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& Abstract ;
¥

i This reports deals with three major topics related to TSS dynamics:

& )
L

: a) The update of the SAO rotational dynamics computer code. The pro-

k

- gran is now sultable to deal with Inclined orbits. The output has been

; . alsec modified in order to show the satellite Euler angles referred to the a
4 :
: rotating orbital frame,.

SN

- bk} The develupment of the three-dimensional high resclution computer 4
-5 . 3
- program SLACK3. The code simulates the three-dimensional dynamies of a ;
1 j
EE tether going slack taking into account the effect produced by boom rota- %;
EE ) tions. Preliminary simulations on the three-dimensional dynamics of a re- E.
Y )

coliling slack tether are shown in this report,

il
orTIRC IR

e AN

c} The development of a program to evaluate the electric potential
: around a severed tether ilmmersed in a plasmse. The potentlal is computed on
a three-dimenaslcnal arid axially symmetric with respect to the tether lon- ;

alitudinal axis. The electric potential variations due to the plasma are -

AR LR sl LU a1 4

{; presently under lnvestigation,
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1.0 INTRODUCTION

This is the second quarterly report submitted by SAO0 under contract
NASB8-36160, "The Investigation of Tethered Satellite System Dynamics," Dr.
Enrico Lorenzini, PI, and covers the periocd frem 15 November 1984 through

16 February 1985.

2.0 TECHNICAL ACTIVITY DURING REPORTING PERIOD AND PROGRAM STATUS
2.1 Tss Rotational Dynamics Analysis
2.1.1 Introductory Remarks -

The SKYHOOK computer code was updated with a preliminary rotatlional
dynamics package in 1982. This study is documented in the report "Study of
Tethered Satellite Active Attitude Control," OCctober 1982, NASA Contract
NAS8-33691. The satellite was modeled as a rigid bedy and the tension
transmitted by the tether was the only external perturbation acting upon
the satellite. The three Euler rigld body equations were added te SKYHOOK
along with the nine equations relating the body-axis angular velocities to
the derivatives of the direction cosines., Once the directlion coslnes are
obtained, the Euler angles are computed, This method has the major draw-

back of integrating nine additional equations that can be reduced to three.

The body-axis angular velocitles, w,, w;, wy; of the Euler rigid body
equations can be converted Lo Euler angular velocities and then integrated
a second time to get the Euler angles. The direct lntegration of the Euler

angular velocities will therefore Iincrease the computer code efficiency and

bl KT S
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reduce the CPU time. The only drawback related to this approach is that
the equations become singular when the roll angle approach 0°, that is to
say (with the SKYHOOK reference frame conventions) when the vertical body
axis of the satellite is perpendicular to the equatorial plane. This con-
dition howaver is a limit condition that can be encountered only in speclal
situations. Both integration options will be kept available in the SKYHOOK

computer code to have the greatest flexiblility.

The other major modiflcation is tne implementation of a new force
package and of a new torque parkage that models the effect of thruster
activation. In-plane, out-of-plane and in-lin& thrusters provide, 1in an
ideal situation, forces applied to the satellite center-cof-mass (c.m.). In
the actual situation they also produce spurlous torgues because of
misalignments. These torques must appear on the right hand side of the
rigld body Euler equations. However, this doesn't mean that a thruster
activation produces a satellite rotation only through misalignment. Even
If a lateral force acting upon the satellite is directed exactly toward the
satellite c.m., rotations are still produced by the different moments of
inertia of the satellite and the tether. This effect is modeled in SKYHOOK
so that the tether bends differently depending upon the polint of applica-

tion of the external force and the mass distribution of the system.

The update of the output is alsc necessary in SKYHOCK. Presently the
computer cods plots the satellite attitude with respect te the inertial
reference frame. Plots cannot be interpreted immediately especially if the
orbit is net equatorisl, Reference frame transformations are necessary to
convert the inertial Euler angles to the rotating reference frame Euler
angles. In this way the satellite attitude is referred to the local verti-

cal and the local horizon and the output has an immediate lnterpretation.
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This way of dealing wilth inertlal Euler angle has made it difficult to set | '
up the initial condlitions for SKYHOOK. For this reason, the rotational
dynamics SKYHOOK has been used, in the past, for equatorlial orbit only (in
this case the problem 1ls greatly simplified). The matrix transformation
lmplemented to modify the output can alse be used for setting up initial
conditions in order to generallize the program to any type of orbit. All

these modifications are in progress. Some of them will be fully operative

in our computer code in the near future.

.

2.1.2 Matrix Transformation From Inertial Reference Erame To Orbiting Ref-

erence Frame -

The attitude dynamic equaticns integrated by SKYHOOK make use of the
direction cosine matrix. From that matrix we derive the Euler angles with
respect to the inertial reference frame (x,y,z) (see Flgure 2.1.1). If we
want to refer the satellite attitude to the orbiting reference frame (x!,
y!', z!) we must derive the rotation matrix that relates the orbiting refer-
ence frame to the lnertial reference frame. If we call [Rm] the rotation
matrix that transform orbiting axis into inertlal axis and |Rm| the rota-

tion matrix that transforu satellite body axis into inertial axis we have:

X1 Xp =
vi| = [Rer] ys (2.1.1) ‘_
a1 Zp ’

TELLALAY e indighe Doy e Sl e

al
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Xy x!
vi| = [Roz] L (2.1.2)
21 zf!
so that
x! Xn
y'| = [Ror]® [Re:] | yo (2.1.3)
z! 20
vhere
[Ro1]T = [Ri10] (2.1.4)

ls the transposed of the matrix [Rer] while (xp, ys, Zp) is the satellite
body-axis reference frame as shown in Flgure 2.1.1. The matrix [Ry] is
derived through three sequential rotatlons of the inertial reference frame
{(xz, Y1, 21) in order to transform it into the orbiting reference frame
(xt, y!, 2!). The flrst rotation is around the axls zr and defines the
line of nodes of the orbit so that the zangle Ff is the argument of nodes,
the second one is around the transformed axis y;! and defines the orbit
inclination i1 and the third one 1i1s around the transformed axis 2z;! and
defines the argument of latitude 7. Because of the orientatlion of the
orbiting reference frame adopted in SKYHOOK and depicted in Figure 2.1.1

the inertial reference frame needs to be further rotated 180° around the

v

oo,

..;:-%__ e ]
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axis x!,.

third row of the rotatien matrix so that:

1 0 0 cosy
[RIO] =10 -1 0 -siny
0 0-1 0

and finally:

cosycosf-
sinysinfcosi
[Rio] = | sinycosf+
cosvycosisinf

-sinising

The rotation matrix between the satellite bedy reference frame and the
inertial reference frame was derived in the Interim Report "Study of Teth-

ered Satellite Active Attitude Control ," G. Colombo, October 1982, Contract

NAS8-33691.

axis is as follows:

siny 0
cosY 0

0 1

cosysinf+
sinycosfcoal

sinfsiny-
cosvcogfeconl

sinicosf

The reverse transformation matrix,

1 0

0 cosl sini

0 =-s8ini cosi

sln1sinl‘
-cosgysini

-coal

Page B

This extra rotatlion implies a change in sign of the second and

cosl sing O

~ging cosi
0 0
(2.1.8)

from body-axis to inertlal

B S

0] (2.1.5) .
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Pcos‘bcosgt— -sinycosg- a.‘l.nﬂsinq&m
cosfsingsiny coslsingcosy
[Rar] = kosysing+ -sinysing+ -sinfcosg '!
. cosfcosdsiny cosficosdcosy
1
singsind cosysind cosd | (2.1.7)
In equation (2.1.7) ¢ is the pitch angle, # is the roll and ¢ is the yaw .{
engle of the sataellite. All of them are referred to the inertial reference ;
|
frame so that they give the inertial attitude of the satellite. i ;
The matrix to transform the body reference frame Iinto the reotating ':

reference frame is therefore glven by:

[Ree] = [Rio] [Rog) (2.1.8) i

where the matrix [Rje] and [Rs:] are glven by expression (2.1.6) and

{2.1.7) respectlvely. The matrix multiplication is not performed analyti-

cally since it ls more convenlent to implement it on the computer. Once
the matrix [Rpy] is obtained ws can derive the Euler angles with respect to

the orbiting reference frame as follows:

ay a3 as B
[Roo = | A Ba A3
M Y2 "3 (2.1.9)

-
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Ay
tan ¢t = - —
Py
tan ¢/ = n |
F]
tan 01 = oy deq2/ 4, {2.1.10)
1
1
. The last relation has an unavoldable sign amblgulity. The sign is chosen
positive for convenience. J
1

The matrilx [Rpgpy] can also be written starting from the Euler angles
raelative to the orbiting reference frame ($f, 8!/, ¢$!'}. Referring to equa-

tion (2.1.9) the elements of the matrix can be written as follows:

a; = cosyYlcosd! - cosflasind!siny!

L]
-
a; = -siny/cos¢’! - cosf!singlcosy/ i
:

gyt cin - k! b

8z = slnffsing!
B = cosylsing! + cosfilcosd!/sing!
B1 = -siny!sind! + cosflicosdlcosy’

i

B: = -sinflcosd!

i
%é 41 = singl/sind! ;
$ 5
i; . 42 = cosp!sinf! ;
, %3 = cosf! (2.1.11) :

R
.

Bacause of equation (2.1.8) the matrix of thie body-axls direction cosines

in inertial axis ls given by:

[Rez] = [Rio]T [Raol (2.1.12)

TEETTEOL, W s
iy z
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The matrix [Rye] can ba built in a similar way as shown in egquation
(2.1.11) by just substituting {7, i, f) to (¢¥i, 8!, ¢/} in the same order.
Once the matrix [Rp) is obtained, the inertial Euler angles can be derived
with expression formally similar to equations (2.1.10). This reverse proc-
es58 L5 necessary in setting up inertial initial conditions in the SKYHOOK
preprocessor DUMBEL, in the case of a generlc orblt, starting from rotating
referance frame initial condlitions. Before this time, the conversion had

been done in the simplified case of circular and equatorial orbit,

The saw...lite angular velocltles can also be derived fairly easily by

using the velocity compositlion and the matrix transformation, as follows:

wy ! uh Ny
wytf = w3 - [Rex]® by
wyl W 0y (2.1.13)

In equation (2.1.13) (w', wi!, w3f) are the body-axis angular velocity
componeqﬁs as measured from an observer moving with the rotating reference
frame; (wy, w3, wy) are the inertlal angular veloclty components in body-
axis; (1%, 0y, k) are the inertial angular rates of the rotating refer-
ence frame in inertial uxis while the matrix {[Rp;]T = [Rys] transforms the
components from lnertial axis to body-axis. The vector (w,, wz, w;) has a
special significance because its components are the quantities measured by
a gyro package strapped down to the satellite. (wn!, w3/, w3!) are similar
components but they are obtained from the 1inertial wvector (wy, wi, wj)

after filtering out the orbltal motlon of the systenm.

All these matrix transformations allows the simulation program to

switch from the inertial reference frame representation to the orbiting

L
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reference frame representation and vice versa. The outcoma is to prasent
the output in a physlcally meaningful form and to have the possibility of

setting up initlal conditlons in SKYHOOK for a generic orbit.

e, 4
North : :
i ;
b
1
: 1
o
!.
3 ) M
"* b
| ; g
i E‘ '.“
L
!
T ! i
} i
Figure 2.1.1 Satellite Rotational Dynamics. E
i System Reference Frames. i
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2.1.3 Relations Between The Euler Angular Velocities And The Body-Axls

Angular Velocities -

In the present verslion of SKYHOOK the body-axis angular velocities are
derived from the integration of Euler equations of the satellite. The
kody-axis angular velocities are then related to the derivatives of the
direction cosines. After a second integration the dlrection cosine matrix
is obtained and the inertlal Euler angles are derived by means of equations
like (2.1.10). This process can be strongly simplified as follows: a}
after the first integration of the Euler equations, the body-axis angular
velocltlies can be analytically transformed to Euler angular velocities, b)
inertial Euler angles can then be directly obtained wi*h a second integra-

tion.

The body-axis angular velocities ere related to Euler angular veloci-

tles as follows:

wy | sinfsiny cosy o] é
wi = ginfcosy -sing 0
ws cosf 0 1 ¥ (2.1.14)

If the transformation matrix is reversed (note that this is not an orthogo-

nal matrix) we get:

i+
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siny/sind cosy/sinf 0 w)
cosy -siny 0 ws
¢ -sinfcotgh ~costicotgf 1 Wi (2.1.15)

The problem associated with equation (2.1.15) is that 1t becomes singular
when the inertial roll angle ¢ = 0° that is to say when the =satellite
longitudinal axis is perpendicular to the equatorlal plane. This means,
for example, that in the case of an equatorial orbit, equation (2.1.15)
becomes singular when the satallite is at 90 degree with respect to the
tether (because of the reference frame conventions in SKYHOOK ¢ = 0° in
this case). As the orbital inclination increases the margin on the liner-
tial rell angle that makss equation (2.1.15) singular is reduced. Far from
the polar orbit, however, there are no problems in running SKYHOOK with

this more efficlent procedure.

The line that we are following is to have both options available in
the computer code in order to use the novel and more efflcient approach
when possible. The standard option will be used for the special cases when

the satellite attitude is near a singularity.

