle theorem (reference 2) w can also be written as

2
w=tkilnz+1k;ln(z — z;) —tk;ln (z— f—;—) + const.
1

which shows three vortices: one at the point z;; one at the point %:— which is the inverse

_ square point of z; with respect to the cylinder; and one at the erigin (center of the cylinder).

A1.2

Consider a sink of strength m; at the point; z, outside of a cylinder |2| = a. Then,
the complex potential ia

w=1+7 (%)

a? ;
w=myln(z~z)+m;!n — - :

or

2

=]

Ll

w=-milnz+mln(z~2z)+m;ln (:-— )+connt.
1

cquivalent to: a sink at the point 2, a sink at the point f}:—, and a source at the origin.

T2

e e e
oL EANE S I - i

B B VI



APPENDIX 2

A four-dimensional Newton-Raphson algorithm has been used to solve the system

of equations (32), (33), (34), and (35) for Ry, 01, Ky, K, after elimination of M, from -

equation (49).
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PROCRAM NR4D
REAL KO,K1,K,J2,J3,J4,35,36,J7,11,12,13,14,15,16,17,18,I9

aonn

DATA

0

110
120

10
100

ALEA=?

ALF=ALFA*3.14159/180.0

WRITE (S.110)

FORMAT ( ' GIVE UNDERRELAXATICN FACTCR')
READ (5,120) €

ECRMAT (F)

T=THETA, R=R1

R=?

T=? . -
Ko=?

K1=?

WRITE (5.100) R,T.KO,K1

FORMAT (4E15.6)

T1=6*T+2*ALF
T2=2+T-2*ALY
T3=T+ALF
K=K0O+K1l

A1=2*R**4* (R*R-1) * (9*R*R-5) *COS (T) *COS (T1)

A2=-4*R*R* (R*R-1) * (7*R*R~3) *COS (T) *COS (4*T)

A3=2# (R*R-1) * (5*R*R~1) *COS (T) *COS (T2)

A4=-24Re*4+ (5#R**4-5) *SIN(T) *SIN(T1)

AS=4*R#*R* (7*R**4-3) *SIN(T) *SIN(4*T) -2* (5*R**4-1) *SIN(T) *SIN(T2)
A6=-42KO*R**5* (4*R*R-3) *SIN(T1) +8*KO*R<*3* (3*R*R~2) *SIN (4*T)
A7=-4%KO*R* (2*R#R-1) *SIN(T2) +12*K1*R**54SIN (T1)

AB=24K1*R**3#% (21*R*R-22) *SIN(4*T) +14*K1*R**#3* (3¢R*R~2) *COS (4*T)
A9=8%K1*R* (3*R*R-1) *SIN(T2) +12*K14R* (2*R*R~1) *COS (T2)

B1=64R* (K1+K*TAN (ALF) ) * (COS (4*ALF) ~SIN (4*ALE))
B2=-12*R**5¢K*TAN (ALF) *COS (T1)
B3=34*K*R**3* (14*R*R-4) *TAN (ALF) *COS (4*T)
B4=144K*R**3* (3*R*R-2) *TAN (ALF) *SIN(T)

B5=K*R*TAN (ALF) * (8% (3*R*R-2) *COS (T2) +12* (2*R*R~1) *SIN(T2))

——— e i o - - ———— - - — - -

All = Al+A2+A3+A4+AS+A6+AT+AB+A9+BL+B2+B3+B4+B5

B6=-2*R**5* (R*R~1) **24 (SIN(T) *COS (T1) +6*COS (T) *SIN(T1))
B7=44R**3* (R*R~1) **2+ (SIN(T) *COS (4*T) +4*COS (T) *SIN(4*T))
B=-2#R* (R*R~1) **2#* (SIN(T) *COS (T2) +2*COS (T) *SIN(T2))
B9=-24R**5# (R**4~1) * (COS (T) *SIN(T1) +6*SIN (T) *COS (T1))
Cl=4*R®*3% (R**4-1) * (COS (T) *SIN(4*T) +4*SIN(T) *COS (¢*T))
C2=-2%R* (R**4~1) # (COS (T) *SIN(T2) +2*SIN(T) ¢COS (T2))
C3=-12°KD*R*#6* (R%R-1) "COS (T1) +162K0*R* #4# (R4R~1) *COS (4*T)

