(NAUM-CR-166173) LEFEMAL MACKION CONTACT ASS-25848
LEBECTMANCE EVALUATION UNDER FULLY FLOCUED
LEV STARVAL CONLITICES INTERIOR SEPORT
(Transmission records, inc., 61 v rand, dromas
Chio.) 152 p nC 2.77MF Act 3501 131 G3/37 2127.

NRSA CR-168173

THERMAL TRACTION CONTACT PERFORMANCE EVALUATION UNDER FULLY FLOODED AND STARVED CONDITIONS

By: Joseph L. Tevaarwerk Transmission Research Inc.

May 1985

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Centre Cleveland OH 44135 Under Contract DEN 3-35

THERMAL TRACTION CONTACT PERFORMANCE EVALUATION UNDER FULLY FLOODED AND STARVED CONDITIONS.

Ву:

Joseph L. Tevaarwerk Transmission Research Inc. May 1985.

Prepared for:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Centre
Cleveland, Ohio 44135

1. Report No		
NASA CR-168173	2 Government Accession No	3 Recipient's Caralog No
4 Title and Subtitle		5 Report Date
The end south		May 1985.
THERMAL TRACTION CON		
EVALUATION UNDER FUL STARVED CONDITIONS.	LY FLOODED AND	6 Performing Organization Code
7 Author(s)		A Part No.
	nihalamı	& Performing Organization Report No
J.L. Tevaarwerk, Applied Ti RR3 Stokes Lane, Shelburn		
,	, , , , , , , , , , , , , , , , , , , ,	10. Work Unit No
9. Parforming Organization Name and Addres	33	
Transmission Research Inc.		11 Contract or Grant No DEN 3-35
10823 Magnolia Dr, Clevela	nd, OHIO 44106	
		13 Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Contractor Report.
NASA Lewis Research Cent	er.	14 Sponsoring Agency Code
Cleveland OH 44135		
15. Supplementary Notes		
Second Interim Report:	Paris Carries and Thomas	mainatan Garatian
NASA Lewis Research Cent	n, Bearing Gearing and Trans	mission Section,
Wilder Bewis Research Cent	er, cieveland, onto 44100.	
16. Abstract		
	d traction tests were perform	ned on two traction fluids equired for purposes of action
drive design optimization te	echniques. To obtain the trac	ction data, an existing win disc
traction test machine was e		
		s modified to accommodate the
range of test variables. All	l the data reported was obtai	ned under conditions of side
range of test variables. All	l the data reported was obtai	
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari	l the data reported was obtainly low power levels are requiables were; contact pressure	ned under conditions of side sired to simulate real traction e from 1 to 1.8 GPa, disc surface
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s	I the data reported was obtainly low power levels are requiables were; contact pressuresec, fluid inlet temperature f	ned under conditions of side sired to simulate real traction e from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flu	I the data reported was obtainly low power levels are requiables were; contact pressure sec, fluid inlet temperature fuid supply from fully flooded	ned under conditions of side sired to simulate real traction e from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model of	I the data reported was obtainly low power levels are requiables were; contact pressure sec, fluid inlet temperature fuid supply from fully flooded to three constants by using coupled to a thermal correction	ned under conditions of side sired to simulate real traction e from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model capin results. Theoretical traction is the slip of the sl	I the data reported was obtainly low power levels are requiables were; contact pressure sec, fluid inlet temperature fuid supply from fully floodeded to three constants by using coupled to a thermal correction action predictions were perf	ned under conditions of side sired to simulate real traction e from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flu traction curves were reduce isothermal traction model cospin results. Theoretical transmer of curves that shows	I the data reported was obtainly low power levels are requisibles were; contact pressure sec, fluid inlet temperature fould supply from fully flooded to three constants by using coupled to a thermal correction predictions were perfect the influence of rolling versions.	ned under conditions of side aired to simulate real traction e from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model contact spin results. Theoretical transport ratio. To establish	I the data reported was obtainly low power levels are requiables were; contact pressure sec, fluid inlet temperature fuid supply from fully floodeded to three constants by using coupled to a thermal correctionaction predictions were perfect the influence of rolling verthe accuracy of the thermal	ned under conditions of side aired to simulate real traction e from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model c spin results. Theoretical traumber of curves that show aspect ratio. To establish performed with increasing left in the final resulting predicts	I the data reported was obtainly low power levels are requiables were; contact pressuresec, fluid inlet temperature fuid supply from fully flooded to three constants by using coupled to a thermal correction predictions were perfect the influence of rolling verthe accuracy of the thermal evels of independence of exption only two non linear ther	ined under conditions of side sired to simulate real traction of from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were erimentally determined parameters. mal parameters were used for the
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model compin results. Theoretical transpect ratio. To establish performed with increasing left in the final resulting prediction of 15 different transports.	I the data reported was obtainly low power levels are requisibles were; contact pressure sec, fluid inlet temperature fuid supply from fully floodeded to three constants by using coupled to a thermal correction predictions were perfect the influence of rolling verthe accuracy of the thermal evels of independence of expanding the course covering the expanding the e	ined under conditions of side sired to simulate real traction of from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were erimentally determined parameters. mal parameters were used for the ntire range of variables as used
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model compin results. Theoretical transpect ratio. To establish performed with increasing left in the final resulting prediction of 15 different transpect in the investigation, with the	I the data reported was obtainly low power levels are requisibles were; contact pressure sec, fluid inlet temperature fuid supply from fully flooded to three constants by using coupled to a thermal correction predictions were perfect the influence of rolling vertee accuracy of the thermal evels of independence of expanding the exception of the influence of exception of the influence	ined under conditions of side sired to simulate real traction of from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were erimentally determined parameters. mal parameters were used for the ntire range of variables as used of asperity traction.
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model compin results. Theoretical transpect ratio. To establish performed with increasing left in the final resulting prediction of 15 different transpect in the investigation, with the	I the data reported was obtainly low power levels are requisibles were; contact pressure sec, fluid inlet temperature fuid supply from fully flooded to three constants by using coupled to a thermal correction predictions were perfect the influence of rolling vertee accuracy of the thermal evels of independence of expanding the exception of the influence of exception of the influence	ined under conditions of side sired to simulate real traction of from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were erimentally determined parameters. mal parameters were used for the ntire range of variables as used
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model capin results. Theoretical traumber of curves that show aspect ratio. To establish performed with increasing left in the final resulting prediction of 15 different train the investigation, with the Comparison of these theoretes.	I the data reported was obtainly low power levels are requisibles were; contact pressure sec, fluid inlet temperature fuid supply from fully flooded to three constants by using coupled to a thermal correction predictions were perfect the influence of rolling vertee accuracy of the thermal evels of independence of expanding the exception of the influence of exception of the influence	ined under conditions of side sired to simulate real traction of from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were erimentally determined parameters. mal parameters were used for the ntire range of variables as used of asperity traction.
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests varivelocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model capin results. Theoretical traumber of curves that show aspect ratio. To establish performed with increasing left in the final resulting prediction of 15 different train the investigation, with the Comparison of these theoret good agreement.	I the data reported was obtainly low power levels are requiables were; contact pressure sec, fluid inlet temperature fuid supply from fully floodeded to three constants by using coupled to a thermal correction action predictions were perfect the influence of rolling verthe accuracy of the thermal evels of independence of expetion only two non linear thermal text in curves covering the exception of the influence tical curves and corresponding	ined under conditions of side sired to simulate real traction of from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were erimentally determined parameters. The mal parameters were used for the ntire range of variables as used of asperity traction. In Statement
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model comparison. Theoretical transpect ratio. To establish performed with increasing less in the final resulting prediction of 15 different transpection of 15 different transpection of 15 different transpection of these theoret good agreement. 17. Key Words (Suggested by Author(s)) Traction drives; Traction; Traction lubricant; Traction	I the data reported was obtainly low power levels are requisibles were; contact pressure sec, fluid inlet temperature fuid supply from fully flooded ed to three constants by using coupled to a thermal correction predictions were perfect the influence of rolling verthe accuracy of the thermal evels of independence of expanding the exception of the influence tical curves and corresponding traction fluid; drive design;	ined under conditions of side sired to simulate real traction of from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were erimentally determined parameters, mal parameters were used for the ntire range of variables as used of asperity traction.
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests varivelocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model capin results. Theoretical traumber of curves that show aspect ratio. To establish performed with increasing less in the final resulting prediction of 15 different train the investigation, with the Comparison of these theoret good agreement. 17. Key Words (Suggested by Author(s))	I the data reported was obtainly low power levels are requisibles were; contact pressure sec, fluid inlet temperature fuid supply from fully flooded ed to three constants by using coupled to a thermal correction predictions were perfect the influence of rolling verthe accuracy of the thermal evels of independence of expanding the exception of the influence tical curves and corresponding traction fluid; drive design;	ined under conditions of side sired to simulate real traction of from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were erimentally determined parameters, mal parameters were used for the ntire range of variables as used of asperity traction. g experimental traces show very
range of test variables. All slip, a technique whereby or driv? contacts. The range of the tests vari velocity from 50 to 120 m/s from 0 to 1.5% and inlet flutraction curves were reduce isothermal traction model comparison. Theoretical transpect ratio. To establish performed with increasing less in the final resulting prediction of 15 different transpection of 15 different transpection of 15 different transpection of these theoret good agreement. 17. Key Words (Suggested by Author(s)) Traction drives; Traction; Traction lubricant; Traction	I the data reported was obtainly low power levels are requisibles were; contact pressure sec, fluid inlet temperature fuid supply from fully flooded ed to three constants by using coupled to a thermal correction predictions were perfect the influence of rolling verthe accuracy of the thermal evels of independence of expanding the exception of the influence tical curves and corresponding traction fluid; drive design;	ined under conditions of side sired to simulate real traction of from 1 to 1.8 GPa, disc surface from 50 to 120 °C, contact spin to fully starved. The resulting the Johnson and Tevaarwerk on technique for large slip and formed for a representative elocity, of contact pressure and of model the predictions were erimentally determined parameters, mal parameters were used for the ntire range of variables as used of asperity traction. g experimental traces show very

 \mathbf{C}_{i}

C

C

SUMMARY

Ultra high speed traction tests were performed on two traction fluids commonly employed. Traction data on these fluids is required for purposes of traction drive design optimization techniques. These techniques will allow for the best possible design of a given drive configuration. For adequate test data the entire range of operating conditions of the drives should be covered by the traction test program and this includes conditions of large slip and possible influences of fluid starvation.

To obtain the traction data, an existing twin disc traction test machine was employed. This machine was modified to accommodate the range of test variables. All the data reported was obtained under conditions of side slip, a technique whereby only low power levels are required to simulate real traction drive contacts. The range of the tests variables were: contact pressure from 1 to 1.8 GPa, disc surface velocity from 50 to 120 m/sec, fluid inlet temperature from 50 to 120 °C, contact spin from 0 to 1.5% and inlet fluid supply from fully flooded to fully starved. The resulting traction curves were reduced to three constants by using the Johnson and Tevaarwerk isothermal traction model coupled to a thermal correction technique for large slip and spin results. The three constants are the elastic shear modulus and two non linear thermal parameters.

Theoretical traction predictions were performed for a representative number of curves that showed the influence of rolling velocity, of contact pressure and of aspect ratio. To establish the accuracy of the thermal model the predictions were performed with increasing levels of independence of experimentally determined parameters. In the final resulting prediction only two non linear thermal parameters were used for the prediction of 15 different traction curves covering the entire range of variables as used in the investigation, with the exception of the influence of asperity traction. Comparison of these theoretical curves and corresponding experimental traces show very good agreement.

The influence of asperity traction was extracted from the experimental curves with starvation by predicting the traction under fully flooded conditions and using the difference to predict the asperity traction as a function of the number of asperities in contact. It was found that the amount of traction force per asperity in contact was pretty well independent of the traction contact conditions and also of the traction fluid. Comparison between theoretically predicted traction curves including the effect of asperity traction and experimental curves shows reasonable agreement.

TABLE OF CONTENTS

	hage
SUMMARY	i
TABLE OF CONTENTS	ii
NOMENCLEATURE	iv
LIST OF FIGURES	vi
1-0 INTRODUCTION	1
I-1 Prior traction investigations	2
1-2 Traction data research program	3
2-0 EXPERIMENTS	4
2-1 Description of twin disc machines	4
2-2 Instrumentation of the traction tester	5
2-2-1 Measurement of the traction force	5
2-2-2 Measurement of side slip	5
2-2-3 Measurement of toroid surface temperature	6
2-2-4 Measurement of the disc speed	6
2-2-5 Contact ratio measurements	6
2-3 Traction measurements	7
2-3-1 Typical traction traces	7
2-4 The application of spin	9
3-0 THEORETICAL ANALYSIS	11
3-1 Isothermal traction analysis	12
3-2 Thermal traction analysis	13
4-0 CALCULATION OF THERMAL TRACTION CURVES	16
4-1 Influence of side slip	16
1-2 Influence of spin	16
4-2-1 Influence of spin under low slip	17
4-2-2 Influence of spin for large slip	18
1-2-3 Thermal influence of small spin	19
5-0 EXTRACTION OF THE TRACTION PARAMETERS	20
5-1 Extraction of the shear modulus	20
5-1-1 Shear modulus for constant properties	20
5-1-2 Shear modulus with simple compliance correction	21
5-1-3 Shear modulus with complex compliance correction	22
5-1-4 Complex correction with reduced pressure effects	23
5-2 Extraction of the large strain parameters	24
5-3 Analysis of the experimental results	25
5-3-1 Multiple traction curve regression	25

6-0	PREDICTION OF THE EXPERIMENTAL TRACTION CURVES	27
6-1	Prediction with individual constants	27
6-2	Prediction with multiple fitted constants	28
6-3	Theoretical traction prediction with asperity contact	28
6-3-1	Analysis of the asperity traction	29
7-0	CONCLUSION	33
8-0	REFERENCES	34
	NDV0F4	
APPE	NDICES:	
I-A	Summary of traction test data on TDF88	
I-B	Summary of traction test data on SANTO50	

Summary of modulus analysis on TDF88

Summary of modulus analysis on SANTO30

Summary of thermal hyperbolic sine analysis on TDF88

summary of thermal hyperbolic sine analysis on SANTO50

II-A

II-B

III-A

III-B

LIST OF FIGURES

РНОТ	GRAPHS
2-1	Overview of the complete traction test system
2-2	Overview of the data acquisition system
2-3a	Overview of the traction tester
2-3b	Close-up of the traction tester. (RH side)
2-3c	Overview of the traction tester. (LH side)
FYPFR	IMENTAL RESULTS
2~4	TDF88 Flooded results for increasing speed
2-5	,, Starved ,, ,, ,,
2-6	SANTO50 Flooded results for increasing speed
2-7	,, Starved ,, ,, ,,
2-8	TDF88 Flooded results for increasing pressure
2-9	,, Starved ,, ,, ,,
2-10	SANTO50 Flooded results for increasing pressure
2-11	,, Starved ,, ,, ,,
2-12	TDF88 Flooded results for increasing aspect ratio
2-13	,, Starved ,, ,, ,,
2-14	SANTO50 Flooded results for increasing aspect ratio
2-15	,, Starved ,, ,, ,, ,,
2-16	TDF88 Spin traction curves
2-17	SANTO50 Spin traction curves
ANALY	YSIS OF THE RESULTS.
5-1	Regression line for individual thermal constants on TDF88 for increasing
	speed
5-2	Regression line for individual thermal constants on SANTO50 for increasing
	speed
5-3	Regression line for individual thermal constants on TDF88 for increasing
	pressure
5-4	Regression line for individual thermal constants on SANTO50 for increasing
	pressure
5-5	Regression line for individual thermal constants on TDF88 for increasing
	aspect ratio
5-6	Regression line for individual thermal constants on SANTO50 for increasing
	aspect ratio
5-7	Regression line for combined thermal constants on TDF88 for increasing speed
5-8	Regression line for combined thermal constants on SANTO50 for increasing
	speed
5-9	Regression line for combined thermal constants for TDF88 for increasing
	pressure
5-10	Regression line for combined thermal constants for SANTO50 for increasing
	pressure

- 5-11 Regression line for combined thermal constants for TDF88 for increasing aspect ratio
- 5-12 Regression line for combined thermal constants for SANTO50 for increasing aspect ratio
- 5-13 Regression line for combined thermal constants for TDF88 for various conditions of speed, pressure, aspect ratio and inlet temperature.
- 5-14 Regression line for combined thermal constants for SANTO50 for various conditions of speed, pressure, aspect ratio and inlet temperature.

COMPARISON WITH PREDICTED RESULTS

€

C

Ø

- 6-1 Experimental side slip traction curves for TDF88 at various pressures, temperatures, aspect ratios and rolling velocities.
- 6-2 Experimental side slip traction curves for SANTO50 at various pressures, temperatures, aspect ratios and rolling velocities.
- 6-3 Comparison of experimental with theoretically predicted traction curves for TDF88 based upon individually fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-4 Comparison of experimental with theoretically predicted traction curves for SANTO56 based upon individually fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-5 Comparison of experimental with theoretically predicted traction curves for TDF88 based upon individually fitted thermal constants at various pressures, temperatures, rolling velocities, aspect ratios and spin.
- 6-6 Comparison of experimental with theoretically predicted traction curves for SANTO50 based upon individually fitted thermal constants at various pressures, temperatures, rolling velocities, aspect ratios and spin.
- 6-7 Comparison of experimental with theoretically predicted traction curves for TDF88 based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-8 Comparison of experimental with theoretically predicted traction curves for SANTO50 based upon multiple curve fitted thermal constants and shear msodulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-9 Comparison of experimental with theoretically predicted traction curves for TDF88 based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities, spin and aspect ratios.
- 6-10 Comparison of experimental with theoretically predicted traction curves for SANTO50 based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities, spin and aspect ratios.
- 6-11 Experimental traction curves for TDF88 under starved conditions at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-12 Experimental traction curves for SANTO50 under starved conditions at various pressures, temperatures, rolling velocities and aspect ratios.

*

- 6-13 Comparison of experimental with theoretically predicted traction curves for TDF88 under starved conditions based upon individually fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-14 Comparison of experimental with theoretically predicted traction curves for SANTO50 under starved conditions based upon individually fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-15 Comparison of experimental with theoretically predicted traction curves for TDF88 under assumed fully flooded conditions based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-16 Comparison of experimental with theoretically predicted traction curves for SANTO50 under assumed fully flooded conditions based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-17 Comparison of experimental with theoretically predicted traction curves for TDF88 including asperity traction due to starved conditions based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-18 Compari in of experimental with theoretically predicted traction curves for SANTO50 including asperity traction due to starved conditions based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.
- 6-19 Comparison of experimental with theoretically predicted traction curves for TDF88 including asperity traction due to starved conditions based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities, spin and aspect ratios.
- 6-20 Comparison of experimental with theoretically predicted traction curves for SANTO50 including asperity traction due to starved conditions based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities, spin and aspect ratios.
- 6-21 Variation of asperity traction with the voltage fraction.

C

0

6-22 Correlation between predicted and experimental asperity traction as a function of the contact fraction.

NOMENCLEATURE.

Below follows a list of the various symbols used in the text and their units.

Sym	. DESCRIPTION	Units
a,b	Semi Hertzian contact size in the x and y direction	(m)
A	Fluid viscosity temperature parameter	[°C]
В	Fluid viscosity pressure parameter	[°C/Pa]
$C_{\mathbf{S}}$	Specific heat of the disc material	[J/kg.°C]
c	Shear stress temperature parameter for thermal model	[°C/Fa]
$C_{\mathbf{f}}$	Contact fraction for asperities	[-]
c [;]	Elastically strained fraction of contact	[-]
D	Solidification temperature for the fluid	[oC]
De	Deborah number	[-]
е	Curvature offset from the rolling axis	[mm]
E	Viscosity constant for non linear thermal model	[Pa.sec]
E'	Composite elastic modulus for the disc material	[Pa]
F(v)	Dissipative function for traction model	[sec ⁻¹]
$\mathbf{F}_{\mathbf{x}}$	Contact force in the x direction	[N]
Fy	Contact force in the y direction	[N]
$\mathbf{F}_{\mathbf{Z}}^{\mathbf{J}}$	Normal force on the contact	[N]
f	Number of asperities in contact	[-]
G	Fluid shear modulus (uncorrected)	[Pa]
$G_{\mathbf{c}}$	Compliance corrected fluid shear modulus (simple)	[Pa]
Gi	Fully corrected fluid shear modulus	[Pa]
Ge	Johnson Elasticity parameter	[-]
$G_{\mathbf{S}}$	Shear modulus of the disc material	[Pa]
h	Central film thickness in contact	[m]
J1	Dimensionless longitudinal slip variable	[-]
J2	Dimensionless side slip variable	[-]
J3	Dimensionless spin variable	[-]
J4	Dimensionless longitudinal traction variable	[-]
J4 _e	Elastic stress portion of J4	[-]
J4 _D	Plastic stress portion of J4	[-]
J4t	Thermal dimensionless longitudinal traction	[-]
J5	Dimensionless side slip traction variable	[-]
J6	Dimensionless spin torque variable	[-]
k	Contact aspect ratio (b/a)	[-]
kf	Thermal conductivity of fluid	[N/sec °C]
ks	Thermal conductivity of disc material	[N/sec °C]
K	Calibration constant in side slip measurement	[m]
m	Initial slope of the zero spin traction curve	[-]
m'	Traction slope for dry discs	[]
P	Pressure	[Pa]

(4)

All the state of t

$P_{\mathbf{o}}$	Hertzian contact pressure	[Pa]
$P_{\mathbf{e}}$	Psuedo Peciet number	[-]
Pr	Reduced Hertz pressure fraction	[-]
Q	Kalker coefficient	[-]
q	Thermal heat flux due to traction	[N/m sec]
$R_{\mathbf{X}}$	Equivalent radius of curvature in x direction	[m]
R_y	Equivalent radius of curvature in y direction	[m]
$R_{\mathbf{e}}$	Equivalent radius of curvature for discs	[-]
S	Auxiliary variable used in elastic/plastic model	[-]
t	time	[sec]
U	Rolling speed of the discs	[m/sec]
VF	Voltage fraction for asperities	[-]
V0	Viscosity parameter	[Pa.sec]
ΔV	Side slip velocity of the discs	[m/sec]
$\Delta \mathbf{U}$	Longitudinal slip velocity of the discs	[m/sec]
$\Delta \mathbf{x}$	Small displacement of the displacement transducer	[m]
ΥI	Inlet shear heating factor	[-]
	GREEK SYMBOLS.	
٥.	Angle of tilt of the toroidal axis	[rad]
$\alpha(\theta)$	Pressure viscosity coefficient	[1/Pa]
β	Side slip angle	[rad]
ω	Angular spin velocity on the contact	[rad/sec]
0	Temperature of the fluid	[°C]
€ _C	Shearplane temperature	[°C]
θ_{0}	Inlet temperature	[°C]
τ	Shear stress	[Pa]
$\tau_{\mathbf{S}}$	Non linear stress parameter for hyperbolic sine	[Pa]
τ _c	Limiting strength of fluid at shear plane temperature	[Pa]
το	Limiting strength of fluid at inlet temperature	[Pa]
Ý	Shear strain rate (V/h)	[1/sec]
η	Viscosity	[Pa.sec]
μ	Traction coef. F_x/F_z or F_v/F_z	[-]
ū	Peak traction coefficient	[-]
ρς	Density of the disc material	$[kg/m^{-3}]$
ψx	Hertzian contact shape parameters	[-]

1-0 INTRODUCTION

Traction or friction plays a major role in today's technological society in that it holds one of the keys to reduce our overall energy consumption, and thereby the dependence on unreliable sources of this energy. Friction and traction indicate the resistance to relative motion of two 'contacting' bodies. The term traction and friction have the same meaning in a tribological sense, however friction is used when this resistance is undesirable and traction is used when it is desirable.

The mechanical components in which friction and traction are important are rolling element bearings, gears, cam and tappets and traction drives. Because these devices almost always operate in a wet or fluid lubricated environment, the traction or friction is mostly governed by the particular fluid that is used. In the first three devices friction is the key source of inefficiency and because of the multitude of bearings and gears in service, a small reduction in these losses can amount to phenomenal savings in energy. Rolling element bearings actually have rather interesting requirement for friction or traction in that at low to medium speeds friction should be low, but at high speeds traction should be high to ensure that the rolling elements operate at the correct velocities.

Traction drives on the other hand rely on the transmittal of tractive forces for power transmission purposes and they require high fluid traction at all times. With variable speed traction drives it is possible to allow prime movers to operate at their most efficient power point, almost independent of the load requirements. It is by these means that traction drives can indirectly be looked upon as potential energy savers. Fuel consumption reductions of 25 to 40 % are believed possible with the use of variable speed traction drives in automobiles. This report addresses itself to the phenomena of traction and is aimed at providing fluid traction data for two fluids operating under widely varying conditions, with particular emphasis on traction drives.

1-1 TRACTION DRIVE TECHNOLOGY.

Traction drives have been in existence for a long period of time. They are simple in concept and relatively easy to manufacture. However successful traction drives are few and the reason for this is that while simple in concept, the analytical tools required to develop a drive in direct competition with other transmissions have been sadly lacking in the past. This is rapidly being remedied however with recent developments and interest in this area of design. An excellent review article dealing with the historical aspects of traction drives and the related technology is presented by Loewenthal [1].

In simple terms the traction drives basic elements are two rollers, pressed into nominal contact, rolled about their respective axis and power is transmitted in the form of a shear stress across the contact area. A fluid is present to prevent initial surface scuffing damage and to provide for some form of cooling. The rolling motion of the discs draws this fluid into the contact zone and a thin layer of this fluid will separate the actual contact area. It is also in this region where the torque is transmitted from one roller to the next and it should not surprise one that the performance of a traction drive depends to a large extent upon the rheological

properties of the fluid. Close examination of the fluid history as it passes through the contact gap reveals that it experiences a sudden pressure pulse from atmospheric to possibly several Giga Pascal in a time period of 1 to .1 m/sec. The shear stress that is transmitted from one disc to the other (about 10% of the normal stress) passes through this layer of fluid "trapped" in the contact and causes a shear. This in turn will lead to heat generation and from simple calculations, temperatures in the center of the film can easily reach several hundred degrees Centigrade.

To study the rheological properties of the fluid under these conditions precludes the use of most of the conventional instruments used for steady state measurements. In fact the only suitable type of instrument for the study is a disc machine where most of the conditions are the same or siming to those in traction drives. From the resulting traction tests, certain models are inferred and it is in this area where there has been a lot of activity recently.

To the designer of traction drives, the traction behaviour of the fluid under the severe conditions is of utmost importance because of the direct influence that it has on the efficiency, size and life of a given drive. Besides a good rheological model for the fluid, he must have at his disposal pertinent rheological properties of the fluid that he proposes to use.

1-2 PRIOR TRACTION INVESTIGATIONS

C

As mentioned in the introduction, there has been a lot of activity in the area of traction research, both in the past and recently. Notable contributions have come from Clark et al [2], Hewko [3], Smith [4], Smith et al [5], Johnson and Cameron [6], Niemann and Stoessel [7], and more recently Johnson and Roberts [8] and Johnson and Tevaarwerk [9]. Some of these investigations were strictly experimental in nature, and simed at obtaining traction drive design data, while others were aimed at understanding the traction phenomena so that rheological models could be formulated. This latter research is of course ultimately aimed at relating fluid molecular properties to traction properties. Research by Johnson and Tevaarwerk [9], Daniels [10], Hirst and Moore [11] and Alsaad et al [12] is directed specifically towards this purpose. The reader is referred to an excellent review by Johnson [13] for further aspects of this topic.

Many of the rheological models derived so far have been isothermal in nature. This is not so much due to the level of understanding of traction but rather because of the degree of complexity that thermal analysis introduces. This is not to say however that thermal effects are not important, a simple method is required however to include them in the analysis.

Current understanding of traction has led to traction models that describe the fluid shear behaviour in terms of an elastic and a dissipative element. For purposes of mathematical tractability this dissipative element is taken to be plastic like in nature. This gives an adequate description of the fluid behaviour at conditions such as those encountered in traction drives. An analysis of traction drive performance using such a model was done by Tevaarwerk [14]. It showed that under certain conditions the prediction technique by Magi [15] can be used. This work has now been further expanded by developing a simple method to correct for thermal effects due to

spin, Tevaarwerk [16], and an overall thermal traction study, Tevaarwerk [17]. As with all models however, their usefulness is severely restricted if inadequate input traction data is available to the designer. This is especially so if new high traction fluids are used that were not tested previously for use under conditions that exist in modern highly advanced traction drives.

1-2 TRACTION DATA RESEARCH PROGRAM

be A to The Wall

C

Several novel and new forms of traction drives have recently been developed and tested by Loewenthal et al [18] and Kemper [19] and McCoin et al. [20]. For purposes of design of these drives, adequate fluid rheological data is needed under the operating speeds, pressures and temperatures encountered. Besides the above it is desirable to investigate the influence of contact area, aspect ratio, spin and side slip on the traction behaviour. Additionally, the data could be tested against an existing traction model to investigate how well it predicts the observed traction. The first part of this investigation concerned itself with the isothermal aspect of traction and the results are reported in Tevaarwerk [21], the second part of this investigation, reported here, covers the thermal aspects of traction and the influence of asperity contact. This work was performed by Transmission Research Incorporated of Cleveland Ohio under contract to the NASA Lewis Research Center, Cleveland, Ohio. The NASA technical project manager was Mr. D. A. Pohn from the Bearing, Gearing and Transmission Section at the NASA Lewis Research Center.

2-0 EXPERIMENTS

The various traction experiments were carried out on an existing twin disc test facility, shown in figure 2-1, 2-2 and 2-3. This test facility was modified such that it would be capable of traction measurements for speeds up to 120 m/sec, and facilities were provided for the asperity contact measurement and fluid starvation. Traction curves were obtained by using the side slip technique; a technique whereby large traction transfer can be measured without the need for a large motor generator set.

2-1 DESCRIPTION OF TWIN DISC MACHINE.

For an extensive description of twin disc traction testers the reader is referred to the literature; Smith [4] and Johnson and Roberts [8]. Basically the machine consists of two discs, called the upper and lower disc. The lower disc is mounted in rolling element bearings through shafts and the only degree of freedom is one of rotation about this axis. The lower disc always has a transverse radius of curvature of infinity. To avoid problems with gravity forces the axis of rotation of this disc should be horizontal to within a few milliradians. The upper disc is contained in bearings that are mounted in the upper assembly. This upper assembly is suspended with elastic hinges such that only direct normal motion or axial motion is possible. The assembly will however always stay horizontal. The upper disc (or toroid) has curvatures so that the desired contact geometry is arrived at. The upper assembly is constructed such that the toroidal axis can be tilted relative to the horizontal plane so as to introduce spin on the contact. It can also be skewed about the normal to the contact to introduce a side slip velocity.

In order to achieve the various aspect ratios a number of special discs with varying crown curvatures were employed. These discs were made of AISI-01 steel, hardened to 7.00 GPa, ground and polished to a surface finish of less than .05 µm RMS and with an out of roundness error of less than 5 µm. Between tests the discs were inspected for surface damage and if needed, reground and polished to bring them back up to specifications. The required normal load, obtained by a dead loading technique, can be calculated from the Hertz theory for elastic bodies in contact. The maximum contact normal stress P_O is given by;

(2-1)
$$P_O = \frac{1}{2\pi\varphi x} \sqrt[3]{\frac{3F_z E'^2}{R_e^2}}$$

CONTRACTOR OF THE PERSON

where F_z = contact normal load [N] P_0 = Hertzian contact stress [Pa] E'= composite elastic modulus [Pa] ;(231 GPa for steel) R_e = equivalent disc radius [m] $= (1/R_X + 1/R_y)^{-1}$ $\varphi_i x$ = Hertzian contact shape factors [-]

The various curvatures R_{x} and R_{y} as employed in this investigation are reported for each test in Appendix I-A. The Hertzian shape factors may be found in any good book on contact mechanics.

2-2 INSTRUMENTATION OF THE TRACTION TESTER.

→ おきを変わる

By suitably instrumenting the disc machine the relevant experimental parameters can be measured. In the experiments reported here the sideslip, sideways traction force, toroid surface temperature, rolling velocity and the degree of asperity contact were measured. The technique of measuring each of these variables will be discussed next.

2-2-1 THE MEASUREMENT OF THE TRACTION FORCE.