KRG TS
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2.1.4 Torgque And Force Package Update -

The external torques acting upon the satellite are as follows:

a. The yaw torque provided by the yaw control thrusters

L. The spurious torques due to misalignments of the out-of-plane,
in-plane and in-line thrusters

<. The torques due to the passive dampers of the satellite

d. The torque due to the tether tenslion

Since, in our computer code, the satellite attitude dynamics is modeled, by
Euler equations, all the external torques must be expressed in satellite

body-axls. The Euler equations of the satellite are given by:

Ty = waws (I3-13)
Iaw; = wywy (I3-1;) = Neen + Nyr + Nurs + Npap (2.1.16)

I3y - wws (I,-I3)

In (2.1.15), the vector ﬁnm is the torque due to the tether tension (it is
already modeled in the computer code), the vector Nyr ls the torque due to
the yaw thrusters, the vector ﬁms is the torque due to thruster misalign-

ments and ﬁb“,is the one due to the dampers on board the satellite,

I,, I;, I are the satellite moments of inertia and W, w;, wi; are the
components of the satellite rotational velocity in bhody-axis. The torque
Nyr has one component only, along the vertical axis of the satellite, so

that:

s kL L

u
M
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0
ﬁyr =] ©
lem {2.1.17)

Nyyr must be modeled according to the latest version of the AERITALIA con-
trol legic., In general it is a pulse modulated signal, presently with an
amplitude of 1 Nm. Pulses are‘modulated according to the yaw angle ¢ and
the yaw angular rate ¢ in order to stabilize the yaw attitude of the satel-

lite or to maintaln a constant spin rate.

The torque ﬁms can be ltemized in terms of in-plane, out-of-plane and

in-line thrusters as follows:

=z 4
]

In equatlion (2.1.18) Fip, EFop and Fy, are the thrust level of the in-plane,
out~of-plane and in-line thruster respectively. The vectors b, b; and b;
are the arms of the thrust vectors with respect te the satellite c<.m.
Since the satellite is spherical and the thrusters are located on the outer
shell, the arm vector can be expressed in terms of angular misallgnments as

follows:

sinag,
by = R sinog,z (2.1.19)

slnay,;

Frp 0 0 ~
2.1.18
MIS 0 X b, + Fop| X by + 0 X {by (2.1.18)
0 0 FrL

. Y
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where:

k= (1,2,3) and axy = O if k=3 (2.1.20)

oag,y # 0O if k # §

ag,4 are the cartesian components of the angular misallgnment between the
actual thruster longitudinal axis and its theoretical position. In the
case of an in-plane thruster, for example, the overall angular misalignment

ils given by:
[ai| = sin™ [sin?(a,2) + sini(ey,y)]/? (2.1.21)
where xp = 1, yp = 2 and zp = 37 xp, ys and zp, being the satellite body

axis.

The thrust levels Fip, Fgp and F;p must be modeled according to the
selected control logic. In particular the in-line thruster has a two-

staged thrust level and it is switched on, in a continuous operatlon mode,

every tlime that the tension falls below 2N as follows:

Ei, = 1N if 1IN < T £ 2N

Fio = 2N if T < 1IN (2.1.22)

where T is the tether tenslon.

The most efficient way to activate the out-of-plane thrusters is when

the satellite crosses the local vertical so that its veloclty is maximum.

e

To further improve the efficiency it ls convenient to let the out-of-plane

. B e e e
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oscillation build up to 20° or 30° and then fire the thruster at the next
crossing. The flring time is given by:
1 1
Atgp = {mg, + 3 me) Voroex/Eop = {(Mas + 3 me) (20 Bpax €)/Fop (2.1.23)
In equation (2.1.23) m,, is the satellite mass, my is the tether mass (that
is negligible for short tether length), Vopeax is the out-ocf-plane velocity '
of the satelllte at the crossing of the local vertical, Bpa is the ampli-

tude of the out-of-plane angle of the tether before thruster activation.

Lk

All the other terms are self explanatory. It ls interesting to notice that

the satellite veloclty Veprax is fairly constant with the tether lengtt.,

=

o

In fact from the cut-of-plane rotatlonal energy conservation (it holds true

in first approximation because the damping is very low) we get!

1 1
Voraax = 20Bole/[(Mes + 5 pL)/ (mes + 5 plo)]*/? (2.1.24)

AMCTOETE W MM RT3

RO X - - . T

In equation (2.1.24) the index "o" stands for values computed at the begin-
2* | ning of retrieval and g is the linear density of the tether. For tethers
few kilometers long, equation (2.1.24) is essentially independent from the

tether length £,

The in-plane thruster control logic is theoretically simllar to the

out-of-plane one. However, the in-plane control 1s more complicate because
the tether oscillation has a varlable blas dependent upon the Coriolis

ferce and the air drag. The riring time will have an expression similar to

equation (2.1.23), as follows:

1 1
Aty = (mes *+ s'mt)VIPmax/ElP = (mgy + Smt) (V3 0 Apax £) /F1p {2.1.25)
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This time, however, all the angular quantities must be computed from the
in-plane blas and the in-plane thrusters must be activated when the satel-
lite crosses it. The evaluation of the in-plane oscillatlion bilas could be
performed by software processing of the radar observations (Lf this 1is at
all feasible). A simplified analytical expression for 4it, valid for an

exponentlial retrleval control law, is as follows:

=

_ 2 1 8 (RotH) 2
= = 1 - = {Ro*H) 2
As 3 in [tcﬂcos(Ab) 2 Mgy Copa £ ) (2.1.26)

Equation (2.1.26) can be further simplified, for small angle, by assuming
cos(Ay) =~ 1 so that it becomes very easy to compute the angular bias. In
equation (2.1.26) t. is the retrlieval time constant, Cy ls the drag coeffi-
clent of the satellife, 5 its cross section (the tether cross section is
neglected because the bias angle builds up whean the tether is short), p, is

the atmospheric density, R, the earth radius and H the orbital altitude.

The software lmplementation of the torque and force package in our
computer code 1s presently underway. The torque ﬁrm, due to the tether
tenslon is already available. The torque ﬁnum due to the satellite atti-
tude dampers has been examined only in a simplified way. The implementa-
tion and design of roll and pitch passive dampers has been recently studied
by the Italian prime contractor. We will contact AERITALIA in the near
future to understand what the present status is in order to model the

damping torgques accordingly.
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2.1.5 Current Status Of Rotational Dynamics Code -~

Under NASA Contract NAS8-32199, a version of the DUMBEL program was
created which includes the rotational dynamics of the subsatellite. This
code has a model for a damplirg torque proportional to the rate of change of
the angle between the wire and the vector from the center of mass of the
subsatellite to the attachment point of the wire, The prégram is docu-
mented in Appendix III of the Final Report "Study of the Dynamics of a

Tethered Satellite System (SKYHOOK)," Kalaghan et al., March 1978,

Under NASA Contract NASB-33691, the code developed in DUMBEL, but
without the dampling model, was implemented in the SKYHOOK computer program.
This work is described in the Interim Report, "Study of Tethered Satelllice
Active Attlitude Contiol," G. Colombo, October 1982. The code was tested
with a rudimentary thruster model that applied a constant torque about any
of the three beody axes. A speclal test case was also devised in which the
subsatellite precesses under the torque of the wire at the same rate as the
orbital angular veloclty. In this case, the subsatellite maintains a fixed
orientation between the svmmetry axis and the rotating orbital reference
frame. In order to show the orientation in the orbital frame, an eguato-
rial orbit was run and the direction cosine matrix was rotated about the z-
axis by the orbital angle in order to derive Euler angles in the rotating
reference frame. The code was not developed to the point of being able to

give Euler angles with respect to an arbitrary orbital reference frame.

TR N
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2,1,6 Implementation Of The Transformation To The Rotating Orbital Refer-

ence Frame -

In order to perform simulations for arbitrary orbltal elements and
obtaln meaningful displays of the subsatelllte rotation it ls necessary to
be ahle to mset up initial conditions in a rotating orbital reference frame
and be able to display the output orientatlon angles in that coordinate
system. In the method of dlrectlon coslines, the coordinates of a point !
with respsct to the body axes are glven as a functlon of the inertilal

coordinates X by the equation

%1 = AR (2.1.27)

where
ap B 0 5
A = |az B Tz

ay P Y3 (z.1.28)

The matrix A can be expressed as the product of three matrices representing

rotations by the Euler angles. That is,

: A = B()C(O)D(4) (2.2.29)

where

costy sinyg O
B(y)y = ~sinty cosy O

o 0 1

:i- 4
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1 C o

c(dy = 0 cosal sinf

0 -sind cosl

cosgp s8ing O
D(¢) = -gin¢ cosd ©

0 o 1

In the care of an equatorlial orkit with the Shuttle Initially on the
x-axis, the orbital reference frame iriftlally c<oincides with the insrtial
raference frame so that equation (2.1.29) gives the initial conditions. In
general the transformation from the inertial frame to the rotating orbital

reference frame can be given as:

E=B()C{1)d(A (2.1.30)

where £ is the argument of the ascendling mode, 1 is the orbital inclina-
tion, and v is the argument of latitude (the angle from the node to the
Shuttle in the plane of the orbit). Equation (2.1.30) has the same form as
equation (2.1.29), The transformation £ glves the coordinates of a point
in the orbital reference frame as a function of the coordinates in the

inertial frame. For arbltrary orbital elements the transformation from

GE {2.1.31)

g
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G = B($1)C(01)D($!) (2.1.32)

The ungles 0!, ¢!, and ¢! give the relationship between the orbital frama
and the body axis frame. Equation (2.1.31) giving F as a function of six
rotations can be used to set up the initial direction cosine matrix for
- arbitrary orbltal elements and arbitrary orientation of the body axes with

respect to the orbital reference frame.

" a ke,

The tension in the wire la computed using the distance from the Shut-
tle to the attachment polnt of the wire. In order to set up eqguilibrium H
initial conditions, the peosltions of the attachment point and the center of 3

mass of the subsatellite must be known in inertlal coordinates. If the

coordinates of the attachment point in the body ax!ls frame are glven by the

vector ¥/, the cecordinates in inertlal space are alven by E:
[
é
i ¥ o=FT T/ (2.1.33)
:
;i where FT i1s the transpose of the matrix F. In the DUMBEL program the E’

vector ¥ 1ls subtracted from the position f the attachment point to compute

the initlial position of the center of mass of the subsatellite,

The rotaticnal motion of the subsatelllite 1s obtalned by integrating
vs time the nine elements of the matrix F and the three components of the
angular veloclty along the body axes. The angular quantities are not inte-
grated directly. At any instant of time the nine direction cosines can be
Interpreted elther as the results of three rotatlons as in the case of the

matrix A, or as six rotations as in the case of matrix F. A convenlent

e L mee . - - ‘ti;i
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form of output would be to give the three angles, ¢/, $/, and ¢! which
define the transformation G from the orbiltal frame to kody axes. Gince F =

CE we can obtain the matrix G by post multiplying by ET to glve

FE? = GEET = G (2.1.34)

We can then derive the angles #!, ¢!, and ¢! from the matrix G. A method

of obtalning these angles 1s derived in Section 2.1.2 of this report, The

raesults of the derivation are

tang! = -ay/f,
tany! = ¥/713 {2.1.35)
tanf! = mn? + 332 /v,

where a and v are direction cosines as defined for the matrix A, The
explicit reprasentation of the directlon cosines in terms of Euler angles

is given in equations (2.1.11) of the abova clted Section.

2.1.7 Rotational Dynamics Cc. )y First Level Update -

As a first step in the present study, a few of the cases used to test

the program have been rerun and the output checked against the original

" test runs. The origlnal version of the program uses expllcit expresslons

for the elementa of the matrix in equatlion (2.1.28). The matrix F lnvolves
six rotations, whieh would be very cumbersome to do analytically. There-
fore, a set of general purpose subroutines have been wrltten to manipulate

3 x 3 matrices numerically. Subroutine ROTMAT(IAXIS,ANGLE,A} sets up &

P,

T e e

e,
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matrix A teo perform a rotation about axis number "IAXI3" through an angle P

"ANGLE ." The expllicit form of the matrices for each axis with ANGLE = @ are

i 0 0
1= 0 cosf sind
o] -sinf cosl
. cosft 0 -sinf
2 = 0 1 0
sind 0 cosf o
N
]
cosf sind O § i
3= |-sinf cosf O r W
o) o] 1

R

Subroutine MATMUL (A,B,C) performs the matrix multiplicatlion C = A x

|
!
|
|

B. Subroutine STATVEC (THETA, PUI, PSI, A) creates the direction cosine

matrix A = B({)C(f)D(¢). This has been tested agalnst the original subrou-

x
ARy

tine which uses analytic expressions for the nine dlirectlon cosines and

gives the same results. Subroutine TRNSPOS (A, AT) performs the operation

R

AT = AT. Subroutine VECMUL(A. V, VP) performs the operation VB = A x V

where V and VP are vectors and A is a 3x3 matrix. The orlginal version of

subroutine ROTSTAT in program DUMBEL has been replaced by a more general .

version ROTSTAT (AN,RI,AL,THETA,PHI,PSI,DTHETA,DPHI,DPSI,Y,A,DIRCOS), where

ot A L B

ST

AN is the argument of the node, RI is the orbital luclination, AL is the
argument of latitude, THETA, PHI and PSI are the Euler angles with respect :

to the rotating orbltal cecordinate frame. DTHETA, DPHI, and DPSI are the ;
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rates of change of the angles in inertial space but referred to the axes of
tlie rotating orbital reference frame. The angular velocity in inertial
space 1s the angular velocity in the rotating frame plus the orbital angu-
lar velocity. The way the Euler angles are defined, é' is parallel to the
orbital angular velocity, so that the angular welocity in ilnertlal space
can be obtalined by adding the aorbital angular velocity f{l to the &f which is
the rate of change of ¢! with respect to the rotating orbital frame. The

components of the angular veleoclty along the body axes can be obtained

using the equations

w, = ¢sinftsing! + fcosy!
w; = ésinﬂlcos¢' - dsiny!
wy = decosht + ¢

vhare 0, é, and ¢ are the rates in inertial space.