C4=~4*KO*R*R* (R*R-1) *COS (T2) +12¢K1*R**6+COS (T1) '

CS5=4*K1*R**4* (7*R*R-11) *CCS (4*T) ~28AK1*R**4* (R*R~1) *SIN (4*T)
C6=4*K1*R*R* (3tR*R~2) *COS (T2) ~12*K1¢R*R* (R*R~1) *SIN (T2)
C7=4*K*R**4*TAN (ALF) * (3*R*R*SIN(T2) - (7*R*R-3) *SIN(4*T))
C8=28*K*R**4* (R*#2~1) *TAN (ALT) *CO5 (4*T) '
C9=-4*K*R*R*TAN (ALF) * ((3*R*R-4) *SIN(T2)-3% (R*R~1) *COS (T2))

Al2 = BG6+B7+B8+BY+C1+C2+C3I+CE+CS+C6+CT+C8+CI

D1==2*R**6* (R*R~1) *SIN(T1) +4*R**4* (R*R-1) *SIN (4*T)
D2=-2*R*R* (R*R~1) 2SIN(" ?)



ORIGINAL PAGE 1S
OF POOR QUALITY

D3=3¢ (R*R-1) *TAN (ALF) * (COS (4*ALF) -SIN (4*ALF))
D4=-2*R**6*TAN (ALF) *COS (T1) +R* *4* (7*R*R~3) *TAN (ALF) *COS (4*T)
DS=7#R**4* (R*R-1) *TAN (ALF) *SIN(T)
D6=2*R*R* (3*R¢R-4) *TAN (ALF) *COS (T2)
D7=6*R*R* (R*R~1) *TAN (ALF) *SIN(T2)

Al13=D1+D2+D3+D4+D5+D5+D7

D8=2*R**6*SIN(T1) +R**4* (7*R*R-11) *SIN (4*T)

D9=7*R**4* (R*R-1) *COS (4*T) +2*R*R* (3*R*R-2) *SIN(T2)

E1=6*R*R* (R*R-1) *COS (T2)

E2=3#% (1+TAN (ALE) ) * (R*R-1) * (COS (4*ALF) -SIN (4*ALF))
E3=-28R**6*TAN (ALEF) 4COS (T1) +R**4* (7*R*R~3) *TAN (ALF) *COS (4*T)
E4=7*R**4% (R*R-1) *TAN (ALF) *SIN(T)

ES=2*R*R*TAN (ALF) * ( (3*R*R-4) *COS (T2) +3* (R*R-1) *SIN(T2))

Al4=DB8+D9+E1+E2+E3+E4+EDS

E6=2*R**4* (R*R-1) * (9*R*R-5) *COS (T) *SIN(T1)

E7=-4*R*R* (R*R-1) * (7*R*R-3) *COS (T) *SIN(4*T)

EB8=2+ (R*R-1) * (5*R*R-1) *CCS (T) *SIN(T2)

E9=2*R**4* (3*R**4-5) *SIN(T) *COS (T1)

Gl=-4*R*R* (7*R**4-3) *SIN(T) *COS (4T} +2* (S*R**4-1) *SIN(T) *COS (T2)
G2=4*KO*R*#*5* (4*R*R~3) *CCS (T1) -8*KO*R**3¢ (3*R*R-2) *COS (4*T)
G3=4*KO*R* (2*R*R-1) *CCS (T2) -12*K1*R**5¢COS (T1)

Ga=-2+K1*R®23* ((21*R*R~22) *COS (4*T) +7* (3*R*R-2) *SIN(4*T))
CS=-4*K1*R* (2% (3*R*R-1) *COS (T2) +3* (2*R*R~-1) *SIN(T2))

C6=-6* (K1-K*TAN (ALE} ) *R* (COS (4*ALF) ~SIN(4*ALE))
G7=-12¢K*R**S¢TAN (ALF) *SIN(T1)