A ring dynamometer type load cell was used to measure the side slip force of the upper toroid assembly. It was found necessary that this load cell was thermally isolated from the machine because temperature variations tended to introduce drift into the signal. Also the active gauges had to be protected from the splashing hot test fluid as this gave rise to noise on the signal. The electrical signal from the load cell was conditioned for noise and amplified using common mode rejection techniques. The gain on the amplifier was adjusted so that a good range on the signal was measured for each test. Calibration of the load cell was done in situ by dead loading. This calibration was checked periodically but never was there any need for recalibration.

2-2-2 THE MEASUREMENT OF SIDE SLIP.

The skew angle was measured by using a direct current displacement transducer on the upper assembly and thereby measuring the rotation angle of this assembly. This skew angle gives the amount of side slip/roll ratio through the relationship;

(2-2)
$$\Delta V/U= \tan (\beta)$$

By measuring the amount of skew with the displacement transducer the side slip/roll ratio is obtained directly through;

(2-3)
$$\Delta V/U=K \Delta x$$

ن

where Δx is the displacement of the transducer and K a scale factor. The electrical output of the displacement transducer was filtered in an R-C network to provide a low-pass signal. The maximum frequency response of the R-C network was .1 sec. The displacement transducer was calibrated by rotating the upper assembly through a known angle and then calculating the amount of side slip for this angle.

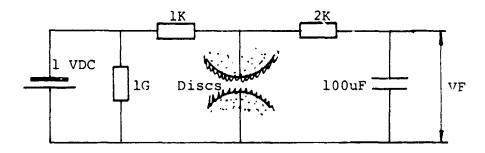
2-2-3 THE MEASUREMENT OF THE TOROID SURFACE TEMPERATURF.

In the analysis and reduction of the test data it is important that the disc temperature be used as the reference inlet temperature for the film thickness. This temperature can be measured by embedding a thermocouple directly below the surface of the toroid and then to take this signal out through mercury slip rings. This method is however not very practical when a number of different toroids are involved and is also very costly from an installation point of view. With care the surface temperature can also be measured by using a trailing thermocouple that rides on the disc surface. The disadvantage of this technique is that it can be speed sensitive in its response because of frictional heating.

The latter technique was employed here and care was taken to ensure that the contact force on the thermocouple was not excessive. A reference ice bath junction ensures that the same reference level for the thermocouple is used at all times. The signal from the thermocouple is amplified using common mode rejection techniques to minimize the influence of electrical noise and other disturbances. Calibration was done by the boiling water method adjusted for sea level differences. This calibration was checked periodically. Only slight deviations were encountered. Because of the frictional heating at the junction/toroid interface a variation of about 2 °C was found in the signal between stationary discs and those rotating at a surface velocity of 120 m/s. The overall reproducibility of the temperature measurement is better than 2°C.

The temperature on the machine was regulated through the use of heaters and coolers on the test fluid. This test fluid would be allowed to circulate freely before the start of a test series in order to bring the machine up to a uniform temperature. No specific effort was made however to maintain a given set point temperature during the test and the reason for this will become clear in the analysis of the results.

2-2-4 MEASUREMENT OF THE DISC SPEED.


The rotational velocity of the bottom disc was measured indirectly through the use of a tachometer on the drive motor. Knowledge of the gear ratios and the disc diameter permitted the calculation of the surface velocity of the disc. The electrical signal from the tachometer was scaled by using a divider circuit and filtered by using a low pass R-C filter with a 2 sec time constant. This method of velocity measurement is often used to give both magnitude and direction indication. Calibration of the system was performed on a periodic basis and some major problems with the testing stemmed from this source. Initially the tachometer was directly coupled to the motor shaft. This was a simple solution but may have caused some of the problems with this system. About half way through the test series the tachometer drive was changed to an indirect system with a rubber belt to isolate it from the motor vibrations. No further problems were experienced after that point.

2-2-5 CONTACT RATIO MEASUREMENT.

C

In order to measure the degree of asperity contact that took place at any one time an electrical conductance circuit as shown below was employed.

The selection of the various electrical components is such that only very low voltages are applied across the two discs to minimize the risk of surface damage through arcing. The output signal of network was essentially DC in nature with only slow fluctuations in the contact conditions being recorded. The signal from this circuit will be used in Chapter 6 to analyze the amount of asperity traction that is added to the fluid traction.

Schematic of the contact ratio measuring circuit.

2-3 TRACTION MEASUREMENTS.

Traction curves were obtained by the slow rotation of the upper assembly from a positive value of side slip/roll ratio to a negative value. The signals from the above discussed transducers were fed into a digitizer from where they were led into an Apple II+ computer for plotting and storage on magnetic media for future use. The computer would automatically trace the force versus slip curve on the screen. By reversing the direction of rotation of the machine, a duplicate set of curves can be obtained. For each experiment 500 data points were taken at fixed time periods of .2 seconds. Multiple data data points would be stored as separate entries.

After the completion of a test series the data would be recalled into memory of the computer and further manipulated. This manipulation consisted of the averaging of the multiple entries, the filling in of any gaps in the data through forward and backward interpolation, the comparison of the traces for the forward and reverse rolling direction and the centering of the traces about the center lines. After the centering operation the data would be smoothed by a 'N' point averaging technique for traction points after the peak traction points. For storage a geometric series was used so that the total traction trace was now represented by 40 data points for each measured variable. These traces were then stored on magnetic media and used for further man pulation and data extraction at a later point

2-3-1 TYPICAL TRACTION TRACES.

In total close to 400 traction curves were taken and it is not practical to reproduce every one of them here. A summary of all the traction traces is shown in Appendix I.

To show the trend that certain variables have on traction a number of typical curves were selected. Of the controlled variables it is important to show the variation of traction with speed, pressure and aspect ratio. The variation of temperature will be dealt with at a later stage. The selected traces are indicated

in tabular form below.

TDF-88		SANTO-50		
Speed [m/sec]	Flood€d	Starved	Flooded	Starved
50	820804-7	820804-8	820924-7	820924-8
80	820804-9	820804-10	820924-9	820924-10
120	820804-11	820304-12	820924-11	820924-12

TABLE 2:1 Traces selected to show the influence of speed on traction. Aspect ratio k=2 and the Hertz contact pressure $P_0=1.2$ GPa.

The above indicated traces are shown in Figures 2-4 to 2-7 in the grouping as indicated.

Po	k	TDF-88		SANTO-50	
[GPa]	[-]	Flooded	Starved	Flooded	Starved
1.0	5.6	820916-3	820916-4	820923-9	820923-10
1.2	5.0	821116-9	821116-10	821102-10	821102-9
1.4	2.0	820805-3	820805-4	820924-15	820924-16
1.6	1.0	820824-3	820824-4	821019-9	821019-10
1.8	1.0	820824-9	820824-10	821019-16	821019-15

TABLE 2:2 Traces selected to show the influence of pressure on traction.

The rolling velocity is kept constant at approximately 80 m/sec. These traction traces are shown in Figures 2-8 to 2-11 in the groupings as indicated.

Aspect ratio k	TDF-88		SANTO-50	
(-)	Flooded	Starved	Flooded	Starved
1.0	820824-15	820824-16	821019-3	821019-4
2.0	820805-3	820805-4	820924-15	820924-16
5.0	821116-15	821116-16	821102-18	821102-17

TABLE 2:3 Selected traction traces to show the influence of contact aspect ratio.

Hertzian contact pressure is $P_0=1.4$ GPa and the rolling velocity is 80 m/sec. These traces are shown in figures 2-12 through to 2-15 for the groupings as indicated.

2-4 THE APPLICATION OF SPIN.

Spin may be introduced on the contact by tilting the upper assembly through an angle a. This angle a is referred to as the spin angle, however it is not a direct measure of the spin itself. A suitable measure of spin is given by the variable J3, see Tevaarwerk [14].

(2-5)
$$J3 = \frac{3\pi}{8} \frac{m}{\mu} \frac{\omega \sqrt{ab}}{U} \sqrt{k}$$
where; $m = initial \ traction \ slope [-]$

$$\overline{\mu} = peak \ traction \ coefficient [-]$$

$$\omega = spin \ velocity \ on \ contact \ [rad/sec]$$

$$k = aspect \ ratio \ b/a \ [-]$$

$$U = contact \ rolling \ velocity \ [m/sec]$$

$$a,b = contact \ dimensions \ [m]$$

Most of the variables in equation (2~5) are known either from the traction curves or else from the contact geometry. The group $\omega\sqrt{ab}/U$ provides for a measure of the spin intensity on the contact and it will be used here to indicate spin as such. The angular spin velocity on the contact can be related to the angle of tilt through the following:

(2-6)
$$\omega/U = \frac{\sin \alpha}{(R_{V}\cos \alpha + e)}$$

€,

1

6

(

(

0

where α = spin angle [rad]
 e = center of curvature offset [m]

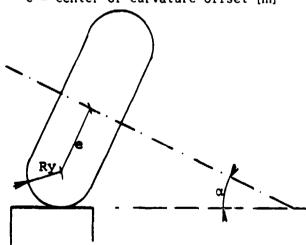


Figure 2-3: General disc arrangement for spin tests.

In some instances the distance e has a negative value i.e. the center of R_y is above the axis of rotation as shown in figure 2-3. Equation (2-6) still applies provided that the sign of the distance e is taken into account. The value of 'e' is listed in Appendix I-A together with the values for R_x and R_y . Because of the computer listing the notation differs slightly from that in tie text. R_x becomes RX and R_y becomes RY. When the toroids are tilted, a slight change takes place in their rolling curvature. This was kept small however by the proper selection of the radii. A simple correction can be made for this radius change through the following expression;

$$(2-7) R_X = R_V + e/\cos \alpha$$

では、一個などのでは、

In most cases this correction does not amount to very much.

Traction curves with imposed spin were obtained in the same manner as described for the zero spin traction curves. Typical curves obtained are shown in figure 2-16 to 2-17 for a variety of spin conditions. A broad selection of curves was made to show the influence of spin on the traces. Below is a Table indicating the degree of spin in each test shown in Fig. 2-16 and 17.

TDF-88		SANTO-50	
Test number	ω√ab/U [%]	Test number	ω√ab/U [%]
820825-3	.294	820923-3	.605
820825-9	.336	820927-10	.400
820825-15	.370	820927-15	.474
820902-6	.400	821022-9	.336
820916-9	.631	821022-4	.294
821118-15	1.11	821101-18	1.11

TABLE 2:4 Selected traction traces to show the influence of spin on traction.

A significant feature of traction tests with spin is that at the cross over point for side slip there is a finite amount of traction left as shown in the experimental data. This is not some kind of experimental problem but results from the elastic response of the fluid to small strain. In the spin traction curves the vertical axis give the 'average traction stress' rather than the usual traction coefficient. This average traction stress is related to the traction coefficient through the mean contact pressure as;

(2-8)
$$\vec{\tau} = \mu \, \vec{P}$$
 where; $\vec{\tau} = \text{average traction stress}$ [Pa] $\mu = \text{traction coefficient}$ [-] and $\vec{P} = \text{mean contact pressure}$ [Pa]

3-0 THEORETICAL ANALYSIS

' **(**

1

0

In order to understand the required analysis of the experimental data it will be helpful to consider the following discussion of traction. The ability of a fluid film, trapped under high pressure in the elastically deformed region of two loaded curved elements, to transmit a tangential force from one element to the other, is commonly referred to as friction or traction. The magnitude of this force depends on several variables such as :1) the contact kinematic conditions of slip, spin and sideslip, 2)the fluid present, 3) temperature, pressure and operating speeds. We will first examine the traction behaviour under simple slip only.

Under conditions of increasing slip between the two elements an increasing traction force is transmitted up to a certain limit at which point it will decrease with further slip. See Fig. 3-1

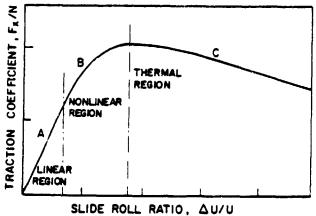


Fig. 3-1 Typical traction /slip curve.

There are three regions identified on this traction curve and the behaviour in each of these regions can best be described by the Deborah number. For a simple Maxwell viscoelastic model this number is the ratio of the relaxation time and the mean transit time, see Johnson and Tevaarwerk [9].

- (A) The linear low slip region. Thought to be isothermal in nature, it is caused by the shearing of a linear viscous fluid (low De) or that of a linear elastic solid (high De).
- (B) The nonlinear region. Still isothermal in nature but now the viscous element responds nonlinearly. At low De this portion of the traction curve can be described by a suitable nonlinear viscous function alone, while at high De a linear elastic element interacts with the nonlinear viscous element.
- (C) At yet higher values of slip the traction decreases with increasing slip and it is no longer possible to ignore the dissipative shearing and the heat that it generates in the film. Johnson and Cameron [6] showed that the shear plane hypothesis advanced by Smith [4] does account for most of their experimental observations in this region. More recently Conry et al [22] have shown that a nonlinear viscous element together with a simple thermal correction can also describe this region.

3-1 ISOTHERMAL TRACTION ANALYSIS.

COL FACTOR IN .

(,

O

The rheological model that describes the traction under simple slip in all three regions of operation fairly well is the J & T traction model as presented by Johnson and Tevaarwerk [9];

13

$$\frac{1}{G}\frac{d\tau}{dt} + F(\tau) = \dot{\gamma}$$

The dissipative function $F(\tau)$ is open to the choice of the researcher to fit the observed traction but Johnson and Tevaarwerk [9] found that the hyperbolic sine;

(3-2)
$$F(\tau) = \frac{\tau_S}{\eta} \sinh (\tau / \tau_S)$$
 where $\tau_S = \text{non-linear shear stress parameter.}$

described all of their experimental results in regions (A) and (B) very well. At higher pressures and for fluids with high traction coefficients this dissipative function may be replaced by the purely plastic behaviour of the material;

(3-3)
$$F(\tau) = 0 \text{ for } \tau < \tau_C; F(\tau) = \dot{\gamma} \text{ for } \tau = \tau_C$$
where
$$\tau_C = \text{limiting shear strength of the fluid.}$$

Whether the perfectly plastic behaviour of the material is intrinsic is not clear. Work by Johnson and Greenwood [23] suggests that it is possibly the result of thermal behaviour of the sinh model. For many applications the elastic/plastic traction model is adequate. It was used by Tevaarwerk and Johnson [24] and Tevaarwerk [14] to predict traction under various conditions of slip and spin. The analysis is completely isothermal in nature and for simple slip the traction is given by;

(3-4)
$$J4 = \frac{2}{\pi} \left[\tan^{-1}S + \frac{S}{(1+S^2)} \right]$$
 where $S = \frac{2}{3} \frac{J1}{\sqrt{k}}$

The shear strain rate in the fluid was taken to be the same everywhere in the contact and assumed to be constant throughout the film thickness. Its magnitude was taken to be;

$$\dot{\gamma} = \frac{\Delta V}{b}$$

Equation (3-4) results from the integration of stresses, caused by the shearing of an elastic element of pressure independent average shear modulus G, and the plastic stresses proportional to the local Hertzian pressure. The predicted traction from an elastic/plastic model compares very well with the experimentally observed values for combinations of slip and spin, provided that the spin or slip are not too large. Large slip or spin results in almost purely dissipative stresses over the

contact area and hence non-isothermal behaviour. Traction prediction under these conditions is still possible but the thermal effects need to be brought into the picture. Tevaarwerk [25],[16] presents two techniques for calculating such spin traction curves. The latter technique requires the shape of the traction curve in the large slip regime to provide a simple correction to the isothermally predicted spin traction.

Isothermal traction analysis was used in the reduction of traction data for the first report on the results of the traction measurement, Tevaarwerk [21].

3-2 THERMAL TRACTION ANALYSIS.

្នា

3

7

The ability to separate the elastic stresses from the plastic ones can now be used to perform a thermal traction calculation. The analysis presented here follows the technique outlined by Tevaarwerk [17] and [26].

Equation (3-4) resulted from the integration of isothermal elastic and plastic stresses over the contact area of an ellipse. For the region of contact under elastic stress the shear energy is conserved and therefore does not give rise to temperature increases. The plastically deforming region however, is non-conservative and a temperature rise in the fluid is expected. This will lead to a reduction in the local plastic strength of the fluid. Equation (3-4) may therefore be better written in its elastic and plastic parts;

$$(3-5)$$
 $J4 = J4p + J4e$

(3-6)
$$J4_{e} = \frac{4 \text{ S}}{\pi (1+S^{2})^{2}}$$

(3-7)
$$J4_p = \frac{2}{\pi} \left[tan^{-1}S + \frac{S(S^2-1)}{(1+S^2)^2} \right]$$

This modification is given by $\tau_{\rm C}/\tau_{\rm O}$ where $\tau_{\rm C}$ is the average stress under thermal conditions and $\tau_{\rm O}$ is the average stress under isothermal conditions. We are dealing therefore with averaged stresses in the plastic region of the contact even though the isothermal stress distribution is according to the Hertzian pressure. This seemingly contradictory assumption is supported by theoretical evidence by Tevaarwerk [25]. The modified equation would therefore be:

(3-8)
$$J4_t = J4_e + \frac{\tau_c}{\tau_0} J4_p$$

The modification term τ_C/τ_0 can be found from a thermal balance over the contact region under plastic stress. This region can be thought of as a thermal

source whose heat is conducted/convected away. The length of the source is a function of the location of the onset of plastic deformation after the initial elastic region, however in this simple model we will take the source length to be "a" where this is the semi contact length in the running direction. As a simple thermal balance we will use the expression reported by Johnson and Cameron [6] for the shear plane temperature;

(3-9)
$$\theta_{c} - \theta_{o} = q \frac{h}{k_{f}} [.1 + \frac{.5}{\sqrt{P_{e}}}]$$

where;

+ Continue of

(3-10)
$$P_{e} = \frac{a \rho_{S} C_{S} U}{k_{S}} \left\{ \frac{k_{S} h}{k_{f} a} \right\}^{2} [-]$$

and

. C

1(

q = average thermal strength of the source [W/m³]

 θ_c = shearplane temperature in the contact [°C]

 θ_0 = inlet temperature of the fluid [°C]

kf = thermal conductivity of fluid in the contact [W/m°C]

h = central film th.ckness in the contact [m]

 k_s = thermal conductivity of the roller material [W/m°C]

 C_s = specific heat of the roller material [J/kg°C]

 $\rho_{\rm S}$ = density of the roller material [kg/m³]

This expression is only valid when the heat is <u>conducted</u> through the film and <u>convected</u> away by the discs, a condition that is true for most traction drive contacts. The strength q of the source is given by;

$$(3-11) \qquad q = \tau \Delta U$$

In order to proceed any further we need a relationship between temperature and the shear strength of the fluid. A typical relationship that has its roots in the Eyring theory of fluid transport is given by;

(3-13)
$$\tau(\theta) = \frac{1}{C} \left[A + BP + (\theta+D) Ln \left(\frac{2\dot{\gamma}CE}{\theta+D} \right) \right]$$

where; A = viscosity temperature constant [°C]

B = pressure viscosity constant [°C/Pa]

C = non-linear shear stress constant [°C/Pa]

D = fluid solidification temperature [°C]

E = fluid viscosity constant [Pa.sec]

D = ----- of Abs fluid in Abs cambook (Do

P = pressure of the fluid in the contact [Pa]

At first sight it seems that this equation has five disposable constants in it,

however two of these constants (A and D) are derived from the atmospheric viscosity temperature relationship, and one more (B) can be obtained from the Barus viscosity pressure relationship. The constant D is known as the solidification temperature; the temperature to which the fluid should be cooled to become solid like under atmospheric pressure. Only the constants C and E need to be determined experimentally from the traction results and this will be done in the next chapter. It should be noted here that the ultimate aim is to derive the fluid traction parameters such that they apply for all the experimental conditions reported here. In the next chapter a gradual development towards this goal will take place.

121

By using equations (3-9), (3-10), (3-11) and (3-13) the average thermal shear stress can be obtained for a given set of conditions. In equation (3-8) we need the ratio of the average contact shear stress under thermal conditions to that under isothermal conditions. This is really the ratio of the shear stress given by equation (3-13) evaluated at the shearplane temperature $\theta_{\rm C}$ (from equation 3-9) and the shear stress as evaluated at the inlet temperature conditions $\theta_{\rm O}$. The other contact conditions remain the same for this ratio calculation.

In order to verify that the fluid in the traction contact behaves as indicated by equation (3-13) a slightly rewritten form will be used so that a straight line relationship of the experimental results verifies the validity of the model (see sec 5-2).

4-0 CALCULATION OF THERMAL TRACTION CURVES.

A simple thermally influenced traction curve can now to calculated from equation (3-8),(3-9) and (3-13) provided of course that we have sufficient experimental parameters.

6-3-1

In almost all practical situations of contacts under traction there is a degree of sideslip and spin present. These can influence the traction behaviour rather strongly. We shall examine an exact method of incorporating the influence of sideslip and an approximate method of allowing for spin.

4-1 INFLUENCE OF SIDESLIP.

▲ ■人物 とんか

 \mathbf{e}

0

Sideslip is the slip of the two contact surfaces perpendicular to the rolling velocity. It occurs mainly because of misalignment in a system or it can be due to a sideways force. Its influence can be incorporated very simply by vectorial methods. All the calculation techniques and thermal corrections thus far discussed apply. Hence we may say that;

(4-1)
$$J4 = \frac{2}{3} \frac{J1 \psi}{S / k}$$
; $J5 = \frac{2}{3} \frac{J2 \psi}{S / k}$

(4-2)
$$\psi = \frac{2}{\pi} \left[\tan^{-1}S + \frac{S}{1+S^2} \right]$$

(4-3) where
$$S = \frac{2}{3} \sqrt{\frac{J1^2 + J2^2}{k}}$$

Also equation (3-11) is modified to read;

$$(4-4) q = \sqrt{\Delta U^2 + \Delta V^2}$$

The solution techniques remain exactly the same as before.

In the experiments as performed in this investigation all the results were purposely taken under conditions of side slip so as to avoid the use of large motor generator sets. As can be seen though the analysis is identical to the longitudinal slip traction analysis and so the equations as shown in Chapter 3 are directly applicable.

4-2 INFLUENCE OF SPIN.

Spin in a contact is the result of the geometric configuration that makes up the contact and the two contacting elements. The influence of spin is not readily implemented over the entire domain of spin, however there are some simplified approximate solutions that can be applied.

4-2-1 INFLUENCE OF SPIN IN THE LOW SLIP REGION.

When the amount of slip on a contact is low it is possible that we have an elastic/plastic stress distribution. The exact distribution depends on the combination of spin and slip. For small values of longitudinal slip then there are three separate regions of influence that we may consider as outlined by Tevaarwerk and Johnson [24] and shown in Fig. 4-1. This map is based upon the influence of spin on the 75% slip traction point.

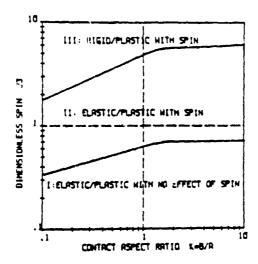


Fig. 4-1 Regions of influence of spin.

These regions are:

- I) Traction can be predicted with an elastic/ plastic model without the influence of spin
- II) Traction is predicted with an elastic/ plastic model with the influence of spin
- III) Traction is predicted with a rigid/plastic model with influence of spin.

Because of the influence of elastic effects in region I and II it might be expected that thermal influence is small also. In region III all the shear is of a dissipative nature and hence we would expect a thermal influence. Because the rigid/plastic analysis is applicable, a simple thermal correction is possible as outlined by Tevaarwerk [16]. This correction technique is based upon the concept that equivalent shear plane temperatures give rise to identical fluid shear strength. Hence by equating the amount of work done on the fluid due to spin to the amount of work in simple slip we can formulate a parameter called the "slide ratio". This ratio indicates the equivalent amount of simple slip that a contact has when under slip and spin.

The ratio is defined as:

(

$$\frac{\Delta U}{\Delta U'} = J4 + J6 \frac{J3}{J1}$$

- (4-6) where $\triangle U' = \text{slip in the contact with spin}$
- (4-7) and ΔU = equivalent slip in the contact without spin

and may be calculated from the rigid/ plastic analysis. Fig.4-2 shows the slide ratio as a function of the contact aspect ratio and the slip to spin ratio.

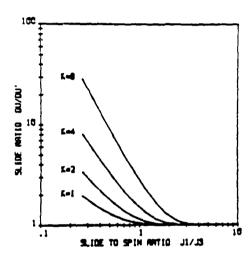


Fig.4-2 Slide ratio as a function of aspect ratio and slip/spin ratio.

There is no exact analytical expression for these curves, however they can be calculated quite readily, see Tevaarwerk [14]. In order to predict the with spin traction we also need the traction results from the rigid/plastic analysis. These curves are shown in Fig. 4-3 and can also be calculated quite readily.

The with spin traction can now be calculated quite simply by using Fig.4-3 to obtain the slide ratio for a given slip and spin. After having obtained the equivalent slip this quantity is now used in equations (3-5,3-6,3-7,3-8),(3-9),(3-11), and (3-13) to get the average thermally influenced shear strength of the fluid. From this we calculate the traction coefficient. B using Fig.4-3 find the dimensionless traction at the indicated slip/spin condition, multiply by the traction coefficient just obtained to get the actual value of the current traction coefficient.

4-2-2 INFLUENCE OF SPIN IN THE REGION OF LARGE SLIP.

The essence of the argument for using the rigid/ plastic (and hence the simplified

thermal correction) analysis in Region III is that the entire stress distribution consists of plastic stresses. In the above case it is caused by the large spin component, however there is no difference if it is brought on by a rather large value of slip and small values of spin. In fact any time that we are dealing with traction in the thermal region one can apply the methods as for region III.

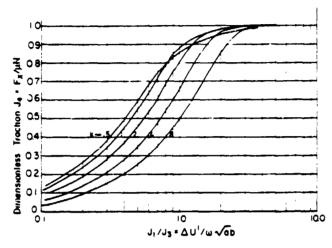


Fig.4-3 Spin traction curves as a function of aspect ratio and slip/spin ratio.

4-2-3 THERMAL INFLUENCE OF SMALL SPIN.

1 1

The thermal influence of small spin values in the region of combined elastic and plastic effects can also be included quite readily if the traction calculation techniques as outlined by Tevaarwerk [14] are followed. It is merely required that the plastic traction stresses are integrated due to slip and due to spin. From these integrals an equivalent amount of slip can be calculated by the same methods as outlined by Tevaarwerk [16]. This method is used in this report to calculate the thermal small spin traction curves because the methods outlined in 4-2-1 would ignore any elastic effects in the fluid. More information on this method will appear in a future publication.

5-0 EXTRACTION OF THE TRACTION PARAMETERS.

In order to use the technique as outlined above for the prediction of traction one does have to have the values of the thermal constants and those that govern the initial linear range. We shall deal with the extraction of the parameters for the two ranges separately.

5-1 EXTRACTION OF THE SHEAR MODULUS PARAMETERS.

As discussed in chapter 3 the initial linear slope on a traction curve can be the result of either a viscous or an elastic response of the material in the contact to the strain implied. The parameter that determines the actual response is the dimensionless grouping of the relaxation time of the material in the contact and the transit time of this material through the contact. For a simple Maxwell type material this number is known as the Deborah number and is given by;

5

O

where η = viscosity of the fluid in the contact [Pa.sec]

U = transit velocity of fluid in the contact [m/sec]

a = semi contact length in rolling direction [m]

G = shear modulus of the fluid in the contact [Pa]

Now under the assumptions of a simple pressure distribution according to Hertz, a constant film thickness in the contact and a constant shear modulus over the contact area the initial small strain behaviour for the material will be elastic if the Deborah number is larger than 10 and will be viscous in response if the Deborah number is less than .1. In between these two values the response is due to a mixed viscoelastic behaviour.

Many assumptions have been made before arriving at this point, however even with more complicated analyses where the pressure is allowed to influence the viscous and elastic properties it is found that the transition points occur at about the same Deborah numbers. Also for the range of parameters normally encountered in traction drives and testers the Deborah number is such that the initial slope of the traction curve is almost always governed by the elastic properties of the material in the contact. In the analysis of the data as performed here this assumption is implicit.

5-1-1 SHEAR MODULUS FOR CONSTANT PROPERTIES.

When the initial linear response is completely elastic it is quite easy to calculate the value for the actual modulus that caused this slope. Under the assumptions of constant properties throughout the contact this modulus can be extracted from the initial slope using the following equation;

(5-2)
$$G = \pi m \frac{P_O h}{4 a}$$
 [Pa]

where m = initial linear elastic slope [-]

14 3 5 5 5 W 1 .

(

()

€

Po = maximum Hertz pressure in the contact [Pa]

h = film thickness in the contact [m]

a = semi contact size in the rolling direction [m]

This equation is applicable regardless of whether the slope is measured under longitudinal slip or under side slip.

In Appendix II the results of the slopes from the experiments analyzed for modulus are indicated in the column labeled GB. Only the slopes from the spin free experiments were analyzed for shear modulus. These results were calculated with the isothermal value for the film thickness as indicated by H0 in this Appendix. The film thickness H0 was calculated from the expression for the central film thickness as reported by Hamrock and Dowson [32]. In order to modify the value of the shear modulus to allow for inlet shear heating the printed value under GB should be multiplied by the value of YI. Values for YI were calculated based upon the inlet shear heating theory of Wilson and Murch [33].

Examination of these results shows that there appears to be very little influence of pressure on the modulus. This is caused by the fact that some of the slope response is due to the creep compliance of the discs used to test the traction fluid.

5-1-2 SHEAR MODULUS WITH A SIMPLE COMPLIANCE CORRECTION.

One of the criticisms that is often raised at the above analysis is that it neglects the influence of the disk compliance on the measured slope. Disk compliance is the result of the elastic creepage of the disk material due to the tract.ve stresses on the surface. The traction response in the initial linear range is affected by this disk creepage in that it makes the slopes lower than if the discs were infinitely stiff. An exact correction of the modulus for the disc compliance is not possible at the moment. The analysis that is presented here is that due to Johnson and Roberts [8].

If we let m' be the slope of the traction curve for dry rolling bodies, then from the addition of the compliances of the discs and the film a simple corrective term for the shear modulus may be derived as shown in equation (5-3). From this expression it is obvious that when the measured slope approaches the dry slope the corrected value for the shear modulus tends to infinity.

(5-3)
$$G_C = G \frac{m'}{(m' - m)}$$

where G_C = simple compliance corrected modulus

The dry slope m' can be calculated from the expression given by Kalker [27] as;

$$m' = \frac{G_S}{Q P_O} \qquad [-1]$$

1X 17 6 13 X

0

where
$$G_S$$
 = shear modulus of the disc material [Pa]
 Q = Kalker coefficient [-]

The value of the Kalker coefficient depends on the aspect ratio of the contact and the direction of slip. Below is a table which gives these values for the aspect ratios and tests as reported here.

Table of Kalker Coefficients Q		
aspect ratio	coefficient	
k	Q	
1	.56	
2	.70	
5	.81	

The fluid shear modulus as calculated by this method are indicated in Appendix II under the column GC. Again to modify this result for inlet shear heating it should be multiplied by the factor YI. From the results it may be observed that there is now a definite increase in the modulus as the contact pressure increases.

5-1-3 SHEAR MODULUS WITH A COMPLEX MODULUS CORRECTION.

Some of the drawbacks on the foregoing analysis are that we are still using the compliance of the total film and of the total disc system and then combining them for a correction term. A much more detailed compliance correction was developed by Johnson, Nayak and Moore [28]. These compliance corrections were based on the fact that elastic effects can only occur at high enough pressures, so that for a normal lubricated contact only a portion would be elastic in response, the remainder being viscous. Suitable charts for the correction term to be used with the simple modulus were presented for longitudinal slip and for an aspect ratio of 1 and a line contact. In using this data here we should be aware that the tests presented here are obtained under conditions of side slip only. The error introduced by this is expected to be about 46% for the contact aspect ratios as used here and this is based upon the simple dry slope ratios from Kalker's theory.