Subroutine ROTSTAT creates the matrices

4]
It

B (AL) C (RI) D (AN)

and

Q
]

B(y!)C(0/)D{g’)

using subroutine STATVEC and then performs the operation F = GxE. The
matrix F ls returned as DIACOS, and placed in A, the rotational part of the
state vector. (The positional part, Y, of the state vector is not used in

this version). The positlon of the attachment point of the wire is com-

oy
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puted by the equation

and returned via common.

In order to display the rotation of the subsatellite in the rotating
orbital reference frame, we must have the lnstantaneous orbital parameters.
These c¢an be obtalned (rom the position P and velocity V. The unit vector
normal to the orblt A is in the direction PxV., The orbital inclination is
cos™ na. The argument of the node is tan? ny/n,. If we call X a unit
vector along the node and ¥ a unit vector in the direction i x X, we can
get the sine and cosine of the argument of latitude from the components of
P along ¥ and %, Subroutine ELEM (P,V,AN,RI,AL) computes the argument of
the node AN, the inclination RI, and argument of latitude AL from the

position P and valocity v.

A routine called ANGROT has been written previocusly to rotate the
direction cosine watrix about the z-axis and compute Euler angles from the
rotated matrix. This routine has been used for equatorial orbits to glve
the orientaticn of the subsatellite In a rotating orbital reference frame.
A new version ANGROT (AN,RI,AL,A,ANG) has bsen written where AN is the
argument of the node, RI iz the Iinclination, and AL is the argument of
latitude, A 1ls the instantaneous direction cosine matrix called F in the
general case, and ANG is a three element array containing the Euler angles
with respect to the orbital reference {rame. Subroutine ANGROT performs

the operation

G = FET

"(4,)
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using subroutines STATVEC, TRNSPOR, and MATMUL. The vector ANG is then
obtained from G. The calls to ELEM and ANGROT are coordinated by subrou-
tine ROTCDORD (Z,A,ANG), where Z is the positional part of the state vec-
tor, A is the matrly of directlon cosines and ANG is the Euler angles in

the rotating orbkital reference frame.

2.1.8 Rotatlonal Dynamlies Computer Simulations -

Various test cases have been run with the new software described in
Saction 2.1.6. In the first case the system is in an equatorial orbit with
noe initial rotation or angular veloclty in inertlal space. Angular damplng
is included in the model. In the original version of the program, the
rotation of the wire at the orbital angular velocity causes the subsatel-
lite to acquire the orbital angular velocity. Measured in the orbital
reference frame, the subsatellite inltially rotates away from equilibkrlium
and then returns exponentlially to equllibrium. The new software produces

the same results and agrees numerically with the previous results.

The second test case 1s the same as the first but with an orbital
inclinatlon of 28°., This run appears to have integrated properly but the
output angles were dlsrupted by a eingularity in the angular representa-
tion. When the angle #! is zero, one cannot distinguish betwesn ¢! and ¢/.
In this case the program sarbltrary sets ¢/ = 0 and attributes all the
rotatisn to 4f. In an equatorial orklt, the =z coordinates are always
ldentically zero in the integration. However, in an inclined orbit, numer-
ical re¢.ndoff zllowed #7 to assume a slightly non-zero value, causing an
erratic distribution of the angle between ¢! and ¢/ after the first four

output points.

=
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In order to avoid the singularity in the angular representaticn, a
pair of rums was done with non-zero initial values of .1, .2, and .3 de-
grees for 0/, ¢!, and ¢! in the rotating orbital reference frame. Runs at
0° and 28° orbital Inclination gave ldentical time historles of the angles
measured in the orbital fram.. Fligures 2.1.2, 2,1.3, and 2.1.4 give plots
of the Euler angles 8/, ¢!, and ¢! for the 0° inclinatlon case, and Figures
2.1.5, 2.1.6, and 2.1.7 give the angles at 28° inclination. BSmall differ-

ance appear in the least significant digits.

The last test run is the special case where the subsatellite precesses

e oy

at the same rate as the orbital angular velocity so that the symmetry axis

malntains a fixed orientation with respect to the orbltal reference frame.

The initial conditions are with ¢ equal to the orbital angular velocity,

and a 28° orbkital inclination. The angles #! and ¢/ remalned censtant

- moETT

during the run just as in the equatorial case run with the original version
of the program. Flgures 2.1.8, 2.1.9, and 2.1.10 show plots of the angles

vs. time.
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2.2 B8lack Tether Studies
2.2.1 Intreoductory Remarks -

Several advances have been made in the consideration of the =slack

tether (tether break) problem during the reporting period.

Perhaps meoat significantly, the SLACK2 program described in the last
quarterly report jas been extended to SLACK3, a fully three-dimensional
treatment:

-~ The motion of the masses is three dimensional,

~ The deployment boom may polint in any direction, out of the or-
bital plane as well as in-plane.

- The tether may be deployed in any directien (though it is still
restrlcted to a straight line deployment).

- The Shuttle is allowed to rotate about an arbitrary axis at a
speclfled rotation rateland/or rotational acceleration.

-~ The vibration of the boom on release takes account of the various
directions involved, e.g. the directlon of initial tenslon due

to the tether.

SLACK2 previously treated damping in the tether (when the masses
caused a section te come into tension and "bounce") ‘n an ad hoe fashion.

A more correct treatment was developed and applied in SLACK3.

RECOIL, a high resoclution program to model the initial loss of tension
process following a tether break, was written. The results (for a per-
fectly elastic tether) verify the initial conditions we have been using in
SLACK2 and SLACK3: the tether is recolling at a constant velocity along

its length, with no deformatior, These initial conditions had been used on
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the basls of some low resolutlion SKYHOOK runs and plausibillity arguments.

SAO, with Prof. Robert Hohlfeld of Boston University, has also begun
consideration of slack tether dynamlics, and the tether loss-of-tension
problem, from an analytical viowpoint. These investigations are expected
to provide valuable results not readlily obtainable from computer modeling
(e.g., the typical scale size of loop formation in the cut tether), to
provide a check on computer results, and to guide the development of model- .
ing algorithms for partially slack situatlions. Prof. Hohlfald has contrib-

uted a section, 2.2.5, detalling the results so far. ' {

[

2.2.2 Treatment Of Damping -

The algeorithm for treating damping in SLACKZ was simple and ad hec:

.

When two of the masses in the model separated by the natural length of the
{assumed massless) tether segment betwesn them, they undergo a "bounce,"

reversing their momentum components along the segment joining them. Allow-

e T D e

ance was made for damping by reducing the velocity of the rebound by a ;;

constant percentage. This much ls reasonable, slimply from consideration of
the linearity of the processes (see below), What is ad hos about our
treatment is the way in which we determine what the percentage velocity
. reduction is. In the absence of any better knowledge, we simply input a

percent value, which applied to all segments regardless of length.

We have now put the damping conslderations on a more physical level,

% so that we not only have the percentage velocity reductions for the various
segments to proper scale, but compute them from an input constant charac-

teristic of the tether material.
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Although our results are certainly not new, we have not found them in
a search of readily avalleble sources in any form easlly appllicable to the
situation at hand. Hence, we shall give a simple derivation from flirst

principines. We wish to derive the dependance of f ie damping constant for a

piece of tether material on the length of the piece, under soms very gen-
eral assumptions. Specifically, we assume that the material is viscous but
not plastic. That is, there will be resistance to motleon, but no permanent
- change in the equlilibrium state. We assume a simple Hooke's law form for

the elastic portlion of the stress, and the viscous damping will add a term

T S

proportional to veloclty. "

- .

v

Consider a simple physical system: a length of tether fastened toc a g

wall at one end and a mass M at the other. Neglect the tether mass. Let x

p=C &
- atn o AL et

——

be the extension of the segment past natural length. Then the equatjon of

motion is

Mt = ~-Kx -Bx (1)

L AMEITT LA ASESR RRT k& L

where K 1s the Hooke's law spring constant and B is some dampling constant,
1
4
Now suppose we cut the tether in lts center and place a small mass m fﬁ
between the pieces; denote the extenslon of the segment betwsen the wall !

and mass m by y. Then the equations of motion are twofold:

]

. |

~k(x —y) —-b(%x—Y) ;]
;

- Mx =
3 my = - ky ~ by (2) :
5
+k{x—y) +b(%x~-y) P

If we let £ = (x-y), a bit of manipulation arrives at the equation

M = —4kx - bx - im(%-§) (3)

gy, e —
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Let m — O and compare the result to equation (1). If the accelera-
tions in the third term of (3) remain finlte, which we shall simply assume
since this 1s not meant to be a rigorous proof, agreenr it between these two
results for the motlion of mass M requlires that k = 2K, b = 2B. Generaliz-

ing the argument, we have that
kK o % b x % (4)

where £ is the (natural) length of the tether segment. For the spring
constant k, the proportlonality constant is =simply EA, Young's modulus
times the cross sectional area. For the damping constant b, we shall
follow a remark in Bodley and Park (1983; p. 54) and denote the propor-
tionality constant by C,. It seems reasonable that the energy dissipation,
hence the resistive force, will be proportional also to the cross sectlonal
area of the tether; hence, we define c, = C,/A. The two material.proper-
ties E and c, are thus input to a program such as SLACK3, which can then

compute the spring motion parameters.

We now need to determine how the velocity after a "bounce" in SLACK3
depends on the relative velocity of the pair of masses before the "bounce."
Consider only the velocity component along the tether; the orthogonal
component cannot be changed by tether tension forces. Suppose we have
equal masses m at elther end of the tether (this won't be strictly true
since SLACK3 allows the segment length to vary, and the masses depend on
segment length), and a segment of length £. Let the separation of the
masses be xtf, so that x 1s the stretch of the segment. The displacement
of each mass will be half x, so the equatlon of motion (acceieration =

force) becomes

mk = —-kx - bx (5)

NPT
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Make the usual trial substitution x(t) = e*t, and write B = b/m, w? =

2k/m. Then the expenential will be a solutlon if
a? + 2Ba + w? = 0O (6)

There are two linearly independant solutions corresponding to the roots a =

-8 x VB% - w? of this characteristic equation. We consider here only a

small damping approximation, l.e. f << w. The complicatlons become meore

complex fer larger damping, and the ilmplilcations of extreme cases for the
medel are still being investigated; the results should be good enough for
most purposes when f < w. The two roots then form a complex conjugate
palr and the solutions are more famlliarly written as exponentially damped
sine and cosine terms. If the bounce begins at t=0, we have initial condi-
tions x{0) = 0, %(0) = vi,, say. The cosine term will drop out and the

solution becomes

x{t} = —v—*ﬁ}—e“" cos (w t) (7

where we have replaced +/f%-w? by w. The tether segment comes out of the

bouncz (i.e., loses tension again) when x(t) is next zero, l.e. at t =

w/w. Taking the derivative of (7) at this time we have
Vout = Vip o™V (8)

The computation of segment damplng parameter, and this small damping
approximation for the velocity loss on bounce, have been implemented in the

version of SLACK3 described in Section 2.2.3.2 below.

References to Sectlion 2.2.2

Bodley, C. S., and Park, A, C., BAnalysis of Tethered Satellite System Qr-
bital Dynamics for Selected Mimgion Profiles, Report TSS5-83-ACP-065,

Martin Marletta Denver Aerospace, June 1983.
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2.2.3 Full Three Dimensional Treatment -

SLACKZ restricted the motion of the masses toc the orbital plane. The
same physical model has been generallzed teo a three dimensional program,
SLACK3. This involved the following modiflcations:

- The equations of motion of the masses now allow for out-of-plane
motion,

- The deployment boom may peoint in any direction, ocut of the or-
bital plane as well as in-plana.

- The tether may be deployad in any direction (though it is still
restricted to a stralght line deployment).

- The Shuttle is allowed to rotate about an arbitrary axis at a
specified rotation rate and/or rotational acceleration.

- The vibration of the boom on release takes account of the various
directions linvolved, e.g. the directlon of initial tension due
to the tether.

- Randomization of tether segment direction is in a cone about the
nominal tether direction, rather than just in the orbital plane.

Some additional modifications have been made (or are being coded), such as
the improved damping model discussed in Section 2.2.2, and streamlining of

the input.

There are still soms restrictions from a fully adequate three dimen-
sional treatment. The two moat signiflicant seem to be
- The air drag {wind) i3 still in the orbital plane.
- The deployment boom is asgzumed to be attached to the Shuttle at

the Shuttle center of mass.