G8=K#R* *34TAN (ALE) * (3* (14*4R*R-4) *SIN (41T) +14* (3*R*R-2) *COS (4*T))
G9=4*KRTAN (ALF) * (2* (3*R*R-2) *SIN(T2) +3* (2*R*R-1) *COS (T2))

A2l = EG+E7+EG+E9+C1+02+4GI+G4+C5+G6+GT7+G8+G9

I1=2%R**5# (R*R-1) *#2# (~SIN(T) *SIN(T1) +6*COS (T) *COS (T1))
I2=-4*R**3* (R*R-1) **2 (-SIN(T) *SIN(4*T) +4*CCS (T) *COS (4*T) )
13=2%R* (R*R-1) **2* (-SIN(T) *SIN(T2) +2*COS (T} *COS (T2))

T4=2%R**5* (R**4-1) * (COS (T) *COS (T1) -6*SIN(T) *SIN(T1))

IS=-4*R**3* (R*24-1) * (CCS (T) *COS (2*T) -4*SIN(T) *SIN(4°T))
I6=2*R* (R**4~1) * (COS (T) *COS (T2) -2*SIN(T) *SIN(T2))
17=-4*KO*R*R* (R*R-1) * (3*R**4*SIN(T1) +SIN(T2) ~4*R*R*SIH(4*T))
I8=4*K1*R**4* (34R*ReSIN(T1) + {7T*R*R-11) *SIN(4*T))
19=-4*K1*R*R* (7*R*R* (R*R-1) *COS (42T} - (3*R*R~2) *SIH(T2))
P1=-122K1*R*R* (R*R~-1) «COS (T2)
P2=-4*K*R**4*TAN(ALF) # (3*R*R*COS (T1) - (7*R¢R~3) +COS (4*T))

| P3=-28%K*R**4* (R**2-1) *TAN (ALF) *SIN (4*T)

P4=4*K*R*R*TAN (ALF) * ( (3*R°R~4) *COS (T2) -3¢ (R*R-1) 2SIN(T2))

A22 = I1+12+4I13+I4+15+16+17+18+19+P1+P2+P3+P4

P5=2°ReR® (R*R~1) # (R**42C0OS (T1) -2*R*R*COS (42T) +COS {T2) )
P6=3* (R*R-1) *TAN (ALF) * (COS (4*ALF) ~SIN (42ALF))
P7=-2*R**6*TAH (ALF) *SIN(T1)

P8=R**4*TAN (ALF) * ((7*R*R-3) *SIN(4*T) +7* (R*R-1) *CCS (4*T) )
P9=2*R*R*TAN (ALE) * ( (3*R*R~-4) *SIN(T2) +3* (R*R-1) *COS (T2) )

A23=P5+P6+P7+P8+PG

Ql=-R®=4* (2*RR*COS (T1) + (7*R*R~11) *COS (42T) +7* (R*R-1) *SIN (4*T) )
Q2=-2*R*R* ((3*R*R-2) *CO5 (T2) +3* (R*R-1) *SIN(T2}) .
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Q3=-3¢ (1~TAN(ALF) ) * (R*R-1) * (COS {4*ALF) -SIN (4*ALF))
Q4=-2*R**6*TAN (ALF) *SIN(T1)

Q5=R**4*TAN (ALF) * ( (7*R*R-3) *SIN(4*T) +7* (R*R-1) *COS (4°T) )
Q6=2*R*R*TAN (ALF) * ( (3*R*R-4) *SIN (T2) +3* (R*R-1) *COS (T2))

A24=Q1+02+Q3+Q4+Q5+06

A31=2¢ (2*SIN(ALF) -K) * (R~COS (T3) ) +2*K1*R+2*K*TAN (ALF) *SIN(T3)
A32=2*R* (2*SIN (ALE) -K) *SIN(T3) +2*K*R*TAN (ALF) *COS (T3)
A33=—(1+R*R-2¢R*COS (T3) ) +2*R*TAN (ALF) *SIN(T3)

A34=- (14R*R-2*R*COS (T3) ) +R*R-1+2*ReTAN (ALF) *SIN(T3)