Since the correction factors are reported in graphical form a more suitable method based upon a correlation of the results will be used here. It may be expected that the new correction factors are an improved form of the 'simple correction term' as used in the previous section so that the basic form of the expression can be retained. From the shape of the curves this appears to be the case. By employing simple shift correction factors the following equation can be derived;

(5-5)
$$G_{j} = G \left\{ \frac{2.25-1.25C' + (.25C'-.2)/k}{C'-m/m' + (.25C'-.3)/k} \right\}$$
 [Pa]

コム 物で かんしつし

O

where C'= fraction of semi contact length under elastic response [-]
 m = measured slope [-]
 m'= dry calculated slope [-]
 G_j= fully corrected modulus [Pa]
 k = contact aspect ratio [-]

The fraction C' can be calculated from the assumption that no elastic effects occur if the viscosity is less than .1 MPa.s. With the knowledge of the pressure viscosity coefficient and assuming a Hertzian pressure distribution, C' can be calculated from;

(5-6)
$$1 - C'^2 = \frac{\text{Ln } [100000/ \eta(\theta)]}{\alpha(\theta) P_0}$$
 where $\eta(\theta)$ = atmospheric viscosity [Pa.sec]
$$\alpha(\theta) = \text{pressure viscosity coefficient } [Pa^{-1}]$$

The fluid shear moduli calculated by this technique are listed in Appendix II under the lable GJ. The value of C' is also indicated. Because of the nature of the expressions in equation (5-5) it is possible to get a negative value for the shear modulus from this analysis. When this was the case a zero value would be entered in the data column. From the results it can be seen that the magnitude of the modulus does increase but so does the amount of scatter. For the time being it is not recommended to use this method of shear modulus correction.

5-1-4 COMPLEX CORRECTION WITH REDUCED PRESSURE EFFECTS.

As discussed in Chapter 3 the assumptions of Hertzian pressure distributions in the contact area do not hold when a fluid film is present. Due to the hydrodynamic action the pressure distribution is more peaky. This will have an influence in the calculation of the elastic region C as used in the foregoing analysis. To estimate the influence of the reduced pressure the shear modulus was calculated along the previous method but with the reduced pressure in equation (5-6). The reduced pressure may be calculated from the pressure ratio as given below;

(5-7)
$$P_{r} = 1 - 4 G_{e}^{-.25} \text{ YI}^{-3} \text{ e}^{(-2.3/\text{k})}$$
where G_{e} = Johnsons elasticity constant [-]
YI = Inlet shear heating factor [-]
k = aspect ratio (b/a) [-]
 P_{r} = fraction of the theoretical Hertz pressure [-]

The reduced contact pressure is then the product of the Hertzian peak pressure times the pressure ratio. The results including this effect are presented in Appendix II in the column labled GP for the modulus and as CP for the semi elastic contact length. Also the reduced film thickness due to inlet shear heating was used. As can be seen from the results in Appendix II there is not a significant change in the value of C and CP and hence the influence of reduced pressure is not very strong on the modulus.

5-2 EXTRACTION OF THE LARGE STRAIN PARAMETERS.

The large slip region, that is the region beyond the traction peak, is exclusively governed by the dissipative element in the rheological equation. All the elastic effects have completely disappeared so that it is now quite easy to extract the governing parameters for this region. In essence what is required is a reverse analysis of the traction calculation normally used for the calculation of the traction curves. As we shall see only two parameters are truly required to fit this large strain region.

Of the five parameters shown in equation (3-13), two derive from the simple fit of the atmospheric temperature viscosity data to the Vogels viscosity equation;

(5-8)
$$\eta(\theta) = V0 e^{\frac{A}{(\theta+D)}}$$

D. Br. A. S. S. W. Jan

O

The constant B comes from the description of the Barus pressure viscosity relationship in the form;

(5-9)
$$\eta = \eta(\theta) e^{\frac{BP}{(\theta+D)}}$$

This form can be directly derived from the Roelands equation for viscosity pressure. Table 5-1 shows the viscosity constants as used for the two fluids tested, together with the thermal parameters as used in (3-9) and (3-10). These constants remained the same throughout the analysis and prediction of the data.

	Santo50	TDF-88	Units
V0	1.69E-04	6.75E-05	[Pa.sec]
A	585	777	[°C]
D	75	84	[°C]
В	2.98E-06	2.98E-06	[°C/Pa]
k _s	15	15	[W/mºC]
kŗ	.15	.15	[W/mºC]
ρs	7800	7800	[kg/m ³]
C _s	500	500	[J/kg°C]

Table 5-1 Fluid and roller material constants used in the analysis.

It remains therefore to find the constants E and C. These can be derived from the thermal region of the traction curve itself by curve fitting equation (3-13) to it. For this purpose it is better to write this equation in a slightly different form;

(5-10)
$$\frac{\tau}{\theta + D} = \frac{1}{C} \left[\frac{A + BP}{\theta + D} + Ln \left(\frac{2 \mathring{\Upsilon} C E}{\theta + D} \right) \right]$$

For the temperature θ we will use the shear plane temperature θ_C as calculated by equation (3-9). From the above equation it is apparent that if this relationship holds then the results from the traction measurements should form a straight line when plotted in the above fashion. The slope of this line reflects the value for C while the intercept is indicative of the value for E.

In these calculations the shear strain rate is considered to be constant over the contact area and throughout the thickness of the film. Its magnitude is given by;

$$\dot{\gamma} = \Delta U/h$$
 [sec⁻¹] where $h = central \ film thickness$ [m]

The central filmthickness is calculated from the expressions by Hamrock and Dowson [32]. Further modifications to this film thickness to allow for inlet shear heating were made by using the Wilson and Murch [33] approach.

5-3 ANALYSIS OF THE EXPERIMENTAL RESULTS.

From the experimental traction data the curves as selected in Chapter 2 were analyzed in the above fashion and the results plotted in Fig. 5-1 through 5-6. For the remainder of the traction curves the resulting values of E and C are shown in Appendix III under the columns E1,C1,R1 and E2,C2,R2. The difference between these constants is that the suffix '1' denotes isothermal inlet conditions while suffix '2' denotes the results with inlet shear heating effects. In each case a best fit value of C and E were selected and the corresponding R values indicate the regression coefficient obtained.

In order to reproduce the original traction curves we will need three separate and distinct constants (G,E,C). However if the values of C2 and E2 are examined in Figures 5-1 to 5-6, or in Appendix III it can be observed that for a given fluid these parameters do not change muc... This suggest that more than one traction curve can be analyzed in the above fashion to get just one pair of values for a whole family of traction curves.

5-3-1 MULTIPLE TRACTION CURVE REGRESSION.

O

Multiple curve regressions were carried out for the groups of traction curves as shown in the report and the results are shown in Fig. 5-7 to 5-12. In each case it may be observed that the fit is reasonable. An even better fit can be obtained if those curves that have some asperity contact are left out. This was done for the results as reported in Fig.5-13 and 5-14. These two figures include all the traction tests for the two fluids as shown in Chapter 3 with the exception of those tests

Page 26

where some asperity contact took place. As can be seen from these two figures the degree of fit is remarkably good if we remember the fact that the traction tests were taken under such varying conditions of speed, aspect ratio, contact pressure and inlet temperature. This suggest that perhaps as few as two constants are required to describe the large strain traction region on a traction curve taken under any condition, provided that it is fully flooded. For partially flooded traction curves a different approach will be used.

6-0 TRACTION PREDICTION

We will now turn to the prediction of the traction traces that we have analyzed so far. There are several ways in which this can be done depending upon the source of our data. First we will compare the theoretical and experimental data based upon the constants as derived from the curves themselves. This serves to illustrate that the general shape of the experimental traction curves is adequately predicted by theory. This will be done for curves without and with spin.

Next we will restrict the prediction technique so that we will use only constants as fitted to a whole family of experimental traction traces. From the comparison of predicted with the experimental results we should be able to ascertain the validity of the fact that the non-linear traction constants E and C are common to all the traction curves and can therefore be thought of as being intrinsic to the fluid, at least for a good range of the experimental conditions. Again non spin and spin traction results will be examined.

Thirdly we will take the effect of asperity traction into account. In order to do that we require that the theoretical prediction technique be used to to correctly predict the fluid traction portion of the experimental data only. The difference between the fluid portion and the experimentally observed traction will be taken as the traction due to asperities in contact.

6-1 PREDICTION WITH INDIVIDUAL CONSTANTS.

0

To see the accuracy of the prediction technique with the elastic/plastic thermal method the first way to predict the traction traces is by using the very constants that were derived from them. For each trace this means the three fluid parameters of shear modulus, and the two parameters from the nonlinear thermal analysis. At this point it is possible to ignore the influence of asperity traction since this has gone into the constants that were obtained from the curves. To ignore this asperity traction is not correct however for the sake of comparison the starved traces are included here. Fig 6-1 and 6-2 show the experimental traction traces without starvation and in Fig 6-3 and 6-4 compare the predicted traces (continues lines) with the experimental results (symbols). These predictions are for the traces without spin. Fig 6-5 and 6-6 compare the theoretical traction traces with the experimental data for contacts under spin. All these predictions are based upon individual constants. The original experimental spin traction curves are shown in Fig 2-16 and 2-17. Similarly Fig 6-11 and 6-12 show the experimental traction traces that include some asperity contact. The comparisons between predicted and experimental traces for these are shown in Fig 6-13 and 6-14. The constants used in the prediction are listed under the trace numbers in Appendix II and III.

From the comparison the prediction technique appears quite successful with good fit in the initial traction region and in the nonlinear region. At larger slip the prediction of traction is above the experimental. The reason for this is thought to be that the disc temperature in the experimental traces increases with increasing slip. In the theoretical predictions however it is kept constant. The experimental traces will therefore show a lower traction than the theoretical. For further clarification on the various predictions and curve numbers see Table 6-2.

6-2 PREDICTION WITH MULTIPLE FITTED CONSTANTS.

That the predictions as described above give good predictions is more or less expected because otherwise there would be a serious fault in the analysis somewhere. However based upon the multiple curve fit that we did for the non-linear parameters it is tempting to use these for the theoretical predictions. This means that we would only have two non-linear constants for the entire traces as predicted in Fig. 6-3,6-4,6-5 and 6-6. Also with this technique we can separate the asperity traction from the fluid traction by predicting what the traction for the particular conditions would have been based upon the fluid traction only. Comparison with the experimental traces allows us to separate the asperity traction as a function of the number of asperities in contact. The number of asperities in contact can be obtained directly from the voltage fraction from the experiments.

In order to use the theoretical prediction technique as outlined we will need a relationship for the dependency of the shear modulus on temperature and pressure. For the range of variables as shown in Fig 6-1 and 6-2 the modulus was fitted to the following expression;

(6-1) For Santo50:
$$G_C = .131 + .122 P_O -.002 \theta_O$$
 [GPa] and TDF88 : $G_C = .077 + .061 P_O -.0007\theta_O$ [GPa]

Also the non-linear constants were obtained from the curve fit shown in Fig. 5-13 and 5-14. These constants are;

(6-2) Santo50: E2 =1.3557E-06 C2=2.803E-05 TDF88: E2 =1.1402E-06 C2=3.108E-05

The comparison between experimental and predicted tractice traces shown in Fig. 6-7, 6-8, 6-9 and 6-10 were based on these constants only. The accuracy in the prediction is very good especially if we consider that only two non-linear thermal and one isothermal constant are used for the entire prediction of the traces. This proves that the elastic/plastic thermal model is in fact adequate as a traction model. Further improvements could be made if for example a Roelands type viscosity pressure relationship were used and if some thermal allowance were made for the increase in the disc temperature with increasing slip. All in all though the prediction is very good keeping the simplicity of the model in mind.

6-3 THEORETICAL TRACTION PREDICTION WITH ASPERITY CONTACT.

1

So far we have only dealt with the fluid traction in the contact. We have carefully selected traces that were free of asperity contact for our data prediction. However we know from the experimental results that asperity contact does occur under conditions of starvation where inadequate fluid is supplied to the inlet of the disc, or under conditions of high temperature and low speed where the film formation capability of the fluid is insufficient. With the help of the prediction technique for the fluid traction in the contact we can obtain the influence of the asperity

traction for a given asperity contact condition.

The experimental traction curves that have varying degrees of asperity contact are shown in Fig. 6-11 and 6-12. The theoretically predicted traces by the method used in section 6-2 are shown in Fig 6-15 and 6-16. These traces are for the pure fluid traction only. Any difference between them and the experimental traces must be due to the asperity traction. This difference can be obtained by superimposing one curve on the other and measuring the average difference between the two traces. It would be expected that only some average difference can be obtained in this way. The table below gives these averaged differences for the sets of traction traces.

Asperity Traction for TDF88 Volt. Fract. Fz Asp. Tract.			Asperity Traction for Santo50			
			Volt. Frac	Asp. Tract.		
(~)	(N)_	(N)	(-)	(N)	(N)	
.75	600	13.5	.78	600	18.5 *	
.8	600	13.5	.68	600	11.9	
.8	600	10.4	.85	600	8.5	
.91	600	6.1	.86	1200	18.6 *	
.85	800	6.0	.69	1000	13.2	
.94	400	6.5	.96	600	3.9	
.69	1000	9.3 *	.94	400	3.4	
			.85	400	4.5	

Table 6-1: Asperity traction forces for the traction curves shown in Fig. 6-11 and 6-12. The items with a '*' were not included in the final correlation.

Figures 6-21 a,b blow show the results from this table in a more direct form.

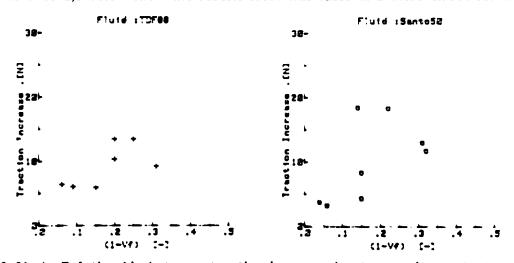


Fig 6-21a,b: Relationship between traction increase due to asperity contact and the contact fraction for TDF88 and Santo50.

6-3-1 ANALYSIS OF THE ASPERITY TRACTION.

Û

From the results in the table it can be seen that the amount of extra traction resulting from the asperity contact is roughly proportional to the contact fraction.

4

This contact fraction is given by;

(6-3)
$$C_f = 1 - VF$$

where $VF = Voltage fraction of the film$

This voltage fraction is measured for each experiment and is an indication of the the separation of the discs. The contact fraction $C_{\mathbf{f}}$ is a direct indicator of the number of asperities that are in contact. Leather et al [29] shows that the average number of contact points is related to the contact fraction as follows;

(6-4)
$$f = C_f / (1 - C_f)$$

when we are dealing with a rolling/sliding circular contact. At small values of C_f we see that the number of asperity contacts is directly proportional to the contact fraction. Even at values of C_f = .2 the error in assuming linearity is only 25%

The other point that we need to address is the relationship between asperities in contact and the traction increase that results from this. For the theory of asperity contact by Greenwood and Williamson [30] the surface roughness is assumed to be Gaussian in its height distribution and in its peak distribution. For this form of distribution they showed the following for the contact of asperities between dry surfaces;

- i) the number of contacts is proportional to the load.
- ii) the average contact area per asperity is load independent.
- iii) the average pressure per asperity is load independent.

We will assume that conditions ii) and iii) hold even for lubricated contacts. Condition i) is not applicable here because the load is not only carried by the asperities but by the fluid film as well. We will however assume that all the load is carried by the film so that the number of asperities in contact will have no influence on the local pressure in the contact. Even though the averages of the asperity contact pressure and the areas are constant for surfaces with Gaussian roughness distribution it is possible that the larger contact areas predominate in the traction response. Also the traction from the asperities will depend on the shear behaviour of the material at the asperities. This material could be some traction fluid trapped under the asperity contact itself, forming a micro traction contact, or it could be some solid material such as some boundary lubrication additive or perhaps even the disc material itself.

The implications of these two possibilities are quite different for a traction contact and it is important for us to establish which mechanism predominates. The two possible forms of asperity traction can be stated in the following two hypotheses;

I): the increase in traction force is proportional to the number of

contacts or.

II): the increase in <u>traction coefficient</u> is proportional to the number of contacts.

We shall use the experimental data to test the two hypotheses and establish which is the more correct form to use. We can do this by fitting straight line relationships to the actual asperity waction data and observing the degree of fit obtained. The equations that will be used are as follows:

(6-5) for hypothesis I):
$$F_y(asperity) = f * C3$$

,, ,, II): $F_y(asperity)/F_z = f * C3$

Testing the two hypotheses on the asperity traction data we obtain the following results;

	Santo50			TDF88		
	R²	F	C3	R^2	F	C3
For hypothesis I):	.39	4.5	25	.56	7.5	23
For hypothesis II)	: .41	4.8	.033	. 2	1.5	.023

Where R² is the square of the regression coefficient and F is numerical value for the 'F' test used in statistics, see for example Draper and Smith [31]. It is not very clear from these values which of the hypotheses are correct. In both cases however the degree of fit indicated is very low. This can be corrected somewhat by eliminating some outstanding data points. After eliminating the points indicated by a star (*) in Table 6:1 we obtain the following results;

		Santo50			TDF88		
		R^2	F	C3	R²	F	C3
For hypothesis	I) :	.89	43	24	.85	28	37
For hypothesis	II) :	.71	12	.028	.64	9	.055

The above values now clearly favour hypothesis I) over II). Furthermore the dependence of the asperity traction seems pretty nearly independent of the type of fluid in the contact. This suggests that we are dealing with the traction due to some common material in both cases such as an additive or perhaps even the disc materials themselves. Lumping all the asperity traction data together results in the following values;

Hypothesis I):
$$R^2 = .75$$
 F=32 C3=25
Hypothesis II): $R^2 = .46$ F=9 C3=.03

Again hypothesis I) is clearly more plausible than II). From this analysis the dependence of asperity traction on the contact fraction is given by;

(6-6)
$$F_V(asperity) = (1-VF)/VF * 25$$
 (N)

The overall degree of correlation between this expression and the experimental results may be observed from Fig. 6-22.

Expression (6-6) can now be used in the prediction of the traction curves which have a significant amount or asperity contact in them. The asperity traction should be added in as a proportion of the plastic traction, ie. when all the traction is due to complete plastic like slip in the contact then the full amount of asperity traction is added in. On the other hand when the contact traction is solely due to elastic effects the fact that asperities are in direct contact does not result in a higher traction. The reason for this is that the initial traction slope is mostly due to the elastic creep of the disc material and so the elastic deformation of the asperities in contact would be the same as the remainder of the roller material in the contact. Not until actual sliding of one asperity past another occurs will the effect of asperity contact reveal itself in an increased traction. In fact it is entirely conceivable that for very rough surfaces in dry contact the effect of asperity contact is one whereby the initial elastic slope is lower than when the surfaces are smooth.

Fig. 6-17 to 6-20 compares the predicted with the experimental traction curves with the asperity traction included. The agreement between theory and experiment is very good in most cases, considering the rather simple modeling that is used here.

	FIGURES SHO EXPERIMEN			FIGURES SHOWING THE COMPARISON WITH PREDICTED.			
Fig.	Fluid name	Spin	Starved /flooded	Fitted Constants.	Fixed Constants.	Including asp. traction	
6-1	TDF88	none	flooded	6-3	6-7	N/A	
6-2	Santo50	none	flooded	6-4	6-8	N/A	
2-16	TDF88	yes	flooded * flooded *	6-5	6-9	6-19	
2-17	Santo50	yes		6-6	6-10	6-20	
6-11	TDF88	none	starved	6-13	6-15	6-17	
6-12	Santo50	none	starved	6-14	6-16	6-18	

Partially starved results

Table 6-2: Comprehensive overview of the figure numbers showing the experimental and predicted data.

7-0 CONCLUSION

 \mathbf{C}

0

O

Ultra high speed traction tests were performed on two traction fluids commonly employed. The range of the tests variables were; contact pressure from 1 to 1.8 GPa, disc surface relocity from 50 to 120 m/sec, fluid inlet temperature from 50 to 120 °C, contact spin from 0 to 1.5% and inlet fluid supply from fully flooded to fully starved. A total summary of all the traction tests performed may be found in Appendix I. The resulting traction curves were reduced to three constants by using the Johnson and Tevaarwerk isothermal traction model coupled to a thermal correction technique for large slip and spin results. The three constants are the elastic shear modulus and two non linear thermal parameters and are reported in Appendix II and III.

Theoretical traction predictions were performed for a representative number of curves that showed the influence of rolling velocity, of contact pressure and of aspect ratio. To establish the accuracy of the thermal model the predictions were performed with increasing levels of independence of experimentally determined parameters. In the final resulting prediction only two non linear thermal parameters were used for the prediction of 15 different traction curves covering the entire range of variables as used in the investigation, with the exception of the influence of asperity traction. Comparison of these theoretical curves and corresponding experimental traces show very good agreement, in support of the Johnson and Tevaarwerk modified thermal model.

The influence of asperity traction was extracted from the experimental curves with starvation by predicting the traction under fully flooded conditions and using the difference to predict the asperity traction as a function of the number of asperities in contact. It was found that the amount of traction force per asperity in contact was pretty well independent of the traction contact conditions and also of the traction fluid. Comparison between theoretically predicted traction curves including the effect of asperity traction and experimental curves shows reasonable agreement.

It is felt that the degree of success that is shown by the theoretical predictions can be further improved upon by using the Roelands pressure viscosity equation and also by making allowance for the rising temperatures of the traction discs as slip increases. This will introduce one more disposable constant for the fundamental fluid traction data however it will result in an improved prediction of traction.

8-0 REFERENCES

- [1] Loewenthal, S. H., "A Historical Perspective of Traction Drives and Related Technology". Advanced Power Transmission Technology. G.K. Fisher, ed., NASA CP-2210, 1983.
- [2] Clark, O.H., Woods, W.W. and White, J.R. "Lubrication at Extreme Pressure with Mineral Oil Films". J. Appl. Phys., 22, (1951), #4, pp. 474-483.
- [3] Hewko, L.O., "Contact Traction and Creep of Lubricated Cylindrical Rolling Elements at Very High Surface Speeds". ASLE Trans., 12, (1969), pp. 151-161.
- [4] Smith, F.W. "Rolling Contact Lubrication-The Application of Elasto hydrodynamic Theory". Trans. Am. Soc. Mech. Engrs. 87, (1965), Series D, p. 170.
- [5] Smith, R.L., Walowit, J.A. and McGrew, J.M. "Elastohydrodynamic Traction Characteristics of 5P4E Polyphenyl E her". J. Lubr. Technol. Trans. ASME., 95, (1973), pp. 353-362.
- [6] Johnson, K.L. and Cameron, R. "Shear Behaviour of Elastohydrodynamic Oil Films at High Rolling Contact Pressures" Proc. Inst. Mech. Eng. (London), 182, pt. I, #14, 1967, pp. 307-319.
- [7] Niemann, G. and Stoessel, K. "Reibungszahlen bei elasto-hydrodynamisher Schmierung in Reibrad- und Zahnradgetrieben". Konstruktion, 23, #7, (1971), pp. 245-260.
- [8] Johnson, K.L. and Roberts, A.D. "Observations of Viscoelastic Behaviour of an Elastohydrodynamic Lubricant Film". Proc. Roy. Soc. (London), Series A, 337, #1609, (1974), pp. 217-242.
- [9] Johnson, K.L. and Tevaarwerk, J.L. "Shear behaviour of Elastohydrodynamic Oil Films". Proc. Roy. Soc. (London), Series A, 356, #1685, (1977), pp. 215-236.
- [10] Daniels, B.K. "Non-Newtonian thermo-viscoelastic EHD Traction from combined slip and spin" ASME Preprint 78-LC-2A-2. ASLE/ASME Lubrication Conference, Minneapolis, Minnesota, October 24-26,1978.
- [11] Hirst, W. and Moore, A.J. "The effect of temperature on traction in elastohydrodynamic lubrication". Phil. Trans. Roy. Soc. of London, Sept. 1980, Series A, 298, #1438, pp. 183-208.

- [12] Alsaad, M., Bair, S., Sandorn, D.M. and Winer, W.O. "Glass Transition in Lubricants: Its Relation to Elastohydrodynamic Lubrication"., J. Lubr. Technol. Trans. ASME, 100, (1978) pp. 404-417.
- [13] Johnson, K.L., "Introductory Review of Lubricant Rheology and Traction". Proc. of the Leeds-Lyon Conference, Leeds 1978, pp. 155-161.
- [14] Tevaarwerk, J.L. "Traction Drive Performance Prediction for the Johnson and Tevaarwerk Traction Model". NASA TP-1530 ,(1979).
- [15] Magi, Mart, "On Efficiencies of Mechanical Coplanar Shaft Power Transmissions". Chalmers University of Technology, Gothenburg, (1974).
- [16] Tevaarwerk, J.L. "A Simple Thermal Correction for Large Spin Traction Curves" J. Mech. Design. Trans. ASME., 103, #2, (1981), p440.
- [17] Tevaarwerk, J.L. "Thermal Influence on the Traction behaviour of an Elastic/Plastic model" Proc. of the Leeds-Lyon Conference, Leeds 1980, pp. 302-309.
- [18] Loewenthal, S,H., Anderson, N.H. and Nasvytis, A.A. "Performance of a Nasvytis Multiroller Traction Drive." NASA TP-1378, (1978).
- [19] Kemper, Y. "A High Power Density Traction Drive", SAE Paper 790849, (1979).
- [20] McCoin, D.K. and Walker, R.D. "Design study of continuously variable roller cone traction CVT for Electric Vehicles", NASA CR-159841, Sept., 1980.
- [21] Tevaarwerk, J.L. "Traction Contact Performance Evaluation at High Speeds". NASA CR-165226, Sept., 1981.
- [22] Conry, T.F., Johnson, K.L. and Owen, S. "Viscosity in the Thermal Regime of Traction". Proc. of the Leeds-Lyon Conference, Lyon 1979, pp. 219-227.
- [23] Johnson, K.L., and Greenwood, J.A. "Thermal Analysis of an Eyring fluid in EHL Traction", Wear, 61 (1980), p 353.
- [24] Tevaarwerk, J.L. and Johnson, K.L. "The Influence of Fluid Rheology on the Performance of Traction Drives", J. Lubr. Technol. Trans. ASME., <u>101</u>, (1979), p 266.

0

0

C

(

Ü

0

- [25] Tevaarwerk, J.L. "Traction Calculations using the Shear plane Hypothesis" Proc. of the Leeds-Lyon Conference, Lyon 1979, pp. 201-213.
- [26] Tevaarwerk, J.L. "Traction in Lubricated Contacts". Proc. of the Int.

 Symposium on Contact Mechanics and Wear of Rail/Wheel systems. Vancouver 1982
- [27] Kalker, J.J. "On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction". Ph.D. Dissertation, Technische Hogeschool, Delft, 1967
- [28] Johnson, K.L., Nayak, L. and Moore, A.J. "Determination of Elastic Shear Modulus of Lubricants from Disc Machine Tests". Proc. of the Leeds-Lyon Conference, Leeds 1978, pp. 204-208.
- [29] Leather, J.A. and McPherson, P.B, "The Practical use of Electrical Measurements in Lubricated Contacts", Proc. of the Leeds-Lyon Conference, Lyon 1977, pp. 155-162.
- [30] Greenwood, J.J. and Williamson, J.P.B., "The Contact of nominally flat Rough Surfaces", Proc. Roy. Soc. A, 295, p300, 1966.
- [31] Draper, N.R. and Smith, H. Applied Regression Analysis. John Wiley and Sons, Inc. 1981.
- [32] Hamrock, B.J. and Dowson, D., "Isothermal Elastohydrodynamic Lubrication of Point Contacts, Part III Fully Flooded Results.", J. Lubr. Technol. Trans. ASME., 99, (1977), #2, pp. 264-276.
- [33] Murch, L.E. and Wilson, W.R.D., "A Thermal Elastohydrodynamic inlet zone analysis.", J. Lubr. Technol. Trans. ASME., 97, (1975), #2, p212.

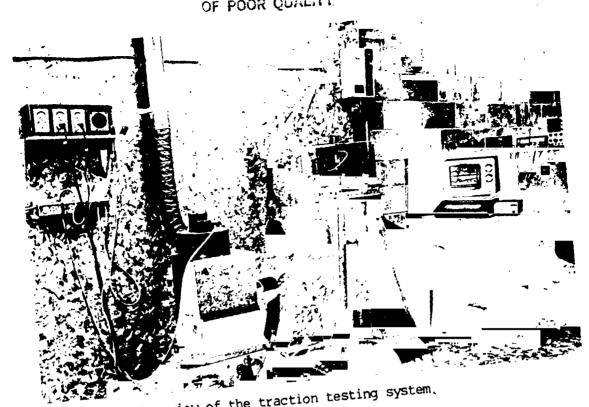


Fig. 2-1: Overview of the traction testing system.

C

€.

€..

€.

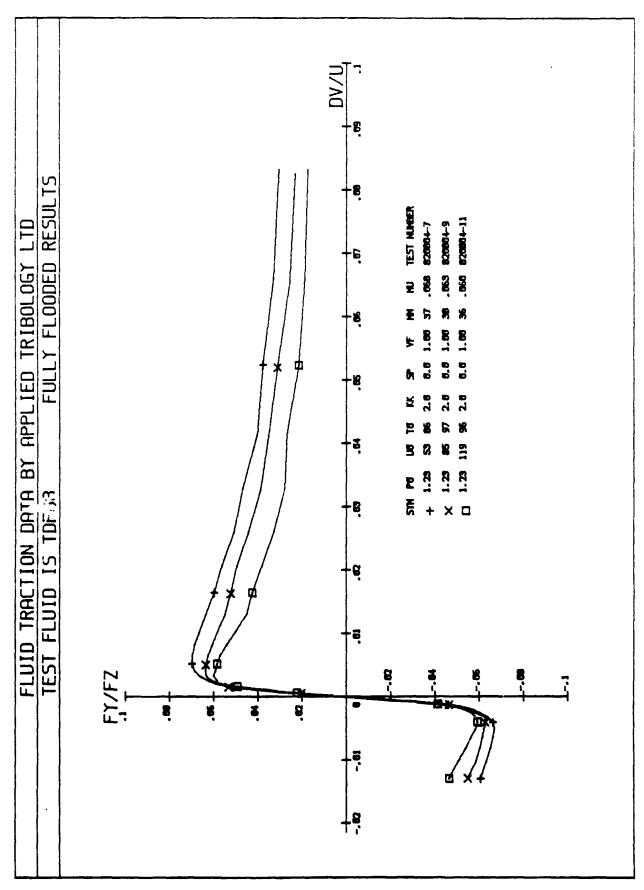
C

C

Fig. 2-2: Overview of the Microcomputor Datalogger system used for the traction tests.

OF POON QUALTER

7.


€.

C,

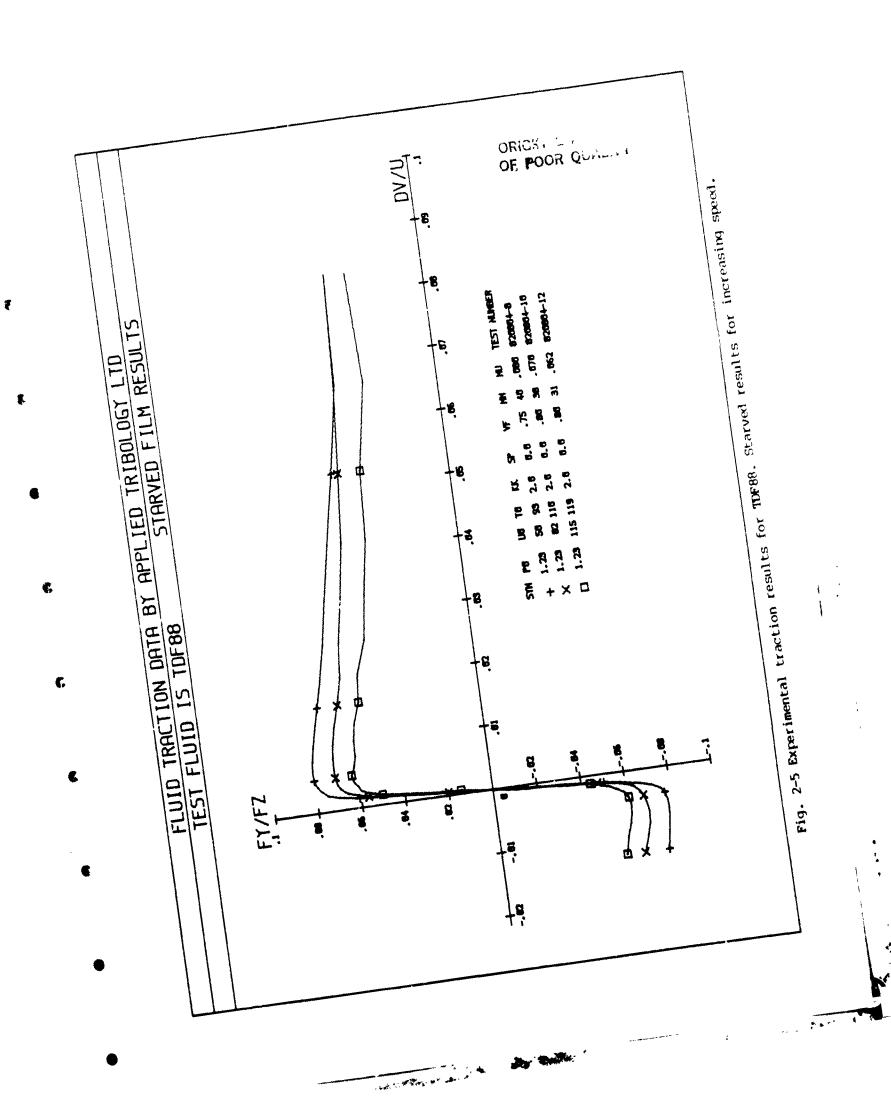

C.