W —

e » P ) -
; - i T

iy

o

= W

S eassEATILN R T




Page 45

2.2.3.1 Preliminary Mathematlics -

The equations of motion of a free mass ln the orbiting coordinate

system (i.e., relative to the orblt center m the center of mass) are

x'' = 3Ix + 2y’
y'! = - 2x' -D (1)
z'! = -z

where the time has been scaled by the orbital angular velocity I to 7 = It
(}' means d{)/dr; D is a scaled drag parameter, assumed constant; .and the
coordinate system L8 as shown in Figure 2.2.1. The third equatlon (for z)
has solution z(r) = z{0)sinr + z'(0)cosr, and addition of these solutieons

to the program is trivial.

Much the more complicated part, both conceptually and in the actual
programming, has been dealing with the three dimensional geometry and vari-
ous angles involved. Although mathematically elementary, there 1is much
room for confusion and fallure to coordinate conventions, so we will spell

out in some detall what we are doing.

Figure 2.2.1 shows the orlentation of our reference coordinate frame,
the standard frame centered at the center of mass (Shuttle) and rotating seo
as to keep the x-axis vertical. Also shown are the orientations of the

pitch, roll and yaw rotatlons discussed below.

Figure 2.2.2 points up a distinction (in a2 two dimenslonal case for
clarity) that It is extremely important to be clear about: that betwaen
physically rotating a physical object or vector by prescribed angles, and
then asking for the coordinates of the new ghject in the griginal (or

reference) conrdinate system; and rotating the coordinate system in pre-
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g £
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L

Figure 2.2.1. Orilentation of the reference coordinate system and the
pitch, recll and yaw rotations defined in the text.
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. PHYSICAL ROTATION

3 |

;) |

| 1
X R

COORDINATE ROTATION

[ s T

c

Figure 2.,2.2. Physical vs. coordinate rotation. Physically rotating a

vactor or object about the coordinate rotation, and seeking the new ob- _
ject's coordinates in the original system, is the inverse of rotating the i
coordinate system and sesking an unmoved object's coordinates in the new !
system. l

— . S iy NP AR



TP

Page 48

scribed fashion and then seeking the coordinates Ain the new system of an

the “input data" are the coordinates of

womoving gkjiect. In koth cases,

the original object in the original system. We shall call these two situa-

tions "physical rotation" and "“coordinate rotation" for brevity. Brief

reflection, perhaps while pondering Flgure 2.2.2, reveals that these are

Jnverge situatiens: Li.e., a physical rotation by a given angle produces

the same numbers as a coordinate rotation by the opposite (negative) angle,

We shall consider the physical rotations and their generating matrices to

be the fundamental concepts.

The three fundamental units from which we shall construct all our

rotations and angles are plitch, roll and yaw. These operations are always

taken relatlive to a coordinate system fixed in the Shuttle (body cocrdinate

system). They are somewhat easier to describe 1f we imagine the Shuttle to

be orlented as in Figure 2.2.1, with nose polinting alsng-orbit and the

landing gear polnted toward the Earth. Pltch by a8 positive angle then

brings the nose down; roll causes a roll about the Shuttle's longitudinal

axis clockwise as viewed by the pillot; arid yaw by a positive angle swings

the Shuttle's nose to the left. Unless otherwlse specified, ¢ will refer

to pitch, ¢ to roll, and ¢ to yaw,

Each of these elementary maneuvers can be represented by a 3x3 matrix.

These matrices are used to transform column vectors, e.g. for pitch

PE— Ve T e
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cos @ ~sind

= sinf cos §

or in more compact notation

Fi = Py Po

<
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x
Y (2)
2

(3)

Here, the subscripts O and 1 refer to before and after the physical rota-

tion, and the 7

= [x y z]T are the coordinates ln a fixed reference frame,

colncldent with the body frame before the pltch maneuver, of some physical

object or vector which rotates with the Shuttle,

physical vector,

these components

The roll and yaw

but a column matrix of components.

Note that ¥ 1s not a

If the system in which

are measured is not obvious, we may use notation such as

Flixy:

matrices are similarly:

cos @ 0
= 0 1
| —sing 0
[ 1 0
= 0 cos ¢
| © siny

sin

cas

o
—-siny

cos ¢

(4)

(5)

These rotatlons and matrices are deflined so that the body coordinate system

coincides with the reference coordinate system when the Shuttle is flying

in a "normal” attitude, 1i.s.

nose forward and head up,

discrepancy in sign from the conventions used 1in,

i he

There may be some

e.g., alrcraft opera-
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tions.

These matrices are examples of grthogenal matrices, 1.e. those for
vhich the transpose is the lnverse. For these particular matrlces, replac-
ing the rotation angle {(e.g. @) by its negative results in the Inverse
matrix. From the comment made above about the inverse nature of physical
rotation and coordinate rotation we see that the matrices for transferring
the representation of a constant vector into a system rotated with the
Shuttle will be just the transpose of those written down above; a general

result for orthogonal rotation matrices.

It now becomes relatively simple to compute the rotatlon matrix corre-
sponding to successive rotations, e.g. a sequence of pitch/roll/yav maneu-
vers. In each case we suppose the rotation 1s described in the body coor-

dinate system. First, perform a rotation described by matrix A, then one

described by matrix B. These will transform a physical vector ¥ to 7, to

3. Initially, the body system is coincldent with the reference xyz sys-

tem; after the first rotation, it will be colncldent with a system, say

L

x'y'z'; and flnally, with x"y"z". Now, almost by definition, the coerdi-
nates of the final vector in the final system are numerlcally identical to

those of the original vector in the coriginal system. I.e.,

- =
Tz lxyz = To |xys

and we may then write immediately Taluye = A {Falxyz'} = A {B Falusywer}

= AB Folxys. This final expression is just in the form required for *“he
total rotation matrix; i.e., the total rotation is described by the matrix
AR, In general, a serles of rotations, first A, then B, then C... will
produce g rotatlon described by the matrix ARBC.... The order 1s lmportant,
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since matrices do not commute.

With this background, the requlred cemputations are almost obvious.
Any direction, e.g. boom or tether, will be specified by two angles, flrst
a pitch and then a roll which are plctured as rotating the vertlcal (x)
axls into the desired directlion., The full rotation matrix is easlly com-
puted as PR, and the unit vector in the appropriate direction is given by
PR [1 O 01T = {[cosficosip , sinfcosye , -sing ]T. These unit vectors allow

us to craeate sultable initial conditlons.

Dealing with the boom vlbration and Shuttle rotation is slightly more

compllcated. Flrst, supposs we have computed the boom's position and ve-

locity Eo and ﬁo relative to an unrotated Shuttle. To describe the Shuttle

rotation we have the angles ¢ and ¢ nf the rotation axis, which allow us
to compute a transformation matrix PR; and the rotatlon angle ¢(t) as a
function of time. Our prescription for perferming the desired rotation can
be stated: First, physically rotate the Shuttle with PR se that the bedy
€-axis (vertical in the body frame) lies along the axis of rotation; sec-
ond, rotate the Shuttle by ¢ about the body vertical axis in a yaw maneu-
ver, with matrix ¥; third, rotate the Shuttle in the inverse manner [PR]T
80 that the body vertical axis ls coilncident again with the reference frame
vartical. From the theorem glven above on combining rotations, this 1is

equivalent to using a single total rotation matrix
A(t) = [PR] ¥y [PR]T (6)
that is, the Shuttle position at time t is glven by

B, = A(t) Bo(t) (7)
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The velocity is found simply as
By = A(t) Bo(t) + A(t) Bo(t) (8)
where
Ay = ) T2 ERT deo) (9)

We still need to know the unrotated boom vibration, i.e. relative to
the Shuttle. We already in SLACK2 compute the frequency and amplitude of
the boom vibration, as detailed in a prevlious report. There, to get the
amplitude we used the tether tenslon before the break based on vertical
deployment, If the tether pulled away from vertlcal by air drag, and is in
aquilibrium, the tension i3 the same as if it had been vertically deployed
with only the gravity gradlent force; if the tether was in motion or held
off vertlical by thrusters, the force depends on factors and scenarios not
input to SLACK3. Thus, we simply use the vertical deployment tension, with
an optional "fudge factor" to adjust to specific cases. To treat the three
dimenslonal case wWe use the two unlt vectors along the boom and tether, é&j
and &y, which we have computed as above based on the input angles. The
displacement of the boom tip due to the deployed tether will be along a

direction perpendicular to the boom, in the plane defined by the boom and

tether direction. First note that the vector (&xér) 1s orthogonal to tris

plane., Then a suitable vector is
Xp = (GaxAr)xép = &y — (&p- &) ép (10)
which we then normallze to form a unit vector

& = Xp / |¥Xpl (11)
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{In the exceptional case that the tether and boom ars collinear, Xp is zero
and cannot be normallzed, but there is no displacement and we simply use O

in place of &p.) The displacing force, used to compute the boomn deflection,

will then be simply . %
Ep = {Tension} (&r-+ &) . (12) i
[
é i
The initial, pre-break, displacement of the boom tip is then i
AB = Fp —2_ & 1 o

= ' 3ED * (13) ;

where b is the boom length and EI its stiffness. The motion of the boonm

tip, prior to overall rotation of the Shuttle, ls then
Bo(t) = Bs + (AB) cos[2mft] (14) :
and its velocity
Bo(t) = - 2nf (AB) sin[2mft] (15) .
i
where B, = bég iz the boom equilibrium position and f = ¢ 3 E;a is the |
b
frequency of the first mode cf a clamped beam; we take values specified by 34
1o
[
NASA, EI = 1.3 x 10% 1b 4in2, b = 849 in, welght W = 106.2 1lb; the value of

gravity is g = 385.06 in/sec?, and ¢, is 0.56 cycle/sec. Rotating (14) and

{15) with (7) and (8}, we speclfy completely the motlon of the boom tip.

'
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One othsr application of these concepts is to a problem that at first
sight appears trivial, the generation of vectors randomized about a gliven
direction. We do this in randomizing the directions of the tether segments
wvhen we generate the initial conditions. We first compute (random) angles
§ with respect to the reference direction and ¢ azlmuthally about the ref-
erence direction (typlically f might be uniform with 5° mean and ¢ uniform

on [0,2%) ). Then we creats a vector with these angles about, say, the x-

axis in the reference coordinate frams:

cos #

113
i

sin § cos p (16)

s8in & sin p

Finally, we physically rotate this vector using any rotation which brings
the x-axls into the desired reference direction. If the reference direc-

tion is &r, we need a inritary matrix satisfying:

v 0 | =ér U, = I (17)
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If we partition U = [ u | uz | u; ], then we see immediately that u; must
be &r, and {u;, uz, Y3} must form an orthonormal set. This may be easlly

done by choosing any arkitrary vector t not parallel to u; ({(we use unit

vectors along the coordinate axes for slmplicity; we will never have to 1
try more than two). Then form u;xt and normalize it to get uz; and then
take u; = uyxuz., We may ncew perform cur rotation, which will bring the

segment inte an angle # with respect to the tether direction; <the effect

on the azimuthal direction is not cbvious, but it will leave the uniform

distribution unchanged.

2.2.3.2 Slack3 Implementation -

The above consideratlons have been implemented in SLACK3., The 4im-

B .

proved damping of Section 2.2.2 ls also included, as well as lmprovements

in the randomization processes. We are In the process of coding stream-

R Ll

iined Linput procedures. in which there are default values of many ]

parameters and a menu system allows changing only those of Interest. Only :
a few test cases have been run (which verify correct deployment of boom and

tether, and boom rotation); the famlliar silde and rear vievw configuration

diagrams are shown in Figure 2.2.3 for a sample run which includes boom

rotation. SLACK3, witli minimal further effort, is now sultable for running
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"6 -90.00  -GR,50  -120.00 -160,00 -200.00 -2uD.00 -280.00 -3¥20.00 =360.,00 V00,00 -H¥D0,00
.08 w0 LT F ~PLANE LOHPONENT IRETERS

//// //é&zgfjf{@*

0,00 0,60 -Ba.00  -120,00 -169.00 -900.00 -§40.00 -990.00 -320.00 960,00 900,00
TH=PLANE COMPDNENT IMETEAS)

0. 00

160.40

u0.00 8000 120.00

AHOTAL COMPONENT (METERS)

0.t

—t

-4c,00

-no.on
Iy

-120.00

Figure 2.2.3. Sample results from the fully three dimensional SLACK3. A
sequence of configurations of the tether are shown in the familiar format.
Successive configurations are displayed from left to right. The "in-plane"
figure is a side view, with the orbital direction te the left. In the
"out-of-plane" figure, the system is viewed from behind,
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some complex cases in the next reporting interval to determine the effect ;

of deployment directions, rotation maneuvers, tether remnant length and

other quantities of interest, o

2.2.4 High Resolution Loss-Of-Tension Model - L

. The initial conditions used by SLACK2, that the tether was recolling
with constant velocity and no compression initially, were based on some old
SKYHOOK simulations with only a few masses, and on some plausibility argu-
ments. It was declded to check these assumptlons by means of a lumped mass

model similar to SKYHOOK, but simplified to the extreme te allow a large !

number of masses to be included.

The model, embodied in a program RECOIL, is capable of handling up to
100 masses with reasonable efficlency. The restrictions made are prima- f

rily:

The only forces included are the internal tether forces. Specif-

ically, no gravity gradient, drag, or Corioclis forces are in-

cluded.
- All motlion is one dimensional.
- All segments are the same length.

- Once a segment goes slack we lgnore any tenslon that may develop

if it again becomes stretched.

