General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

CONTFACT NAS 8-35817

STUDY OF HIGH PERFORMANCE ALLCY ELECTROFORMINĆ
SIXTEENTH MONTHLY TECHNICAL PROGRESS NARRATIVE

APRIL 1, 1985 TO APRIL 26, 1985

ELECTROFGKMING OPERATIONS DEPARTMENT
©ELL AEROSPACE TEXTRON
POST OFFICE BOX ONE

BUFFALO, NEW YORK 14240

BY
G. A. MALONE

MAY 6, 1985

PDEPAFED FOR:

GEORGE C. MARSHALL SPACE FLIGIT CENTER
MARSHALL SPACE FLIGHT CENTER, AL 35812

```
(NASA-CE-175741) STUCY OF EIGH PERFORMANCE
AILOY BLFCTECFCEEING NCDthly TEChnical
Erogress Narrative fefcrt, 1 Afr. - 26 Afr.
1985 Textion \(E \in 11\) aticspace Cc.. Buffalc.
NE5.25473
N. Y.) \(13 \mathrm{FHC} A C 2 / \mathrm{EFAC} 1\) CSCI 1
Unc 1 as <1148
```


STUDY OF HIGH PERFORMANCE ALLOY ELECTROFORMING

ABSTRACT

Using the two nickel-manganese alloy electroforming baths of near identical compositions, panels were electroformed under the same deposition parameters of current density, bath temperature, pH , and pulse plating conditions of duty cycle and frequency. By changing the electrolyte agitation conditions, significant effects on mechanical properties were noted. Since electrolyte agitation conditions on the typical flat panels studied to date will not be identical to those existing on a complex curved shape such as the SSME combustion chamber simulation, it is most important that these effects be evaluated prior to Phase B studies. The subscale chamber has been fabricated and shield support tooling is being made. Electroforming of optimized alloy test bars is being deferred until the electrolyte agitation effects are more fully appraised.

I. INTRODUCTION

The purpose of this work is to develop and demonstrate a system for electroforming aterials with improved strength and high-temperature properties. The Space Shuttle Main Engine employs a main combustion chamber (MCC) where final combustion of propellant at high temperature and pressure takes place. This critical component must be structurally supported by a nickel-base alloy jacket. Producing this jacket from formed wrought metal segments requires numerous weldments which alter the mechanical properties of the base metal through heat affected zones. This requires thickening the alloy where joints are to be made to meet the structural requirements of the shroud. The use of electroformable alloys with great strength would have the potential for simplifying fabrication procedures for structural jackets and reducing overall weight by removing weldments. Such an electroformable alloy might also afford a possible use in advanced engines where light weight and good strength at high temperatures are necessary.

II. TECHNICAL PROGRESS SUMMARY

A. Task I - Literature Survey (Phase A) - Previously completed.
B. Task II - Alloy Characteriza_ion and Optimization (Phase A)

Summa-izing the effects of various electrolyte and pulse plating parameters on mechanical properties of nickel-manganese electroformed alloys:

1. Increasing the manganese content of the electrolyte results in an increased manganese content in the alloy. This results in increased mechanical strength and a decrease in ductility (which can often be restored by a moderate heat treatment). Manganese contents in deposits exceeding 2500 ppm by weight require more prolonged or severe heat treatments to restore ductility while 5000 ppm , or more, manganese in the alloy usually results in a brittle and highly tensile stressed "as deposited" metal. The form in which the manganese is codeposted with nickel (i.e. - whether in the composition $\mathrm{Ni}_{3} \mathrm{Mn}$ or NiMn) may have an important influence on stress and mechanical properties.
2. Increasing the current density in the conventional dc plating mode or the average current density in the pulse plating mode increases manganese concentration in the alloy in a logrithmic manner. In the puised current mode and for a constant average current density, it appears that increasing the peak current density also increases manganese content and mechanical sirength - provided the pulse off time is sufficiently long. Pulse off times of 10 to 30 milliseconds appear to produce better mechanical properties than lesser times. This is probably due to the longer diffusion time for manganese to reach equilibrium concentrations in the diffusion layer at the cathode. Since this may also be strongly influenced by electrolyte agitation which leads to thinner diffusion layers, we will discuss this subsequently.
3. E.lectrolyte pH - at least in the normal range of 3.8 to 4.3 - has not been noted to have a significant effect on alloy manganese concentration or mecharical properties. Hydrogen ion $m_{c} y$ play a part in electron transfer in the reduction of nickel and manganese (cr coordinated nickel-manganese ions which might resemble coordination complex ions). Since hydrogen is reduced, or "plates" a^{+}the cathode, the diffusion layer tends to become less acidic. This is easidy offset by electrolyte agitation which thins out the diffusion layer and allows quicker hydrogen ion diffusion to restore the proper pH. Pulse plating permits the same hydrogen ion diffusion to occur during the pulse off time.
4. Bath temperature increase results in a significant decrease in alloy manganese concentration. Ion migration in the diffusion layer should be easier as the layer temperature increases. This would indicate that nickel ion diffusion is enchanced by increases in temperature while manganese ion diffusion is not or, if nickel-manganese ion coordinations exist, the relative mobility of such complexes is not improved by higher bath temperatures.
5. Deposition voltage is directly related to manganese content in the alloy. High voltages lead to high manganese concentrations in deposits. Since increased current densities are accompanied by increased overvoltages, it is to be expected that this would occur.
6. Pulse frequencies (particularly the length of off time) appear to affect the codeposition of manganese with nickel. As was mentioned in the report of the previous month, high pulse frequencies with off times as short as 2 milliseconds resulted in less manganese (and lower mechanical strength) than lower frequencies with off times in the 20 millis€cond range. In each case the pulse duty cycle was the same (50\%). There seems to be a practical limitation on use of longer off times since sufficient chemical equilibrium is restored if good bath agitation exists to keep the diffusion layer thin.

The above discussion has in many cases pointed to electrolyte agitation and the resulting "thinning" of the diffusion layer to permit better diffusion of manganese ions for codeposition with nickel. The serious effects of agitation on alloy composition and mechanical properties became clearly evident in the April work on flat panels. In this effort we were endeavoring to duplicate, or improve upon, the mechanical properties of Panel NM- 25 where ultimate strength exceeded 175 ksi (even after heat treating at $427^{\circ} \mathrm{C}$ for four hours) and elorgation was at least 10 percent. The panel fabrication matrix included use of several pulse duty cycles in the 25% to 60% range and lower frequencies of 25 to 50 Hz . Long pulse off times were being investigated since the off time for Panel NM- 25 was 20 milliseconds.

When the duplicate nickel-manganese alloy electroforming facility was established, all spray systems were overhauled - including that in the first facility. Single "Fulljet" solid square spray nozzles were installed in each pumped electrolyte outlet perpendicular to the plane of the panel being electroformed. These sprays were $3 / 8 \mathrm{HH} 24 \mathrm{WSQ}$ with a rated flow of 1.8 GPM at 5 psig and 2.4 GPM at 10 psig. Nozzle-to-electroform panel distance was 5 inches. Panels electroformed under this electrolyte spray condition are denoted by the word "Single" under the pulse plating information opposite "Sprays" on the attached tables of test data. A rearrangement of sprays was made whereby two "Fulljet" solid square spray nozzles pumped electrolyte on each panel being deposited. This permitted a higher volume electrolyte flow but a lower pressure. Such agitation conditions are described as "Double" under the pulse plating information for sprays on the attached data sheets. Any reference to "Single Square" means the same as "Single." All spray nozzles were obtained from Spray Systems Company, Wheaton, Illinois.

Data for Samples NMR-6A, $-6 B$, and $-6 C$ afford an interesting comparison of spray effects on mechanical properties. Panel NMR-6A exhibited high yield and ultimate strengths usirig the "Single" spray set-up. Using double sprays of the same nozzle ratings and distance from the sample surface, a significant decrease in ultimate and yield strengths was observed. Most surprising is the fact that alloy analyses for Panel MNR-6B (using the double spray) was about the same as for Panel MNR-6A. For Panel MNR-6C, we moved the double spray from about 5 inches from the panel face to about 3.5 inches from the face. This maintained a high volume electrolyte turn-over at the panel iace while increasing turbulence. Tests showed that ulitmate and yield strengths were increased, and the manganese content was increased very significantly over that of Panel NMR-6A and Panel NMR-6B.