Fig. 2-3c: Overview of the actual traction tester (RHS).

Flooded results for increasing speed. Fig. 2-4 Experimental traction results for 10F88.

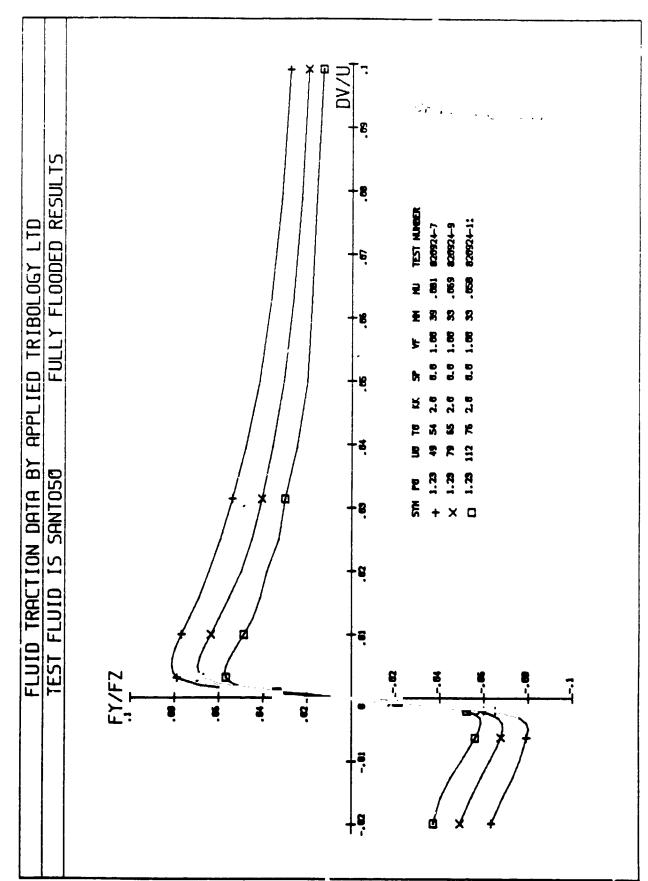
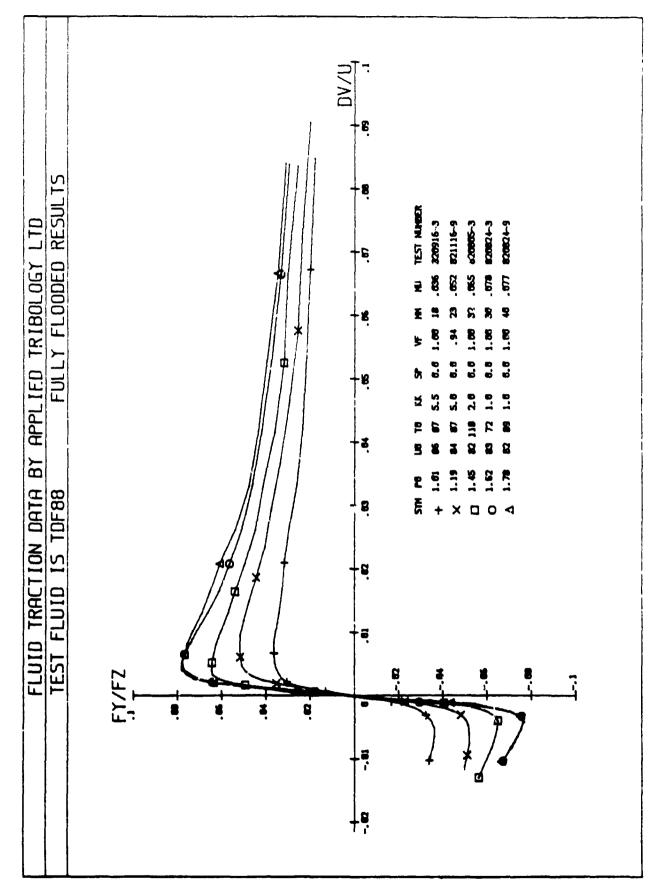


Fig., 2-6 Experimental traction results for SANTO50. Flooded results for increasing speed.

Colon Kalin



1. 14

¢,

Experimental traction results for SANTU50. Starved results for increasing speed. Fig. 2-7

Y/

May were with

The said of the

A TTO STATE

Fig. 2-8 Experimental traction results for TDF88. Flooded results for increasing pressure.

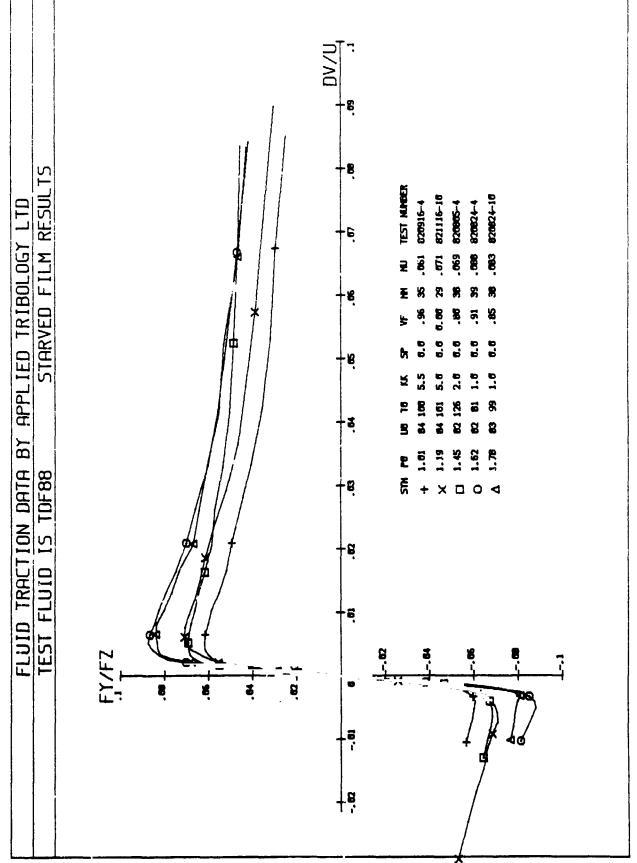
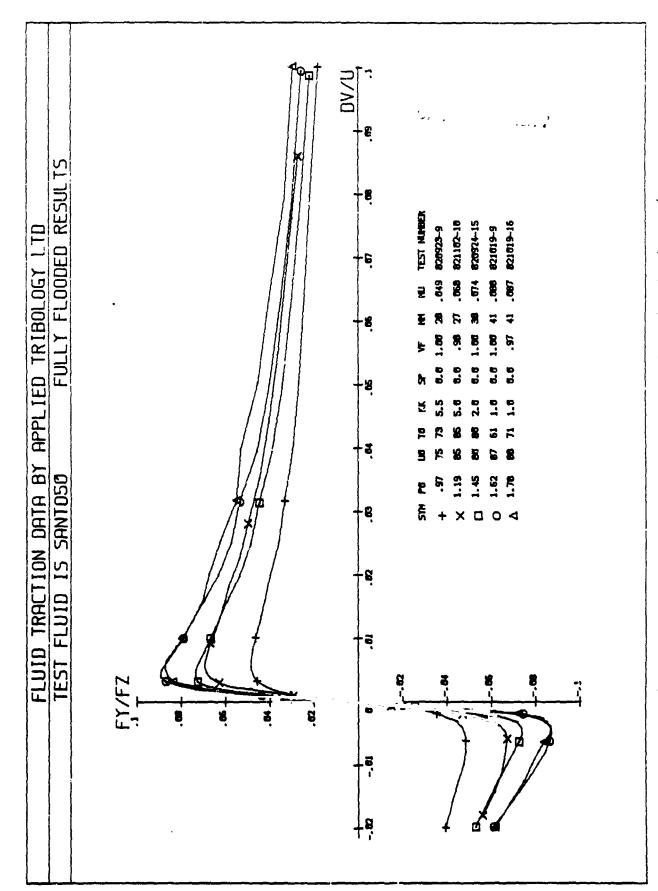



Fig. 2-9 Experimental traction results for TDF88. Starved results for increasing pressure.

ť,

Fig. 2-10 Experimental traction results for SANTO50. Flooded results for increasing pressure.

Fig. 2-11 Experimental traction results for SANYO50. Starved results for increasing pressure.

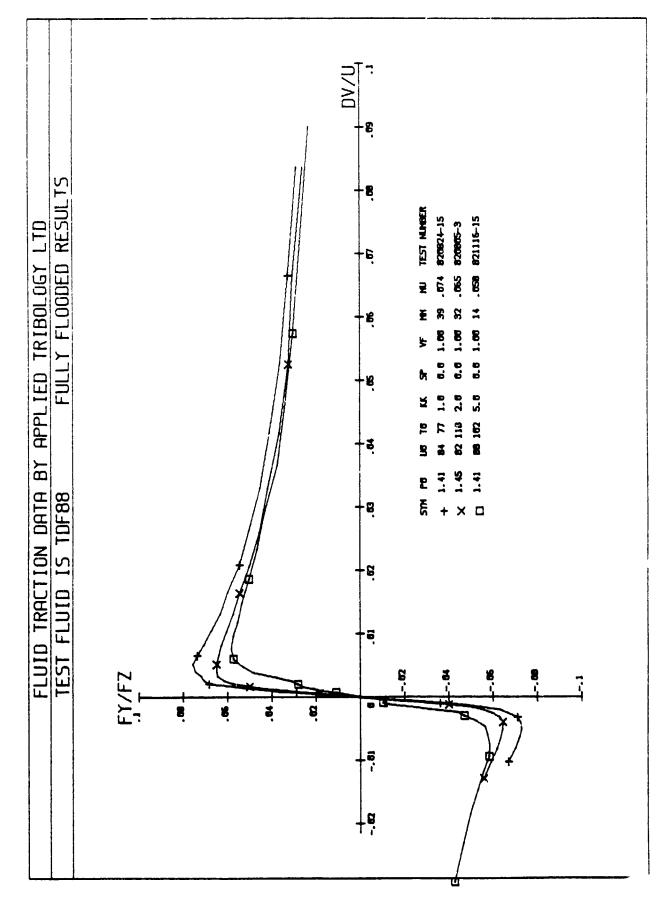


Fig. 2-12 Experimental traction rewits for TDF88. Flooded results for increasing aspect ratio.

1.67 6 1

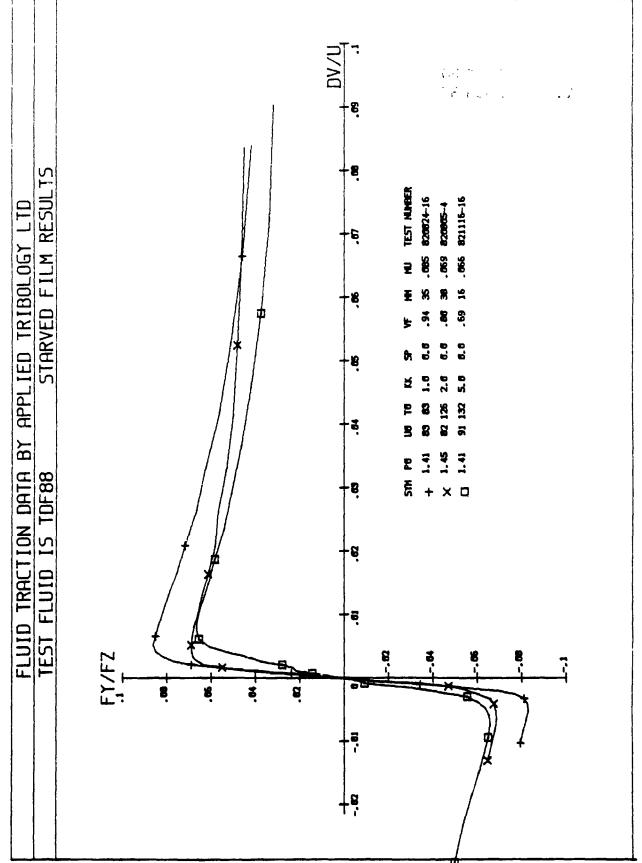


Fig. 2-13 Experimental traction results for TDF88. Starved results for increasing aspect ratio.

The state of the s

_,

,

• (

.

-

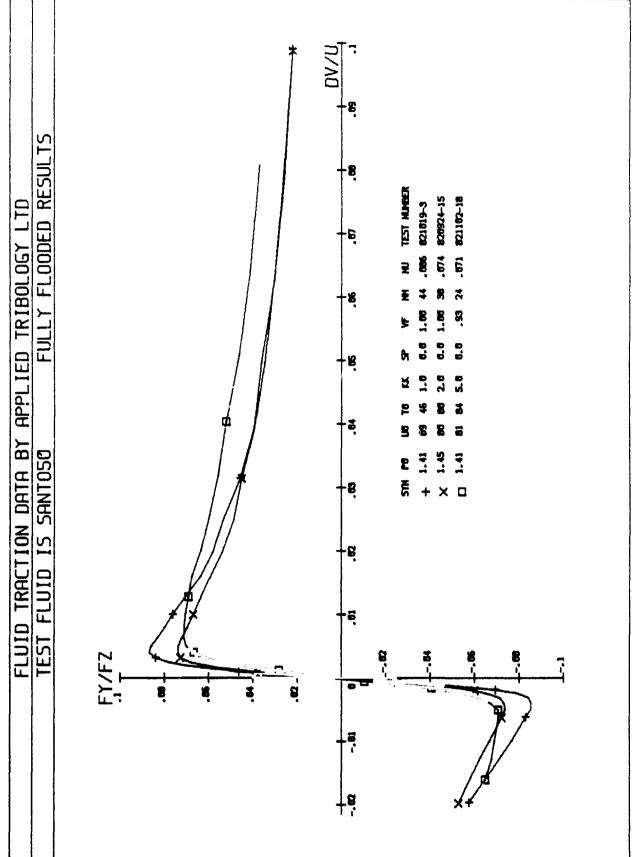
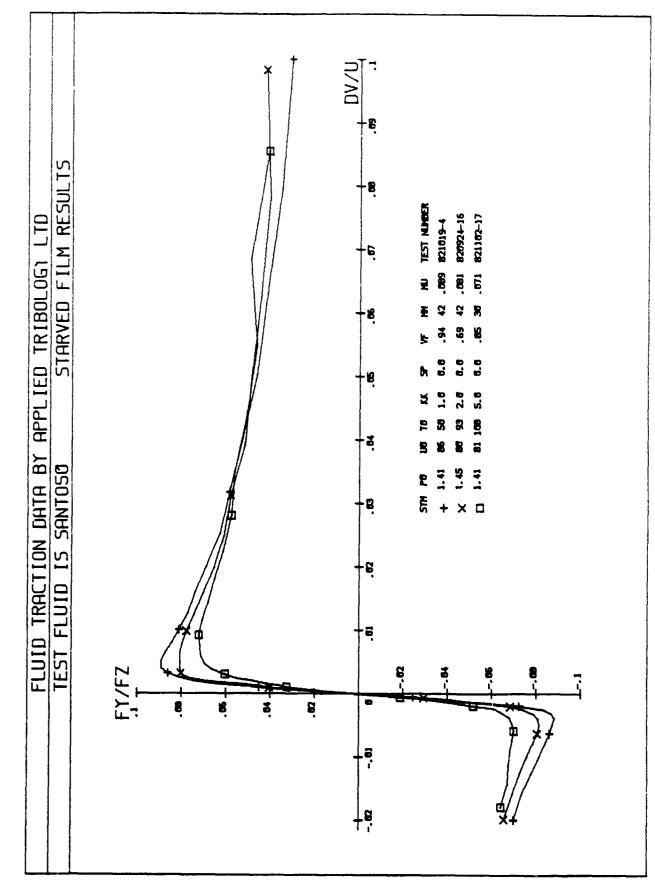
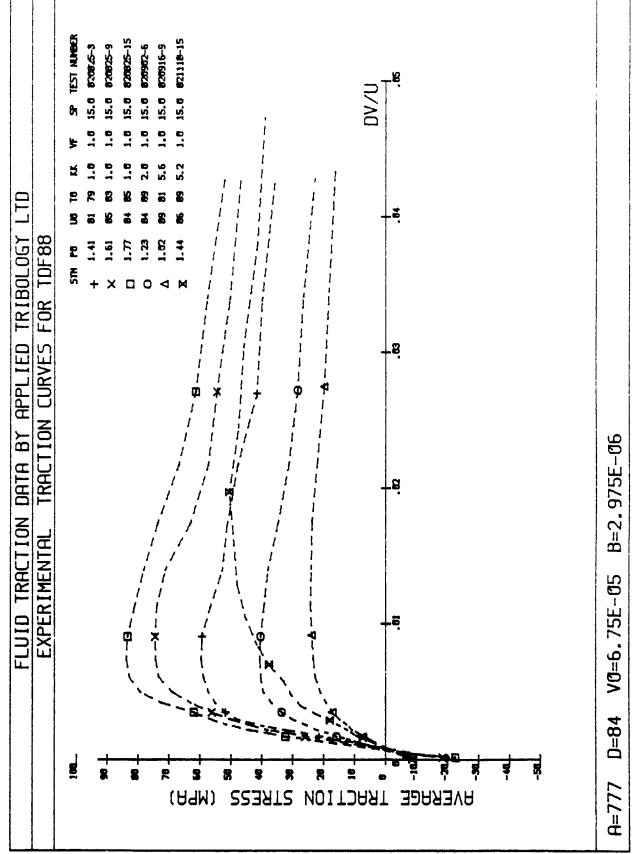



Fig. 2-14 Experimental traction results for SANTO50. Flooded results for increasing aspect ratio.


V

mat hill

The second secon

Fig. 2-15 Experimental traction results for SANTOSO. Starved results for increasing aspect ratio.

Spin traction curves Fig. 2-16 Experimental traction results for TDF88.

* ***

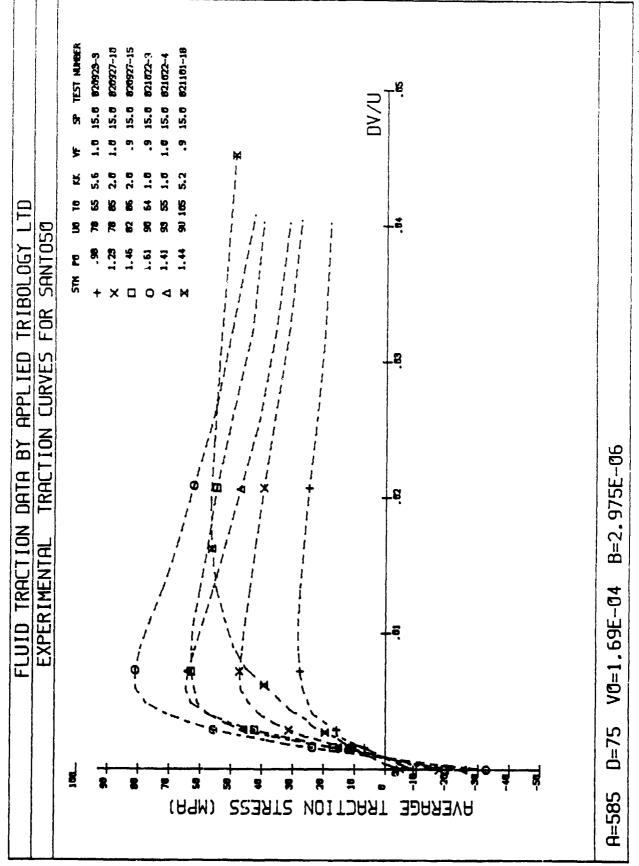


Fig. 2-17 Experimental traction results for SANTO50. Spin traction curves

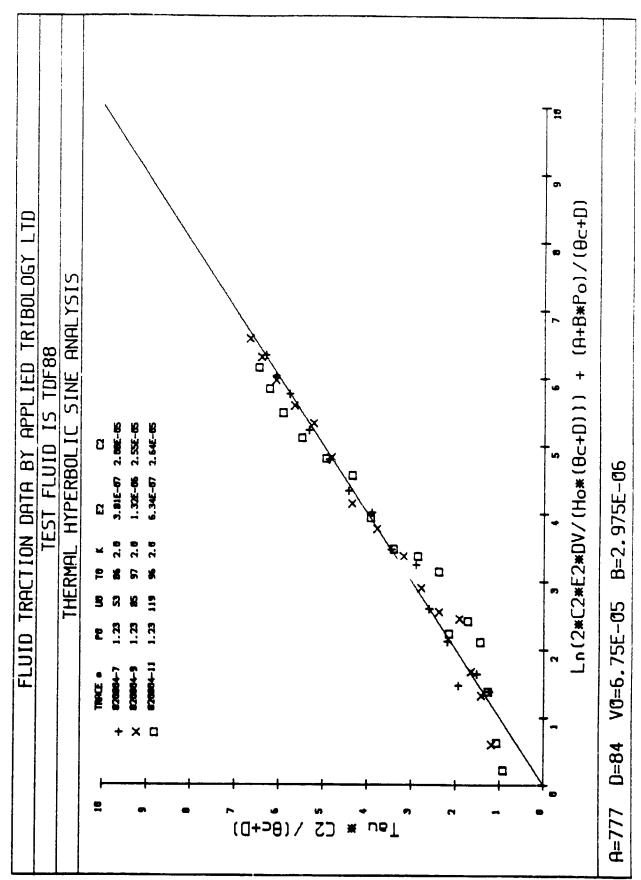
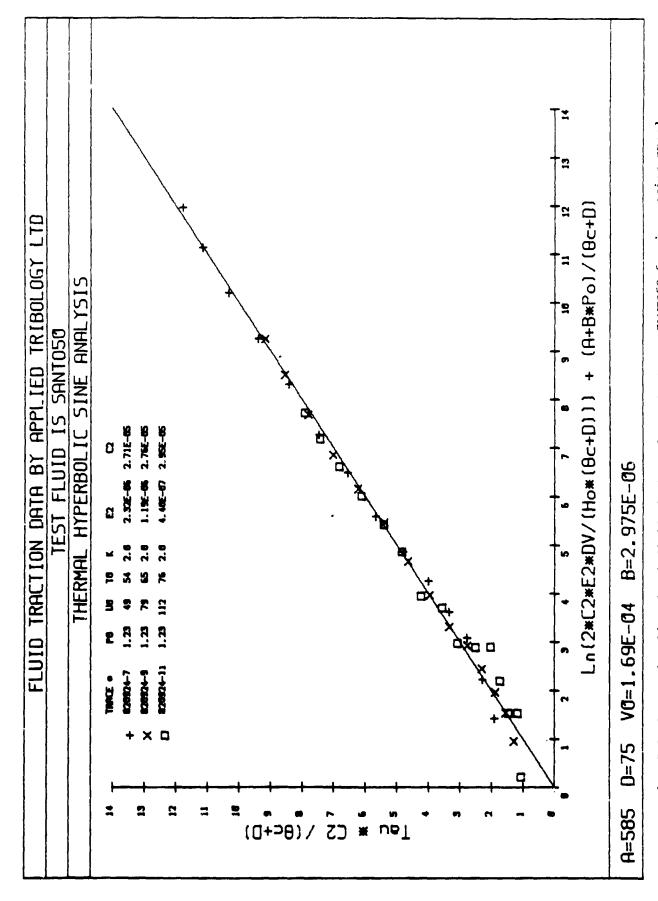
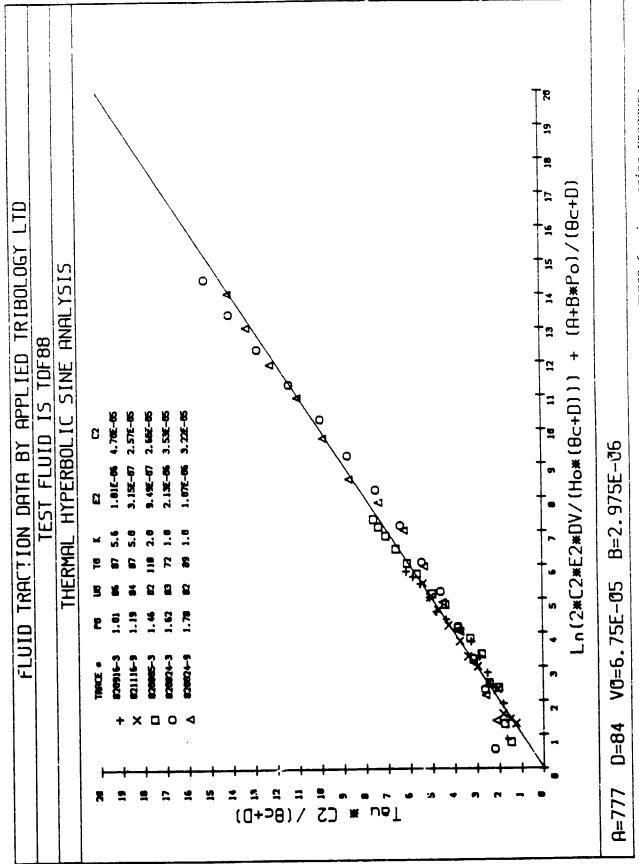




Fig. 5-1 Regression line for individual thermal constants on TFP88 for increasing speed.

一图2....

Fig. 5-2 Regression line for individual thermal constants on SANTO50 for increasing speed.

6

Fig. 5-3 Regression line for individual thermal constants on TDF88 for increasing pressure.

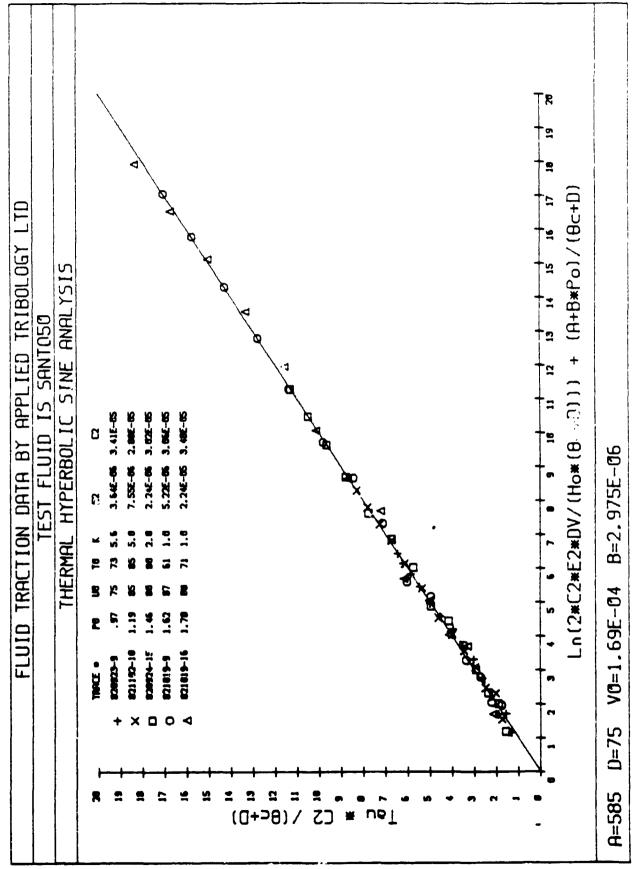
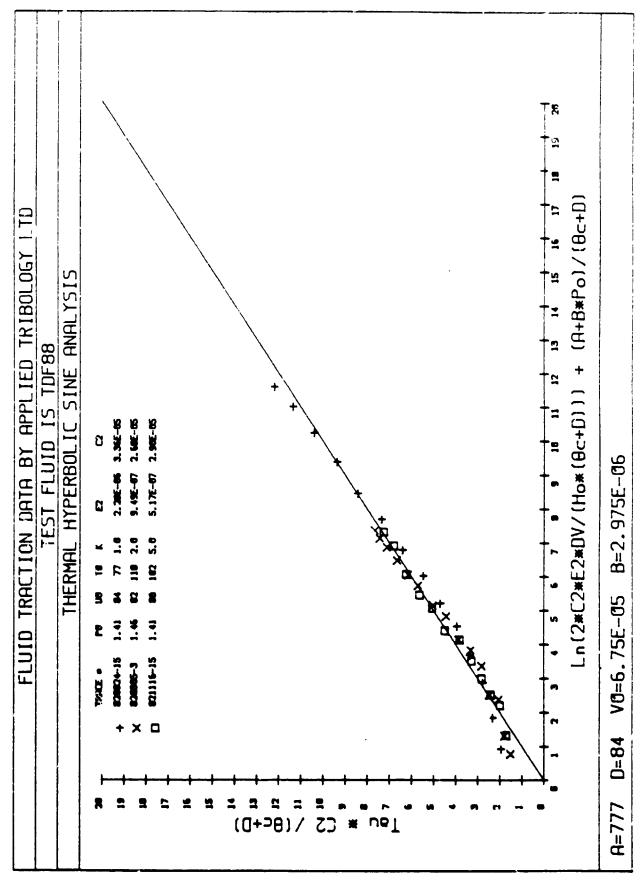



Fig. 5-4 Regression line for individual thermal constants on SANTOSO for increasing pressure.

A September of the Sept

Fig. 5-5 Regression line for individual thermal constants on 31988 for increasing aspect rate

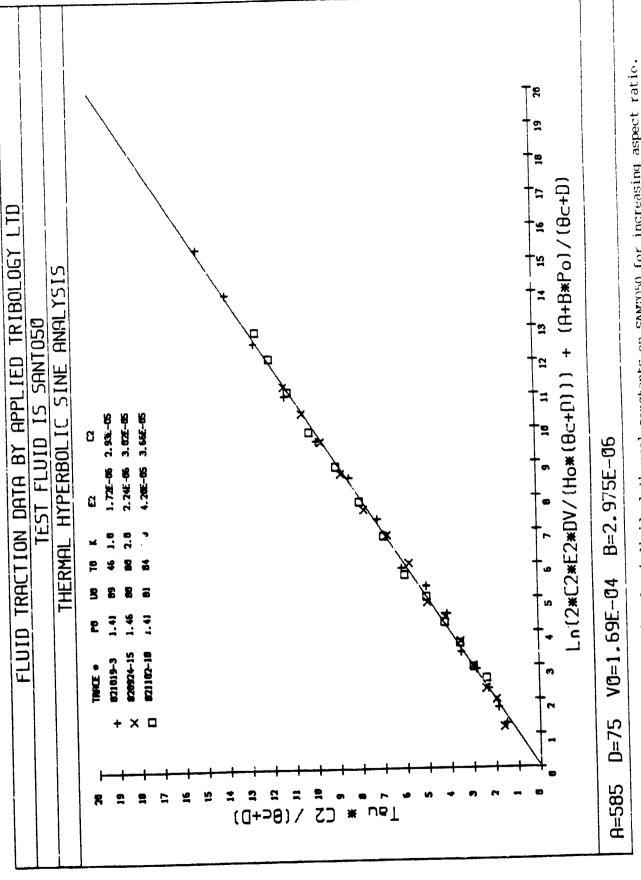


Fig. 5-6 Regression line for individual thermal constants on SANROSO for increasing aspect ratio.