The equations of motions are solved with a simple fourth order Runge-Kutta

integrator, starting from the moment the tether is severed. For simplic-

ity, the problem is scaled so that the only free paraueter is the damping

congtant. ‘
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Figure 2.2.4., High resolution loss of tension: development in time. This
is a view of a three dimensional surface whose helght represents the (nega-
tive of the) recoll wvelocity. This 1s a function of the time and the
dlstance along the tether, in the "horizontal" plane: the tether/boom
attachment is at the right, the cut end at the left, and successive conflg-
urations recede into the distance. Flfty mass model with RECOIL; zero
damping.
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Sanple results are gioun in Figure Z2.2.4, which shows a three dimen-
slonal plot of the veloclty vs. time and distance along the tether. Note
the propagation of a sharp wave front, behind which the veloclty is approx-
imately constant. The state of the tether at the moment it goes completely
slack is shown in Figure 2.2.5. It is seen that these detalled calcula-

tions conflrm the initial conditions we have been using.

Attempts toc run RECOIL with non-zero damping lead to sharply oscillat-
ing results. Thsre is probably a codlng error In the program or a numeri-
cal instability. We shall investigate this in the next reporting period.
The efficliency of the approach used suggests the possiblility of adding

extra forces (e.g. gravity gradient) as well as damping.

It is interesting to see how this lumped mass model relates to the
tether consldered as an elastic continuum. By letting the number of tether
segments become Infinite, and scaling the ball masses and segment spring
constants appropriately, we can derive a partial differential equation,
which 1s (as expected) a simple wave equatioﬁ. Using a standard low order
finite difference approximation we arrive at exactly the same equations as
in the ball-and-spring model. Except that the cut end boundary conditlion
is not treated approprilately. There are several ways to treat such free
end (zero stress) boundary conditions which maintain the order of approxi-
mation; simply considering it as another ball with the same mass as the
Interior kalls in the lumped mass model, however, is squivalent to treating
the boundary condition with a _guwer order of approximation than the inte-
rior points. It Is a trulsm of numerical analysis that the order of the

total solution is strongly influenced by the weakest link. (This sort of

consideration is hldden by the lumped mass approach of flrst discretizing
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Figure 2.2.5, High resolutlion leoss of tension: Final state. Here we plot
the (negative of the } velocity, and the (negative of the) fractional re-
sidual strain immediately after the tether goes completely slack. By the
fractional residual strain we mean the compression in the slack state di-
vided by the original elongation. Note that strain values greater than 1
indicaete that the tether segment is now extéended in the opposite direction
by more than its natural length; we do not model the resultent stress.
One hundvred mass model with RECOIL; zero damping.
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the physical system conceptually before writing down any equations, which
is vwhy lumped mass meodels should always be examined carefully.) By properly
treating the free end we might substantially improve the accuracy of the
model (which can be easily checked in the zero damping case). The possi-
bility of improving accuracy by, for instance, using a finite element ap-

preach, is alsco appealing.

It 18 also possible to derive the velocity and straln upon loss-of-
tenslon by theoretical arguments. This solution is lmplicit in the mate-
rial of Section 2.2.5, but not actually derived there, Thus, it is of
value to write down the argument explicitly. We assume there is no damping

or other energy loss. The loss of tension will then occur vla the propoga-

tion of a constant amplitude tension wave with velocity ¢ = E/p. Since

the wave is propogating along a characteristic (in the space-time plane)
with no dissipation, it will remain censtant Iin form and amplitude. Thus,
the veloclity of recoll after it passes will be the same at all polints. To
be concrete, suppose the tether is flxed at x = 0, 1ls of natural length L,
and has been stretched by a small fraction §. Then, where tho coordinate s
describes the natural length of tether from the fixed end, and x its actual

position, what we have described may be written:

x (s, 0) = (L+68) s (evenly stretched Initially) (1)
dx (s, t) - o ¢ < L — s (2)
at c
-V g > L8
c

whaere V is the receil velocity which we shall determine below. Then we

immediately have:

'
|
0

x(s,t) = (L+8)s t <« == (3)
L—-s L
C

I 0

0

(1+6)—V[t -

AT T TR e

2l BT

g

ERILE

T S L Yy g




Page 62

Upon evaluation at t = L/c, when the wave reaches the point of attachment,

this is simply
v
x{s,L/c) = [1 4+ § - E'] (4)

The final step 1B to compute the recoll velocity. Our assumptlon of no
dissipation allows us to simply equate the elastic energy stored in the
tether segment with the kinetlc energy after recoll. The spring constant
of the tether as a whole is k = EA/L, and the force upon extension to L+u
i5 just F = -k u. Integrating Fdu from O to u = §L, we get the total
elastic enargy stored when the tether is stretched to length (1+8)L,
Eqlnstic = %k(6L)?* = 4EALS?, Equating this with the total recoil kinetic

energy, Erineie = 4(mass) (vaeloclity)? = :{pAL)V?, gives

vV = V@;'5 =c § . (5)

and then evaluation of (4) gives simply x(s,L/c) = s. I.e., thera is no
zﬁﬁiﬂuﬂl strain., Thus, the initial conditions we have been using in

SLACKZ/3 are gxact under the assumption of zero dissipation.
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2.2.5 Analytical Studies Of The Slack Tether Problem -

Introduction -

A program of analytlc studies of tether dynamics pertinent to treat-

Lhe slack tether problem has been undertaken, While it 1is not

realistic to expect that a complete understanding of the slack tether prob-
lem may bz obtalned solely by analytlc technliques, compelling reasons
motivate analytic studles as an extremely useful adjunct to numerical mod-

eling of the slack tether. Among these reasons are:

Analytic calculations may give insights into the physical proc-
esses lmportant for the dynamics of the slack tether. Some of
these processes may be obscured by the complexity of the numeri-

cal simulations.

Numerical modeling of the slack tether using the present ball-
and- spring techniques is computationally intensive. Analytic
studies will help to direct the numerlcal modeling, and perhaps

to suggest new, efficlent modeling techniques.

Analytic calculations will ald in the valldation of the results

of the computer-generated numerical models.

Informatlon generated by the analytic work will frequently com-

plement the results of numerical simulations.

The analytlc calculations will be inltially focussed on processes oc-
curing just as the tether is golng slack, l.e. goling from a tensioned to an

untensioned state. In thils context, it is appropriate to treat the tether
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as a one-dimensional system, &8 long as the "loops" onma would expect to
develop in the slack state do not grow to large amplitude in the transverse

directions.

The desired results of the initial theoretical effort is a calculation
of the characterlstic size for loops or wrinkles in the tether after it has
gone slack. The characterlistic size is of immediate importancea for the
safety of Shuttle operations in a slack tether sltuation. We expect that
loops of small scale size (say on the order of 1 meter) will be much less
apt to entangle the Shuttle than larger-sized loops. We shall outline

below the progress being made toward this and cther objectives.

The flrst step in thls program of calculations is to determine condi-
tions pertaining to the development of patterns of tensioned and slack
(untensioned) regions along the length of the tether. For sinple casaes,
such as a tether break near the tethered satellite, it is obvious that the
tether will go =alack through the mechanism of propagating a longlitudinal
{negative amplitude} stress wave along its length. More complex situations
may be envisloned as a superposition of (positive and negative) finite-
amplitude longitudinal stress waves propagating along the tether. An imme-
diate result (which will not be given in detail here) is that when the
tether falls, it is possible in principle, to have a nearly arbitrary dis-
tribution of tensioned and slack regions along its length., In particular,
it is possible to construct initial conditions for the subsequent dynamlcs
after tether fallure consisting of a tensioned region bounded by two slack

ragions.

Such a discusslon of longitudinal stress waves propagating through the

tether suggests we apply the method of characteristics to the dynamics of
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the tether as it is going slack and for times shortly thereafter (Morse and
Feshback 1953, Courant and Hilbert 1962). Recall that a characteristlic of
a vave equatlon (hyperbollec partial diffarential equation) is the locus of

points in time for the propagation of an infinitesimal amplitude wavelet.

A cable or tether golng slack can be modeled (for times before the
formation of well-developed loops) as a column capable of supporting a
great deal of force in tenslon, and of supporting a comparatively small
{but nonzero) force in compression (Landau &nd Lifshit: 1959, §§1/, 20).
Tha formation of transverse bends in the tether which will subsequently
develop into loops is a generalizatlon of the well-studied problem of col-

umn buckling.

Since the compressiva force the tether can support is very small, a
number of effects will have to be considered which are usually neglected
for models of the tether in tenslon. While the tether in tension ~an be
modeled as a string with a Hooke's law constitutive (stress-strain) rela-
tion, that slack tether will require a nonlinear wviscoelastlc or viscoplas-
tic constitutive relation descriking its resistance to transverse bending.
Also, mathematical treatments of the slack tether will require a careful

treatment of the tether inertia.

Recall that the dominant "mode” of column buckling for a column sup-
porting a large compressive force and with neglliglkle inertia is an approx-
imately half-sinusoldal displacement over the entire column. Qualita-
tively, in thls instance of generalized buckling, the tether lnertia will
favor wrinkling or buckling on smaller scales and the reslstance to bending
will tend to favor larger length scales. Consequently, we can hope to

ldentify a fastest-growing scale size for buckling which will characterize
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u locp formation in the slack tether.
o
EE
E}! 2.2.5.2 Motion Of A Medium Under Its Own Elasztlc Eorces -
E!
:? We zhall develop a general equation of motion for a medium under the '
E? influence of its own elastic forcea. A speclal appllication will be made to !
’ longitudinal stress waves In & cable, such as the tether of the TSS, in the
next section. While the general formalism is not necessary for thls first R
simple appllcation, it is valuable to introduce this notation for later
calculations pertaining to the slack tether.
Following Morse and Feshbach (1953), define the stress dyadic

§ = Fut + E,3 + Fekt 1)

vhere 1, j, and k are the usual unit vectors in rectangular coordipates.

. The force across . surface element dA is then 5-dA.

M bt s canchs ¢
H P
i AL e, 3 g

: The stress dyadie is relaied to the strain dyadic defined in (3) by

Ry

Al

g =ilGlE + 246 : (2) §
i

N
.

R it B o Sl

. where I is the unit dyadic. Equatlon (2) is immediately apparent by trans-

{
:
:
%
,},..

fosmation to the principal axes. The quantity, p, is the shear modulus of ;
the solid, % {(3A+2u) is the bulk medulus of an elastic lsotropic medium, P
and u(3A+2u)/(A+u) is the Young's modulus. The strain dyadic may be writ-

ten in terms of the displacement, 5, of the solid from its equilibrium

position,

i
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G = %(1‘7@ + &9) (3)

The equation of motion for the solid then, under the influence of its own

alastic forces is
p o= = Vo [AIV.5 + u¥s + usEY
= (A+p)V(V.8) + u¥. (VB)

= (A+2p)V(V.8) - uVUx(Vx3) {4)

The form of the equation of motlon suggests that at least part of the
vector displacement, 5, may be expressed in terms of the gradlent of &

potential, ¢, Let

5= 9
and so

vig = = £ (5)
where

which is the usual wave equatlion, a \yperbolic partial differential aequa-

tion.

wt
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If the shear modulus is zero, the wave speed squared ls just the bulk
modulus divided by the denslty, as axpected. The longltudinal character of
these waves is irpediately apparent, since if the solution of equation (4)

is taken to ke 2 scalar, the dyadlc operator
D = V(%)

ls symmetric, and the rotation dyadic

and so D = E, the strain dyadic. For =such a solution, there is no twisting
of the medium, only stretching and squeezing, and so the wave is purely
longitudinal (compressional). Therefore, for purposes of this discussion,
it is possible to treat longitudinal waves in a cable as a speclal case of

longitudinal waves in general scolid media without loss of generality.

2.2.5.3 Longitudinal Stress Waves For Simple Viscoelastic Constitutive Re-

A B

latl. = - %

The general case of a time-varylng tension In a cable or tether can be
; treated using the method of characteristics as the superpesition of a num-

ber o©: finlte-amplitude longitudinal stress waves {Morse and Feshbach,

1953; Courant and Hilbert, 1962). For the case of a completely llnear

:

£

3

L

i elastic constitutive relatlon (Hooke's law), wave propagation is ncn-dis-
F
;:§§ persive. However, for the case of loss of tension in the tether, visco-
o

elasticity must be taken inte account.
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We shall examine wave propagation in the context of two models of ;‘
visco-elastic body strain, the Maxwell medel and the Kelvin model (Drucker
1967). More complex mcdels may perhaps b~ -eguired ultimately to account | f
for detaills of slack tether dynamics, but fur the present we shall use
these models to illustrate changes in elastic wave propagation by small

. Ly
perturbations of viscoslty.

In the Maxwell model, the strain is taken to be the sum of elastlic and

viscous components, i.e., iJ
L

-

€ = €% + ¢gv

and the elastic and viscous stresses are constant at all times, '

The elastlic stress and straliln are related by sf

€® = og/Ey
and for the viscous componant, i
!
deV ;
= C b
ac - 9/Cu |

independent of all prior history. The equivalent mechanical system for the

SR R v

Maxwell model is a spring and dashpot connected in series.

ﬁ . R e ey :
N ) v - o L . o |
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We can write a differential equation for the total! straln, ¢, .