We interpreted this data to mean that the volume of electrolyte turn-over at the cathode face is not as critical as the shearing force of the spray at the cathode diffusion layer. The fact that Panels NMR-6A and B exlibited similar manganese contents and greatly differing mechanical properties can be accepted as compatible with the postulation that strong spray shearing action promor s a thinner diffusion layer and promotes codeposition of NiMn crystallograph1. cells while low shearing force favors $\mathrm{Ni}_{3} \mathrm{Mn}$ cell formation. We have previously proposed that strengthening of nickel-manganese alloy is due to NiMn cells which are face-centered tetragonal and stable to fairly high temperatures. The mechanism whereby cathode surface turbulence controls the combinations in which nickel and manganese codeposition is not well understood.

Fabricated, or presently in electroforming, are panels representing the use of open pipe nipples for sprays, single solid square sprays mounted close to the cathode surface, and "Veejet" flat spray nozzles mounted close to the cathode surface. Results of tests for these panels should complete the parametess required to produce rcund test tars for optimum mechanical properties. We expect the "Veejet" nozzles to produce alloy with test results resembling those of Panel NM-25 (the best combination of mechanical strength and ductility thus far achieved).

In attached Tables I - V, it should be noted that mechanical testing was confined to the "as deposited" and heat treated at $650^{\circ} \mathrm{F}\left(343^{\circ} \mathrm{C}\right)$ conditions. Other heat treatments and testing at elevated temperatures was not performed in the interests of time and funding. Those samples showing best mechanical properties as electroformed will be submitted to a wide range of heat treatments and testing at MCC service temperatures. Tables $\mathrm{I}-\mathrm{V}$ should be regarded as raw data to be expanded as appropriate.
TABLE I - ELECTROLYTE SPRAY EFFECTS EVALUATION