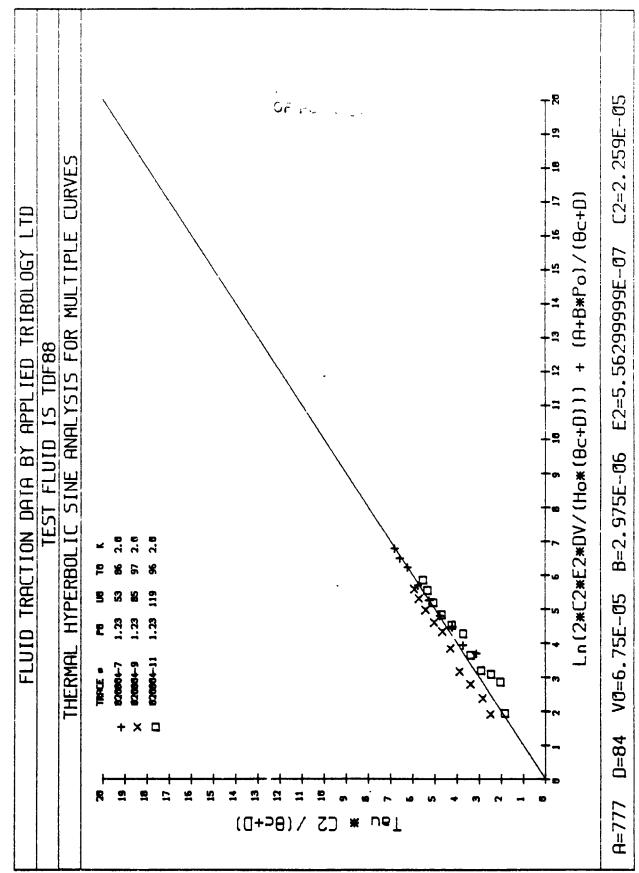


Fig. 5-7 Regression line for combined thermal constants or TDF88 for increasing speed.

- --

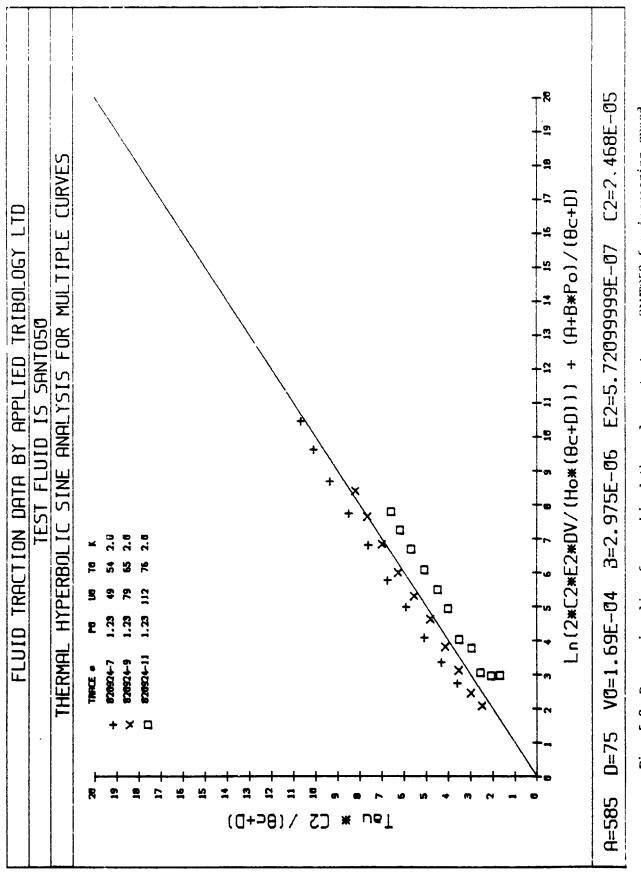


Fig. 5-8 Regression line for combined thermal constants or SANTO50 for increasing speed.

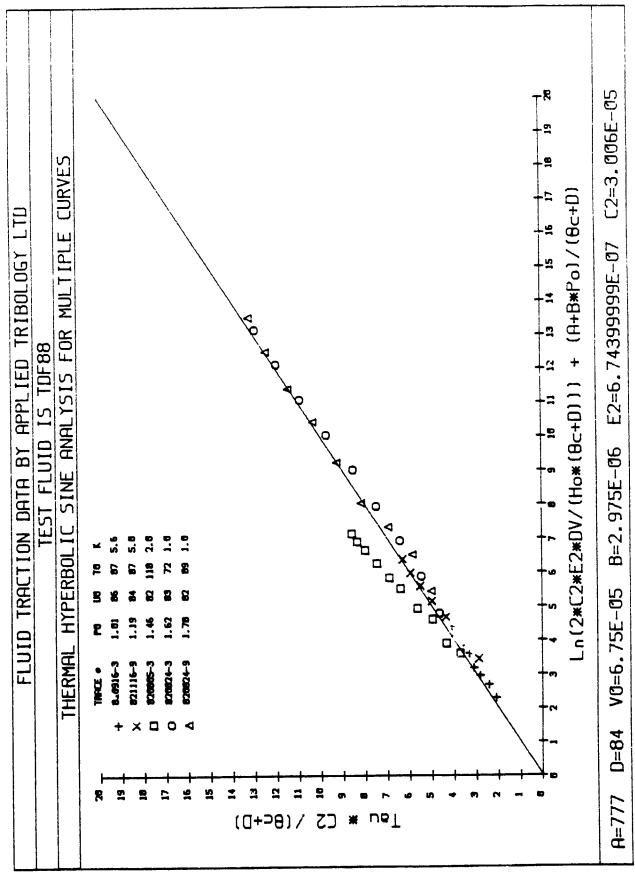


Fig. 5-9 Regression line for combined thermal constants for TDF88 for increasing pressure.

" የ ኔት

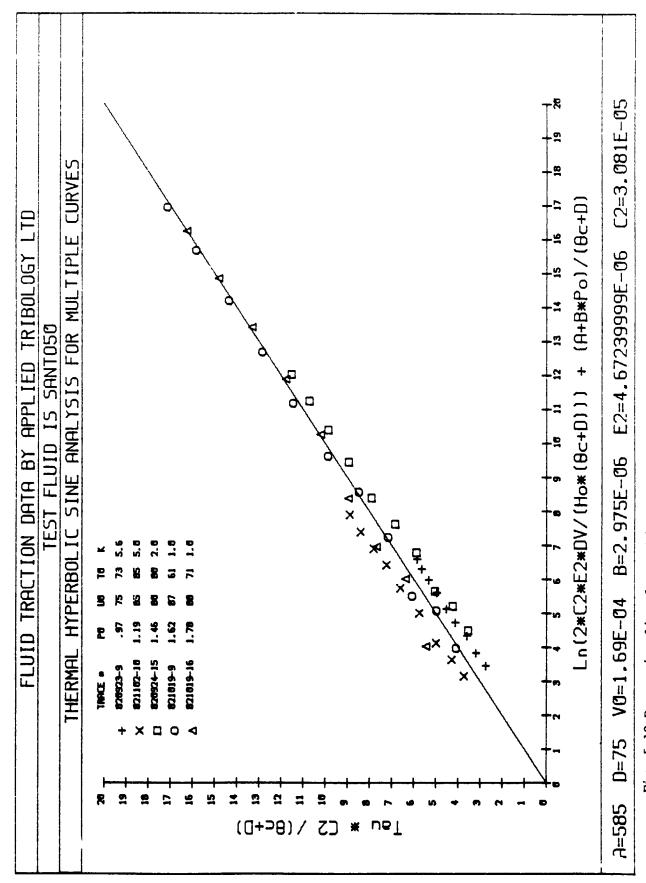


Fig. 5-10 Regression line for combined thermal constants for SANTOSO for increasing pressure.

400 All C

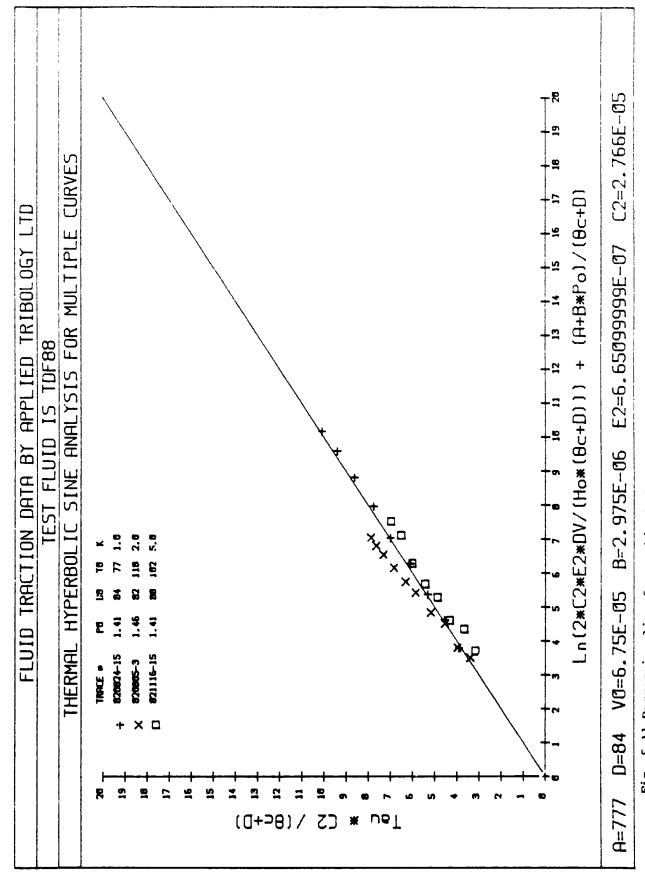


Fig. 5-11 Regression line for combined thermal constants for TDF88 for increasing aspect ratio.

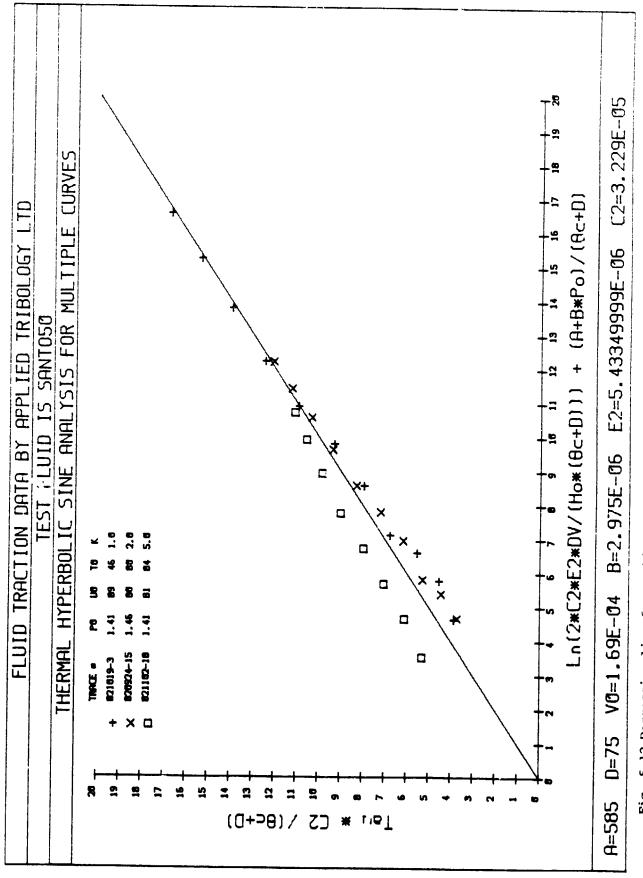


Fig. 5-12 Regression line for combined thermal constants for SANTO50 for increasing aspect ratio.

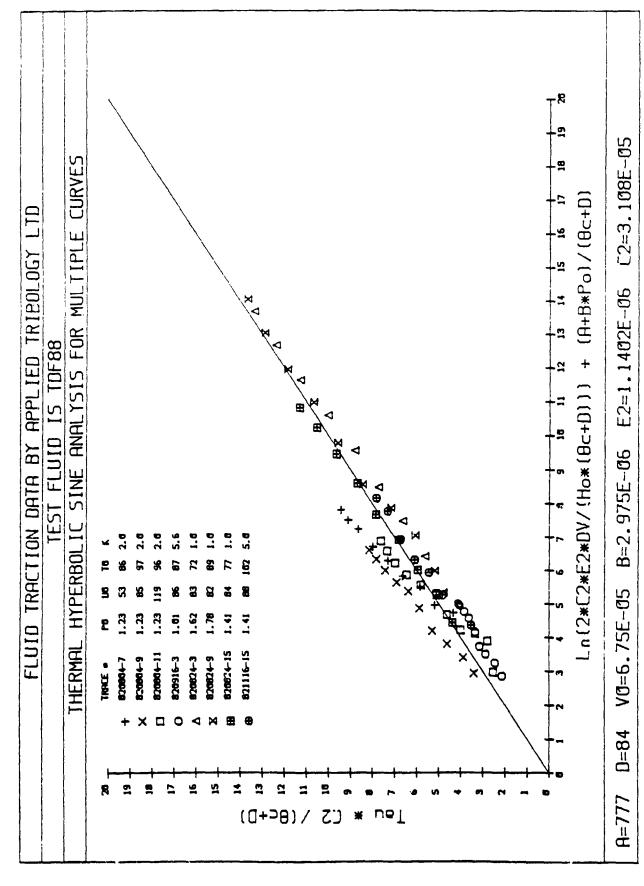


Fig. 5-13 Regression line for combined thermal coastants for TYS88 for various conditions of speed, pressure, aspect ratio and inlet temperatur

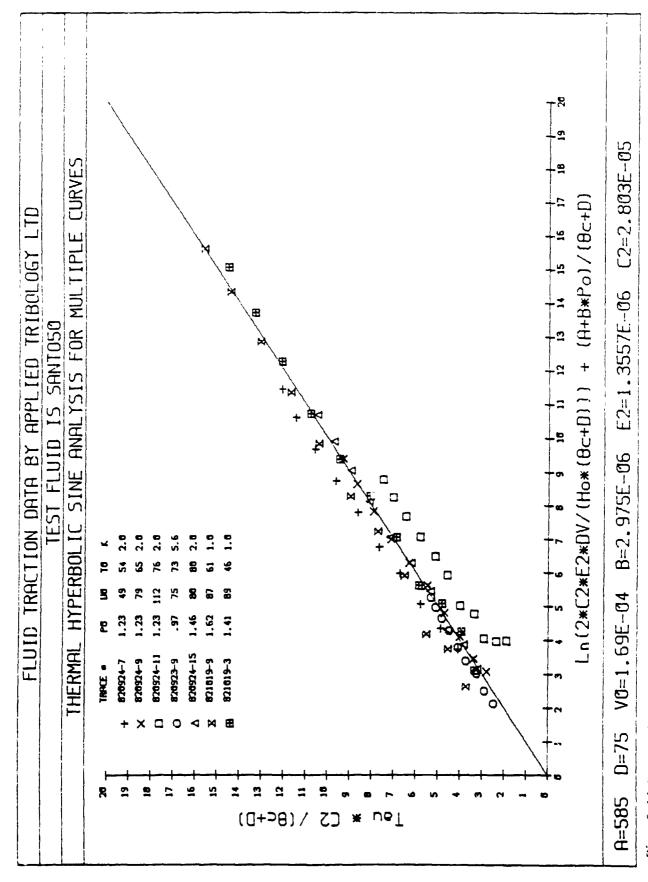
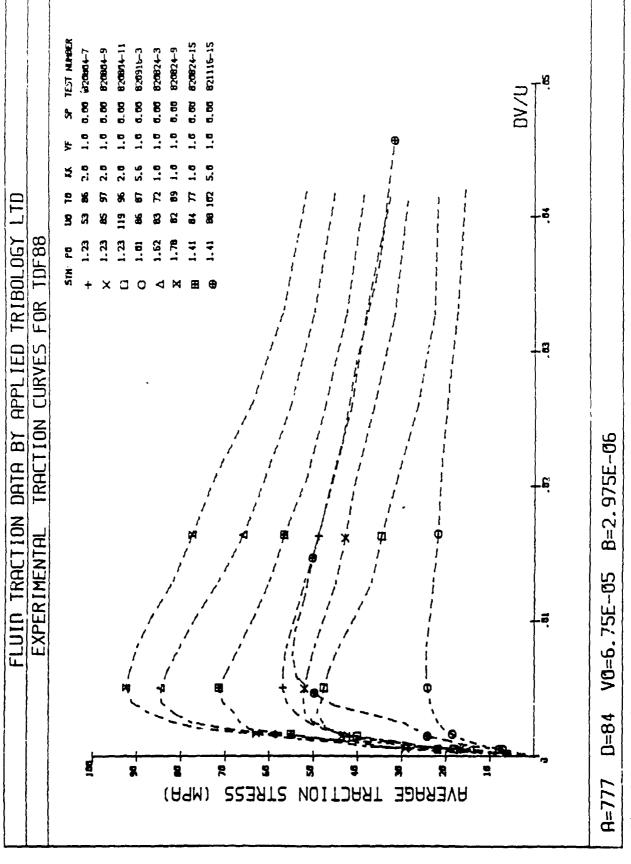
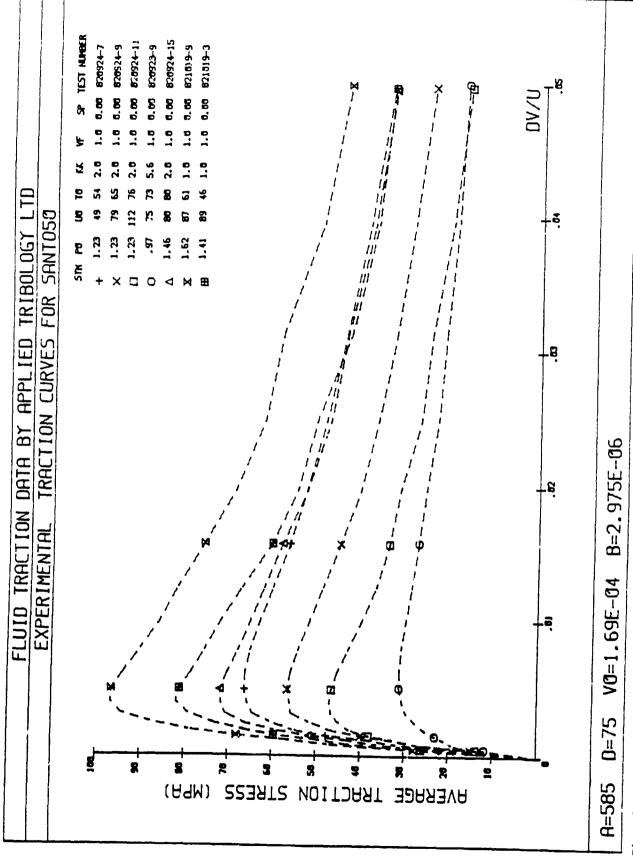




Fig. 5–14 Regression line for combined thermal constants for SANEOSO for various conditions of speed, pressure, aspect ratio and inlet temperature.

Experimental side slip traction curves for TDF88 at various pressures, temperatures, aspect ratios and rolling velocities. Fig. 6-1

Experimental side slip traction curves for SANTO50 at various pressures, temperatures, aspect ratios and Fig. 6-2

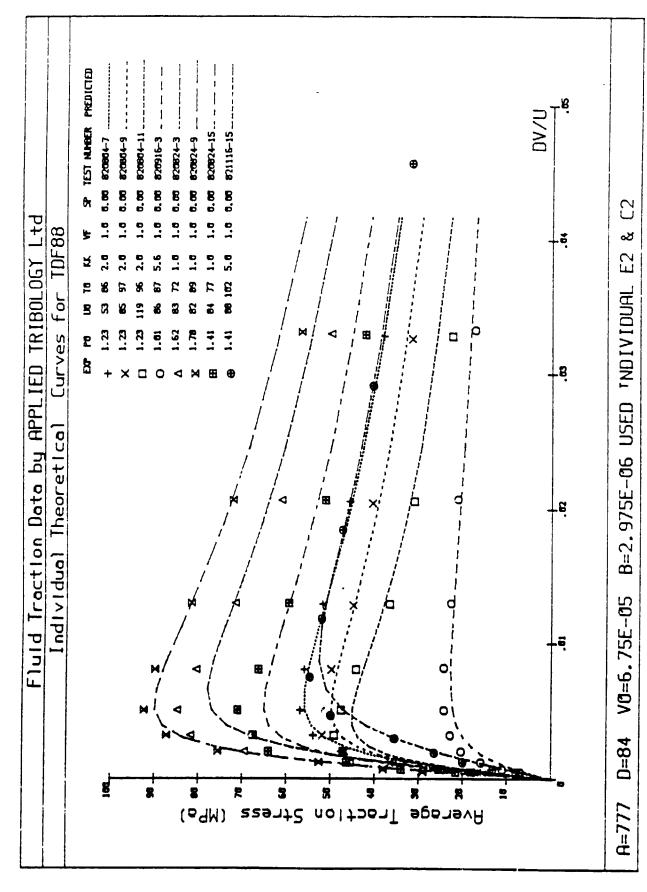


Fig. 6-3 Comparison of experimental with theoretically predicted traction curves for TDF88 based upon individually fitted thermal constants and shear modulus at various presented temperatures reling velocities and aspect ratios.

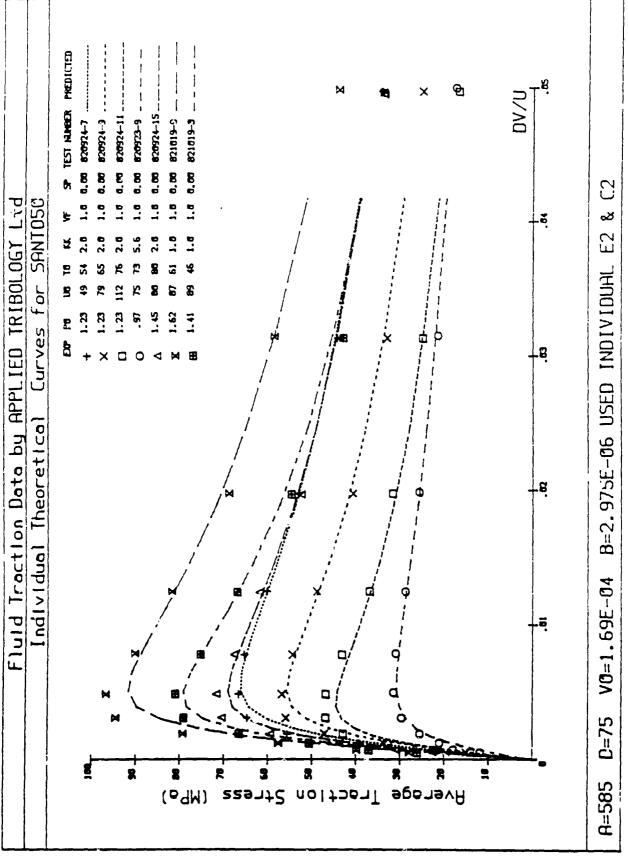


Fig. 6-4 Comparison of experimental with theoretically predicted traction curves for SANTO50 based upon individually fitted thermal constants and shear modulus at various pressure, 'emperatores colling velocities and aspect ratios,

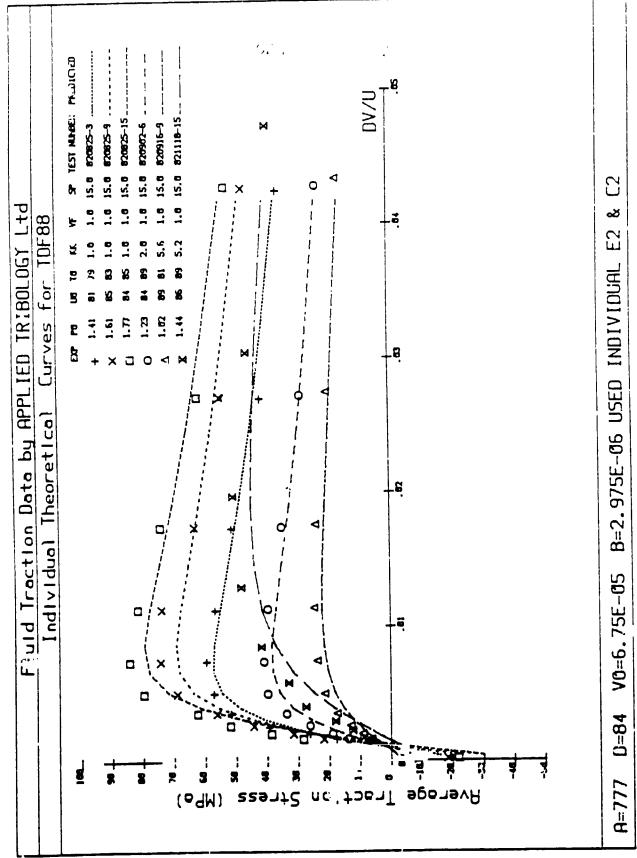


Fig. 6-5 Comparison of experimental with theoretically predicted traction curves for TDF88 based upon individually fitted thermal constants at various pressures, temperatures, redict colorities aspect ratios and spin.

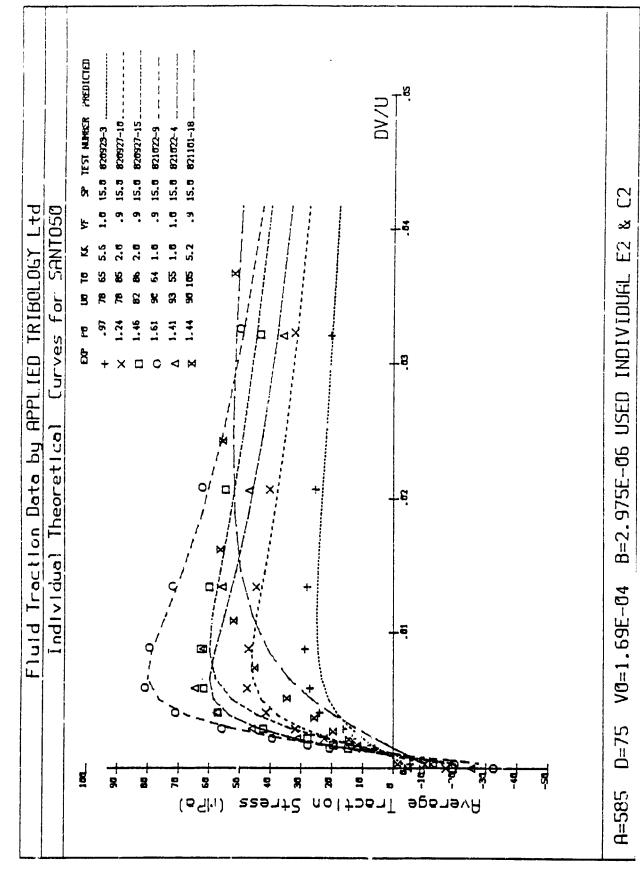


Fig. 6-6 Comparison c experimental with theoretically predicted traction curves for SANTO50 based upon individually fitted thermal constants at various pressures, temperatures, rolling velocities, aspect ratios and spin.

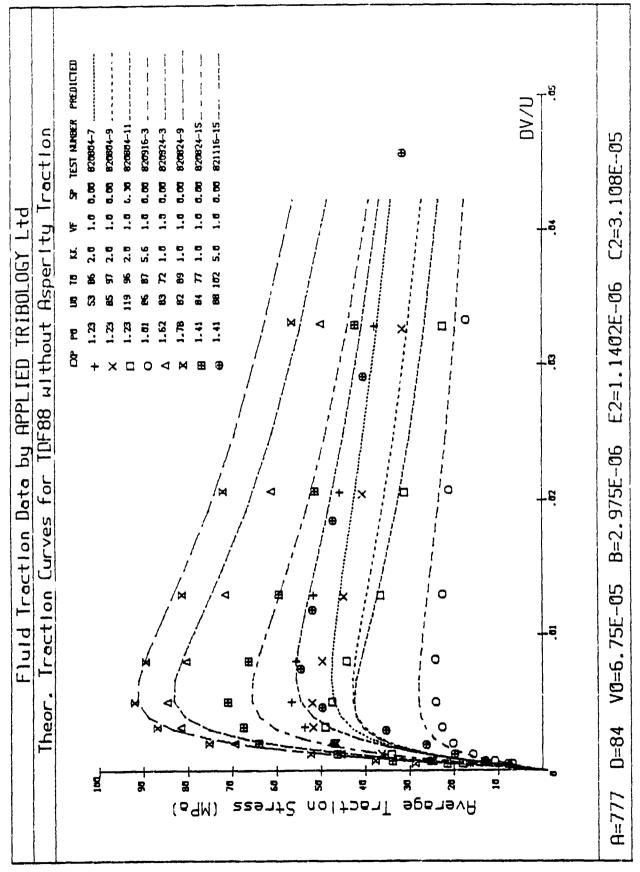


Fig. 6-7 Comparison of experimental with theoretically predicted traction curves for TDF88 based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.

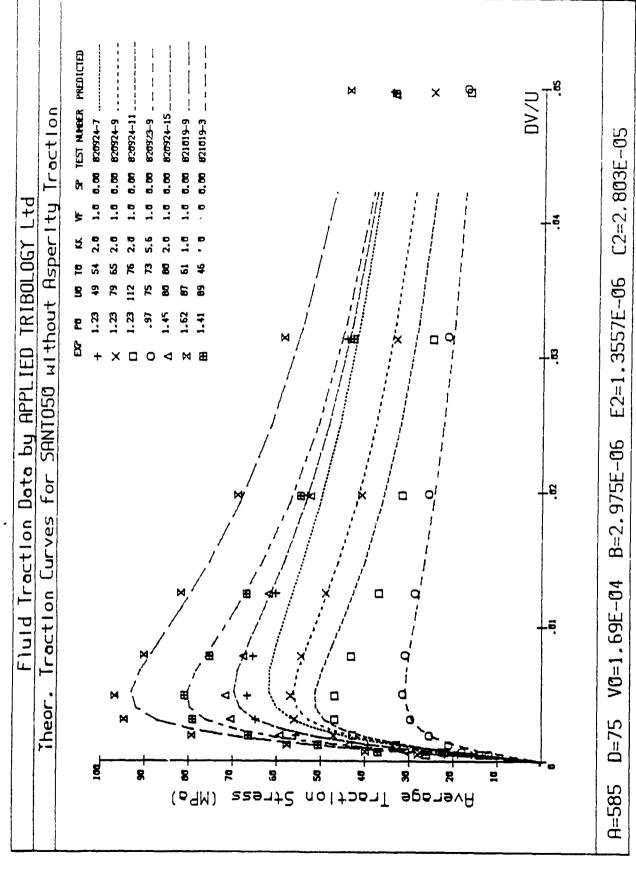


Fig. 6-8 Comparison of experimental with theoretically predicted traction curves for SANTO50 based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.

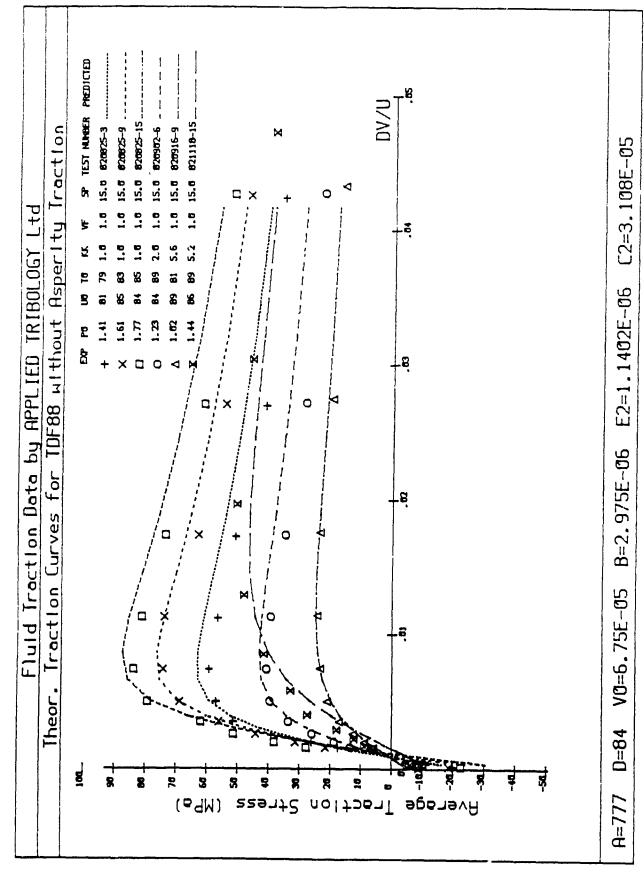


Fig. 6-9 Comparison of experimental with theoretically predicted traction curves for TDF88 based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities, spin and aspect ratios.