(Note that treatment of the strain, ¢, in this section is equivalent to the
- treatment of the displacement, 8, of the previous sectlon.) Since there is
no restoring force associated with the displacement of the "dashpot," i.e.

the viscous strain, the perturbed wave equation for the Maxwell model is

S B

a i A
T T e (e ]

Qy
x
N
o
[
Q@

o e——y,

but dev/dt = ¢/Cy, and so the egquation c¢an be rewritten as a wave equation

for the stress in the cable,

8% i _ _Ey_ o
dx? C.2 dte ' C.2Cy Ot

We shall conslder the viscous term as a small perturbation on the

hyperbolic partial differential equation and attempt to find a solution of

the form

e

o = f(xxcet) exp [-alx—xul] :

L)
L

a wave spatlally damped from some ilnitial polnt of propagatien, x,. Sub-

R

stitution of this form into the wave equation glves, to lowest order in

viscous terms,

2C.Cy
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which relates the model parameters to the damping parameter of the wave.
Therefore, treating a damped wave in the conctext of the Maxwell poses no

difficulties or inconsistencies.

A similar treatment may be undertaken for the Kelvin viscoelastic
modal. In the Kelvin model, the stress is at all times the sum of the

stresses in an elastic and in a vigccus element,

g =c* + ov

and the stralins are equal,

E® = gV = ¢
with
de
a = v = —
-4 Eye and o Cy 3t

independent of the history of the system. The equivalent mechanical system
of the Kelvin system is a spring and a dashpot in parallel. The wave
equation for the Kelvin system may, after some minor manipulation, be cast

in the form of a wave equation for the strain,

& 01 9N, . & difez 1 @
Fx? C.2 oez) ¢ Ex dt |\3xe C.z odtz) ¢

which manilfestly descrlibes the propagatlon of a damping wave with damping

coefficient,
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Generalization to more .. mplex viscoelastic relatlions is stralghtfor-
ward. It can be seen on the basls of these calculatlons that we can trezat
the propagation of tensioned and slack reglons in a viscoelastic tether in
a tractable fashion as a perturbative extenslion of the method of character-

istics.

2.2.5.4 Analytical Studles Status -

We have begun a serlies of calculatiens reslevant to the slack tether
problem when tension has been lost. At pressent, thls work has been con-
cerned with the situation in which the tether is golng from a tensioned to
a slack state. Further resecarch will address dynamical problems of the

slack tether.

This program of calculations has begun from the application of the
method of characteristics to the dynamics of longitudinal stress waves for
a tether with a purely elastlc constitutive relation. This work has first
of all verified analytically the approximate vallidity of tle constant ve-
locity initial condition used in simulations of the slack tether in the
program SLACKZ. Further, it has been demonstrated that for a tethe- with
an elastlc constitutive relation, arbltrary patterns of slack and tensioned
tether segments can be built up by superposition of longitudinal stress
waves. In particular, the important result has been obtained that is pos-
sible to have a bounded, tengioned tether segment bounded by two slack
seqmenta, the boundaries moving with the veleocities of characterlistics for

the hyperbolic equation for longitudlnal stress waves.
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Work is underway devéloping the dynamics of a slackening tether exhib-
iting a viscoselastic constitutive relatlion, e.g. a Maxwell or Kelvin rela-
tion. As the tenslion of the tether diminishes, eventually viscous effects
must dominate the dynamics of the tether. This work has shown, as a per-
turbation upon the hyperbellic equation for the elastic constitutive rela-
tion, that the stress waves do not exhibit a nonlinear steepenling for phys-

ically reasonable constlitutive relatlions.

The work outlined above is of importance for defining the initial
conditlions for a semi-analytic treatment of the slack tether problem. As
outlined by Landau and Lifshitz (1959), a slack tether can be modeled as a
rod with small (not necessarlily positive) tension with inertial forces and
resistance to transverse bending. A taut string is the opposite limit In
which a positive tenslion dominates the dynamics. The advantages of this

type of mathematical treatment are several:

1) A relatively consistent formalism may be developed applicable to

both tensioned and slack tether segments.

2) The beginnings of loop formation may be treated in a manner similar
to the problem of a column buckllng under compression. This would allow

identification of the scale size of loop formation in the slack tether.

3) No nonphysical mathematical singularities are introduced inte the

behavior of the tether at zero tenslion.

4) Provided deviations from a linearly extended tether remain small,
tether dynamics will be accessible by relatively standard mathematical

techniques.

o .
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2.2.6 Concluding Remarks -

During the reporting ; ind SAO has substantlally enhanced the simula-
tion program SLACK2/3: The troatmant of viscoelastle damping has keen
improved, and the program has been extended to full three dimensional capa-
bility. In the naxt reporting pericd we expect to finalize the coding of
SLACK3 (simplifiad input procedure and a few other minor itums) and use the
program to conduct a serles of operational mission simulations relevant to
safety issuss. We shall also investigate the scale length for critical
damping in the tether material and the implications for the bounce calcula-

tions in the SLACK3 model.

An effiecient, high resolution (yet strongly restrlicted) program for a
partially slack ball-and-spring model has been developed. The program has
confirmed the initial conditlons belng used by SLACK2/3 (which assumes the
tether has become completely slack and hence cannot follow the initial
loss-of-tension). These initla)l conditions have also been confirmed ana-
lytically in the undamped case. In the next nerlod we hope to extend the

program to include damping. Other possible extensions include modeling

wmtlhnhd-m.{:‘h OREATT
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N s N

with the gravity gradient force, and 2 or 3 dimensional modeling with cori-
olis and drag forces; and proper treatment of the free end boundary condi-
tion from numerical analysis of the governing partial differential equa-

tion. Perturbation (stabllity) studies might also be feagible.

Analytical studies of the slack tether have been Ilnitiated, with the
. Intent both of supporting the SLACK2/3 simulations and producing signifi-
cant results not amenable to direct modeling. In the next period, we

aexpact these studies to provide a good idea of the scale of the wrinkles or

aade, .

loops resulting from the initial buckling as a cut tether goes slack. This
result will be relevant to safety studies and wlll also suggest how initial

conditions for SLACK2/3 should properly depart from purely symmetric re-

oA e EE .

coil, a consideration now handled by a2d hog randomization.

A continuing frustratlon, one which is becoming critical for some of

the projected effort, is the lack of hard data on tether material proper-

SEEWORNIT TR IO 4 T TR T . o -

ties beyond tha simple axlal stiffness (EA)., We have asked Martin Marletta

Corporation to send us what data they have on tether propertles, and we
also intend to request samples of tether frcm MMC, upon which we may per-

form some s. ple experiments.
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2.3 Development O0f A Computer Code To Model The Electric Potential Around
A Severed Tether Immersed In A Plasma

E 2.3.1 Introductory Remarks -

In tha Quarterly Report #1, we showed that the proiate spheroidal
model of the broken tether was very inaccurate at distances close to the
wire, We are now developing a numerical model which represents the wire as
* a small cylinder. The program uses the Polsson'’s equation to calculate the
electriec scalar potential on an axlally symmetric three-dimensional grid.
The grid lines are closely spacesd near the end of ths wire but the spacing
increaces geometrically as one moves away from the end., The lines parallel t
to the wire are spaced 0.1 mm apart inside the wire and within one wire %
radius. Then the spacing 1s increased geometrically as the distance from
the wire is increased. Eor example by choosing & geometric factor of 1.2

{each grid spacing is 20% larger than the preceeding one} and by adopting

SINRET ..

for the first grid spacing a value of 0.1 mm, then 100 grid lines will span

-

a distance of 41.4 kilometers. The radlal grid lines are, likewise,

closely spaced near the end of the wire, and their spacing increases as the

distance from the end increases,.

N e AT

While thir approach could, in principle, be used to model the entire

tether, we decided to develop and use a more efficient model. Rather than

numerically modeling the entire length of the tether, the voltage at the
grid points within a reglon spanning a space of 10 to 100 meters from the i
end of the wire is initlialized by & prolate spheroidal model for the wire
immersed in an otuerwize uniform electric fileld created by the motion of ' |
the wire through a uniform transverse magnetic fleld (Vxﬁ). The plasma

density is initiallized at this potential and then the trajectorles of a
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number of “computer particles" each of which represents many real particles

ie calculated. At each time interval the electric charge density on the >
grid is calculated and a discrete implementation of Poisson's equation ie i
used to numerically estimate an updated electron potential. In this man-

ner, the motlons of the electrons and ions near the end of the wire can bhe "

modeled. While we have made considerable progress in developing this com-

P

puter program the code 1ls not yet operational.

2.3.2 Generating The Coordlnate System By Conformal Transformation -

Prolate Spheroidal Coerdinates are the most useful coordinates for

3 calculating the electrliec fleld around a leng wire. Moon and Spencer give a

- RETRT WE T

most convenient transformation for generating an orthogonal set of hyper-

bolas and elllipses: E
z = ¢ coshiw) (1)

where

N . T W
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|

: z = X+ly (2) '

- |
’ w = gLl (3)

Given a planar grid in the w = n+if coordinate system this transformation

maps the straight lines n = constant and ¢ = constant onto ellipses and ;

3 hyperbolas in the z = x+iy coordinats system as shown in Figqure 2.3.1.
Rotation about the major axis of the ellipses generates the prolate sphe-

é roidal coordinate system. The purpose of this Sectlon is to derive the

relationships required to perform calculations in this interesting coordi-

% nate system.
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ar!

Figure 2.3.1 Prolate sphercidal coordinate system (a two-
dimensional view) obtained by conformal transformation.,
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2.3.3 Elliptical Coordinates -
Substituting (2) and (3) into (1) we find that
xtly = ¢ cosh(n + 10)
o
= £ (amit ~1-10
3 (e + a )
= % e (cosl + isinl) + e (cosl - isind)
= % {e" + eMcosf + L(e" - eMNuind (4)
from which we sse that
%X = c coshy cosf
y = c ginhn sinf
: Therefore,
x 2 v 3
= 2 9 =
(c coshq) Y (c sinhn) cos?f + sin’d 1 (7)

Thus we have the equation for an ellipse where the major semi-axis is given

by

a = ¢ coshnp (8)

and the minor seml-axis is given by

- L S - TY R

e

e g

v .




b = ¢ sinhp {9)

EFrom the definltion of sinhyf and ceshy it follows that

coshinp - sinhd3p = 1 (10)

and so

al - b? = 1 {(11)

At thls polnt 1t is useful to introduce two vectors which extend from the

two foci at x = #c to any polnt on the x-y plane; let their maynitudes be

no= Vi vy (12)
and
rz = V(x+c)? + y? (13)
Recalling that
X = ¢ coshf cosf (5)
¥ = ¢ sinhnp =siné (6)

it follows that

T
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r1 = v (c coshn cosf -c)2 + ¢3 sinh2gn sin2§

ry = cv"cnshﬂq cos?d - 2 cushy cosfl + 1 + sinh2n sindfd

r;y = cVcosh2p cos?fd - 2 coshnp cosf + 1 + sinh2p (1-cos?zd)

r1 = cVcos2d (cosh2n - sinhip) - 2 coshy cosf + coship

r; = cVcos?f - 2 coshn cosf + coshiy

r: = ¢y (cosb - coshyg) 2
r1 = c|cosf - coshn|
But coshp 2> 1 2 cosf, therefore

ry = ¢ {coshy - cosf) {14)

Comparing the definition of r, and r; one sees that the same logic used to

evaluate r; in terms of % and # results in

rz = c(coshy + cosf) (15}

Ther=zfore

r1 *+ r3 = 2¢ coshn {16)

" - L - T R
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r3 - r; = 2c corf

Two new paraweters are now introduced which simplify the equations

= = Nitrs
£ = coshjp o
and
- 4 = J2 ~ T
7] cosd e
It was shown earlier that constant £ = coshmp defines an elilpse.

shall see that constant p = cosd defines a hyperbola

X 2 A 1’ ‘ R
¢ cosf ™ slhBJ = ¢coul ., - slnh®*ny = 1
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(17)

(18)

(19)

Now we

(29)

The family of hyperbclas is orthogonal to the family of ellipses. This

results from tha conformal transformation whl.h translates squares In the

(n,#) coordinate system into curvilinear squares in the x-y coordinate sys-

tem., This ls sasily verifled by testing and wapping functlon to determine

if the Cauchy-Rlemann conditions

are met. Again recallling that

% = ¢ coshy cosd

(21)

o

e R Y

HAV gt et o G

-




§
!
Page 84 4

y = ¢ sinhnp sind ;
it follows that .
x _ Ix _
an = e sinhy cosf a5 - "¢ coshy sinf (22)
. t
dy 3y _ !
3 "¢ sinhn cosf 3y = ¢ coshnp sind {(23) |

Thus we see that the Cauchy-Riemann conditions are met and the sat of

- el

hyperbolas are orthogonal to the set of ellipses as illustrated in Flgure
2.3.1. Rotating this coordinate system about the major axis of the ellip- E

ses generates the prolate spheroldal coordinate system in 3 dimenslons £,

4, and ¢, It is conventional to rotate the ellipse with its major axis
ceincldent with the z axis of the cartesian coordinate system. To accom-
plish this one must replace x by z and y by R = x% + y2 in the foregoing E

equations. The equations i

g
Pl
x = ¢ coshy ccaf (24) i
! :
y = c sinhn sind {25) i
I
?
|
| i are raeplaced by ' .
[ P
z = ¢ coshnp cosd {26} ?
R = ¢ sinhy sind (27)
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x = R cosy {28}
y = R siny (29)

Therefore the relationship between prolate spheroidal coordinates and car-

teslan coordinates is glven by

x = c sinhnp sinf cosy (30)
y = ¢ sinhnp siné siny {31)
z = ¢ coshy cosf {32)
or

x = cyéz-1 V1-uz cosy (33)
y = eVé2-1  1-p2 sing (34)
z=c € p (35)

vhere

ry * Ta

£ = coshp = 7

rs ~ 71

B = cosf = 7o
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r1 = Vx2 + y2 + (z-c)?

i
|
E
;
‘
v
‘ _,-.3.___._‘%

ra e VR T ¥R (zre)?