A41=2* (2*SIN(ALF) +K) * (R+COS (T3)) +2*K*TAN (ALF) *SIN (T3} -2*K1*R
A42=2#K*RATAN (ALF) 2COS (T3) ~2°R* (2*SIN (ALF) +K) *SIN(T3) .
A43=1+R€*2+2%R*COS (T3) +2*R*TAN (ALF) *SIN(T3)
A44=1+R**2+2*R*COS (T3) +2*R*TAN (ALF) *SIN(T3) - (R*R-1)

FA=2*R* (RtR~-1) **2*COS(T) * (R**4*COS5(T1) -Z‘R'R‘COS'(Q"T) +CO0S (T2))

FB=-2%R* (R*#4-1) *SIN(T) * (R**4*SIH (T1) -2*R*R*SIN (4*T) +SIN(T2))
FC=-2*KO*R*R* (R*R-1) * (R**4*SIN(T1) -2*R*R*SIN(4*T) +SIN(T2))
ED=2*K1*R**6*SIN(T1

EE=K1*R**4* ((7*R*R-11) *SIN(4¢T)+7* (R*R-1) *COS (4°T))
EG=2*K1*R*R* ( (3*R*R-2) *SIN(T2) +3* (R*R-1) *COS (T2))

FH=3* (K1+K*TAN (ALF) ) * (R*R-1) * (COS (4*ALF) ~SIN (4*ALF))
EI=-2*K*R**6*TAN (ALT) *COS (T1)

FJ=K*R**48TAN (ALF) * ((7*R*R-3) *COS (4*T) +7* (R*R-1) *SIN(4*T))
EK=2*K*RR*TAN (ALF) * ( (3*R*R~4) *COS (T2) +3* (R*R-1) *SIN(T2))

F1 = FA+EB+EC+ED+FE+EG+EH+FI+EJ+FK

FL=2*R* (R*R-1) #*29COS (T) * (R**4*SIN (T1) -2*R*R2SIN (44T) +SIN(T2))
FM-Z*R'( 424-1) *SIN(T) * (R*24#COS (T1) ~2*R*R*COS (4°T) +COS (T2) )
EN=24KO*R*R* (R*R~1) * (R**44COS (T1) ~2*R*R*COS (4°T) +COS (T2) )
FO=-2*K1*R**62CO5 (T1)

EP=-K1tR*#*4# ((7*R4R~11) *COS (44T) +7* (R*R~1) *SIN(4*T))
FQ=-2*K1*R*R* ( (3*R*R~2) *COS (T2) +3* (R*R-1) *SIN(T2))

FR=-3* (X1-K*TAN (ALF) ) * (R*R-1) * (CCS (4*ALF) -SIN (4*ALF))
ES=-2¢K4R**GTAN (ALE) *SN(T1)

ET=K#R4*4*TAN (ALE) * ((7+R*R-3) *SIN(4"T) +7* (R*R-1) *COS (4*T))
FU=2*K*R*R*TAN (ALE) * ( (3*R*R~4) *SIN (T2) +3* (R*R-1) *COS (T2))

F2 = FL+EM+EN+EC+EP+EQ+ER+ES+ET+FU

EV=(2*SIN(ALF)~K) * (1+R*R=2*R*CCS (T3) )
EW=K1* (R**2-1) +2*K*R*TAN (ALE) ¢SIN(T3)
F3=EV+EW
EX=(2%SIN(ALF) +K) * (1+R2R+22R*COS (T3) )
FY= 2*K’Q°T1N(ALE)*SIN(T3)-K1‘(R“R—1)
F4=EX+EY

‘cﬁklthklitl'tﬂiﬂﬁlﬂtﬁﬁltﬁﬂ!ﬁﬁﬁtﬁﬁnﬁiﬂﬁ.ﬁQﬂ!ﬁﬁtﬁﬂtliﬁﬁﬁﬁttﬁﬁﬁﬁ.tiﬂﬁ.t.