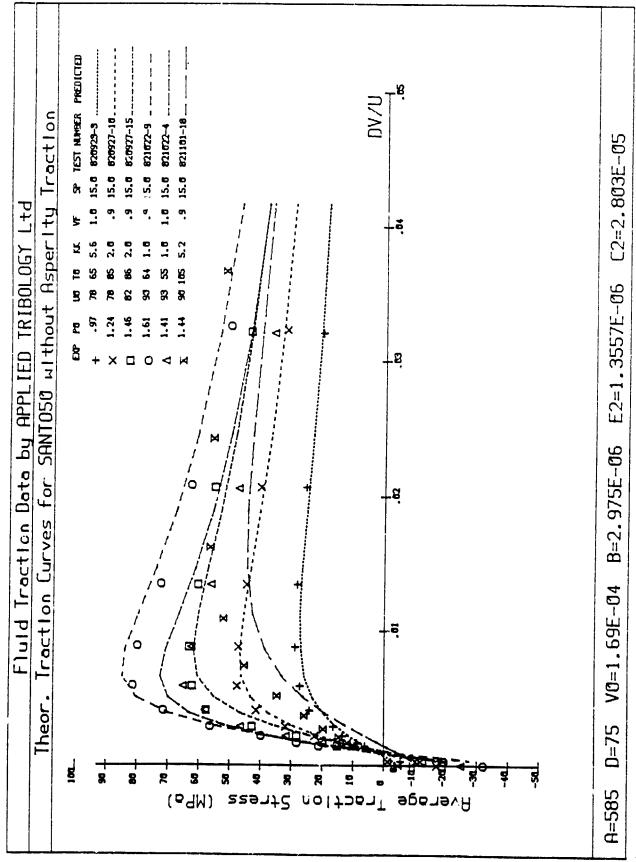
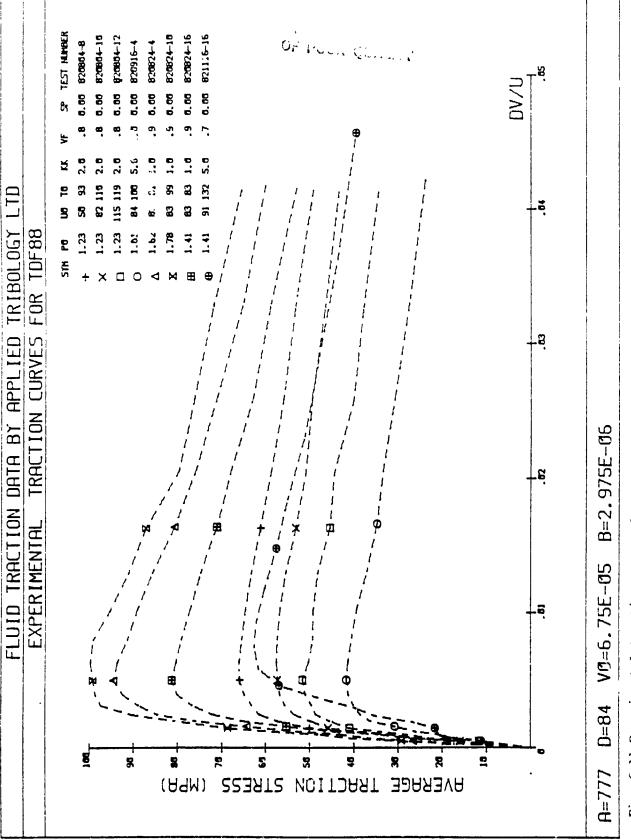



Fig. 6-10 Comparison of experimental with theoretically predicted traction curves for SANTO50 based upon multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities, spin and aspect ratios.

By State of

Fig. 6-11 Experimental traction curves for TDF88 under starved conditions at various pressures, temperatures, olling velocities and aspect ratios.

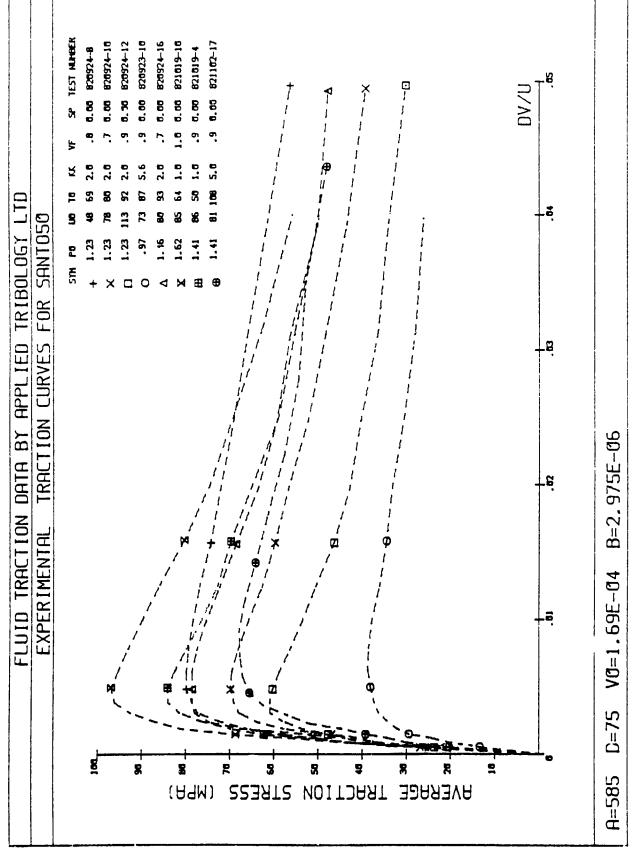


Fig. 6-12 Experimental traction curves for SANTO50 under staryed conditions at various pressures, temperatures, rolling velocities and aspect ration.

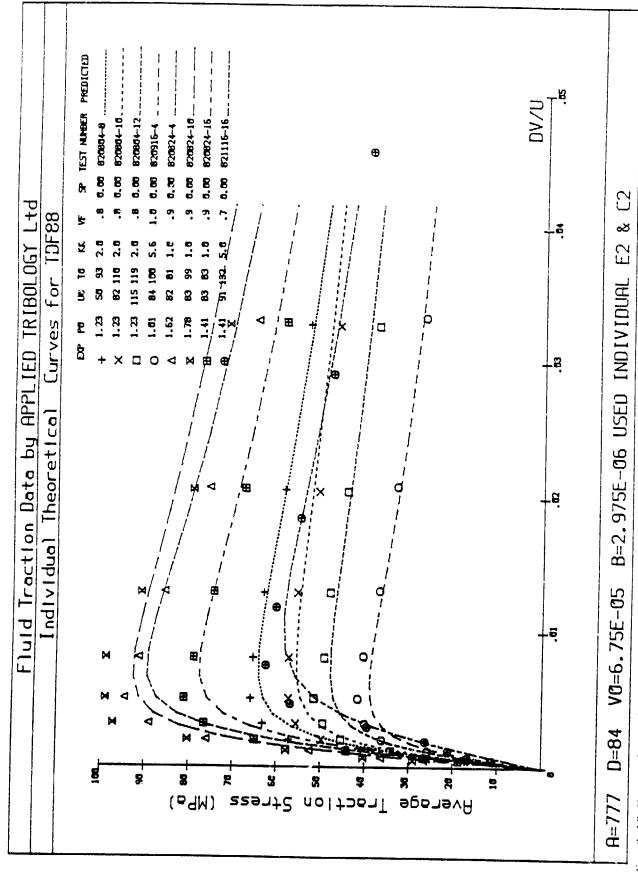


Fig. 6-13 Comparison of experimental with theoretically predicted traction curves for TDF88 under starved conditions based upon individually fitted thermal constants and sheer woodnlus at various pressures, temperatures, rolling velocities and aspect ratios.

The State of the contract of t

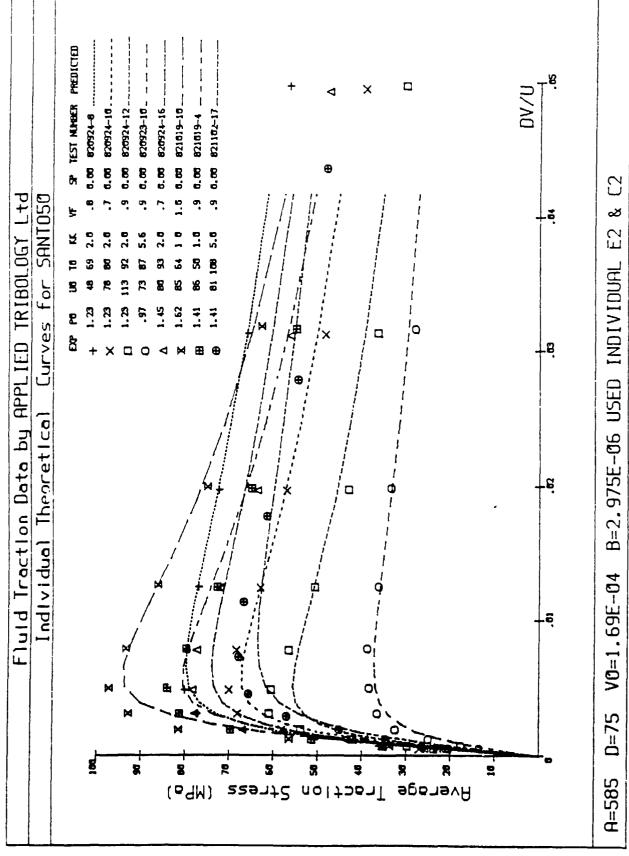
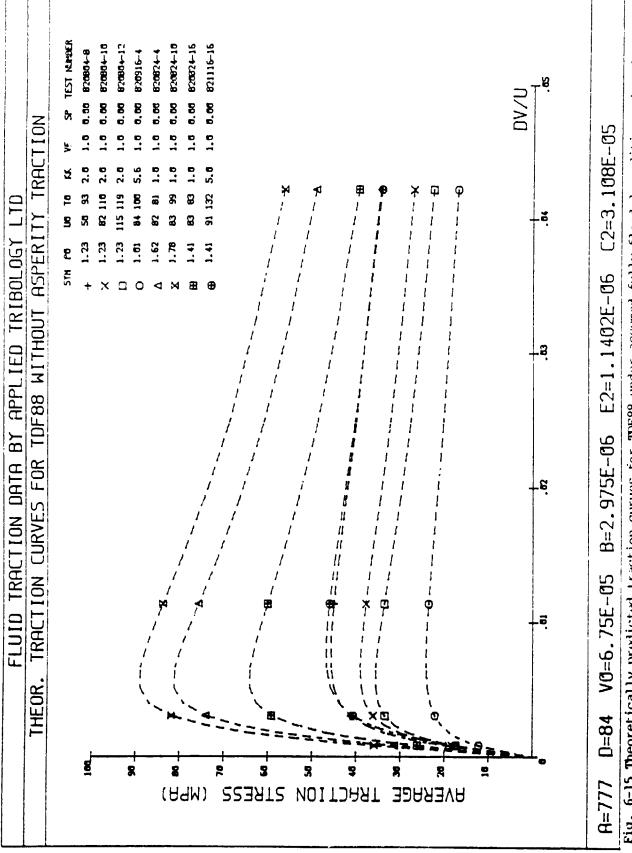



Fig. 6-14 Comparison of experimental with theoretically predicted traction curves for SANTO50 under starved conditions based upon individually fitted thermal constants—and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.

multiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling Fig. 6-15 Theoretically prodicted traction curves for TDF88 under assumed fully flooded conditions based upon velocities and aspect ratios.

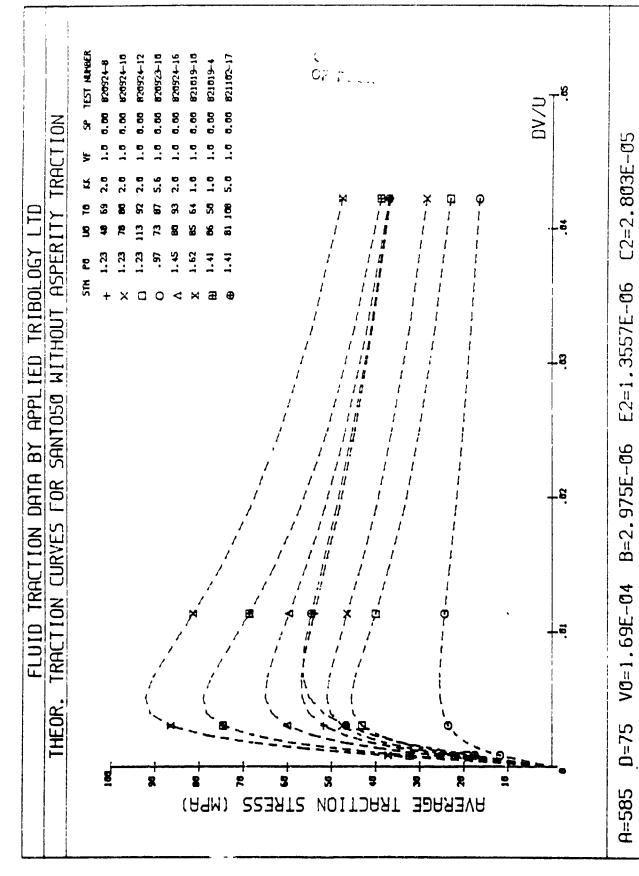
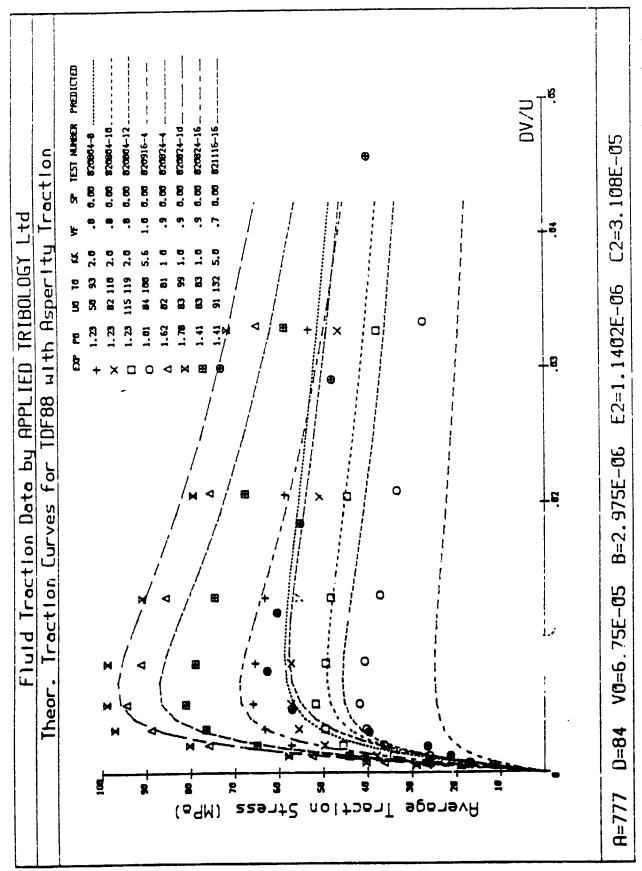



Fig. 6-16 Theoretically predicted traction curves for SANIVO50 under assumed fully flooded conditions based upon multiple curve fitted thermal constants and shear medulus at various pressures, temperatures, rolling velocities and aspect ratios.

西京道 了

starved conditions based upon multiple curve fitted thermal constants and shear modulus at Various pressures, temperatures, relatives and aspect ratios. Fig. 6-17 Comparison of experimental with theoretically predicted traction curves for TDF88 including asperity traction due to

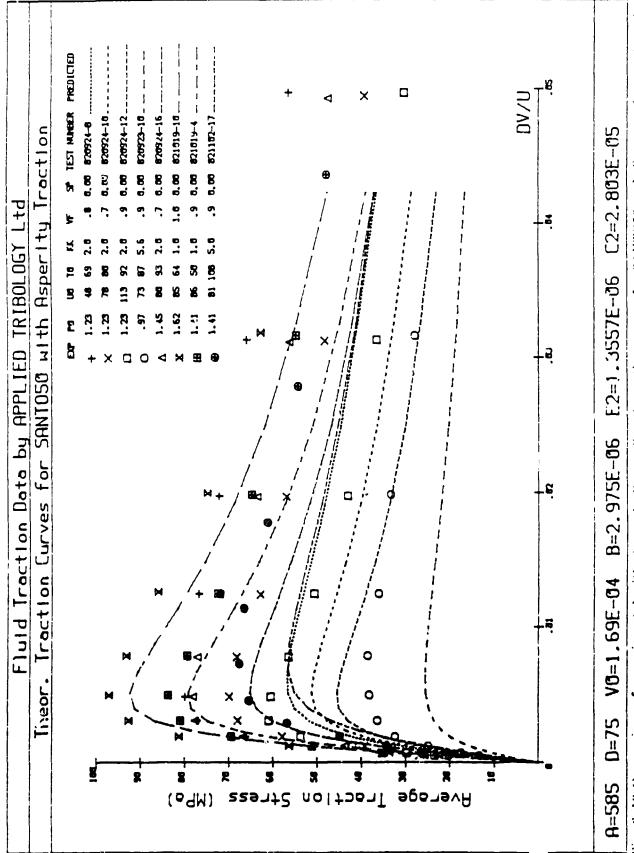


Fig. 6-18 Comparison of experimental with theoretically predicted traction curves for SANTO50 including esperity traction due to starved conditions based upon militiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities and aspect ratios.

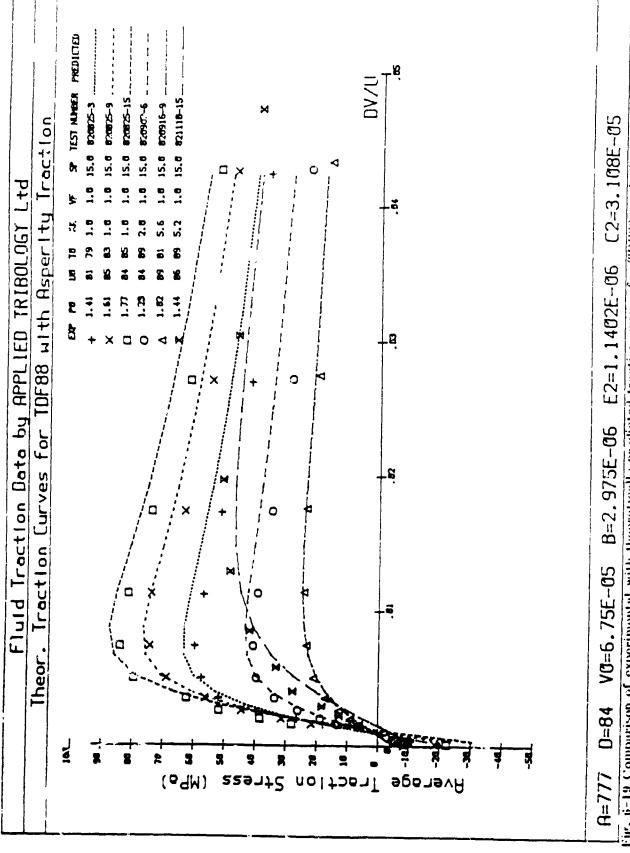


Fig. 6-19 Comparison of experimental with theoretically predicted traction curves for TDF88 including asperity traction due to starved conditions based upon multiple carve fitted thernal constants and shear modulus at various pressures, temperatures, refling velocities, spin and aspect ratios.

ld Traction Data by APPLIED TRIBOLOGI Ltd action Curves for SANIOSO with Asperity Traction	59E-04 B=2.975E-06 E2=1.3557E-06 C2=2.803E-05
Fluid Traction Dat Theor, Traction Curves f	

Fig. 6-20 Comparison of experimental with theoretically predicted traction curves for SANTO50 including asperity traction due to starved conditions based upon militiple curve fitted thermal constants and shear modulus at various pressures, temperatures, rolling velocities, spin and aspect ratios.

(-2

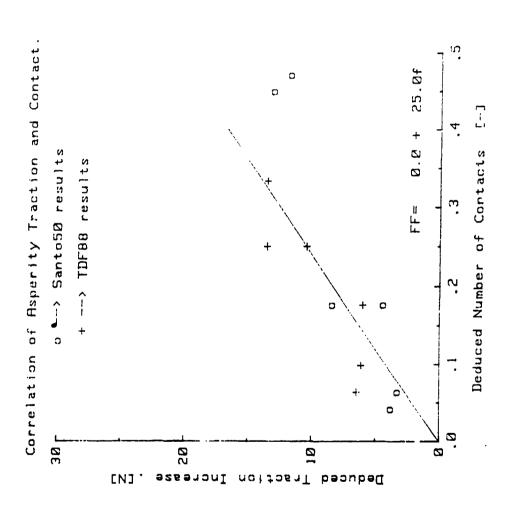


Fig. 6-22 Correlation between the asperity traction and the number of contacts as deduced from the voltage fraction.

APPENDIX I SUMMARY OF THE TRACTION TEST DATA.

The traction tests performed under this contract are summarized in this Appendix. The nomenclature used is as follows;

Test #	Number of the particular test	(YYMMDD-##)
Ро	Maximum calculated Hertz contact stress	(GPa)
Uo	Surface rolling velocity in linear region	(m/sec)
То	Disc surface temperature in linear region	(°C)
SP	Angle of tilt for spin	(')
VF	No-contact voltage fraction	(-)
RX	Equivalent rolling radius of discs	(mm)
RY	Equivalent transverse radius of discs	(mm)
e	Curvature offset for RY	(mm)
DS	Dimensionless spin (ab/U)	(-)
KK	Contact aspect ratio (b/a)	(-)
A	Semi contact size in rolling direction	(mm)
MS	Slope of curve in linear region	(-)
MU	Peak traction coefficient	(-)

TDF
N O
DATA
TEST
TRACTION
OF
SUMMARY

					SUMMARY	OF	TRACTION	TEST DATA	ON TDF88				
TEST #	P0	00	TO	SP	VF	RX	RY	Œ		X	A	MS	MC
1	GPa	s/w	ပ္	-		E E	E	E	!	;	E E	ļ	1
20804-	.07			0.0	0.	9.	4	ij.	00.	•			9
20804-	.07			0.0	0.	6	4		.00	•			_
20804-	.07				0.	6	4	<u> </u>	.00	•			9
20804-	.07				•	6	4		.00	•			9
20804-	.07		0			6	4.		.00	•			9
20804-	.07	~		0.0	0.	6	4		.00	•			2
20804-	.22		œ		0.	6.	4		.00	•			9
820804-8	1.228	20	93	0.0	.75	19.1	54.0	-21.0	0.000	2.0	.35	40	080.
20804-9	. 22		σ			9	4	-	.00	•			9
20804-1	.22			0.0		6	4		.00	•			-
20804-	.22		9			6	4.	-	.00	•			90
20804-1	.22	7	7			9	4	ä	.00	•			90
20805-	.45		-			6	4.		.00	•			90
20805-	.45			0.0		6	4		.00	•			07
20805-	.45		$\overline{}$			6	4		.00	•			90
20805-	.45	œ	7			6	4.		00.	•			90
20805-	.45		0			6	4	Ϊ.	.00	•			05
20805-	.45	0	_			9	4	.	.00	•			90
20824-	.61					6	9.	4	.00	•			œ
20824-	.61					6	9	4	.00	•			6
20824-	.61					9	6.	4	.00	٠			07
20824-	.61					6	6	4	.00	•			08
20824-	.61		œ			6	9.	4	.00	•			17
20824-	.61	~				6	6	4	.00	•	.42		~
20824-	.78					<u>.</u>	6	4.	00.	•			∞
20824-	.78					6	9.	4.	.00	•	.46		6
20824-9	. 78					6	6	•	00.	•			7
20824-1	. 78	Φ				6	6	•	00.	•			∞
20824-1	. 78					٠.	6	•	.00	•			7
20824-	. 78	—		0.0	œ	6		14.0	00.	•	.46		∞
20824-1	.41							•	.00	•			8

APPENDIX I-A

TDF88
Ö
DATA
TEST
TRACTION
OF
SUMMARY

MU	0082 0092 0092 0092 0093 0093 0093 0093 009	\sim ∞
W I	# 4 m m m - 4 w w w w	00
A mm		
K I K		• •
DS	0.000 0.0000 0.0000 0.0000 0.0000 0.00029 0.0034 0.0037 0.0037 0.0037 0.0038 0.0018	010
Ф Ш	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44
RY		ა ა
RX		9.0
> i	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00
SP •	0000 0000 0000 0000 0000 0000 0000 0000 0000	
70 C	477 777 883 877 777 897 100 100 100 100 100 100 100 100 100 10	110 59
00 m/s	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 2
PO GPa	444444600001111111111111111111111111111	.61
TEST #		20826- 20826-

- A

TDF88
Ö
DATA
TEST
TRACTION
OF
SUMMARY

				SUMMARY	OF	TRACTION	N TEST	DATA ON 1	TDF88				
TEST #	2	00	TO	SP	VF	кх	RY	Ð	DS	KK	Ø	MS	MU
1	GFa	s/w	ပ	-	;	E E	E	mm	!	;	mm:	;	;
20826-	.61	20	59	•	1.00	9.	9.	4	01	•		0	8
20826-	.61	51	89	•	o.	9.	9.	4	01	•		0	9
20826-	.61	83	19	•	.91	9	6	4	01	•		0	8
20826-1	.61	80	19	•	1.00	6	9.	4.	01	•		0	7
20826-1	.61	124	91	•	0.	9.	٠.	4.	01	•		0	9
20826-1	.61	~	105	•		9.	9.	4	01	•		c	7
20826-	.41	48	9	•	0	6	9.	4.	01	•		0	∞
20826-1	.41	52	73	•		9.	9.	4.	01	•		0	5
20826-1	.41	86	80			9.	6	4	01	•		0	08
20826-1	.41	86	19	•		9	و	4.	01	•		0	90
20826-1	.41	125	91	•		6	ъ	4	01	•		0	90
20826-1	.41	2	102	•	œ	٠ و	6	4.	01	•		0	7
20831-	.45	53	6 8	•	0.	6	4.	Ή.	00	•		36	~
20831-	. 45	27	89	•	0	6	4	Ξ.	02	٠		0	~
20831-	. 45	31	83	•	•	9.	4.	÷.	02	•		0	œ
20831-	.45	58	78	•	0.	9	4.	Ή.	02	•		0	9
20831-	. 45	63	66	•	•	6	4.	ij.	02	•		0	2
20831-	. 45	91	66	•	0.	6	4.	ä	02	•		0	2
20831-	.45	91	113	•	σ	9.	4	i.	02	•		0	9
20831-	.23	49	62	•	0	9.	4	4	01	•		0	2
20831-9	. 23	46	11	•	6.	6	4	Ξ.	01	•		0	07
20831-1	. 23	19	81	•	0.	6	4	4	01	•		0	4
20831-1	. 23	78	95	•	0	6	4	Ϊ.	01	•		0	9
20831-1	. 23	86	95	•	0.	9	4	-	01	•		0	4
20831-1	. 23	66	105	•		6	4.	į.	0	•		0	2
20831-1	.07	46	99	•	0	6	4.	<u>_</u>	01	•		0	4
20831-1	.07	20	82	•	0.	6	4.	:	0	•		9	9
20831-1	.07	32	?; ∞	•	0.	6	4.	÷.	01	•		0	\sim
20831-1	.07	œ	66	•	6.	6	₩.	ij	01	•		0	S
820831-18	1.074	114	86	7.5	1.00	19.0	54.0	-21.0	.0017	2.0	.30	0	.035
20831-1	.07	7	110	•	œ	6	4	÷	01	•		0	S

TDF88
Œ
TD
N O
DATA
TEST
FRACTION
ĭ
5
Z
듸
OF
MMARY (
AF
Ĭ
\neg
$\tilde{\mathbf{z}}$

OM I	മെയായയ	८4.004.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	S C
SE I	2 2 3 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 27 21 35	4 4 W 4 W 4 D O O O O O W W H M O O O O O O	26
A mm		444000		
X I				• •
DS	00.000	000 4000 000.	0035 0035 0035 0035 00035 0000 0000 000	000
e HH			221.0 221.0 221.0 221.0 221.0 221.0	7.
RY	य व व व व व	· · · · · · · · · · · · · · · · · · ·	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 0
RX				• •
V I	00000	00000		
SP -	000000	0000	15.000000000000000000000000000000000000	. 0
10 C	72 83 78 86 89	103 80 97 56 69	90 90 90 90 90 90 90 90 90 90	1
UO m/s	1117 1117 124 146	107 99 49 115	4884111 3322333333447 4488669555555555555555555555555555555555	50
P0 GPa	222222	233		
TEST #	20902- 20902- 20902- 20902- 20902- 20902-	20902- 20902- 20902- 20903- 20903- 20903-	<u> </u>	20916-1

MU	!	œ	\sim	9	\sim	05	5	9	03	4	03	4	05	90	05	90	90	04	04	05	90	.073	05	07	04	90	07	08	05	90	2	9
WS	i					31		0	0	0	0	0	0									29										
Ą	E																H	Ä				.22										
KK	ļ	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	5.0	•	•	•	•	•	•	•	•	•	•
OS	*	.00	.00	.00	.00	.00	900	900	900	90	900	900	900	900	.00	.00	.00	.00	.00	.00	.00	0.000	.00	00.	.00	.00	.00	.00	.00	.00	00.	00.
Ð	EE.	237.	237.	237.	237.	237.	230.	230.	230.	230.	230.	230.	230.	230.	121.	121.	121.	121.	121.	121.	121.	-121.0	121.	121.	121.	121.	121.	121.	121.	121.	121.	121.
RY	E E	70.	70.	70.	70.	70.	70.	70.	70.	70.	70.	70.	70.	70.	36.	36.	36.	36.	36.	36.	36.	136.0	36.	36.	36.	36.	36.	36.	36.	36.	36.	36.
RX	E	6	9	6	6	9	о Ф	.	ж ж	· ω	°.	ъ Ж	ω	ж •	Ϊ.	Ξ.	<u>.</u>	1:	i.	1.	<u>-</u>	11.3	_	;	Ξ.	.		_	1.	.	-	-
VF	;	0.	0	9	9	8		9		9	9	œ	ж	0	0.	•	σ	0	7	2	0	0.00	6.		œ	0.	0	0.	0.	Ö		
SP	-	•	•		•		2	S	5.		5.	5.	5.	5.		•	•	•	•		•	0.0	•	•	•	•	•	•	•	•	•	•
TO	ပ				0	7			œ		9											9/	∞		0	0			0		0	\sim
00	s/w					4				œ		-						œ		-		51		œ		~						7
P0	GPa	.00	.00	.00	00.	.00	.01	.01	.01	.01	.01	.01	.01	.0.	.03	.03	.03	.03	.03	.03	.18	1.186	.18	.18	.18	.18	.40	.40	.40	.40	.40	.40
TEST #	• • •	20916-	20916-	20916-	20916-	20916-	20916-	20916-	20916-9	20916-	20916-1	20916-1	20916-1	20916-1	21116-	21116-	21116-	21116-	21116-	21116-	21116-	821116-8	21116-9	21116-	21116-1	21116-1	21116-1	21116-1	21116-1	21116-1	211116-1	21116-1

ツ

4

4/20

4 100 de geregere errementelligen er bereitet er men er men er men er

A deal

SUMMARY OF TRACTION TEST DATA ON TDF88

上 国教学说 "……"

DW I	068 000 000 000 000 000 000 000 000 000
S I	0000000000000000
A mm	255 255 255 255 255 255 255 255
KK	
DS	
e mm	-118.0 -1118.0 -1118.0 -1118.0 -1118.0 -1118.0 -1118.0
RY	136.0 136.0 136.0 136.0 136.0 136.0 136.0 136.0
RX mm	100.6 100.6 100.6 100.6 100.6 100.6 100.6
V F	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SP-	115.00 115.00 115.00 115.00 115.00 115.00 115.00 115.00
TO C	64 76 76 91 103 103 105 109 83 83 83 114
S/W	51 83 83 111 111 51 121 121 121 131 103
P0 GPa	1.062 1.062 1.062 1.062 1.216 1.2216
TEST #	821118-1 821118-2 821118-3 821118-4 821118-4 821118-7 821118-9 821118-9 821118-10 821118-11 821118-12 821118-13 821118-13