2.3.4 The Gradient, Divergence, And Laplaclan In Prolate Sphercidal Coor-

dinates -

2.3.4,.1 The Metric Coefflicients -

To perform fleld calculations in prolate spheroidal coordinates it 1s nec-

~ot e ey

essary to calculate the gradient, divergence and curl in that coordinate

gystei.. The easlest approach to this problem is to derive the gradient,

L s s 4

divergence and curl in generalized coordinates and then to evaluate the
metric coefficients h;, h;, and h; using the transformation from prolate

spheroldal to carteslian coordlnates derived in Section 2.3,3.

Te calculate vector relationships in generalized coordinates ons must

e e i e iy i % P

include the metric coefficlents. In carteslan coordinates a differential

oL
length ds is given by l«
f

A T R

ds = V{dx)2 + (dy)2 + (dz)2 (1)

In eylindrical coordinates ds is given by

TR LI IR A A

CENTRrRINE

ds = v (dr)2 + (rdf)z + (dz): i

T

not L.

ds = v/ (driz + (af)2 + (dz)?

i
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: In any orthogonal system,
S
_E-
" (ds)2 = (hd@)® + (hydqa)? + (hydqs)? (2) |
where hy, h; and hy are the metric coefflaients. .
f
M b
* Now to determine the metric coefficients we consider the following total dif-
ferentials: ‘4
ox [a ) (ax) (3) : i
dx =j——I|d d d . ;
3q, 4 3q, 12 3q, 3 t ;
. B
dy =(3\aq. + _‘i.v_)dq + il)dq (4) ;
Y "\8q.)%% T\8q,/%92 T\3g,) 3
1 2 3
3 ' ?
=22 ' 5 !
dz (a )" U *\ag, )“‘*2 (aqs)dqz ) ?i'
j
1
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where 91 9p» and q5 are tiie generalized coordinates,
Squaring these terms results in:
2 _fox . 72, [ox 2, [ax 2 :
(dx) [aq ag, | © + [aq qu] + "_Bq dq;\ + cross terms (6)
1 ) 2 3
1
2 . [2y g0 |24 [2x ]2 3y g0 12
(dy) {341 dqy + [aqz dq2 + 3q3 dq3 + cross terms (7)
2 _[8z ., V2, {az 2, [z 2
(dz) [—EI qu + [—E;-dq;] + [Bq3 qu + cross terms (8)

In any orthogonal coordinate system the Pythagorean theorem demands that the
cross terms must vanish. Thus, assuming that ocur generalized coordinate

system is orthogonal, it follows that

2 . {(23x\2 _QL)2 (iz'_)2 2
(ds) [(aql) +(aq1 + 3“1 (dql)

)2 (222, (32) 274,
(3‘13) +(3q3) ¥ 94, ](dq3) ®)
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Comparing equation (9) to (2) we see that:
2 (ex\2 f3y)2, foz)2 =
he (3‘11) +(9‘li) +(3"1) , i=1,2,3 (10)

Nowr to evaluate the metric coefficients for prolate spheroidal coordinates we
make use of equation (10) and the coordinate defining equaticns obtained by

the conformal transformation defined in Section 2.3.3,

x = ¢ sinhn sind® cosy o<n<e® (11)
y = ¢ sinhn sin® siny o0 < (12)
z = ¢ coshn cosb o <Y <2n (13)

where

9; ="M, 9, = 08, q3 = ¥.

The metric coeificients are calculated as follows:

2 2 2
2 fax )"y (2
hl (an) + (an + Bn)

i

(¢ coshn sind cosw)z + (c coshn sinB sin.lb)2 + (¢ sinhn cosﬁ)2

= c2 coshzn 31n26 + cz sinhzn cosze

c2 1+ ainhzn) sinzé + c2 sinhzn cosze

h1 = ¢ ¥(sin?8 + sinh?n) (14)
2 2 2

2o (224 (2) "+ (22)

b, (ae) +(ae) *(ae

{(c sinhn cos6 cos\b)2 + (c sinhn cosB sin!.b)2 + (¢ coshn sin6)2

2 2 2

c2 ainhzn c0529 + ¢“ cosh™n sin“0
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2= N (15)
ZE(%)2+(QJZ+UQ)2
37\ 5y 30 7
= (c sinhn sin® ein)? + (c sinhn sind cosy)?
= ¢ ginhn sind (16)

2,3.4,2 The Gradient, Divergence and Laplacian in Generalized Coordinates

The gradient in generalized coordinates is given by:

~ ~ ﬁ
e N1 S T B L

i1,
v = L3¢ . 17
* R Sa, © T, da, | By dq; an

where ﬁl, 62’ GB are the unit vectors of the generalized coordinate system.
The divergence of a vector is defined as the limit of the total flux emerging
normally from a closed surface divided by the enclosed volume as the volume

approaches zero. Thus

V'K = lim 1 j K’dg (18)
AV+0 AV JAV

where

-+ L) o)
A= Alul + A2u2 + A3u3

Consider a differential curvilinear cube centered at (ql, dgs q3) as shown in
Figure 2.3.2, The area of a differential square in the 995 94 plgne at the
center of the cube is h2h3AqZAq3. The area of the end of the cube located at
q; + Aqy 1s thererore given by Taylor's theorem as

2

T

S mak




o ST T s T e e e T e R R e e e T R T R T AT L g W e T T ST N e v ol o
oo b ot SR Tl e e Al T I S -

Page 91

,an - e o ot

L ierwams

e e iy e o Bk = et b G L -

Figure 2.3.3 Curvilinear Cube Illustrating
Divergence in Curvilinear Coordinates
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a Aql

It follows that the normal flux through this surface is given by

+
A = A1°AS

Aql
= Aqylq, [hthAl * 3q a (hyhqh,)

Adding to this rhe flux through the opposite side of the cube in the -31
direction, we see that the total flux exiting normally in the,ﬁl direction

is given by
3 by
A@l = h2h3 + %:I (h2h3Al) 5 quﬂqB
w73
- [hzh:x Bql (hohya)| 77| 8dp044 (19)

But the volume of the curvilinear cube is

AV hlh2h3AqlAq2Aq3

Therefore the ?1 contribution to the divergence is given by
Iy o Mm 1
(V81 = avr0 ¥ [dql (hohygay) Aql“qzﬁ‘qa-] 20

Applying this procedure to the uther two axes and summing the results, we see

that the divergence of K in generalized coordinates is given by

™ = 1 a
0 h3 {3“1 (hphyh,) + 5o (h hyhy) + 5o (h 3)] (21)

Now that we have the equation for the divergence and the gradient in generalized

coordinates, it is clear that the Laplacian is given by

o2 o L | (hzhs -a¢) 3 ('“ 13 a¢)+ a [MaP2 3¢ —l(zz)
h;hoh, LBql h, 3q; Bq,L h, aqa. 3q3\h3 ‘aq
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2.3.4.3 The Gradient And Laplacian In Prolate Spheroldal Coordinates -

Substituting (14), (15) and (16) into (17) gives the gradient operator
in prolate spheroidal coordinates

f 99 ) 3 $
-+ X4
N o/sin?e + sinh?n 3¢ * ¢ sinhn sind

v = c/sinze + sinhzn

3¢

To calculate the coefficients of the Laplacian we utilize the following facts

h1h2h3 = c3 (sin28 + sinhzn) sinhn sind ' (24)
nyhy
" h3 = ¢ sinhn sinf {25)
1
hybs
¢ ——= = h, = ¢ sinhn sind (26)
k, 3
hihy _c (sin®® + sinh’n) @2n
h3 sinhn sind

Introducing the prolate sphercidal metric coefficients into the Laplacilan in
| generalized coordinates results in a cumbersome equation. It 1is clearer to
é deal with each term of (22) individually:

' h h
L. 3 2"3 3¢ | _ 2 ( _ a¢)
' 3q1 ( m ) n ¢ sinhn s8ind --—-an

1 %9

2

= ¢ ginf (sinhn g——?+ coshn %) (28)
0 an
h.h
(S ) 5 ( 2 )
7= ¢ sinhn sind =
2

= ¢ sinhn (sine %g + cosf -g%) (29)

— o S TR, s gt
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o e——r T Tr——— 4 T TA B L TR TR .
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2 2
8 c‘: (5in”8 + sinh™n) .3_{)
P sinn sinf EI
(sinzﬁ + sinhzn) 324 (30)
sinhn sind F
. Substituting (24) through (30) into Laplace's equation (22) results in:
V2 = 5 1 [sine (sinhn --—¢’—- + coshn B¢)
¢?(sin’8 + sinh®n) sinhn sind
324 2 2 2
;ﬁ) (sin8 + sinh®n) 3%
+ sinhn (sine 357 + cosd + aintr 5ind TR
which simplifies to:
24 _ 1 29 9 4 3%¢ e 3¢
Ve = Teine w sinhzn){ 7+ cothn g+ 557 + 2989 3
1 324
* ST sinhZn sinZg 3y¢ . (31)
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2.3.5 Solution Of Laplace'S Equation For The Electric Scalar Potential In

Prolate Spheroldal Coordinates -

It was shown in Section 2.3.4 that Laplace's equation in prolate

spheroidal coordinates is given by

24 = 1 3%4 3¢ 3% 3%
Ve cZ(sin?8 + sinhZn) [anz + cothn mn + w57 + cotf 88]
1 3%
* ST sinh?, sin%0 37 (L),

We solve this equation by the technique of separation of variables. Assume

a solution of the form
$ = H(n)O(BY¥ () (2)

Substituting (2) inte (1) and multiplying by c? sinh®n sin?6/HOY results in

sinh®n sin?p 1 4% L 420 40 142
sinZ@+sinh?n | H dn? + cothn antoaezt cotd qg 1 + ¥ ar = 0 (M

The last term is a function only of ¢ which does not appear in the rest of the

1ld 2y

equation, In order for the equation to hold for any value of w, ETES must be

2

constant. By convention we choose this constant as -m“, therefore

qu )
d¢2+m‘i’=0 | (4)

From the geometry of the problem we know that (4) must have a single valued

trigonometric solution; therefore, we deduce that

Y= A sinm + B cos my (5)

and that m is a non negative integer.
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Equation (3) may now be rewritten as
1 {4 dG)) m?(sin?0 + sinh?n) _
m (_Td + cothn dn [—-2— + cotb 10 sinh’n sinZ6 0 (6}
Now the rightmost term is easily shown to be .
;
2 1 1
" [sinhzn + sir?ie] (7 |
8
Therefore equation (6) is easily rewritten as -
{
LOQH , en dH)- ., i(dzo cotd d@) _m_ . 0 (8)
H \dn? N dnl” sinkIn T B | 482 a6/ sinZp

it

Since the first and selond terms are dependent only on n and the third and ¢
fourth terms only on & we may reasonably assume that they are independent of
each other. Therefore each is equal to a constant which by convention is

chosen to be £{2+1) ‘ i

g A gy g+ B s b

1 {du? dH 2
E(gnz + cothn dn) SinnEy = YD) )
-
1(d% + coth @)- _m L(8+1) (10) ?i
0 | d87 d8 )~ EinZd . |
o
1

These two equations may be rewritten as L

d2H ‘ dH [ mz -] _

anZ + cothn -(ﬁ]- - {2(841) + WT‘T R=20 {(11) |
42 2 :

de? + coté —g—g + [2(2+1) - B-Je = 0 (12) E

,,,,,, - _ - e e e e e g |
et e IS V {
o Sy AT o it
ok : N

vl




e mERe s A ama e e
|
|

. b o

Equations (11) and (12) may be simplified by the introduction of two new

variables

E = coshn
and

H = cosf

Considering first equation (11) we see that
%% = sinhn

d%E
Eﬁz-= coshn = £

sinh®n = cosh®n-1 = £2-1

9 dH _ dH dE _ ay

5!

H 4’ d  dH

3 =

¥ anz (sinhn) dg + sinhn an dE
_ dH dg d dH

coshn aE + sinhn In 3n dn
: = £ + sinh? Sl_zl'l_
E‘: dE EZ

d?
d

=

= (Ez 1) dEZ + £ dg

&l

Substituting equations (15) and (16) into (11) results in

(£2-1) —gfaf 2t 4 E [2(1«1—1) + gzzl] =0

This is Legendre's equation with which we will deal later.
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(13)
(14) |
,‘
ol
b
-
} i
1
H
1
)
¥
a |l
g
K
|
K
;
(16)
(17)




Applying the same method to equation (12) we see that

-g*% = - gind

2
%3-‘%=-cosa=-u

6in%8 = 1 - cos?8 = 1 ~ u?

40 _ 40 dy _ a0
a6~ apae - - S0 g
420 4o d 40
38z © -cosea-ﬁwsine 36 au

= -cosﬂ%+ sinB-%H%?