Sample Number	Fabrication Data \qquad	Pulse Plating Information	Plating Bath Analytical Data	Deposited Alloy Data	$\begin{aligned} & \text { Strip } \\ & \text { No. } \\ & \hline \end{aligned}$	Heat Treatment	Test $\text { Temp }\left({ }^{\circ} F\right)$	Mechanic Ultimate	1 Proper Yield	$\begin{aligned} & \text { es (ps } \\ & \hline \text { Elong } \\ & 1 \mathrm{in} \\ & \hline \end{aligned}$	(क) $2 \text { in }$	Hardness Rockwell C
NMR-5A	Start 03-14 Finish 03-15 Tank No. EOl Amp Hrs. 720	Duty Cycle 50\% Pulse on 20.0 Msec Pulse off 20.0 Msec Peak C.D. 50.60 ASF Avg. C.D. 25.30 ASF Avg. Volts 4.70 Sprays Single	Ni Metal $77.32 \mathrm{~g} / 1$ Mimetal $4.6 \mathrm{~g} / 1$ Boric Acid $30.55 \mathrm{~g} / 1$ Acidity (pH) $\quad 3.90$ Tenpernture $49.2^{\circ} \mathrm{C}$	Panels 2 Each Size 4.38"x 8.12" Mn Comp. $3 २ 05$ ppm S Comp. ppm Flatness Fair Thickness . 067 in to .067 in .	$\begin{array}{r} 5 \mathrm{~A} 1 \mathrm{~A} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{D} \\ 5 \mathrm{~A} 2 \mathrm{~A} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{D} \end{array}$	$\begin{aligned} & \text { None } \\ & 650^{\circ} \mathrm{F}(24 \mathrm{Hr}) \end{aligned}$	Ambient Ambient	$\begin{aligned} & 185,820 \\ & 188,880 \end{aligned}$	$\begin{aligned} & 143,285 \\ & 164,375 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 9.3 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 4.9 \end{aligned}$	
NMR-5B	Start Finish Tank No. Amp Hrs.	Duty Cycle $\quad 50 \%$ Pulse on 20.0 Msec Pulse off 20.0 Msec Peak C.D. 50.60 ASF Avg. C.D. 25. 30 ASF Avg. Volts Sprays Single	Ni Metal $g / 1$ Mn Metal $g / 1$ Boric Acid $\mathrm{g} / 1$ Acidity(pH) Temperature ${ }^{\circ} \mathrm{C}$	Panels 2 Each Size $4.38 " \times 8.12 "$ M Comp. ppm S Comp. ppm Flatness Thickness in	$\begin{array}{r} 5 \mathrm{~B} 1 \mathrm{~A} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{D} \\ 5 \mathrm{~B} 2 \mathrm{~A} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{D} \end{array}$							
NMR-5C	Start Finish Tank No. Amp Hrs.	Duty Cycle $\quad 50 \%$ Pulse on 20.0 Msec Pulse off 20.0 Mgec Peak C.D. 50.60 ASF Avg. C.D. 25. 30 ASF Avg. Volts Sprays Single	Ni Metal $g / 1$ Mn Metal $\mathrm{g} / 1$ Boric Acid g / l Acidity(pH) Temperature oc	Panels 2 Ench Size $4.38 " \times$ $8.32^{\prime \prime}$ Mn Comp. ppm S Comp. ppm Flatness Thickness to in 	$\begin{array}{r} 5 \mathrm{C} 1 \mathrm{~A} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{D} \\ 5 \mathrm{C} 2 \mathrm{~A} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{D} \end{array}$							
NMR-6A	$\begin{array}{ll} \hline \hline \text { Start } & 03-16 \\ \text { Finish } & 03-19 \\ \text { Tank No. EO1 } \\ \text { Amp Hrs. } 720 \end{array}$	Duty Cycle 50% Pulse on 12.0 Msec Pulse off 12.0 Msec Peak C.D. 50.60 ASF Avg. C.D. 25.30 ASF Avg. Volts $\quad 4.72$ Sprays Single	Ni Mital 75.85 $\mathrm{~g} / 1$ M istatal 4.5 $\mathrm{~g} / 1$ Boric Acid 30.55 $\mathrm{~g} / 1$ Acidity (pH) 4.01 Temperature $49.4^{\circ} \mathrm{C}$			$\begin{aligned} & \text { None } \\ & 650^{\circ} \mathrm{F}(24 \mathrm{Hr}) \end{aligned}$	Ambient Ambient	$\begin{aligned} & 191,715 \\ & 192,795 \end{aligned}$	$\begin{aligned} & 148,570 \\ & 161,385 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 3.3 \end{aligned}$	
NMR-6B	Stert 03-21 Finish 03-24 Tank No. EOR Amp Hrs. 720	Duty Cycle 50\% Pulse on 12.0 Msec pulse off 12.0 Msec Peak C.D. 50.60 ASF Avg. C.D. 25.30 ASF Avg. Volts $\quad 4.71$ Spreys Double	N1 Metal $75.51 \mathrm{~g} / 1$ Mn Metal $4.7 \mathrm{~g} / 1$ Boric Acid $30.40 \mathrm{~g} / 1$ Acidity(pH) $\quad 4.00$ Temperature $49.7^{\circ} \mathrm{C}$		6B1A B C D 6B2A B C D	$\begin{aligned} & \text { None } \\ & 650^{\circ} \mathrm{F}(24 \mathrm{Hr}) \end{aligned}$	Ambient Ambient	$\begin{aligned} & 135,750 \\ & 135,315 \end{aligned}$	$\begin{aligned} & 110,530 \\ & 119,635 \end{aligned}$	$\begin{array}{r} 11.0 \\ 9.8 \end{array}$	$\begin{aligned} & 6.8 \\ & 4.7 \end{aligned}$	
HMR-6C	Start 04-17 Finist: 04-19 Tank No. EOl Amp Hrs. 700	Duty rvcle 50\% Pulse On 12.0 Msec Pulse off 12.0 Msec Peak C. D. 50.60 ASF Avg. C.D. 25. 30 ASF Avg. Volts 4.86 Spreys Double and Close to Part			$\begin{array}{r} \hline 6 \mathrm{ClA} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{D} \\ 6 \mathrm{C} 2 \mathrm{~A} \\ \mathrm{~B} \\ \mathrm{C} \\ \mathrm{D} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { None } \\ & \text { None } \\ & 650^{\circ} \mathrm{F}(24 \mathrm{Hr}) \end{aligned}$	Âmbi ent Ambient Ambient	$\begin{aligned} & 182,560 \\ & 180,605 \\ & 154,085 \end{aligned}$	148,610 140,885 34],734	$\begin{aligned} & 7.3 \\ & 8.7 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \\ & 3.5 \end{aligned}$	

TABLE III - ELECTROLYTE SPRAY EFFECTS EVALUATION
NASA CONTRACT NAS 8-35817 PHASE I - TASK II NICKEL-MANGANEEE OPTIMTZATION PANELS