0
2
2
S
SANT
S
_
S
U
Ø
H
DATA
_
_
ດ້
TEST
Η
_
á
ĭ
H
Õ
\$
TRACTION
9
0
IMARY
Z
ž
Σ
Ξ
S

00	1.0	SP-	VF	RX	RY	an ¦	DS	KK	Ą	WS	MU	
	•		!	E	E	E	;	!	E E	!	! !	
4		5.	0.	8	70.	230.	90	•		0	2	
*		5.	6.	ж	70.	230.	90	•		0	9	
7		5.	0.	.	70.	230.	90	•		0	4	
7		5.	6	ж •	70.	230.	90	•		0	u٦	
10	œ	5.	9	· ω	70.	230.	900	•		0	\sim	
11		5.	ж.	ж •	70.	230.	900	•			4	
4		•	0	6	70.	237.	.00	•			9	
S		•	6.	9.	70.	237.	00.	•			∞	
7		٠	0	6	70.	237.	.00	•			4	
7		•	œ	٠ •	70.	237.	.00	•			9	
11		•		6	70.	237.	00.	•			(7)	
11		•	9	6	70.	237.	.00	•			4	
4		•	0	6	4.	21.	00.				∞	
4		•	9.	6	4	21.	00.	•			6	
7		•	0.	٠ د	4	21.	00.	•			Ŝ	
∞		•		6	4	21.	00.	•			∞	
11		•		6	4	21.	00.	•			S	
11		•		6	4	21.	00.	•			Ō	
4		•		6	4	21.	00.	•			∞	
4		•	٠.	9.	4	21.	00.	•			6	
7		•	0.	٠ و	4	21.	.00	•			9	
7		٠		6	4	21.	00.	•			∞	
11		٠		6	4	21.	00.	•			2	
11		٠	œ	٠ ص	4	21.	00.	•			7	
4		٠	Û.	د	4	21.	00.	•			∞	
4		•	9.	٠ و	4	21.	00.	•			60	
∞		•	0	٠ •	4	21.	00.	•			07	
∞		•		6	4	21.	.00	•			08	
10		•		6	4.	21.	00.	•			9	
11		•	9	6	4	21.	00.	•			9	
2		•		9.	4	-	01	•		0	9	
$oldsymbol{lpha}$ on $oldsymbol{lpha}$ or $oldsymbol{lpha}$ or $oldsymbol{lpha}$ or $oldsymbol{lpha}$		8	48 53 15 48 64 15 78 65 15 77 83 15 106 84 15 111 103 15 75 73 0 75 73 0 77 79 61 0 113 99 0 81 74 0 81 74 0 113 99 0 79 65 0 79 65 0 78 80 0 80 80 0 80 94 0 113 97 0	48 53 15.0 1.78 65 15.0 1.106 84 15.0 1.106 84 15.0 1.101 10.3 15.0 1.101 10.3 15.0 1.101 10.3 15.0 1.101 10.3 15.0 1.101 10.3 15.0 1.101 10.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.0 1.101 10.101 10.0 1.101	48 53 15.0 1.00 18 48 64 15.0 .96 18 77 83 15.0 1.00 18 106 84 15.0 .96 18 111 103 15.0 .96 18 113 99 0.0 .69 19 19 13 95 0.0 1.00 19 19 13 95 0.0 1.00 19 19 13 95 0.0 1.00 19 19 13 95 0.0 1.00 19 19 13 95 0.0 1.00 19 19 113 95 0.0 1.00 19 19 113 95 0.0 1.00 19 19 113 95 0.0 1.00 19 19 113 95 0.0 1.00 19 19 19 19 19 19 19 19 19 19 19 19 19	48 53 15.0 1.00 18.7 27 48 64 15.0 .96 18.7 27 77 83 15.0 1.00 18.7 27 27 10.6 84 15.0 .96 18.7 27 27 83 15.0 1.00 18.7 27 27 111 103 15.0 .96 18.7 27 27 20 1.00 19.1 27 27 28 113 99 0.0 1.00 19.1 27 27 113 99 0.0 1.00 19.1 27 113 99 0.0 1.00 19.1 5 113 90 0.0 1.00 19.1 5 113 90 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 92 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5 113 97 0.0 1.00 19.1 5	M/S mm mm 48 53 15.0 1.00 18.7 270.0 -23 48 64 15.0 1.96 18.7 270.0 -23 77 83 15.0 1.00 18.7 270.0 -23 106 84 15.0 .96 18.7 270.0 -23 111 103 15.0 .96 18.7 270.0 -23 49 61 0.0 1.96 19.1 270.0 -23 75 73 0.0 1.96 19.1 270.0 -23 73 0.0 1.96 19.1 270.0 -23 113 98 0.0 1.99 1.27 0.0 -23 113 99 0.0 1.69 19.1 54.0 -23 113 90 0.0 1.69 19.1 54.0 -23 113 90 0.0 1.00 1.00 </th <th>## 53 15.0 1.00 18.7 270.0 -230.0 .000 48 64 15.0 .96 18.7 270.0 -230.0 .000 77 83 15.0 1.00 18.7 270.0 -230.0 .000 106 84 15.0 .93 18.7 270.0 -230.0 .000 111 103 15.0 .94 18.7 270.0 -230.0 .000 50 72 0.0 .96 18.7 270.0 -237.0 .000 73 87 0.0 1.00 19.1 270.0 -237.0 73 87 0.0 .94 19.1 270.0 -237.0 74 46 0.0 1.00 19.1 270.0 -237.0 75 73 0.0 1.00 19.1 270.0 -237.0 76 73 0.0 1.00 19.1 270.0 -237.0 77 89 0.0 .69 19.1 270.0 -237.0 78 13 98 0.0 0 10.0 19.1 270.0 -237.0 78 58 0.0 1.00 19.1 54.0 -21.0 79 58 0.0 1.00 19.1 54.0 -21.0 70 54 0.0 1.00 19.1 54.0 -21.0 70 75 0.0 1.00 19.1 54.0 -21.0 71 76 0.0 1.00 19.1 54.0 -21.0 72 76 0.0 1.00 19.1 54.0 -21.0 73 87 0.0 0.0 1.00 19.1 54.0 -21.0 74 88 0 0.0 0.0 1.00 19.1 54.0 -21.0 75 0.0 1.00 19.1 54.0 -21.0 76 0.0 1.00 19.1 54.0 -21.0 77 88 0 0.0 0.0 1.00 19.1 54.0 -21.0 78 88 0 0.0 0.0 1.00 19.1 54.0 -21.0 78 88 0 0.0 0.0 1.00 19.1 54.0 -21.0 78 89 0 0.0 0.0 1.00 19.1 54.0 -21.0 78 80 0.0 0.0 1.00 19.1 54.0 -21.0 78 94 0.0 0.0 1.00 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 79 113 97 0.0 60 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 10.0 10.1 54.0</th> <th>48 53 15.0 1.00 18.7 270.0 -230.0 .0061 5 48 64 15.0 .96 18.7 270.0 -230.0 .0061 5 78 65 15.0 .96 18.7 270.0 -230.0 .0061 5 77 83 15.0 .96 18.7 270.0 -230.0 .0061 5 106 15.0 .96 18.7 270.0 -230.0 .0061 5 111 103 15.0 .96 19.1 270.0 -230.0 .0061 5 50 1.00 19.1 270.0 -237.0 .0061 5 75 73 0.0 .96 19.1 270.0 -237.0 .0061 5 113 99 0.0 .96 19.1 270.0 -237.0 0.006 5 113 99 0.0 .96 19.1 54.0 -21.0 0.000</th> <th>m/s mm mm mm </th> <th>M/S mm mm mm mm mm </th> <th>48 53 15.0 1.00 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 48 64 15.0 .96 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 78 65 15.0 .96 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 106 84 15.0 .96 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 106 84 15.0 .96 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 40 10 19.1 270.0 -237.0 .0061 5.6 .31 .44 .00 .00 .94 .19.1 270.0 -237.0 .0000 .56 .31 .44 .46 .00 .96 .19.1 .270.0 -237.0 .0000 .56 .31 .48 .00</th>	## 53 15.0 1.00 18.7 270.0 -230.0 .000 48 64 15.0 .96 18.7 270.0 -230.0 .000 77 83 15.0 1.00 18.7 270.0 -230.0 .000 106 84 15.0 .93 18.7 270.0 -230.0 .000 111 103 15.0 .94 18.7 270.0 -230.0 .000 50 72 0.0 .96 18.7 270.0 -237.0 .000 73 87 0.0 1.00 19.1 270.0 -237.0 73 87 0.0 .94 19.1 270.0 -237.0 74 46 0.0 1.00 19.1 270.0 -237.0 75 73 0.0 1.00 19.1 270.0 -237.0 76 73 0.0 1.00 19.1 270.0 -237.0 77 89 0.0 .69 19.1 270.0 -237.0 78 13 98 0.0 0 10.0 19.1 270.0 -237.0 78 58 0.0 1.00 19.1 54.0 -21.0 79 58 0.0 1.00 19.1 54.0 -21.0 70 54 0.0 1.00 19.1 54.0 -21.0 70 75 0.0 1.00 19.1 54.0 -21.0 71 76 0.0 1.00 19.1 54.0 -21.0 72 76 0.0 1.00 19.1 54.0 -21.0 73 87 0.0 0.0 1.00 19.1 54.0 -21.0 74 88 0 0.0 0.0 1.00 19.1 54.0 -21.0 75 0.0 1.00 19.1 54.0 -21.0 76 0.0 1.00 19.1 54.0 -21.0 77 88 0 0.0 0.0 1.00 19.1 54.0 -21.0 78 88 0 0.0 0.0 1.00 19.1 54.0 -21.0 78 88 0 0.0 0.0 1.00 19.1 54.0 -21.0 78 89 0 0.0 0.0 1.00 19.1 54.0 -21.0 78 80 0.0 0.0 1.00 19.1 54.0 -21.0 78 94 0.0 0.0 1.00 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 78 113 97 0.0 60 19.1 54.0 -21.0 79 113 97 0.0 60 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 19.1 54.0 -21.0 70 10.0 10.0 10.1 54.0	48 53 15.0 1.00 18.7 270.0 -230.0 .0061 5 48 64 15.0 .96 18.7 270.0 -230.0 .0061 5 78 65 15.0 .96 18.7 270.0 -230.0 .0061 5 77 83 15.0 .96 18.7 270.0 -230.0 .0061 5 106 15.0 .96 18.7 270.0 -230.0 .0061 5 111 103 15.0 .96 19.1 270.0 -230.0 .0061 5 50 1.00 19.1 270.0 -237.0 .0061 5 75 73 0.0 .96 19.1 270.0 -237.0 .0061 5 113 99 0.0 .96 19.1 270.0 -237.0 0.006 5 113 99 0.0 .96 19.1 54.0 -21.0 0.000	m/s mm mm mm	M/S mm mm mm mm mm	48 53 15.0 1.00 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 48 64 15.0 .96 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 78 65 15.0 .96 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 106 84 15.0 .96 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 106 84 15.0 .96 18.7 270.0 -230.0 .0061 5.6 .30 0 .00 40 10 19.1 270.0 -237.0 .0061 5.6 .31 .44 .00 .00 .94 .19.1 270.0 -237.0 .0000 .56 .31 .44 .46 .00 .96 .19.1 .270.0 -237.0 .0000 .56 .31 .48 .00

· ·

•

				SUMMARY	OF	TRACTION	ON TEST	DATA ON S	SANTO50				
TEST #	P 0	00	TO	SP	VF	RX	RY	a	SQ	KK	¥	MS	MU
•	GPa	S/E	ပ	-		86	E	ww.	ì	!	E	!	!
20925-	.07			•	0.	•	4	-21.0	01	•		0	7
20925-	.07			•		•	4	21.	01	•		0	S
20925-	.07	œ	9/	•		•	4.	-21.0	01	2.0	.30	0	.053
20925-	.07			•		•	4.	Ξ.	0	•		0	4
20925-	.07	7		•		•	4	-	01	•		0	S
20925-	. 23			•		•	4	7.	01	٠		0	7
20925-	. 23			٠	8	•	4	1.	0	•		0	_
20925-9	. 23			•		•	4	7	0	•		0	9
20925-1	. 23			•	œ	•	4	-	01	•		0	1
20925-1	. 23			•	œ	9.	4	Ξ.	01	•		0	9
20925-1	. 23	0		•	9	٩.	4	;	0.1	•	.34	0	5
20925-	.45			•		6	4	-	02	•	.41	0	~
20925-1	.45			•	σ	9.	4	-	02	•	.41	0	6
20925-1	.45			•		٠ ص	4	7	02	•	.41	0	9
20925-1	.45	œ		•		ب	4	1.	02	•	.41	0	Ó
20925-1	.45		g	•		6	4	21.	02	٠	.41	0	2
20925-1	.45	7		7	α.	6	4.	-	02	•	.41	0	9
20927-	.07			δ.	0	ж •	4	Ή.	003	•	3	0	9
20927-	.07			Ś	6	•	4	Ξ.	03	•	.30	0	7
20927-	.07			Ġ.	0	დ	4	-	03	•	.30	0	S
20927-	.07	3		Š	6.	œ	4	-	03	•	.30	0	9
20927-	.07		9	5.	0	œ	4	Ϊ.	03	•	.30	0	Ω
20927-	.07	_		Ś	æ.	ъ •	4	_;	03	•	.30	က	S
20927-	. 23			Š	0	ж •	4	:	04	•	.34	0	9
20927-	. 23			5		œ.	₹.	Ή.	04	2.0	.34	0	
20927-9	. 23			Ś	ა.	ж Ж	4	ij	04	•	 -	0	9
20927-1	. 23	~		2		φ.	4	Ϊ.	04	•	٠. چې	၁	2
20927-1	. 23		3	δ.	9	œ	4	Ξ.	04	•	.34	0	S
20927-1	. 23	~		'n	8	•	4	-	04	•	.34	0	
820927-13	1.464	4 8	71	15.0	.98	18.8	54.0	-21.0	.0047	2.0	٠.	၁	.075
20927-1	,4 6			Ś		•	4	-21.0	04	2.0	ન	ပ	

ge 2

SANTOS
N O
DATA
TEST
TRACTION
OF
SUMMARY

3

				SUMMARY	ARY OF	TRACTION	ON TEST	DATA ON	SANTO50			
TEST #	20	99	TO	SP	> F	RX	RY	Φ	DS	X	Ø	M.S
	GPa	M/S	ပ	-		E	E	E		;	E	1
21020-	.78	_	84	7.5		9.	19.1	14.0	-	1.0	.46	0
21020-	.78			7.5		6	19.1	14.0	01	1.0	.46	0
21020-	.61		80	7.5		9.	19.1	14.0	01	0.0	.42	0
21020-	.61			7.5		6	19.1	•	01	1.0	.42	0
21020-9	.61			7.5		6	19.1	14.0	01	1.0	.42	0
21020-1	.61	3		7.5	88	6	19.1	•	01	1.0	.42	0
21020-1	.61			7.5		6	19.1	٠	0]	1.0	.42	0
21020-1	.61	Ñ		7.5	Φ.	6	19.1	•	01	•		0
21020-	.41			. •		6	19.1	14.0		1.0	.37	0
21020-1	7			. •	Q)	φ.		•	01	•		0
21020-1	7			•		<u>ي</u>	6	•	0	•		0
21020-1	.41	9		•		6		14.0	01		.37	0
21020-1	7			•	œ .	٠. د	9	14.0	0	•		0
21020-1	1	2		•	σ.	ъ Ф	9	٠	0	•		0
21022-	9	•		•	1.00	٠ م	9	14.0	02	•		ى
21022-	9			•	0.	٠ •	o :	•	05	•		0
27077	2			'n	9	٠ •	2	•	02	٠		0
21022-	7	9		ب	0	φ.		14.0	0.5	•		0
21022-	9			ģ	96.	6	S	•	0.5	•		0
21022-	07.	-		Š	.85	6		14.0	02	•		0
21022-	.63			•	.94	<u>.</u>	S)	14.0	03	•		0
21022-	19:			<u>ن</u>	69.	6	9	•	03	•		0
21022-9	3			u';	.94	٠ •		•	03	•	.42	0
21022-1	.61	œ		•	.75	6		14.0	03	•	.42	0
21022-1	.61			•	.80	6		14.0	03	•		0
21022-1	19.	_		•	96.	6		•	03	٠	.42	0
21022-1	.77			•	96.	6	19.1	14.0	03		.47	0
21022-1	17			•	.75	٠ م		14.0	03	•	4.	0
21022-1	.77			•	.78	٠ م	19.1	14.0	03	•	.47	0
821022-16	1.775	16	~ 0	15.0	<u>س</u>	19.3	19.1	14.0	.0037		.47	0 (
1-77017				•		,	13.1	14.0	2	n• 7	7 6.	>

The same

SANTO50
O
DATA
TEST
TRACTION
OF
SUMMARY

GPa m/s 'C .775 119 84 .062 50 65 .062 50 75 .062 80 75 .062 80 75										
/s /s /s 50 8 50 7 80 7 80 7 90 90 90 90 90 90 90 90 90 90 90 90 90	SP	VF	RX	RY	Ð	DS	×	Æ	WS	MC
89000	-	ļ	E	E	E	*	1	E	ł	† !
9 7 7 0	5.		9.	9.	4	03	•		C	7
0 0 0 0	δ.		0	36.	18.	9	•		0	∞
0 0	5.		0	36.	118.	98	•		0	∞
0	5.		٠,	36.	118.	9	•		0	~
0	5.		0	36.	118.	9	•		0	7
1 9	15.0	.60	10.6	136.0	118	.0082	5.2	.19	0	9/0.
4	۶.		0	36.	118.	90	•		0	1
2 8	Š		0	36.	18.	08	•		0	4
9 10	5.	œ	0	36.	118.	08	•		0	٠.٦
9 0	5.		0	36.	118.	60	•		0	9
0 7	5.		0	36.	18.	60	٠		0	9
3	5.		0	36.	118.	60	•		0	0
1 8	5.		0	36.	118.	60	•		0	S
3	5.		0.	36.	118.	60	•		0	S
7 11	5.	7	0	36.	118.	600	•		0	Ø
1	5	œ	0	36.	18.	(11	•		0	90
2	5.		•	36.	118.	011	•		0	9
9 10	δ.	9	0	36.	118.	011	•		0	9
0 10	ۍ.		0	36.	118.	011	•		0	Ŝ
4	5.	9	0	36.	18.	011	٠		0	S
6 12	5.	9		36.	118.	011	•		0	9
5	•	0.	Ϊ.	36.	121.	00.	•			_
2 6	0.0		4	36.	121.	00.	•			∞
3	_:	0.	÷.	36.	121.	00.	•			07
2 7		9	i.	36.	121.	.00	•			07
4 8			4	36.	21.	.00	•			9
8		Φ,	;	36.	21.	.00	•			9
9 /		C	Ή.	36.	21.	.00	٠			∞
8 7	0.0		-	36.	21.	0	•		33	∞
5 8			-	36.	21.	00.	٠			7
5 &	· •	86.	•	m	21.	00.	•			9

				SUMMAI	RY OF	TRACTI	ON TEST	MMARY OF TRACTION 'FEST DATA ON	SANTO50				
TEST +	PO GPa	00 w/s	10 C	SP-	V F	RX mm	RY	e E	DS	X I	A mm	SE I	₩ I
21102-	1.186		94	0.0	.89	11.3	136.0	-121.0	000.0	5.0	.22	26	.064
21102-	1.186		102	0.0	.80	11.3	136.0	-121.0	0.000	5.0	.22	30	.063
21102-	1.406		69	0.0	1.00	11.3	136.0	-121.0	0.000	5.0	.26	59	.087
821102-14	1.406		83	0.0	.93	11.3	136.0	-121.0	0.000	2°C	.26	30	.088
21102-	1.406		16	0.0	.97	11.3	136.0	-121.0	000.0	5.0	.26	30	690.
21102-	1.406		111	0.0	.80	11.3	136.0	-121.0	000.0	5.0	.26	31	990.
21102-	1.406		108	0.0	.85	11.3	136.0	-121.0	0.000	5.0	.26	30	.071
21102-	1.406		84	0.0	.93	11.3	136.0	-121.0	000.0	5.0	.26	24	.071
821103-1	1.338		82	S	1.00	10.6	136.0	-118.0	.0103	5.2	.23	0	.065
21103-	1.338		91	15.0	.89	10.6	136.0	-118.0	.0103	5.2	.23	0	990.
21103-	1.338		102		.80	10.6	136.0	-118.0	.0103	5.2	.23	0	990.

APPENDIX II SUMMARY OF THE MODULUS ANALYSIS DATA.

The various shear moduli calculated from the experimental results are summarized in this Appendix. The nomenclature used is as follows;

Test #	Number of the particular test (Y	(YMMDD-##)
Ро	Maximum calculated Hertz contact stress	(GPa)
Uo	Surface rolling velocity in linear region	(m/sec)
То	Disc surface temperature in linear region	(' C)
VF	No-contact voltage fraction	(-)
КК	Contact aspect ratio (b/a)	(-)
MS	Slope of curve in linear region	(-)
RG	Regression coefficient on the slope	(-)
MIR	Wet to dry slope ratio	(-)
Но	Isothermal film thickness	(um)
YI	Inlet shear heating factor	(-)
GB	Fluid shear modulus without corrections	(GPa)
GC	Modulus with simple comp ance corrections	(GPa)
C,	Effective dimensionless contact radius	(-)
GJ	Modulus with complex compliance corrections	(GPa)
PR	Reduced pressure ratio	(-)
CS	As C above but with reduced pressure	(-)
GP	As GJ above but with inlet shear heating	
	and reduced pressure taken into account	(GPa)

_ _

သ ဆ
TDF88
NO O
ANALYSIS
MODULUS
OF
SUMMARY

GP GPa	0.00 0.00)
CP	00.441.00.00.00.00.00.00.00.00.00.00.00.00.00	۱ •
PR	00000000000000000000000000000000000000	١
GJ GPa		l ,
ر ت	6.2.4.2.0 6.2.4.2.0 6.2.4.2.0 6.2.4.2.0 6.2.4.2.0 6.2.4.2.0 6.2.4.2.0 6.2.4.2.0 6.2.4.2.0 6.2.4.2.0 6.2.4.0 6	· ·
GC GPa	4.6.4.2.2.2.2.2.2.2.2.4.1.1.1.2.2.4.2.2.2.2	1
GB GPa	11. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.) -
ΥΙ	4 N N 4 4 N N N 4 N N 4 N N 4 A N N A 4 N N A 4 N N A 4 A N N A 4 A 1 N N N N N N N N N N N N N N N N N N	: •
HO mn	11.090 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1	•
Æ i		
RG		١
SE !		
X i		•
V F	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	•
T0	881 881 101 883 101 883 883 883 883 883 883 883 883 883 88	
UO m/s	550 852 111 853 113 862 116 862 116 863 116 863 116 116 116 116 116 116 116 116 116 1	
PO GPa	11111111111111111111111111111111111111	•
TEST #	820804-1 820804-2 820804-3 820804-4 820804-4 820804-6 820804-7 920804-1 820804-1 820804-1 820804-1 820805-1 820805-1 820805-1 820805-1 820805-1 820805-4 820805-4 820824-1 820824-5 820824-6 820824-6 820824-7 820824-6 820824-1 820824-1	1 17007

*

TDF88
N O
ANALYSIS
MODULUS AN
ARY OF
SUMM

												_																				
GP	GPa	.42	.35	.30	.34	.57	.30	.38	.21	.51	.26	7	1.4	.49	.49	2	\sim	7	•	4	•	1.8	•	•		0	4	•	•	•	•	.28
CP	;	.78	.78	.75	.73	.68	∞	.71	.64	2	7	.61	2	.83	7	.78	7	.75	9	S	7	.26	•	•	•	9	S	\sim	\sim	•	•	.73
PR	1	99	99	99	99	9	98	∞	ဘ	∞	7	\sim	7	∞	98	∞	98	98	∞	7	1	7	7	7	7	9	ō	9	9	9	1	.973
\mathbf{G}	GPa	.84		7	•		2					9	•	∞	~	S	•	9	•	7	•		•	•	•	S	7	7	•	0	•	.65
も	ı								99.										Ó	2	m		•	•	•		S	m	Š			
၁၅	GPa								.17																							
GB	GPa								.13		2													0								
λI	!						S		.38		3	\sim																				
Н0	۳n	.3	6	•	ъ.	.5	٤,	.7	1.97	6.	8.	8	9.	• 5	0.	•		φ.	٣.	0.	٣.	•	.5	۲.	.5	.2	9.	, 5	.7	æ	.2	0.
MR	!								. 24																							
RG	!	0	0.	9	0.		σ		.79	9		σ			9	σ		9	6		9	0	6.		6.		ð	0	0.	6		6
MS	!								23																							
ΚK	!	•	•	•	•	•	•	•	2.0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VF	;	6					0.	0.	1.00	•	0.	0:	0.	0.	9	0	æ.	0	∞.	0	•	0.	9	ð	8		0	σ	0	7	.5	0
$\mathbf{T0}$	ပ								83									∞				œ		0	~					ڪر ت		
90	s/m					-			83			œ											∞		7				œ		٠,	
P0	GPa	4	4	4	4	4	4	.2	1.23	. 2	0	0	•	4	₹.	4.	4	4	4.	•	•	0.	9	0	0	0.	•	•	0	0.	0	-
TEST #		20824-1	20824-1	20824-	20824-1	20824-1	20831-	20902-	820902-2	20902-	20903-	20903-	20903-	20904-	20904-	20904-	20904-	20904-	20904-	20916-	20916-	20916-	20916-	20916-	20916-	21116-	21116-	21116-	21116-	21116-	21116-	21116-

シ

ø	000000000000000000000000000000000000000	
GP GPa	24. 4	
CP	66. 66. 66. 66. 66. 66. 66. 66. 66. 66.	
P.R.	975 976 977 982 984 986 986	
GJ GPa		
5 1	39. 30. 30. 30. 30. 30. 30. 30. 30	
GC GPa	223 221 222 223 233 245 245 245 245 245 245 245 245 245 245	
GB GPa	.19 .16 .12 .12 .18 .08 .15	
ΥΙ	42466464646 6200840060	
HO mm	1.53 1.69 1.27 1.67 1.67 1.02 1.23 1.42	
MR	22. 22. 22. 22. 22. 24. 24. 26. 36. 36. 36. 36. 36. 36. 36. 36. 36. 3	
RG !	99. 1.00 1.00 1.00 1.00 1.00	
SE I	29 23 28 28 32 32 32 32	
X !		
VF.	0.00 0.00 0.00 0.00 0.00 1.00 693 693	
10 C	76 87 101 106 103 71 93 102 102 133	
00 m/s	51 84 1118 1118 51 51 91 107	
P0 GPa	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
TEST #	821116-8 821116-9 821116-10 821116-11 821116-13 821116-14 821116-15 821116-15 821116-18	

6 3 4 4 9 8 8 9 8 9 8 9 8 9 9 8 9 9 9 9 9 9
0 1 80 9
23 100
18 1.0
6 23 1.0
6 33 6
51 1.0
41 .9
32 1.0
46 1.0
39 1.0
3 1.0
0. T . S
3 1.0
2 1.0
0.1)
6.
8 1.0
2 .9
38 .9
37 1.0
38 1.0
45 1.0
41 .9
44 1.0
46 1.0
44 1.0
42 1.0

SANTO50
N O
ANALYSIS
MODULUS
OF.
SUMMARY

0.	р С:						28																									
5	СР	•	•	•	`•		``		•								•			•						•				`.	•	•
CP	1	∞	∞		3	∞	8	∞	∞	6		9	∞		∞	7		9														
PR	!	99	99	66	66	99	.993	99	5	9	66	ð	66	6	66	96	96	96	Ō	96	96	97	7	6	6	67	97	98	98	∞	98	ж б
G	GPa	•	•	•	7	•	90	9	•	1	∞	•	6	•	•	σ	9	•	•	•	•	7	9	•	6	•	•	9	9	•	•	6
,	ı	ထ	∞		6	∞	.89	∞	∞	9	6	σ	9	œ	∞	_	7	9	S	Ŝ	4	~	7	9	9	9	S	8	7		9	
CC	GPa	∞		S	4	9	.51	2		4	S	9	Š	9	2	4		S	4							~,		\sim	7			
GB	GPa						.29	\sim		7	7	\sim	7	\sim	7	\sim		\sim	~	7	C!	7	7	7		7						
ΙX	i i						.31					\sim		2																		
Н0	₩n.	6.	.2	6.	6	.7	2.51	φ,	4.	٦.	6.	4.	~	4.	0.	6.		.7	٦.	٠,	٦.	0.	4.	9	∞.	æ	•	•	.2	•	4.	
MR	;						.43						S	S	Ś	~		3	Ċ	m	~		4			\sim	m	4		4		
RG	1	0	0	0.	Φ		66.		0	σ	0	9	9		9	σ	6.	0	6.	0	•	g	0	0	0	σ	0	0	0		0	9
WS	1	40	46	46	40	41	38	36	41	38	42	41	41	42	43	27	30	30	33	28	27	29	33	35	27	56	30	29	30	30	31	30
KK	!	•	•	•	•	•	1.0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•		
۷F		0	∞	0	S	0	96.	σ	9.	0	∞	œ	Ð	9	9	•	0	•	6.	0	æ	0	∞	g	9	∞	æ	0		5		
ŢO	ပ	57					64																			9				9		0
00	s/m	~		4			85	2							~				Ŝ		Ĥ				∞		-		S		7	
P0	GPa	4	4	9.	9.	9.	1.62	9	9		1		1			0	0.	0	()	0	0	٦.	7	-	.	7	7	4	4.	4	4.	4
TEST #	!	21019-	21019-	21019-	21019-	21019-	821019-10	21019-1	21019-1	21019-1	21019-	21019-1	21019-1	21019-1	21019-1	21102-	21102-	21102-	21102-	21102-	21102-	21102-	21102-	21102-9	21102-1	21102-	21102-1	21102-1	21102-1	21102-1	21102-1	21102-1

The same

......

r f

				SUMMAR	IARY O	F MOD	OLUS	ANALY	Y OF MODULUS ANALYSIS ON SANTOSO	SANT	020						
TEST #	PO GPa	00 m/s	10 C	VF	X	SE	RG	AR I	OH C m	YI 	GB GPa	GC C	ر ا ر	GJ GPa	PR	CP :	GP GPa
821102-18 1.41	1.41	81 84	84	.93 5	5.0	24	66.	.35	.99 .35 1.68 .42 .17 .27 .78 .54 .982	.42	.17	.27	.78	.54	.982	.77 .24	.24

APPENDIX III SUMMARY OF THERMAL HYPERBOLIC SINE ANALYSIS.

The various hyperbolic sine thermal constants calculated from the experimental results are summarized in this Appendix. The nomenclature used is as follows;

Test #	Number of the particular test	(YYMMDD-##)
Po	Maximum calculated Hertz contact stress	(GPa)
Uо	Surface rolling velocity in linear region	(m/sec)
То	Disc surface temperature in linear region	(' C)
VF	No-contact voltage fraction	(-)
KK	Contact aspect ratio (b/a)	(-)
SP	Dimensionless spin (ab/U)	(%)
Но	Isothermal film thickness	(um)
YI	Inlet shear heating factor	(-)
El	Hyperbolic sine constant for intercept	
	using no inlet shearheating or reduced	
	pressure effects	(Pa.s)
Cl	Slope constant for the above	(¹C/Pa)
Rl	Slope regression coefficient for the above	(-)
P1	Pseudo Peclet number for the above	(-)
E2	Hyperbolic sine constant for intercept	
	using inlet shearheating and reduced	
	pressure effects	(Pa.s)
C2	Slope constant for the above	(*C/Pa)
R2	Regression coefficient for the above	(-)
P2	Psuedo Peclet number for the above	(-)

•

TOF88
Ö
ANALYSIS
SINE
HYPERBOLIC
THERMAL
OF
SUMMARY

TEST #	P0 GPa	00 s/	10 0.	VF	X	ი შ њ	E E	YI	El Pa.s	Cl 'C/Pa	R]	PI	P.R.	E2 Pa.s	C2 'C/Pa	R2	P2
20804- 20804- 20804- 20804- 20804- 20804- 20804-	0000000	07557	4468646			0000000	P378989		9 E - 0 9 E -	35E-0 37E-0 51E-0 51E-0 33E-0 35E-0	000.000.	E 6 7 6 4 6 H E	7777788	146E-0 22E-0 22E-0 66E-0 14E-0 38E-0	222E-0 24E-0 36E-0 36E-0 19E-0 21E-0	9 C 9 9 1 M 9 9 9	00007000
20804- 20804- 20804- 20804- 20805- 20805-	4444	5295446	~09699			000000	5.16.27.99	443 445 666 666 666	25E-0 72E-0 69E-0 64E-0 26E-0 36E-0	0E-0 1E-0 7E:0 5E-0 6E-0		0 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	$\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} $	1386-0 64186-0 6428-0 9486-0 1486-0 1486-0	26E-0 41E-0 26E-0 43E-0 21E-0 25E-0		2871798
4564664567864	1.78 1.78 1.78	11000 11000 11188 11188 1188 1188 1188	989 989 989 989 989	8080606080806	000000000000000000000000000000000000000			C44.04.00.00.00.00.00.00.00.00.00.00.00.0	.31E-02 .23E-03 .19E-02 .98E-03 .68E-02 .01E+00 .73E-02 .73E-02 .73E-03 .97E-04	.52E-04 .51E-04 .39E-04 .37E-04 .47E-04 .45E-04 .43E-04 .35E-04 .35E-04	96. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	938 4507 1014 3297 2542 9809 9010 10620 688 479 2721	o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.	.25E-03 .36E-06 .27E-04 .37E-06 .16E-04 .21E-05 .60E-04 .12E-05 .30E-03 .11E-05	.47E-04 .33E-04 .29E-04 .31E-04 .35E-04 .36E-04 .36E-04 .30E-04 .30E-04	96. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	321 670 870 870 870 870 870 83
20824- 20824- 20824-	L					0.00	W 10 4		8E+0 4E+0 5E-0	3E-0 1E-0 5E-0		9 9	ω	4E-0 9E-0 3E-0	40E-0 43E-0 26E-0	9 • •	9 L 3

:

4. 4. 4. 4.