S1=A11¢A22% (A332A44-A43*A34) +A11*A23% (A32#N44~-A42%A31)
S2=A11*A24*% (A32*A43-A42%A33) +A12°A211% (A33%A44-AL35A34)
S3=A12*A23% (A31*A44-A34*A41) +A12°A24* (A319A43-A417A33)
S4=A13¢A21* (A32*A44-A34*A42) +A137A422% (A312AL4-A34%A41)
SS=AL3%A24* (A31*A4Z-A41*A32) +A14*A21* (A32"AA3~AJ32A42)
S6=A14%A22% (A31%A43-A33%A41) +A14%A23" (AS1*A22-A41*A32)
DET = S1+52+453+S4+55+56

J2=F1%A22*% (A33*A44~A432A34) +F12A23% (A32*A44-A42 ’A34)
J3=F12A24* (A32%A43-A42"A33) +A129°F 2% (A332A34-A%32A3%)
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JA=A12%A23% (E3%A44-A344F4) +A122A24* (T3°A43-F4*A33)
JS=A134E2* (A32°A44-A34*A42) *A13%A22* (F3*A44-A34F4)

" J6=A13%A24* (FI3"A42-F4*A32) +A14*E2* (A32*A43~A33%A42)

J7=A14*A22* (E3*A43-A33%F4) +A14°A23* (F3*A42-T4*A32)
Hl = (J2+J3+J4+J5+J6+J7) / DET

ULSAL1F2% (A33%A44-A43%A34) +AL1*A23* (F3*A44-F4*A34)
U2=A11%A24* (E3*A43-F47A33) +F1°A21* (A33*A44-A432A34)
U3=F1*A23% (A31%A44-A342A41) +F12A24% (A31*A43-A41*A33)
U4=A13%A21* (F3*A44-A34°F4) +A13*F 2 (A31*A44-A34%A41)
US=A13%A24* (F4*A31-F32A41) +A142A21* (F3*A43-F4*A42)

"U6=A14*F2* (A31*A43-A33%A41)+A14%A23* (F4*A31-F3*A41)

H2 = (Ul+U2+U3+U4+US+U6) / DET

V1=A11%A22¢ (F3*A44-F42A34) +A11*F2* (A32*A44-A42°A34)
V2=A11*A24* (A32%F4-AG2°F3) +A127A214 (F3*A41-F4*A34)
V3=A12%F2% (A31%A44-A342A41) +A12*A24% (A31*F4-A414F3)
V4=F1%A21* (A32*A44~A344A42) +F1*A22% (A31*A44-A34"A41)
VS=F1*A24* (A31*A42-A41°A32) +A14A21% (A32*F4-F3*N42)
V6=A14%A22% (A31*F4-F3*A41) *A14°F2¢ (A31*A42~-A41*A32)
Hi= (V1+V2+V3+V4+V5+V6)/ DET

20
130
140

W1=A11%A22* (A33*F4-A43°F3) +A11%A23* (A32¢F4-A42¢F3)
W2=A1*F2* (A32*A43-A42*A33) +A12%A21* (A33*F4-A43*73)
W3=A12%A23% (A31*F4-A41*F3) +A12*F2* (A312A43-A41*A33)
Wa=A13*A21* (A324F4-A42*F3) +A13*A22% (A31*F4-A41*F3)
W5=A13*F2* (A31%A42-A41*A32) +F1*A21* (A32*A43-A33%A12)
W6=F1*A22% (A31*A43-A332A41) +F1*A23* (A31*A42-A41*A32)
Ha = (W1+W2+W3+W4+W5<W5)/ DET

R =R-C*H1

T =T-C*H2
KO=KO~C*H3
K1=K1-C*H4 . L ,
IF (ABS (H1) .LT.1.E-3.AND.ABS (H2) .LT.1.E-3)GO TO 20

IF (ABS (H3) .LT.1.E~3.AND.ABS (H4) .LT.1.E-3) GO TO 20

GO TO 10

WRITE (5.1C0) R.T.KO,K1

WRITE (5.130) . ‘ .
FORMAT ( ' IF YOU WANT ANOTHER RELAXATION FACTCR, TYPE 1')
READ (5,140) IFF

FCRMAT (I)

IF (IFF.EQ.1) GO TO 30

STOP :

END
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