Sample Number	Fabrication Dat.	Pulse Plating Information	Plating Bath Analyticel Data	Deposited Alloy Deta	$\begin{aligned} & \text { Strip } \\ & \text { No. } \\ & \hline \end{aligned}$	Hent Trestment	Test$\text { Temp (}{ }^{\circ} \mathbf{F} \text {) }$	Mechanical Properties (psi)				Herdness Rockwell
								Ultimate	Yield	$\begin{aligned} & \text { Elong } \\ & 1 \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & (\%) \\ & ? \text { in } \end{aligned}$	
	Stert 03-24	Duty Cycle 25\%	Ni Metal $76.37 \mathrm{~g} / 1$	Ponels 2 Each	9A1A	None	Ambient	$185,880$	$141,930$	5.8	4.2	
	Finish 03-27 Tenk No. E01	Pulse On 6.0 Msec Pulse off 18.0 Msec	$\begin{array}{lll}\text { Mi Metal } & 4.7 \\ \text { Boric Acidal } \\ \text { g/ }\end{array}$	$\begin{aligned} & \text { Size 4. } 38 \text { "x } 8.12 " \\ & \text { Mn Comp. } 1758 \mathrm{ppm} \end{aligned}$	B C	$650^{\circ} \mathrm{F}(24 \mathrm{Hr})$	Ambient	$181,065$	$157,960$	5.8	3.6	
	Amp Hrs. 719	Peak C.D. 80.96 ASF	Acidity (pH) 4.08	S Comp. ppm	D							
		Avg. C.D. 20.24 ASF	Temperature $50.0^{\circ} \mathrm{C}$	Flatness Fair	9A2A							
		Avg. Volts 4.00		Thickness . 068 in	B							
NMR-9B	Start 03-31	Duty Cycle 25%	Ni Metal $77.66 \mathrm{~g} / 1$	Panels 2 Each	9B1A		Ambient		$135,790$	9.4	6.9	
	Finish 04-03	Pulse On 6.0 Msec	Mn.Metal $4.6 \mathrm{~g} / 1$	$\text { Size } 4.38 " x 8.12 "$	B	$650^{\circ} \mathrm{F}(24 \mathrm{Hr})$	Ambient	$165,330$	$142,350$	9.5	4.6	
	Tank No. EO2	Pulse off 18.0 Msec	Boric Acid3l. $78 \mathrm{~g} / 1$	Mn Comp. 1716 ppm	C							
	Amp Hrs. 720	Peak C.D. 80.96 ASF	Acidity (pH) 4.04	S Comp. ppm	D							
		Avg. C.D. 20.24 ASF	Temperatire $49.2^{\circ} \mathrm{C}$	Flatness Fair	9B2A							
		Avg. Volts 3.90 Sprays Double		$\begin{aligned} & \text { Thickness } .068 \text { in } \\ & \text { to } .068 \text { in. } \end{aligned}$	B							
		Sprays Double			D							
NMR-9C	Start 03-27	Duty Cycle 25\%	Ni Metal $77.34 \mathrm{~g} / 1$	Fanels 2 Each	9 Cl A							
	Finish 03-30	Pulse On 6.0 Msec	Mn Metal $4.8 \mathrm{~g} / 1$	Size 4.38"x 8.12"	B							
	Tank No. EOl	Pulse off 18.0 Msec	Boric Acid31. $32 \mathrm{~g} / 1$	Mn Comp. ppm	C							
	Amp Hrs. 720	Peak C.D. 80.96 ASF	Acidity (pH) 4.11	S Comp. ppm	D							
		Avg. C.D. 20.24 ASF	Temperature $49.1^{\circ} \mathrm{C}$	Flatness Fair	9 C 2 A							
		Avg. Volts 4.10		Thickness in	B							
		Sprays Double		to	$\underset{\sim}{\sim}$							
					D							
NMR-JOA				Panels ? Each	10A1A	None	Ambient	150,975	112,015	5.9	6.2	
	Finish 04-20	Pulse On 10.0 Msec	Mn Metal $4.8 \mathrm{~g} / 1$	Size 4.38"x 8.12"	B	None	Ambient	165,340	127,570	11.7	9.2	
	Tank No. EO2	Pulse of 10.0 Msec	Boric Acid3l. $01 \mathrm{~g} / 1$	Mn Comp. ppm	C	$650^{\circ} \mathrm{F}(24 \mathrm{Hr})$	Ambient	140,755	123,480	10.0	6.0	
	Amp Hrs. 600	Peak C. D. 40.48 ASF	Acidity (pH) 4.07	S Comp. ppm	D							
		Avg. C.D. 20.24 ASF	Temperature $49.4{ }^{\circ} \mathrm{C}$	Flatness Fair	10A2A							-
		Avg. Volts 4.02		Thickness . 060 in	B							
		Sprays Sing.Square		to . 061	C							
					D							
NMR-10B	Start	Duty Cycle 50%	N1 Metal g/l	Panels	10B1A							
	Finish	Pulse on 10.0 Msec	Mn Metal g/l	Size 4.38"x 8.12"	B							
	Tank No.	Pulse off 10.0 Msec	Buric Acid g/l	Mn Comp. ppm	C							
	Amp Hrs.	Peak C.D. 40.48 ASF	Acidity (pH)	S Comp. ppm	D							
		Avg. C.D. 20.24 ASF	Temperature ${ }^{\circ} \mathrm{C}$	Flatness Fair	10B2A							
		Avg. Volts		Thickness . 0 in	B							
		Sprays		to	C							
					D							