TDF88
O
ANALYSIS
SINE
HYPERBOLIC SINE ANALYSIS
THERMAL
OF
SUMMARY

TEST #	PO GPa	00 8/	10 C	V.	X	ა შ გ	0 E	¥1	El Pa.s	Cl 'C/Pa	R1	Pl	P.R.	E2 Pa.s	C2 'C/Pa	R2	P2	
824- 824- 824-	177					000	w. e. a	4 6 M	3E-0 9E-0 4E+0	6E-07E-05E-05E-0	. 6 .	81 78 04	\circ	6E-0 3E-0	9E-0	\cdot or o	30 m o	
824-1	77	115		• •	• •	0.0	æ. v.		2E+0 5E+0	5E-0	O .	65 05	9	3E-0 2E-0	39E-0		.o ∞	
825- 825- 825-	777				• • •	23	ي س ه	44~	5E-0 6E-0 5E-0	7E-0 2E-0 0E-0	. 6	36 68 63	9	1 E - 0	26E-0 23E-0 33E-0	· • •	6 7 3	
825- 825- 825-	444			• •		29	4.9.	404	1E-0	37E-0 60E-0 35E-0	• • • • • •	49 18 18 10	666	10E-0 15E-0 44E-0	25E-0 40E-0		$\infty \circ \alpha$	
825-	994	1 50 4 0	~ co a	0.00		, m m r	4774	450	47E-0 20E-0	39E-0		85 21 42	666	10E-0	30E-0 28E-0	•••	ഗരദ	
20825-1 20825-1	999			• • •	• • •	, m m c	. w. ≠ .		21E-0 38E-0	0-36 0-36	999	87 69 69	999	6E-0	9E-0		000	'
20825-1 20825-1 20825-1	97.	744	1		• • •	378	.5	440	0E-0 2E-0 6E-0	3E-0 1E-0 5E-0	v	38 10 27	ששע	/E-0 5E-0 5E-0	3E-0 9E-0	. · ·	047	•
2082 2082 2082			85 98 105	• • •	• • •	m m m	5.44	₩	5E-0 8E-0 5E-0	8E- 0E- 9E-	9.9	71 32 68	999 999	8E-C 9E-0 2E-0	37E-0 31E-0 46E-0	9.9	ဘာသာသာ	
20825-1 20826-1 20826-2		5	9 2 2			~ 20 00	.5		0E-0 1E+0 1E+0	1E-0 2E-0 8E-0	9	47 60 25	999	8 E - 0 4 E - 0 7 E - 0	1E-0 2E-0 1E-0	σ••		
820826-3 820826-4 820826-5 820826-6 820826-7	1.78 1.78 1.78 1.62	91 118 119 50 51	83 82 96 110 59	0.	000000	8 8 9 9 9 1 9 1 9 9 9 1 9	1.72 1.75 1.55 1.23 2.14	.36 .35 .37 .41	.05E+00 .92E-02 .01E+00 .02E+00 .29E-02	00000	1.0 1.0 1.0 1.0	7930 6396 7457 6015 4417 2751	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.36E-04 .37E-05 .49E-05 .81E-04 .73E-06	.37E-04 .38E-04 .38E-04 .43E-04 .32E-04	.99 .99 .97 .99	589 550 597 579 413	

TDF88
Ξ
Ö
SIS
SINE
HYPERBOLIC
Ŧ
THERMAL
OP
SUMMARY

			ิด	SUMMARY	RY OF	P THE	RMAL	HYPE	HYPERBOLIC S	INE ANALY	SISK	ON TD	F88				
TEST #	6	90	TO	VF	KK	SP	Н0	ΧI	E	CI	RI	Pl	PR	E2	C2	R2	P2
Ì	GPa	8/E		<u> </u>	i	•	2		Pa.s	'C/Pa	;		!	Pa.s	'C/Pa	!	
20826-	9				•	9	.7		4E+0	5E-	1.0	99	9	0E-0	5.E-0		~
20826-1	•	20	<u>۔</u>	0	•	9		\sim	0E-0	1E-	66.	94	99	8E-0	0E-		\sim
20826-1	9.	•	16	•	•	9	æ.		1E-0	1 E-	96.	94	6	10E-0	6E-0		2
20826-1	•	27	S	9.	•	16	₹.	~	3E+0	1E-	66.	70	66	7E-0	0E-0		6
20826-1	₹.		S	0	•	1	. 7	4	2E-0	6 E−	1.0	74	6	2E-0	5E-0		2
20826-	7		m	0	0.	•	S	4	42E-0	7E-0	1.0	9	66	10E-	- 392	j.0	∞
20826-1	7		0	6	0	7	œ	س ،	03E+0	45E-0	•	64	66	18E-0	32E-0		9
20826-1	4.	∞ •	o		•	7	œ		3E-0	6E-0	9	7.1	99	35E-0	29E-0		7
20826-1	7	ر ا ما	9	o	0.	7	æ. '	~ (9E-0	9E-	86.	56	9	9E-0	30 8-0		•
20826-1	•	25	7	æ ·	0	_	S	\sim	02E+0	50E-0	g	88	99	26E-0	7E-0	ð	-
20831-	₹.		&	•	•	œ.	٣.		37E-0	6E-0	•	26	98	10E-0	20E-0		_
20831-	7		œ		0.	23	7	9	4 E-0	5E-0	9	53	98	47E-0	19E-0	•	0
20831-	7.		~	0	•	23	σ.		10E-0	4 E-0	Φ	40	∞	54E-0	18E-0		7
20831-	7		8	0	0.	23	9	4	8E-0	2E-0	9	57	98	12E-0	31E-0		S)
20831-	7		6	0	0	23	~		61E-0	6E-0	6	57	98	76E-0	27E-0		9
20831-	7.		9	0	•	23	₹.	4	55E-0	44E-0	σ	37	98	11E-0	27E-0		œ
20831-	₹.		~	0	0	23	٦.	₹	4E-0	40E-0	9	37	98	11E-0	27E-0		0
20831-	. 7		~	0	0	19	ش	◀ :	67E-0	9E-0	σ	03	7	9E-0	1E-0	6	3
20831-9	7		_	9	0	13	.5		0E-0	0E-0	1.0	95	98	24E-0	21E-0		∞
20831-1	7		~	0	•	13	0	~	1E-0	8E-0	.98	33	98	70E-0	27E-0		4
20831-1	7		s i	0	•	9	Ť 1		0E-0	7E-0	66.	79	သာ	11E-0	23E-0		5
20831-1	7	∞ ′	5	0	•	5		\sim	8E-0	6E-0	S	53	98	82E-0	32E-0		_
20831-1	7	on i	S	σ.	•	19	Ť		20E-0	2E-	86.	75	98	88E-0	24E-0		7
20831-1	•		9	0	•	16	0	4	3E-0	9E-	.95	33	97	1 ह-0	9E-0		7
20831-1	0		~	0	•	9	7	S	19E-0	6E-	66.	38	7	1E-0	15E-0		œ
20831-1	•		~	0	0	91	0	\sim	3E-0	4 E-	.82	13	97	52E-0	20E-0		œ
20831-1	•	æ ,		0	0:	16	Š	*	86E-0	5E-0	.97	93	7	0-30	18E-0		Q
-16 907			30 C	- •	د	91	30 U		4E+C	5E-0	.07	080	٦ ر	4E+1	98E-0		9
1-15002			. .	, <		9	י נ	•	25E-U	/E-U	٠ 4. و	• • •	•	0-38	25E-0		\
820902-2	1.23	• œ	7 8		 		1.78	2 %	595-05	40E-04	پ و	52741	186.	.31E-07	195-04	٠. و د	516
			,	•	•	•	•		3	1	•	7	•) 	11111		7

œ
က
DF88
Ξ
_
Z
_
S
\mathbf{SI}
<u>-</u>
ANALYSIS
ì
Z
Z
SINE
C
٦
5
KB
益
PE
HYPERBOLIC
_
AL
Ĩ
ER
7
THERMAL
OF
2
SUMMARY
Į
S
Ö

	2	3	40			כ										!	
	Pa	8/8	ပ	1	İ	•	E	!	та . s	'C/Pa	ļ	;	!	Pa.s	'C/Pa	!	;
20902-3	7	117	ع	•	•	0	6.		0 - 30	3.6-		01	œ	1E-0	1E-0	.79	0
20902-4	7	46	8	•	•	0	5.		6E-0	-36		81	æ	8E-0	9E-0	66.	9
20902-5	7	47	9	•	•	9	7.		6E - 0	30E-		36	∞	8E-0	0E-0	.99	2
20902-6		84	5	•		4 0			7E-0	41E-		24	∞	7E-0	6E-0	.95	7
20902-7	.2	~	~	•	•	0	~		6E-0	5E-0		98	8	9E-0	1E-0	.86	62
20902-8	7	_	80	•	•	9	₹.		8E-0	1E-0		32	œ	9E - 0	2E-0	.43	S
20902-9		9	_	•	•	40	9.		4 E-0	\sim		90	8	7E-0	3E - 0	16.	89
20903-1	•	4	9	•	•	•	æ		7E-0	6E-0		98	7	1E-0	3E-0	86.	93
20903-2	•	8	9	•	•	0.	8		7E-0	6E-0		589	7	E-0	32E-0	.95	9
20903-3	0	115	_	•	•	0	9.		9E-0	49E-0		58	7	17E-0	25E-0	99.	51
20903-4	•	4	0	•	•	35	₹.		47E-0	3E-0		26	^	3E-C	6E - 0	.70	\sim
20903-6	•	84	S	•	•	35	9.		6E-0	27E-0		72	7	47E-0	14E-0	œ	4
20903-7	•	4 8	_	•	•	35	7		7E-0	26E-0		52	7	40E-0	15E-0	86.	46
20903-8	•	113	S	•	•	35	6.		.7E-1	11.		35	~	.4E-0	.43-0	.31	∞
20903-9	0.	7	-		•	35			3E-0	44E-		45	7	55E-0	23E-0	9	35
20904-1	₹.	33	9	•	•	•	•		3E-0	6E-0		7	æ	6E-0	0E-0	66.	S
20904-2	₹.	53	20	•	•	0.	0.		9E-0	4 E-0		30	œ	5E-0	20E-0	•	4
20904-3	•	29	0		•	•	•		1E-0	0E-0		25	8	5E-0	29E-0	96.	9
20904-4	₹.	28	_	•	•	•			5E-0	1E-0		19	œ	7E-0	24E-0	S	4
20904-5	•	83	_		•	0			1E-0	4 E-		9	œ	6E-0	0 E-	9	7
20904-6	₹.	۰	_	•	•	0.	۳.		8E-0	46E-0		6 8	æ	8E-0	34E-0	9	$\overline{}$
20904-7	7	27	~	•	•	47	٣.		5E-0	0 - 39		_	æ	8E-0	20E - 0	1.0	7
20904-8	•	30	~		•	11	6.		4E-0	2E-0		41	∞	6E-0	17E-0	•	7
20904-9	7.	6 1	•	•	•	7	S		8E-0	8E-		22	သ	5E-1	6E - 0	96.	9
20904-10	7	61	5	•	•	47	7		5E-0	2F-0		43	œ	19E-0	24 E-0	.95	7
20504-11	7		10		•	47	٤.		1E-0	2E-		55	œ	8E-0	9.5-0	96.	7
20904-12	•	5	-	•	٠	47	7		4E-0	1 E-		18	œ	1E-0	8E-0	66.	œ
20916-1	0	20	_	•	•	0.	0.		3E-0	3E-		55	7	2E-0	. E-0	66.	4
820916-2	1.01	48	88	0.0	9.5	0 ' 00	1.36	.55	.45E-C3	.30E-04	1.0	1593	916.	.22E-04	.23E-04	1.0	498
20916-3	0	9	8 7	•	•	0.	•		6E-0	-39		34	7	8 E-0	7E-0	.95	7
20916-4	•	~	7	•	•	0.	.5		3E-0	1 E-		59	7	4F-0	6E-0	.97	9

~
ON TDF88
Ö
ANALYSIS
SINE
RMAL HYPERBOLIC SINE ANALYSIS ON TDF88
I OF THERMAL
OF
SUMMARY

time VIII St.

	P2	•	4 C	ν σ Ο α	٦ ~) O	9 5	02	_	-	8	9	7	26	4	51	23	9	9	4	99	21	œ	σ	9	4	ω	7	· 0	-	9.5	1599
	R2	1 8	0,0	000	76	ي .	· •	· ~	06	9	1.0	66	66.	66	86	54	91	9	•	66	0.	98	66	66.	•	O)	9	6	9	 	0	66
	C2 10 / P 2	ر / الا الا		ο α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18-0	1E-0	4 E-0	8E-0	9	7E-0	1E-0	8E-0	4 E-0	4 E-0	4E-0	8E-0	6E-0	5E-0	7E-0	6E-1)	6E-0	2E-0	5E-0	8E-	7E-0	9E-0	7E-0	0E-0	0 = 0	.34E-04	1E-0	0E-0
		ים מים מים		AELO	6E-0	9E-0	2E-0	4E-0	9E-0	4E-0	6E-0	8E-0	0E-0	1E-0	6E - 0	1E-0	8E-0	4E-0	0E-0	1E-0	2E-0	2E-0	7E-0	1E-0	1E - 0	2E-0	9E-0	1E 0	0E-0	.26E-04	2E-0	4E-0
F88	PR	, ,	, 0	, [97	97	~	~	97	8	~	96	9	9	96	9	97	7	16	16	7	7	~	8	œ	∞	∞	∞	∞	996.	9	Ö
OL NO	F1	90	200	ر 4	58	10	549	9	87	4	6 7	88	6 3	57	30	307	37	0 0	74	15	15	72	18	83	27	20	63	05	25	10320	95	08
XSIS	R3	6.7	00	6	.97	و	7	96.	96.	6	66.	6	9	66.	66	6	C)	9	•	9	66.	9	66	6	9	6	6	.98	1.0	0	66.	
INE ANALY	C1	7 7 7	. d	7E-	4 E-0	8E-	7E-0	5E-0	1E-0	4E-0	8E-0	6E-0	7E-0	1E-0	2E-0	5E-0	5E-0	7E-0	8E-0	5E-0	0E-0	8E-0	4E-0	7E-0	3E-0	3E-0	0-39	8E-0	3E-0	.50E-04	3E-0	2E-0
RBOLIC S	E1 Pac	1 6 6	A E - O	8E-0	0E-0	6E-0	2E-0	65E-0	20E-0	65E-0	2E-0	16E-0	7E-0	5E-0	0E-0	61E-0	3E-0	12E-0	46E-0	5E-0	1E-0	1E-0	3E-0	3E-0	2E-0	1E-0	1E-0	0E-0	4E-0	.01E+00	1E+0	7E-0
нхре	YI	41	4 4	43	.51	.35	.45	.40	.44	.70	99.	.39	.46	.40	.40	.35	.43	.40	.47	.39	.46	.39	.38	44	. 56	.46	.57	.40	.50	.40	.47	.35
ERMAL	0 H		٠.	, (1)	9	۳,	.5	8	4.	œ	\circ		•	9.	٠.	φ.	7	0	3	9.	. 7	4	.5	9	0	7		4	6.	2.06		۲.
OF THE	SP.	•		63	63	63	63	63	63	63	63	0	0	0.	0	0.	0	0	0	0.	0	0.	0	0.	٠.	0	0.	0	0	.821	82	82
	X I		• •	9	9	9	9.	9.	9.	9.	9	•	0.	0	0	0	0	0	0	0	0	0	0	0,	<u>ء</u>	0	0	0.	0	~	7	7.
SUMMAKY	VF	σ	α	•	1.0	٠	•	•	6.	•		•	•	•	1.0		٠	1.0	•	•	0.0	•	٠		•	٠		ο.	•). 0	•	
••	TO C		112	9	78	81	101	9	115	96	87	09	72	87	87	9	114	64	16	00	101	0	0	7.1	Э (102	m (0	3	40	9/	9/
	00	, c	113	4	46	8	∞	100	~	31	32	4	51	8	∞,	118	┛	51	51	8	∞,	118	~ 1	51	75	8	9	107	-	51	ָרָלָ מַלְ	χ Σ
	P0 GPa			0	٥.	•	•	0.	0	•	•	•	٠.	0.	0.	0	0	ָּדָי.	- -	٦.	٦,	፣	7	4.	4	4	4.	4.	4.	1.06	٦.	•
	TEST #	20916-	20916-	20916-	20916-	20916-9	20916-1	20916-1	20916-	20916-1	20916-1	-91117	21116-	21116-	21116-	21116-	21116-	21116-	2,116-	21116-9	21116-1	7-91177	21116-1	21116-	1-91117	21116-1	21116-1	1-91117	21116-1	821118-1	-91117	-81117

•

•

•

•

.

SUMMARY OF THERMAL HYPERBOLIC SINE ANALYSIS ON TDF38

P2	7110 6637 7011 7011 7011 8843 8843 512 512 890 890 893
R2	
C2 'C/Pa	33E-04 31E-04 32E-04 32E-04 33E-04 34E-04 42E-04 36E-04 36E-04 36E-04 37E-04 37E-04 37E-04 58E-04
E2 Pa.s	.17E-03 .23E-05 .37E-02 .30E-03 .38E-05 .28E-05 .35E-04 .53E-04 .48E-04 .47E-05 .32E-05
P. I	.970 .970 .978 .978 .978 .988 .988 .9885
E !	11910 20160 21600 3193 10370 4227 12600 10070 2110 784 7278 6779
R1	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cl 'C/Pa	.50E-04 .67E-04 .46E-04 .38E-04 .52E-04 .66E-04 .61E-04 .56E-04 .56E-04
El Pa.s	.046+00 .266-02 .276+00 .896-02 .516-03 .256-02 .336-02 .036+00 .126-02 .686-03 .326-02
Ιλ	4 E E E E E E E E E E E E E E E E E E E
HO m	1.52 2.01 1.53 1.09 1.37 1.16 1.16 1.21 1.21 1.39 1.39
ය අ දූ	.821 .821 .940 .940 .940 .940 .940 .940 .111 .111 .111
X !	22222222222222
S I	8.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.
10 10	91 87 90 79 83 105 96 109 83 83 111
00 m/s	84 111 1118 51 51 83 85 1111 51 86 87 87 103
P0 GPa	
# LSAL	821118-4 821118-5 821118-6 821118-7 421118-8 821118-10 821118-11 821118-12 821118-13 821118-13 821118-14 821118-14

_

2 -	4 K K B D D B C C C C C C C C C C C C C C C C
α, ι	
R2	
C2 'C/Pa	244 233E 293E 293E 233E 234E 335E 3
E2 Pa.s	111E-05 15E-05 87E-05 87E-05 39E-05 39E-05 39E-05 92E-04 12E-03 92E-04 12E-03 12E-03 12E-03 12E-03 12E-03 12E-03 12E-03 12E-03 12E-03 12E-03 12E-03 12E-03 12E-03 12E-03 12E-05 12E-05 12E-05 12E-05
PR	99999999999999999999999999999999999999
P1	10450 18650 9373 14110 7826 3889 10680 10680 10680 10981 7774 24060 1796
P. 1	
Cl 'C/Pa	44444444444444444444444444444444444444
E] Pa.s	.92E-03 .20E-02 .20E-02 .33E-03 .40E-02 .34E-03 .37E-03 .38E-03 .05E+00 .05E+0
 1X	u.a.u.a.u.a.u.a.u.a.u.a.u.a.u.a.u.a.u.a
H0	33.06 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2
S G	
KK !	
V F	
10	100886488 847284877 10088477 100988477 100988477 100988477 100988477 100988477 100988477 100988477 100988477 100988477 10098877 1009887 100987
00 m/s	880 111 111 1113 1113 1113 1113 1113 111
P0 GPa	988888999999999888889999999888899999999
TEST #	820923-1 820923-2 820923-4 820923-4 820923-6 820923-7 820923-1 820923-1 820923-1 820923-1 820924-2 820924-4 820924-4 820924-6 820924-1 820924-1 820924-1 820924-1 820924-1 820924-1 820924-1 820924-1 820924-1 820924-1 820924-1 820924-1 820924-1

	SANTO50
	Ö
	IC SINE ANALYSIS ON S
	C SINE 1
•	HYPERBOL 1
	Y OF THERMAL
	OF.
	SUMMARY

P2	1090 11690 11690 11690 11690 11091 11091 11091 11091 11090 11090 11090 11090 11090 11090 11090 11000	•
R2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
C2 'C/Pa	255 E = 0 0 4 4 0 0 4 0 4 0 4 0 4 0 4 0 4 0 4	1
E2 Pa.s	16 E - 05 17 E - 05 18 E - 05 19 E - 05)]
PR	0.000000000000000000000000000000000000)
Pl	16840 19840 19920 19920 19920 19920 16310 1522 4372 4372 4372 4372 11350 11350 11350 11350 11350 11350 11350 11350 11350	,
R1		,
Cl 'C/Pa	23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)
El Pa.s	.43E-03 .15E-02 .68E-03 .29E-03 .18E-03 .75E-03 .75E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03 .19E-03	
Ιλ	4470m0m44mmnn444444m4nn44m4nn44m4nn	
H0	22221122211111222211 2728212221111112222111111122222 27282212222222222	
SP PP	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
X :		
VF		
10 10	653 102 102 102 102 102 102 102 103 103 103	
UO m/s	852 1112 1112 1112 1009 1009 1100 1108 1113 1113 1113 1113 1113	
P0 GPa	10071	
TEST #	820925-2 820925-3 820925-4 820925-6 820925-7 820925-10 820925-11 820925-13 820925-14 820925-14 820925-15 820925-16 820927-1 820927-1 820927-1 820927-1 820927-1 820927-1 820927-1 820927-1 820927-1 820927-1 820927-1	

1 SAN 1050
ŏ
ANALYSIS
SINE
HYPERBOLIC
THERMAL
Y OF
SUMMARY

		S	SUMMARY		оғ тнек	MAL	нуре	HYPERBOLIC S	INE ANALYSI	YSIS	NO O	SAN 1050				
PO UO TO VF KK SP HO Pa m/s 'C % um	0 VF KK SP H C % u	F KK SP H	H ds	E S	OH D		YI !	El Pa.s	Cl 'C/Pa	R !	P1	PR :	E2 Pa.s	C2 'C/Pa	R2	P2
6 82 86 .9 2.0 .474 1.	6 .9 2.0 .474 1.	2.0 .474 1.	.0 .474 1.	74 1.			.42		6 E -	99	5343	986.	.37E-05	.33E-04	66.	804
113 106 .8 2.0 .474 1.	94 .0 2.0 .474 l.	8 2.0 .474 1.	0 474 1.	474 1.				0 E-0	0E-0		202	၁ထ	9E-0	4 E		9 0
112 110 .9 2.0 .474 1.	10 .9 2.0 .474 1.	9 2.0 .474 1.	.0 .474 1.	474 1.	•		44	6E-0	1E-0		10	98	1E-0	35E-0	66.	9
47 34 1.0 1.0 0.00 4	34 1.0 1.0 0.00 4	.0 1.0 0.00 4	.0 0.00 4	.00		\sim	.26	27E+0	2E-0	6	035	99	4 E-0	29E-0	9	œ
1 45 44 .9 1.0 0.00 3	4 .9 1.0 0.00 3	9 1.0 0.00 3	.0 0.00 3	.00 3	_	02	.33	07E+0	9E-0	•	155	9	5E-0	29E-0	Š	85
69 51 .9 1.0 0.00 3.	1 .9 1.0 0.00 3.	.9 1.0 0.00 3.	0 0 0 0	.00	•		.28	20E+0	E-0	•	% %	y y g	805-0	SELO PELO	•	2 C
50 40 .9 1.0 0.00 3.	. 9 1.0 0.00 3.	9 1.0 0.00 3.	00.00	00.3	•		. 29	6E+0	5E-0		750	9	$\frac{1}{2E-0}$	35E-0		14
1 89 46 1.0 1.0 0.00 4.	6 1.0 1.0 0.00 4.	.0 1.0 0.00 4.	.0 0.00 4.	.00 4.			2	90E+0	46E-0	•	1840	66	17E-0	29E-0	•	42
1 86 50 .9 1.0 0.00 3.	0 .9 1.0 0.00 3.	9 1.0 0.00 3.	.0 0.00 3.	.00 3.	•		.23	22E+0	51E-0	•	4920	66	71E-0	35E-0	•	47
1 120 57 1.0 1.0 0.00 3.	7 1.0 1.0 0.00 3.	0 1.0 0.00 3.	.0 0.00 3.	.00 3.	•		. 20	92E+0	1E-0	9	000	66	2E-0	32E-0	6	61
1 118 64 .9 1.0 0.00 3.	4 .9 1.0 0.00 3.	.9 1.0 0.00 3.	.0 0.00 3.	.00 3.	•		~	14E+0	56E-0	•	8410	90	59E-0	8E-0	•	5 8
2 47 59 .9 1.0 0.00 1.	9 1.0 0.00 1.	9 1.0 0.00 1.	00.00	00 1.	• •		43	1E+0	8E-0	• •	900	99	4E-0	30E-0	• •	4
2 87 61 1.0 1.0 0.00 2.	1 1.0 1.0 0.00 2.	.0 1.0 0.00 2.	.0 0.00 2.	.00 2.	•		7	19E+0	44E-0	•	908	66	52E-0	1E-0	•	0
2 85 64 1.0 1.0 0.00 2.	4 1.0 1.0 0.00 2.	.0 1.0 0.00 2.	.0 0.00 2.	.00 2.	•		\sim	38+0	4E-0	٠	543	66	21E-0	32E-0	٠	98
62 122 70 1.0 1.0 0.00 2.0	0 1.0 1.0 0.00 2.	.0 1.0 0.00 2.	0 0.00 2.	.00 2.	•		. 26	338+0	.49E-04	0.0	11	σ σ	0 0	3E-	0.0	φα
2 II) /3 :/ I:9 0:90 2:	3 1.0 1.0 0.00 2.	0 1.0 0.00 2.	0 0.00 2.	.00 2.			1 4	1E+0	7E-0		414	9	49E-0	30E-0	• •	50
8 48 58 .9 1.0 0.00 1.	8 .9 1.0 0.00 1.	9 1.0 0.00 1.	.0 0.00 1.	.00 1.	•		4	35E+0	9E-0	•	27	66	63E-0	3E-0	•	2
8 87 66 .8 1.0 0.00 2.	6 .8 1.0 0.00 2.	8 1.0 0.00 2.	.0 0.00 2.	.00 2.	•		\sim	60E+0	7E-0	•	558	66	1E-0	36E-0	٠	9
8 88 71 1.0 1.0 0.00 2.	1 1.0 1.0 0.00 2.	0 1.0 0.00 2.	.0 0.00 2.	.00 2.	•		.33	13E+0	5E-0	• (Ó.	66	2E-0	35E-0	• (400
8 120 /6 .9 1.0 0.00 2.	.5 U.O 0.10 2.	9 1.0 0.00 2.	.0 0.00 2.	.00 2.	٠		67.	29E+0	ソビーロ	Σ,	.	Ŋ	/E-0	0 E - 0	٠ رو	-
8 122 84 .7 1.0 0.00 2.	4 .7 1.0 0.00 2.	7 1.0 0.00 2.	.0 0.00 2.	.00 2.			.32	7E+0	E-0		104	9	4 E-0	3E-0	9	15
8 52 64 1.0 1.0 .184 1.	4 1.0 1.0 .184 1.	.0 1.0 .184 1.	.0 .184 1.	184 1.	•		.43	2E-0	7E-0	•	04	6	6E-0	1E-	•	9
8 50 68 .9 1.0 .184 1.	8 .9 1.0 .184 1.	9 1.0 .184 1.	.0 .184 1.	184 1.	•		.47	0E-0	6E-0	•	30	6	7E-0	30E-0	•	┙
8 86 74 .9 1.0 .184 2.	4 .9 1.0 .184 2.	9 1.0 .184 2.	.0 .184 2.	184 2.	•		.35	02E+0	4E-0	•	047	9	3E-0	3E-0	1.0	\sim
8 89 79 .9 1.0 .184 1.	9 .9 1.0 .184 1.	9 1.0 .184 1.	.0 .184 1.	84 1.	•		.37	11E+0	7E-0	•	27		7E-0	7	•	9
8 119 84 .9 1.0 .184 2.	4 .9 1.0 .184 2.	9 1.0 .184 2.	.0 .184 2.	84 2.	•		.32	13E+0	E-0		613	6	8E-0	8E-0	9	9
8 122 90 .8 1.0 .184 1.	0 .8 1.0 .184 1.	8 1.0 .184 1.	.0 .184 1.	84 1.	•		.34	0 E + 0	1 E-0		0 7 0	6	1 E-0	9E-0	£.	\sim

SUMMARY OF THERMAL HYPERBOLIC SINE ANALYSIS ON SANTO50

P2	33 33 34 35 36 36 36 36 36 36 36 36 36 36
R2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C2 'C/Pa	28E 335E 336E 335E 3
E2 Pa.s	28BE - 05 10555E - 05 114BE - 05
PR	$\begin{array}{c} \bullet
P1	1298 1230 15580 15580 25470 13830 3467 27710 25830 16470 4677 4086 16820 16820 16820 16820 16820 16820 16820 16820 16830 16830 16830
R1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Cl 'C/Pa	3.33 B B - 0.04 4.05 B - 0.04
El Pa.s	.32E-03 .02E+00 .09E+00 .09E+00 .01E+00 .37E-03 .41E-02 .03E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00 .09E+00
YI	4410144E01708474E017008005EEE40070
0H	11222144222222222222222222222222222222
CJ de	11111111111111111111111111111111111111
X I	
VF	
TO C	0777803366654438777800377700000000000000000000000000
UO m/s	8446 1120 120 120 120 120 120 120 120 120 12
P0 GPa	0.000000000000000000000000000000000000
TEST #	821020-7 821020-8 821020-9 821020-10 821020-11 821020-13 821020-13 821020-14 821020-18 821022-1 821022-3 821022-3 821022-4 821022-7 821022-1 821022-1 821022-1 821022-1 821022-1 821022-1 821022-1 821022-1 821022-1 821022-1 821022-1 821022-1 821022-1

SANTO50
S
ANALYSIS
SINE
HYPERBOLIC
THERMAL
Y OF
SUMMAR

7 !	847838668964466678174784898666 835054656715561747898666 83505465676678677466	
d i	22222	1
R2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ı
C2 'C/Pa	44444444444444444444444444444444444444)
E2 Pa.s	27 E - 02 28 E + 00 28 E + 00 28 E + 00 30 E + 00 30 E - 04 30 E - 04 30 E - 04 31 E - 02 31 E - 03 30 E - 04 31 E - 03 30 E - 04 31 E - 03 31 E - 03 31 E - 05 31 E - 05	
PR	$\frac{1}{2}$	
Pl	23430 17260 28460 28460 20360 20360 22370 102992 102902 102902 10290 1749 1749 17740 15780 2379 10040 15370	! !
RI		
Cl 'C/Pa	44444444444444444444444444444444444444	
El Pa.s	298E+00 29E+00 27E+00 31EE+)
17	0.000000000000000000000000000000000000	
0 H	12222222222222222222222222222222222222	•
SP P		•
X ;)
VF		ı
10 0.	7.25 10.00 1)
. OU	50 1111 1112 1113 1114 1116 1116 1116 1116 1116 1116	ì
P0 GPa) •
TEST #	821101-2 821101-3 821101-4 821101-6 321101-7 821101-1 821101-1 821101-13 821101-11 821101-15 821101-16 821101-16 821101-18 821102-1 821102-2 821102-3 821102-3 821102-3 821102-1 821102-1 821102-1 821102-1 821102-1 821102-1 821102-1 821102-1	

•

-

SANTOS
O
ANALYSIS
SINE
HYPERBOLIC
THERMAL
OF
SUMMARY

Market State Comment