= de 2, 420

= - cosf l-1+ sin Bdu

= (1~ Z)Fi@,_ g0

AR TE) au

B A

(18)

(19)

Substituting equitions (18) and (19) into equation (12) results in

2 2
2y 40 do + o -
(1-u%) Tz - 2u M [2(2.4-1) - 1_u2]0 0
Multiplying 20y by -1 results in

a0

2
m -—
(]1 -1) duz -+ 2].1 [R-(R'i‘l) + m]@ =0

(20)

(21)

Thus the separated equations for H(n) and ©(P) are of identical form and are

both Legendre's equations for which the solvtions are associated Legendre

functions of the first kind PE(E) and the second kind QE(E).
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Thus the sepai-ated equations for H(n) and 8(#) are of idential form and are

! : both Legendre's equations for which the solutions are associated Legendre
]

The first few of which are listed here:

f
=

P, (£)

: Py (£}

i
"

1

z
&

Q(6) = 31

§ri
€1

Q(§) = £Q.(¢) -

Qa2(§) = Pa(£)Q(£)

T TR G T AT Y
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Pa(§) = Z(3&2-1)
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functions of the first kind Pz (§) and the second kind QF ().
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To solve

L equation (21) we se: m=o and sclve for the zero order Legendre function.

(22)

(23)

(24)

(25)

(26)

(27)

et
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The Legendre functions of order m greater than zero are the Legendre asso-
ciated functions which are derived from the zero order function by the

following relationships

' PP = (ge-nyen SEUE (28)
and
QT ey = (g2-yymr TR (29)

These functions are very useful for calculating the electric and magnetic
fields in and around many objects which are most conveniently described in

spheroidal coordinates,

&
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2.3.6 Electrlc Scalar Potentlal Around A Solld Permeable Drolate Spharoid

Immarsed In A Uniform Fleld -

2.3.6.1 Introduction -

2,3.6.2 Matching Boundary Conditions At The Surface 0f The Spherold -

It is shown in Section 2,3.5 that when Laplace's equation is solved in pro-
late spheroidal coordinates by the method of separation of variables the
resulting ordinary differential equarions in the variasbles £ = coshn and
U = cosf® are Legendre equations. It is further shown there that the eigen-
functions of Legendre's equation are the Legendre functions of the first
kind PL(E)’ the Legendre functions of the second kind QL(E) and the assccilated
Legendre functions of the first and second kind PE(E) and QE(E). The poten-
tial around a prolate spheroid polarized parallel to its major axis is
axially symmetric. Therefore only the Legendre functions of the first and

second kinds are necessary to construct a solution.

2.3.6.2 Matching Boundary Conditions at the Surface of the Spheroid

Two potential functioens, ¢1 inside the sphercid and ¢2 exterior to the
spheroid, must be zonstructed. All of the Legendre functionts of the second

kind include the terms

Qyle) = % log (%f—i) (1)
or
Q) = 3 log (1% (2

Note that both funccions in (1) and (2) approach ® as their arguments
approach unity. Sitice the z-axis through the spheroid corresponds to u=l1,
the Qp(u) functions must be excluded from both ¢l and ¢2. Similarly, the
z-axis inside the spheroid corresponds to £=1, where '

r.+4r
1'"2
£ = =5 (3
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and therefore QE(E) must be excluded from ¢1.

Now that the pathological functions have been exciuded we are ready to
construct well, behaved potential functions for ¢1 and ¢2. Using all of the
allowzd eigenfunctions of the axially symmetric Legendre equation we sec

that the general solution for ¢1 and ¢2 is

¢, = ZEOA,LPE(E)PQ(H) (4)
0= 2 [Bym0 + 600 8] 7y () | (5)
where
r,+r
£ = coshn = 52 | (6)
| PRt o
U = cosf = 22{:1 (7)

) > -+
and Ty and r, are the magnitudes of the vectors r, and r, from the two foci of
the spheroid to any point in space, ¢ is the semi focal length of the spheroid,
and n and B are the coordinates used to define the ellipsoidal coordinate sys-

tem as shown in Section 2.3.2.

The unknown coefficients Al’ BE and CE will be eviluated by imposing three

boundary conditions:

1) At great distance from the spheroid the potential ¢2 must approach the
potential of a uniform field. 8ince a potential function may have a constant

added without changing the associated field E:because
E=- (8)

we are free to choose the origin of the spheroidal coordinste system as the
point of zerc potential. The potential function which gives rise to a uniform
field E, in the z direction is

¢ = -zE, (9)
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But from the transformation from prolate spheroidal to Cartesian coordinates

derived in Section 1, we see that equation (32) of Section 2.3.2 is

z = cfy (10)

@ cPl(E)Pl(u) (11)

At great distances from the origin, Qz(g) becomes negligibly small therefore
(5) simplifies to

t

$, = E

I BR D7) = -y ()7 WE, (12)

It is therefore clear that

=
1]

l‘ -C‘EO (13)

BR =0 for all 4>1

2) At the interface between regions 1 and 2 (the surface of the spheroid

where £ = EO) the potentials must be equal. From (4), (5) and (13) we see
that

o L]

AP EQRLG) = ECo0 (BB () - cBoPy ()5 (14)

Since the Legendre Polynomials Pg(u) are orthogonal over the interval -1 £ u £ 1
we can multiply (14) by a Legendre polynomial Pk(u) and integrate from -1 to +1

to separate the coefficients. This operation results in

lAOPO(EO) - coqo(so) =0 (15)

flu"
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‘t.'"ﬂng*\fﬂwﬂwf . o o L ) - 0 . S r;‘,3
{
q
i
¢

AIEO - ClQl(EO) = “CEOEO (16)

AkPk(EO) - Cka(EO) = 0 for all k>l (7

3) At the interface between the two regions 1 and 2 the normal derivatives
of the potentials multipiied by the relative permeativities of their respective
regions must be egual. This is required to insure continuity of the noimal
component of flux across the boundary. Thus both Dirichlet and Neumann

boundary conditions are imposed. Thus

o ek

2

2, 26
€, BE = 3E when £ = 50 (18)

or from (4) and (5) i;

o =4}

or I ARG = T [52iE0) + o0 ] 7o 19)

T YT

- e TR o e T
L e 0 e

Again invoking the orthegonality of the Legendre polynomials over the interval

~1gu<l and using (13} we can separate the coefficients with the result: |

R T L, bt o
2 T x ol Lok Rt

Er AOPa{EO) - CoQé(go) =0 (20)
- - .
er APL(EG) - CQu(Ey) = 0 (22) |

Equations (20) and (21) can be simplified by recalling that

Po(E) =1 P4(E)

i

0 (23) |

P(E) =E  PI(E)

1l
[

(24)




A i 2t

o i YRS

3
)

g
e

cC.=0 (25)

From (15) we see that A0=0 .

At this point we shall deal with all of the coefficients for k>1 recalling
(17) and (22)

er AP (EL) - CQu(Ey) = 0 (22)

Multiplying (17) by ~Q£(EO) and (22) by Qk(EO) and adding the two equacions,
we find that

A 1exPL(BR)Q(E) - PR(EO)Q£CEOE] = 0 (26)

. If we can prove that the term in the brackets is never equal to zero we have

established that all Ak and Ck coefficients are zero for k1. The Russian
mathematician N.N. Lebedev' shows that the Wronskian W(PE(E),QQ(E)} which is
defined as

P (E)  Q(E)

v [r®.0,0] -
5 Q)

= B (E)Qp(E) - PS(E)Q (E) (27)

is equal to 1/(1~E?). Therefore, equation (26) can be rewritten as

[
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Now £0>1 and the Qk functions are always positive for E>1.
of the roots of Pk(E) lie in the interval -1 < £ € 1, Thus PQ(EO) >0 for

€0>1. Since the term enclosed in the brackets 1s alwaye greater than zero

the only possible solution to (28) is

Ak = 0 for 21l k>l

from which we deduce from (17) that

C, =0 for all k>1,

k
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Furthermore, all

(29)

(30}

Thus we see that the only non-zero coefficients of (4) and (5) are A, By

and C,. But it has already been shown by the first boundary condition that

1
B,==-cEq Therefore, equation (21) simplifies to

Ep Ay - CIQI(EO) = ~cEp

But

4 = _5_
dg Ql(g) QD(E) - 52_1

Substituting (32) into {31) results in

ETAl—Cl[QOH-Q_Zg-_z-CEO

or

A = El ‘i Q. - 3 - - CEO
1 Er 0 52'1 Er

Substituting (34) into (16)

C cExE
_1[ 52] 0
el KL = B (ex-1)

Er

» £=€0

» E=£0

s E=EO

(3L

(32)

(33)

(34)

(35)

- cop i ——— e
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Q(6) = £Qy(E) -1
Therefore (35) simplifies to

&) [terirey + gy ] = Ecbo (e . E=Ey ae

Dividing (36) by (g -1) results in

ctE,
C e 1 Eug (37)
: NGRS : 0
1 e_~-1)(E%-1)
r {
Substituting (37) into (16) results in . %
chQl F
Al B - CEO + 1 [ E‘EO (38)

4 D ED

which simplifies to

- CEQ
A

= s E=E (39
L7 1+ (er-D) (£2-1)Q, (8) 0 )

Thus we have evaluated Al and C1 in terms of ¢, Ey, ey and 50, and we can write

}
the solution for the potential in the two regions 1 and 2 as g
¢ = AjEu , lsg<g, (40) o
I
8, = ClQ(E)u - cBoku  , Ey<Eem (41)
. But by the transformation which genarated the prolate spheroidal cooxdinates |

resulted in the relationship

z = ckp (1-35) |
Therefore we see that the field within the spheroid which 1is given by

+ :.
E = - %
1

is uniform and is given by

+ A
E --L;
C

(42)
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uniform electric fleld.

allow the dielectric constant to go teo infinity,

and

We substitute (13) and (43) into (4) with the result

Recalliing (12),

(18) and (19) from Section 2.3.2

+y2 + (z7q)?

+ y2 + (z+c)®
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solvad the case of a dlelectrlc spherold immersed in an otherwise
To speciallze to the case of a conducting wire we

Under this condition A;=0

(43)

(44)

(12)

(13)

N e
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wa see that for every polnt x, y, 2 In space we can calculate the electric
potential ¢. This equation is used to determine the boundary conditions
for the numerical solution of the electric field around the wire in the
presence of plasma. A plot of the selectric field around a conducting
spheroid is shown In Flgure 2.3.3. The elaectric flux lines were calculated

from an analog of the magnetlic vector potential

D=vx4 (45)

A smaller plot for a thin wire is shown in Figure 2.3.4. Equation (44) is
algso used to initialize all of the lInterior grid points before the itera-

tive sclution is begun. The detalls of this variable grid iterative solu-

tion will be described in the next report,.
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Figure 2,3.3 Electric field around a conducting
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Figure 2,3.4 Electric field around a conducting
thin tether.
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2.4 Potentlal Bulld-Up Due To Plasma Contactor Fallure

In an easterly orbit, with the satellite deployed upward, the satel-
1ite collects electrons and the Shuttle collects ions. Because of the low
thermal velocity of the lons, it is necessary te have ~ plasma contactor on
board the Shuttle in order to maintaln it at plasma potential. If the
plasma contactor fails, the Shuttle will acquire a negative potential as a
result of the inabllity of the Orbliter to neutrallze the electrons coming
down the wire from the satellite. If the satellite has a plasma contactor
it will be a better collector and the Shuttle will acquire a large poten-

tial.

Two simulations have been run in order to estimate the potential ac-
quired by the Shuttle if its plasma contactor fails. These simulations are
relavant to the first electrodynamic mission with the Shuttle on an orbit
of 28.5° inclination and 295 km altitude. The satellite is deployed upward
on a 20 km long tether. These simulations refine and confirm the value of
-2kvolt for the Shuttle potential as it was estimated in the Quarterly
Report #1. In the first cne the satelllte has no plasma contactor and is
modeled as a 1.5 meter disameter sphere. The Shuttle is modeled as a 12.4
meter diameter sphere. The wire is 20 km long and has a resistance of 4000
ohms. The Shuttle acquired a voltage of about -1195 volts and the satel-
lite was at +1206 volts. The wire current was .253 amps. In the second
simulation, the satellite has a plesma contactor and the other parameters
are the same. The Shuttle acquired a potential of -2064 volts and the
satellite was within a wvolt of plasma potential. The current in the wire

was .337 amps.
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3.0 PROBLEMS ENCOUNTERED DURING REPORTING BERIOD

None.

4.0 ACTIVITY PLANNED FOR THE NEXT REPORTING PERIOD

During the next reporting period we will carry out the software modi-
fication of the force and torque package in our rotaticnal dynamics com-
puter code. The implementatlon of the reeling control laws will then allow
us to simulate actual maneuvers with a good fidelity. Our plotting program
will alseo be modliflied because presently it ls not formatted to receive and

interpret the rotational dynamics variables.

The thres-dimensional slack tether computer code SLACK3 is now avail-
able and tested. During the next reporting perlod it will be used to
simulate actual cases of tether break and to investigate suitable Shuttle
avoldance maneuvers., In the mean time the analytic studies on the slack
tether will continue., The major geoal is the evaluation of the wrinkle's

typlcal scale size at the onset of the compressional instability.

The development of the computer code to evaluate the electric field
around the severed tether 1is in progress. The next reporting period will
be devoted to the implementation of the electric potential variations due

to the plasma. Presently the program can evaluate the electric potential

around a charged body in vacuo.
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