TABLE IV - ELECTROLYTE SPRAY EFFECTS EVALUATION

TABLE V - ELECTROLYTE SPRAY EFFECTS EVALUATION

C. Task I - Heat Treatment of Alloy Structural Shell (Phase B)

For reason of simplifying the alloy optimization effort and the fact that heat treatment of the alloy for best combination of strength and ductility is necessary, the planned work in this task is being reported under Phase A, Task II.
D. Task II - Tooling for EF of Prototype SSME - MCC (Phase B)

The subscale MCC mandrel machining was completed as scheduleci. The mandrel is a two-piece design to facilitate separation of the electroformed shroud configuration specimens. Each section has been zincated for bonding and flash chromium plated to protect the surfaces from corrosion and scratching. We expect to use this mandrel for many electroforming trials.
E. Task III - Prototype MCC Preparation for Electroforming (Phase B)

The mandrel electroforming strongback and MCC rotating drive system are being integrated. Plexiglass shield support soft-tooling is in fabrication. Special frovision is being made for a separate drive to rotate the upper shield support in a counter direction to the mandrel. This sill enable the use of conformal rotating blades to provide additional electrolyte shear at the surface being electroformed. This will augment forced sprays to promote higher manganese concentrations in the alloy. We anticipate this may be required due to the fact that the mandrel is a complex shaped rotating mandrel which will be under continuous deposition over all areas regardless of whether these areas are "seeing" a strong diffusion layer shearing action, or not. By being able to independently drive a "squirrel cage" of conformal blades, it should be possible to provide high turbulence over a greater area of the mandrel.

Our plans for Phase B electroforming on the mandrel call for evaluation of alloy chemistry and hardness variability based on mandrel rotational speeds and multiple spray placement. If manganese content is not sufficient tc promote proper hardness and retention of good hardness after heat treating, we expect to correct tnis condition by one or more of the following actions:

1. Increase the pulse off time for better manganese diffusion to the cathode surface.
2. Increase the manganese content in the electrolyte. This can only be done as long as residual stress is not prohibitive.
3. Increase spray agitation capacity.
4. Increase average current density for pulse plating.

Based on the magnitude of samples required for evaluation when we start electroforming MCC configurations, it is unlikely that novel agitation systems such as the counter rotating blades, it is recommended that such evaluations be considered in follow-on work - should continuation of the alloy electroforming program be considered appropriate.

III. CURRENT PROBLEMS

The previous discussions of this progress report have shown that
eiectrolyte agitation variations have more pronounced effects on mechanical properties thar hac been anticpated. Conditions which lead to specific mechanical properties on simpie flat shapes will require modification when arplied to cylindrical and conical sinapes such as the MCC. Although corrective actions to solve this problem are generally defined, achieving desired mechanical properties and uniform alloy composition on complex configurations is now expected to consume more study than originally anticipated. We exnect the Phase A work will provide an optimum alloy for mechanical properties at the expected MCC service temperatures; however, duplicating these properties on a complex round shape may require extending some efforts beyond the schedule and funding of the present contract.

IV. WORK PLANNED

1. Complete electrolyte agitation evaluation with respect to mechanical properties and manganese contents of alloys.
2. Select specimens for continued study with respect to effects of various heat treatments on ambient and elevated temperature properties.
3. Continue soft tooling for subscale mandrel - shield support, rotational drive connections, etc.
v. FINANCIAL DATA

See attached NASA Form 533P.

